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Preface

These are the lecture notes to three lectures on dialogical logic given at the
Institut d’Histoire et de Philosophie des Sciences et des Techniques in Paris
on March 14, 21 and 28, 2013. I would like to thank all the students for their
participation, and I would like to thank Jean Fichot for his kind invitation.
The lectures were supported by the French-German ANR-DFG project “Hy-
pothetical Reasoning — Its Proof-Theoretic Analysis” (HYPOTHESES). The
lecture notes themselves are mainly based on Piecha [2012] and Piecha and
Schroeder-Heister [2012]. Results are given without proofs here; the reader
can find them in Piecha [2012].

Thomas Piecha
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First Lecture:
An Introduction to Dialogues

1.1 Introduction

Dialogues have first been proposed by Lorenzen [1960, 1961] as an alternative
foundation for constructive or intuitionistic logic. The general idea is that the
logical constants are given an interpretation in certain game-theoretical terms.
Dialogues are two-player games between a proponent and an opponent, where
each of the two players can either attack claims made by the other player or
defend their own claims. For example, an implication A — B is attacked by
claiming A and defended by claiming B. This means that in order to have
a winning strategy for A — B, the proponent must be able to generate an
argument for B depending on what the opponent can put forward in defense
of A. The logical constant of implication has thus been given a certain game-
theoretical or argumentative interpretation, and corresponding argumentative
interpretations can be given for the other logical constants as well.

In this first lecture we will learn about dialogues for intuitionistic logic.

In the second lecture we will consider definitional dialogues that allow us to
reason about given definitions.

In the third lecture we will explain dialogues for implications considered as
rules.

1.2 Dialogues and strategies for propositional logic

We define the concepts of argumentation form, dialogue and strategy, following
the presentation of Felscher [1985, 2002] with slight deviations. We focus on
dialogues for intuitionistic propositional logic. In contradistinction to classical
logic, the law of excluded middle (tertium non datur) AV —A does not hold in
intuitionistic logic, and implication is a genuine logical constant which cannot
be expressed by using negation and disjunction (i.e. “A — B # -AV B”).

1.2.1 Dialogues

We define our language, argumentation forms for logical constants and dia-
logues.

Definition 1.1 (i) The language consists of propositional formulas A, B,
..., Aq,... that are constructed from atomic formulas (atoms) a,b,...,
ai, ... with the logical constants A (conjunction), V (disjunction), — (im-
plication) and — (negation).

(ii) Furthermore, A1, Ao and V are used as special symbols.
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(iii) In addition, the signatures P (‘proponent’) and O (‘opponent’) are used.

(iv) An expression e is either a formula or a special symbol. For each ex-
pression e there is a P-signed expression P e and an O-signed expression

Oe.

(v) A signed expression is called assertion if the expression is a formula; it
is called symbolic attack if the expression is a special symbol. X and Y,
where X # Y, are used as variables for P and O.

Definition 1.2 For each logical constant an argumentation form determines
how a complex formula (having the respective constant in outermost position)
that is asserted by X can be attacked by Y and how this attack can be defended
(if possible) by X. The argumentation forms are as follows:

conjunction A: assertion: X A A As
attack: Y A (Y chooses i =1 or i = 2)
defense: X A;

disjunction V: assertion: X A;V As
attack: YV

defense: X A; (X chooses i =1 or i = 2)
implication —: assertion: X A— B

attack: Y A

defense: XB
negation —: assertion: X —A

attack: Y A

defense: no defense

Example 1.1 The following is a concrete instance of the argumentation form
for implication:

P-a— (bVa)
O —-a
PbVva

Remark 1.2 By these argumentation forms the logical constants are given an
argumentative interpretation (as Felscher [2002, p. 127] calls it) in the following
sense:

(i) Anargument on a conjunctive assertion made by X consists in Y choosing
one conjunct of the assertion, and X continuing the argument with that
chosen conjunct. In other words, the argumentative interpretation of
conjunction is given by the reduction of the argument on a conjunctive
assertion made by X to the argument on one of the conjuncts chosen by
Y in the attack.

(ii) In an argument on a disjunctive assertion made by X, Y demands the
continuation of the argument with any of the disjuncts. In other words,
the argumentative interpretation of disjunction is given by the reduction
of the argument on a disjunctive assertion made by X to the argument
on one of the disjuncts chosen by X in the defense.
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(iii) An argument on an implicative assertion made by X consists in Y stating
the antecedent of the implication (whereby the antecedent functions as an
assumption), and X continuing the argument with the succedent. Alter-
natively, X could continue with an attack on the assumed antecedent. In
other words, the argumentative interpretation of implication is given by
the reduction of the argument on an implicative assertion made by X to
the argument on the succedent under the assumption of the antecedent.

(iv) An argument on a negative assertion —A made by X consists in Y stating
the assertion A, without X being able to continue the argument.

This argumentative interpretation of negation can be made clear by
introducing the falsum L as a constant which signifies absurdity (which is
taken as a primitive notion). We can then define negation by implication
and falsum: —A:= A — 1. An argument on —A is thus an argument on
A — 1. However, X asserting | would mean that Y could continue the
argument with any assertion—assuming the principle of ex falso quodlibet
to be applicable here. To avoid this, L must not be asserted. Hence, an
argument on = A (i.e. on A — 1) can only continue with an argument on
the assumption A, and cannot be reduced to an argument on L.

This is similar to the treatment of negation in constructive semantics,
respectively in the Brouwer—Heyting—Kolmogorov (BHK) interpretation
of logical constants, as for example stated by Heyting [1971, p. 102]:
“l...] =p can be asserted if and only if we possess a construction which
from the supposition that a construction p were carried out, leads to
a contradiction.” Where contradiction—or equivalently absurdity (here
signified by L )—is usually considered to be a primitive notion.

Definition 1.3 (i) Let d(n), for n > 0, be a signed expression and 7(n) a
pair [m, Z], for 0 < m < n, where Z is either A (for ‘attack’) or D (for
‘defense’), and where 7(0) is empty. Pairs (6(n),n(n)) are called moves.

(ii) A move (6(n),n(n) = [m, A]) is called attack move, and a move (§(n),
n(n) = [m, D]) is called defense move.

Remark 1.3 6(n) is a function mapping natural numbers n > 0 to signed
expressions X e, and 7(n) is a function mapping natural numbers n > 0 to
pairs [m, Z]. The numbers in the domain of §(n) (resp. in the domain of n(n))
are called positions.

When talking about a move (6(n),n(n)), we write (§(n) = Xe,n(n) =
[m, Z]) to express that d(n) has the value X e for position n, and that n(n)
has the value [m, Z] for position n. For example, (6(n) = P A,n(n) = [m, D])
denotes a defense move which is made by the proponent P at position n by
asserting the formula A; this defense move refers to a move made at position m.
A concrete move like (6(4) = P A1,n(4) = [3, A]) will also be written as

4. PAy [3,A]

This is an attack move with symbolic attack P A1; it is made at position 4
and refers to a move made at position 3.
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The notation (6(n) = X e,n(n) = [m, Z]) has the advantage that we can
speak about a move (X e, [m, Z]) by including information about the position
n at which this move is made.

Although moves are always pairs (6(n),n(n)), we will also refer to moves
by giving only their §(n)-component, as long as it is clear from the context
which move is meant, or if it is irrelevant whether the move is an attack or a
defense, or if it is irrelevant to which position the move refers to. And instead
of (§(n) = X e,n(n)) we will also speak of the move X e made at position n.
We will also speak simply about attacks and defenses in order to refer to attack
moves and defense moves, respectively.

Definition 1.4 A dialogue is a finite or infinite sequence of moves (§(n), n(n))

(for n =0,1,2,...) satisfying the following conditions:

(D00) 6(n) is a P-signed expression if n is even and an O-signed expression if
n is odd. The expression in §(0) is a complex formula.

(DO1) If n(n) = [m, A], then the expression in §(m) is a complex formula
and d(n) is an attack on this formula as determined by the relevant
argumentation form.

(D02) If n(p) = [n, D], then n(n) = [m, A] for m < n < p and 6(p) is the
defense of the attack d(n) as determined by the relevant argumentation
form.

Definition 1.5 An attack (§(n),n(n) = [m, A]) at position n on an assertion
at position m is called open at position k for n < k if there is no position n’/
such that n < n’ <k and (§(n'),n(n') = [n, D]), that is, if there is no defense
at or before position k£ to an attack at position n.

Remark 1.4 Since there is no defense to an attack (6(n) = Y A,n(n) =
[m, A]) on 6(m) = X —A for m < n, the attack at position n is open at all
positions k for n < k.

1.2.2 DI?-dialogues

We define DIP-dialogues and strategies. With regard to the literature on
dialogical logic, DIP-dialogues can be considered to be the standard dialogues
for intuitionistic propositional logic. The following definition of DIP-dialogues
is based on the definition of dialogues.

Definition 1.6 A DIP-dialogue is a dialogue satisfying the following condi-
tions (in addition to (DO00), (D01) and (D02)):

(D10) If, for an atomic formula a, §(n) = P a, then there is an m such that
m < n and §(m) = Oa.

That is, P may assert an atomic formula only if it has been asserted
by O before.

(D11) If n(p) = [n, D], n < n’ < p, n’ —n is even and n(n’) = [m, A, then
there is a p’ such that n’ < p’ < p and n(p’) = v/, D].

That is, if at a position p — 1 there are more than one open attacks,
then only the last of them may be defended at position p.
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(D12) For every m there is at most one n such that n(n) = [m, D].

That is, an attack may be defended at most once.

(D13) If m is even, then there is at most one n such that n(n) = [m, A].
That is, a P-signed formula may be attacked at most once.

A DIP-dialogue beginning with P A (i.e., §(0) = P A, where A is a complex
formula) is called DIP-dialogue for the formula A.

Remark 1.5 The objects defined by the conditions (D00)-(D02) alone are
what Felscher [1985, 2002] calls ‘dialogues’, and the objects defined by adding
(D10)—(D13)—which we call * DIP-dialogues’—are called ‘ D-dialogues’ by him.
Since here we are concerned with the objects defined by (D00)—(D02) plus
(D10)—(D13), we simply speak of ‘dialogues’, omitting the specifier ‘DI’ as
long as no confusion can arise.

Remark 1.6 The conditions (D00)—(D13) are also called ‘structural rules’,
‘frame rules’ (‘Rahmenregeln’) or ‘special rules of the game’ (‘spezielle Spiel-
regeln’) in the literature, and (D10) is sometimes called ‘formal rule’. The
argumentation forms are also called ‘particle rules’ (‘Partikelregeln’), ‘logical
rules’ or ‘general rules of the game’ (‘allgemeine Spielregeln’).

We will stick to the notions ‘dialogue condition(s)’ (or just ‘condition(s)’)
and ‘argumentation form(s)’

Remark 1.7 Proponent P and opponent O are not interchangeable due to
the asymmetries between P and O introduced by (D10) and (D13). For atomic
formulas a, the proponent move (§(n) = Pa,n(n) = [m, Z]) is possible only
after an opponent move (6(m) = Oa,n(m) = [k, Z]) for k < m < n, and
O can attack a P-signed formula only once, whereas P can attack O-signed
formulas repeatedly.

These asymmetries are introduced by dialogue conditions only. The argu-
mentation forms themselves (as given in Definition 1.2) are symmetric with
respect to the two players P and O. That is, they are independent of whether
the assertion is made by the proponent P or by the opponent O; they are thus
player independent.

Definition 1.7 P wins a dialogue for a formula A if the dialogue is finite,
begins with the move P A and ends with a move of P such that O cannot
make another move.

Remark 1.8 A dialogue won by P ends with a move (6(n) = Pa,n(n) =
[m, Z]), where a is an atomic formula.

Example 1.9 A dialogue for the formula (aV b) ———(aV b) is the following:
0. P(aVb)—-=(aVbd)

1. OaVb [0, A]
2. Pv 1, A]
3. Oa (2, D]

(continued on next page)
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4. P-—=(aVb) [1, D]
5. O=(aVb) [4, A]
6. PaVb [5, A]
7. OV 6, A]
8. Pa 7, D]

The dialogue starts with the assertion of the formula (aVb) ———(aVb) by the
proponent P in the initial move at position 0. This initial move is attacked
(n(1) = [0, A]) by the opponent O with the assertion of the antecedent a V b
(0(1) = O aV b) of the implication asserted by P at position 0. The attack is
thus made according to the argumentation form for implication.

At position 2, the proponent does not proceed according to the argumen-
tation form for implication by defending O’s attack move with the assertion
of the succedent ——(a Vv b) of the attacked implication. Instead, the proponent
makes the symbolic attack PV on O’s assertion aVb. This move is thus made
according to the argumentation form for disjunction. The attack is defended
by O with the assertion of the left disjunct a (alternatively, O could also have
chosen the right disjunct b). The moves at positions 1-3 are an instance of
the argumentation form for disjunction.

As a is an atomic formula, it cannot be attacked. At position 4, the pro-
ponent defends O’s attack O a V b by asserting the succedent ——(a V b) of the
attacked implication (a V b) — —=—(a V b). The moves at positions 0, 1 and 4
are an instance of the argumentation form for implication.

The opponent now attacks P ——(aVb) at position 5 by asserting O —(a V b)
according to the argumentation form for negation. By this argumentation form
there is no defense for the attack. But the proponent can attack O —(a V b)
with the assertion P a V b. The moves at positions 4 and 5 are an instance of
the argumentation form for negation, and the moves at positions 5 and 6 are
another instance of that argumentation form.

Next O attacks P a Vb with the symbolic attack O V according to the argu-
mentation form for disjunction at position 7. Finally, this attack is defended
by P’s assertion of the left disjunct a. The moves at positions 6-8 are made
according to the argumentation form for disjunction. Note that P cannot de-
fend here by asserting the right disjunct b: the opponent has not asserted the
atomic formula b before, hence such a move is prohibited by condition (D10).

The proponent’s move at position 8 is the last one. The opponent cannot
attack a, since it is an atomic formula. Each other P-signed formula has been
attacked by O, thus no more attack moves can be made by O due to condition
(D13), as these would be repetitions of attacks already made. And since
each proponent attack that can be defended according to an argumentation
form has already been defended by O, no more defense moves are possible
either, due to condition (D12). The dialogue is finite, begins with the move
P(aVb)— —=(aVb) and ends with a move of P such that O cannot make
another move; the dialogue for the formula (aVVb)———=(aVb) is thus won by P.

1.2.3 Strategies

We next introduce dialogue trees and define strategies. We explain first what
we call a path.
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Definition 1.8 A path in a branch of a tree with root node ng is a sequence  path
ng,ni,...,nk of nodes for k£ > 0 where n; and n;4; are adjacent for 0 < ¢ < k.

Definition 1.9 A dialogue tree is a tree whose branches contain as paths all  dialogue tree
possible dialogues for a given formula.

Example 1.10 Schematic example of a dialogue tree:

0. P
1. O 0
2. P ‘P P
3.

O...

At each odd position all possible moves for O have to be considered, and at
each even position all possible moves for P have to be considered.

Remark 1.11 For a given formula A there is exactly one dialogue tree, if we
consider trees to be equal modulo swapping of branches.

Definition 1.10 A strategy for a formula A is a subtree S of the dialogue tree  strategy
for A such that

(i) S does not branch at even positions,
(ii) S has as many nodes at odd positions as there are possible moves for O,

(iii) and all branches of S are dialogues for A won by P.

Example 1.12 Schematic example of a strategy:

0. p
L O o

2. P ‘P yd
RS

At each odd position all possible moves for O have to be considered (ii), but
at each even position only one move for P has to be considered (i). The two
remaining branches are dialogues won by P (iii).

Remark 1.13 In more game-theoretic terms, the strategies defined here could
also be called winning strategies for the player P, and a corresponding defini-
tion could be given of winning strategies for the player O. For the dialogical
treatment of logic undertaken here, only the first notion is needed, however.
We can thus simply speak of strategies.

Remark 1.14 Strategies are finite for propositional formulas. All the bran-
ches in a strategy have finite length by definition, whereas dialogues that are
not part of a strategy can be of infinite length. Dialogue trees are therefore
infinite objects in general. As dialogue trees can be constructed breadth-first,
of course, an existing strategy can always be found.

Remark 1.15 Formulas can have no, exactly one or more than one strategy.

Example 1.16 There is exactly one strategy for the formula a — ——a:

1-7



0. Pa— ——a

1. Oa [0, A]
2. P-—a [1, D]
3. O-a (2, A]
4. Pa [1, A]

The strategy contains only one branch.

Example 1.17 For the formula (a V b) — ——(a V b) there are the following
three strategies, among others:

(i) 0. P(aVvb)——-—(aVb)
1. OaVb [0, 4]
2. P——=(aVb) [1,D]
3. O—=(aVb) (2, A]
4. PavVvb (3, A
5. ov [4, A]
6. Pv 1, A
7. Oa [6,D]]Ob [6, D]
8. Pa [5,D]| Pb 5, D]
(ii) 0. P(aVb)— —-=(aVb)
1. OaVb [0, A]
2, P——(aVb) 1, D]
3. O—(aVb) (2, A]
4. Pv 1, A]
5. Oa  [4,D]|0Ob (4, D]
6. PaVvb [3,A] | Pavb [3,4]
7. OV 6,A] | OV 6, A
8. Pa  [1,D]|Pb 7, D]
(iii) 0 P(aVb)— —-=(aVb)
1 OaVb [0, A]
2 Pv [1, Al
3. Oa 2,D] | Ob 2, D]
4. P-—=(aVbd) [1,D]| P-=(aVd) [1,D]
5. O—=(aVvbd) [4,4] |O—-(aVvd) [4,A4]
6. PaVb 5,A] | PaVvb [5, Al
7. OV 6,A] | OV 6, A
8. Pa [7,D] | Pb 7, D]

There are more strategies for this formula than the three shown here, be-
cause the proponent can repeatedly attack formulas asserted by the opponent.
For example, in strategy (iii) the proponent could at position 4 (in the left
as well as in the right dialogue) repeat the attack PV on Oa V b. The sub-
trees below these attacks (in both dialogues) would have the same form as the
subtree below position 2 in strategy (iii).

Example 1.18 There is no strategy for the formula a V —a, an instance of
tertium non datur. The only possible dialogue is
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0. PaV-a

1. OV [0, A]
2. P-a [1, D]
3. Oa 2, A]

and P does not win.

There would be a strategy, if condition (D12) were dropped for P. Then P
could defend the attack OV a second time by stating a, thereby winning the
dialogue. Condition (D11) does not have to be dropped because there are not
more than one open attacks at position 3 (there is exactly one open attack at
position 3; the attack OV is not open there since it has already been defended
at position 2).

1.2.4 Completeness

Definition 1.11 A formula A is called dialogue-provable (or DIP-dialogue-
provable) if there is a strategy for A. Notation: Fpp» A.

Remark 1.19 We speak of dialogue-provable formulas here, in accordance
with Felscher [2002]. Contrasting Gentzen’s calculi with dialogues, Felscher
[2002, p. 127] remarks:

Gentzen’s calculi of proofs are easily explained in that they re-
present the weakest consequence relation for which the provability
interpretation is valid. The connection between dialogues and the
argumentative interpretation of logical operations is [...] located
on a different level: it is not the dialogues but the strategies for
dialogues which will correspond to proofs. I thus formulate the
basic purpose for the use of dialogues:

(Ap) Logically provable assertions shall be those which, for purely
formal reasons, can be upheld by a strategy covering every
dialogue chosen by [O].

However, the fact that we speak of provability in the context of dialogues
(thus following Felscher) should not be misunderstood in a way that would
imply that dialogues cannot be seen as a (formal) semantics (as opposed to
considering dialogues only as a proof system or calculus).

Of course, such a misunderstanding could only arise if one’s notion of se-
mantics is limited to truth-conditional semantics, as opposed to proof-theoretic
semantics (like Brouwer-Heyting-Kolmogorov (BHK) semantics, or related
justificationist, verificationist, pragmatist or falsificationist approaches in the
tradition of Dummett and Prawitz) where the notion of proof or closely related
notions are of central importance.

As the meaning of the logical constants is in some sense given by the ar-
gumentation forms in terms of how assertions containing the logical constants
can be used in an argumentation, dialogues might very well be seen as a se-
mantics under the heading “meaning is use”, and were indeed introduced for
that purpose. This aspect can be emphasized by speaking of (logical) validity
instead of dialogue-provability.
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Theorem 1.20 (Completeness) The dialogue-provable formulas are exactly
the formulas provable in intuitionistic logic.

Remark 1.21 This theorem has been shown (also for intuitionistic first-order
logic) by Felscher [1985] by proving for Gentzen’s sequent calculus LJ (for intu-
itionistic first-order logic; see Gentzen [1935]) that every (first-order) strategy
can be transformed into a proof in L.J, and vice versa.

1.3 Addendum: Contraction in dialogues

In dialogues, the structural operations of thinning and contraction are only
implicitly given by the dialogue conditions. This is comparable to natural
deduction, where these structural operations are also only implicitly given,
namely by how assumptions are discharged. Whereas in sequent calculus these
operations are explicitly given as structural rules. That the structural opera-
tions are only implicitly given in dialogues can be seen as an advantage: we
have argumentation forms only for the logical constants, and everything else
is—in part implicitly—taken care of by the dialogue conditions.

We now consider contraction, which will be of importance at the end of the
second lecture.

Remark 1.22 In dialogues, the twofold use made by the proponent P of a
formula A asserted by the opponent O corresponds to the structural operation
of contraction, contracting A, A into A. The twofold use can consist either

(1) in the twofold attack of a formula by the proponent P,

(2) in the twofold assertion by the proponent P of a formula asserted by the
opponent O before,

or

(3) inan attack of a formula A by the proponent P together with the assertion

of A by P.

That is, the twofold use can be of the following forms:

(1) k. OA[k-1,7] (2) k. OA[k-1,2
I. Pe [k Al . PAJi<l,Z]
m. Pe [k, Al m. PA[j<m,Z

(3) k. OA[k-1,7] k. OA [k—1,7]
I. Pe [k, Al respectively . PA [i <1, Z]
m. PA [i<m,Z m. Pe [k Al

Example 1.23 In the following two examples the twofold use made by P of
an assertion made by O is of the form (1). The formulas —(aA—a) respectively
—=(a V —a) are not provable without a twofold attack on a A —a respectively
—(aV —a) by P, or without the corresponding discharge of two occurrences of
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the same assumption in the natural deduction derivations (where —a := a— 1),
respectively:

(i) 0. P-—(aA-a)
OaAN—a

1. [O,A] 1 1

2. PA 1, A] lanzal gy A g
3. Oa [2, D] a4 n (S E)
4. P ANg [1,A] (_>I)1

5. O-a [4, D] ~(aA~a)

6. Pa [5, 4]

The twofold attack at positions 2 and 4 corresponds to the contraction

of a A —a,a A —a to a N —a.
(ii) P—=—(aV -a)
O-=(aV-a) [0
PaV -a 1
ov [2
P—a (3
Oa 4,
1
[6
[7

PaV —a
ov
Pa

The twofold attack at positions 2 and 6 corresponds to the contraction
of =(aV =a),=(aV —a) to =(aV —a).

P NSO W= o

1.4 Addendum: Classical dialogues

Although we are only concerned with intuitionistic logic, we point out here how
dialogues for classical (propositional) logic relate to dialogues for intuitionistic
(propositional) logic.

Remark 1.24 If the conditions (D11) and (D12) are restricted to apply only
to O (and no more to P), then the formulas provable on the basis of the thus
modified dialogues are exactly the formulas provable in classical logic.

Definition 1.12 A classical dialogue is a dialogue where the conditions (D11)
and (D12) do hold for O but not for P, that is, where conditions (D11) and
(D12) are replaced by the following conditions (D11%) and (D127), respec-
tively:

(D11%) If n(p) = [n, D] for even n, n < n’ < p, n’ — n is even and n(n’) =
[m, A], then there is a p’ such that n’ < p’ < p and n(p') = [0/, D].

That is, if at a position p — 1 there are more than one open attacks
by P, then only the last of them may be defended by O at position p.

(D12%) For every even m there is at most one n such that n(n) = [m, D].
That is, an attack by P may be defended by O at most once.

The notions ‘dialogue won by P’; ‘dialogue tree’ and ‘strategy’ as defined
for dialogues are directly carried over to the corresponding notions for classical
dialogues.
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Example 1.25 There is a classical strategy for the formula a V —a:

0. PaV-a

1. OV [0, A]
2. P-a (1, D]
3. Oa 2, A]
4. Pa (1, D]

The last move is possible due to the replacement of condition (D12) by con-
dition (D127). In the presence of (D12) this move is not possible, and there
is thus no DIP-strategy for (any instance of) tertium non datur (cf. Exam-
ple 1.18).

Example 1.26 There is a classical strategy for the formula ——a — a:

1. O-—a [0, A]
2. P-a [1, A]
3. Oa (2, A]
4. Pa 1, D]

The last move is possible due to the replacement of condition (D11) by con-
dition (D117). In the presence of (D11) this move is not possible, and there
is thus no DIP-strategy for (any instance of) double negation elimination.

In the following we will not consider classical dialogues again. We consider
only intuitionistic logic.
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Second Lecture:
Dialogues for Definitional Reasoning

2.1 Summary of the first lecture

In the last lecture we explained the meanings of the logical constants A, V, —
and — in certain game-theoretical terms. For each logical constant we gave
an argumentation form which determines how an assertion (having the logical
constant in outermost position) made by one player X can be attacked by the
other player Y and how this attack can be defended by X. For example, the
argumentation form for ‘—’ is:

assertiont: X A— B
attack: YA
defense: XB

This gives an argumentative interpretation of implication ‘—’ in the fol-
lowing sense: An argument on an implicative assertion A — B is reduced to
an argument on B under the assumption A.

In addition to the argumentation forms we gave certain conditions on how
exactly the two players can make their moves: The proponent P makes the
first move (asserting a complex formula), and the two players proponent P and
opponent O make moves alternatingly as determined by the argumentation
forms (see conditions (D00), (D01) and (D02)). Furthermore

(D10) P may assert an atomic formula only if it has been asserted by O before,

(D11) if at a position p — 1 there are more than one open attacks, then only
the last of them may be defended at position p.

(D12) an attack may be defended at most once,

(D13) and a P-signed formula may be attacked at most once.

These dialogue conditions (together with the argumentation forms) define the
notion of dialogue.

We then said what it means that P wins a dialogue for a formula A, namely
that the dialogue is finite, begins with the move PA and ends with a move by
P such that O cannot make another move.

There is a winning strategy for P (short: strategy) if and only if for each
possible move by the opponent O the proponent P can make another move
such that in the end each dialogue for the given formula is won by P. Whereas
dialogues are just linear sequences of moves, strategies are in general trees
which branch at odd positions, that is, at O-moves. We saw, for example,
that there is a strategy for the formula (a V b) — ——=(a V b):

0. P(aVb)——-—(aVb)
1. OaVb [0, A]

(continued on next page)
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2. Pv 1, Al
3. Oa [2,D] | Ob [2, D]
4. P-—~(aVvb) [1,D]| P~~(aVd) [1,D]
5. O=(aVvbd) [4,4 |O—-(aVvd) [4,A4]
6. PaVb [5,A] | PaVb [5, 4]
7. OV 6,A] | OV 6, Al
8. Pa 7,D] | Pb 7, D]

There is no strategy for the formula a V —a, an instance of tertium non
datur. The only possible dialogue is

0. PaV-a

1. OV [0, A]
2. P-a (1, D]
3. Oa 2, A]

and P does not win.

Strategies give us a notion of logical validity for intuitionistic logic, and we
have the following completeness result: There is a strategy for a formula A if
and only if A is provable in intuitionistic logic.

Concerning the dialogues considered so far, we can observe the following:
(i) It is not possible to attack assertions of atomic formulas (a,b,c,...).
(ii) Dialogues won by P always end with the assertion of an atomic formula.

Compare the two following dialogues:

0. P(aVb)——-—(aVd) 0. P(aVvb)— —-=(aVb)

1. OaVd [0, A] 1. OaVd [0, A]
2. Pv [1, A]

3. Oa (2, D]

4. P-=(aVb) [1, D] 2. P-=(aVb) 1, D]
5. O=(aVb) [4, A] 3. O-(aVb) 2, A]
6. PaVvb [5, 4] 4. PaVvb (3, 4]
7. OV 6, A

8. Pa 7, D]

The first dialogue is won by P. The second dialogue is not won by P,
since O can attack the assertion a V b made by P in the last move at
position 4 with the move (6(5) = OV, n(5) = [4, A4)).

2.2 Introduction

In this second lecture we will consider extensions of logic by a certain kind of
definitions for atoms, where the defining conditions are not restricted to atomic
formulas but can be given by arbitrary (first-order) formulas. These definitions
are thus a generalization of monotone inductive definitions or, equivalently, of
(implication-free) definite Horn clause programs as they are used in standard
logic programming based on the resolution principle.

We introduce dialogues containing the principles of definitional reflection
and definitional closure as an additional argumentation form of definitional
reasoning.
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The clausal definitions need not be wellfounded. This leads to paradoxes
like Russell’s, whose dialogical treatment will be considered as an example of
definitional reasoning. The example shows that the structural operation of
contraction can be critical in the presence of non-wellfounded clausal defini-
tions: without further restrictions, there are then strategies for contradictory
assertions.

Definitional dialogues will be introduced in two steps:

(1) As we want to reason about definitions whose defining conditions can be
complex formulas, we have to make sure that it is possible that dialogues
in a strategy can not only end with P-moves asserting atomic formulas,
but that they can also end with P-moves asserting complex formulas.

We first introduce so-called EIP-dialogues with this property. For this
kind of dialogues there is also a completeness result with respect to intu-
itionistic logic.

(2) We then introduce an argumentation form for definitional reasoning, and
define definitional dialogues on the basis of EIP-dialogues.

2.3 EI?- and EI?-dialogues

We first define EIP-dialogues as a restricted form of DIP-dialogues (which
have been introduced in the first lecture). They differ from DIP-dialogues
only in that each opponent move must now refer to the immediately preceding
proponent move. This restriction yields certain technical advantages, without
changing the set of dialogue-provable formulas extensionally.

Definition 2.1 An EIP-dialogue is a DIP-dialogue with the additional condi-
tion

(E) All moves (6(n),n(n)) for n odd are of the form (§(n),n(n) = [n—1, Z]).

That is, an opponent move made at position n is either an attack or a
defense of the immediately preceding move made by the proponent at
position n — 1.

The notions ‘dialogue won by P’; ‘dialogue tree’ and ‘strategy’ as defined

for DIP-dialogues are directly carried over to the corresponding notions for
EI?-dialogues.

Remark 2.1 The EIP-dialogues as they are defined here are exactly the FE-
dialogues of Felscher [1985, 2002] (references to their original formulation are
given therein).

Definition 2.2 A formula A is called FI?-dialogue-provable if there is an EIP-
strategy for A. Notation: g A.

Remark 2.2 Tt has been shown by Felscher that there is a recursive algorithm
by which every EIP-strategy can be embedded into a DIP-strategy, and that
therefore the FIP-dialogue-provable formulas are exactly the formulas provable
in intuitionistic propositional logic (see Felscher [1985, p. 221] and Felscher
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[2002, p. 119]; these results hold not only for the propositional but also for
the first-order case). As the DIP-dialogue-provable formulas are also exactly
the formulas provable in intuitionistic propositional logic, the following holds:
Frr A if and only if Fpp A.

Now we can define EIP-dialogues as follows:

Definition 2.3 An EI?-dialogue is an EIP-dialogue with the additional con-  EIP-dialogue
dition
(D14) O can attack a formula C' if and only if (i) C has not yet been asserted

by O, or (ii) C has already been attacked by P.

Again, the notions ‘dialogue won by P’; ‘dialogue tree’ and ‘strategy’ as
defined for DIP-dialogues are directly carried over to the corresponding notions
for EIP-dialogues.

Remark 2.3 Condition (£) implies condition (D13). Furthermore, condition
(E) implies condition (D11) for odd p and condition (D12) for odd n (cf.
Definition 1.6).

In the presence of condition (E), condition (D13) can therefore be omitted,
and conditions (D11) and (D12) can be restricted to conditions (D11") and
(D12"), respectively, as follows:

(D11") If n(p) = [n, D] for odd n, n < n’ < p, n' —n is even and n(n’) = [m, A],
then there is a p’ such that n’ < p’ < p and n(p) = [0/, D].

That is, if at a position p — 1 there are more than one open attacks by
O, then only the last of them may be defended by P at position p.

(D12") For every odd m there is at most one n such that n(n) = [m, D].
That is, an attack by O may be defended by P at most once.

Example 2.4 EIP-dialogues won by P need not end with the assertion of an
atomic formula, but can end with the assertion of a complex formula.
Consider the following EIP-dialogue for (a V b) — ——=(a V b):

0. P(aVvb)—-=(aVb)

1. OaVvd [0, 4]
2. P—\—\(a\/b) [1,D]
3. O—=(aVb) (2, A]
4. PaVb 3, A]
5—06 A

9

The dialogue is won by P, and it is a winning strategy for (a Vb) — —-—(a VvV b).

The opponent O cannot attack the assertion a V b made by P in the last
move at position 4 with the move (6(5) = O Vv, n(5) = [4, A]) anymore, due to
condition (D14): the formula a\Vb has already been asserted by O at position 1,
without having been attacked by P.

Definition 2.4 A formula A is called EI?-dialogue-provable if there is an EIP-  EIP-dialogue-
strategy for A. Notation: g/ » A. provable
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Theorem 2.5 (Completeness) The EI?-dialogue-provable formulas are ex-
actly the formulas provable in intuitionistic logic.

Remark 2.6 Completeness has been proved constructively by showing that
there is an EIP-strategy for a formula A if and only if A is provable in sequent
calculus with complex initial sequents B+ B (where B is complex or atomic)
for intuitionistic logic.

This result is the theoretical basis for the introduction of definitional dia-
logues, which will allow us to reason about definitions whose defining condi-
tions can be complex formulas.

2.4 Clausal definitions

We introduce the argumentation form of definitional reasoning for clausal def-
initions. Clausal definitions are collections of definitional clauses, which are
formulated over a first-order language. We restrict ourselves to the quantifier-
free fragment.

Definition 2.5 We extend our language to a (quantifier-free) first-order lan-
guage, where for variables vy, ..., (individual) constants k,l,m, ... and func-
tion symbols f, g, ... we define terms as follows:

(i) Every variable is a term.
(ii) Every individual constant is a term.

(iii) If f is an n-ary function symbol and ¢1, ..., ¢, are terms, then f(t1,...,t,)
is also a term.

We now use a,b,c,... also as relation symbols (or predicate symbols). If a
is an n-ary relation symbol and if ¢1,...,t, are terms, then a(ty,...,t,) is an
atomic formula (atom). Complex formulas are defined as usual.

Definition 2.6 A definitional clause is an expression of the form
a<=BiAN...\NB,

for n > 0, where a is atomic and the B; in the body B1 A ... A B,, of the clause
are the defining conditions for the head a. (The symbol ‘<=’ is used exclusively
to write definitional clauses and should not be confused with implication ‘—"’.)
The defining conditions B; need not be atomic but can be any complex formula.
Clauses with empty body are called facts; we indicate empty bodies with the
symbol ‘T’ (verum).

Example 2.7 (i) a<(b—c)Ad is a (propositional) definitional clause with
head a and body (b— ¢) Ad, containing the two defining conditions b— ¢
and d. (This clause can also be read as a first-order clause in which all
relation symbols have arity 0.)

(ii) a(x,y)<=-b(k,l, x) is a (quantifier-free) first-order definitional clause with
the binary relation a(z,y) in the head and having as defining condition
the complex formula —b(k, !, x).

2-5

first-order
language

terms

relation symbols

definitional
clause

defining
conditions



Definition 2.7 A finite set D of definitional clauses definition of atom
a<=T"
Dy
a<=TYy
is a (clausal) definition of the atom a, where T'; = B A ... A Bfli is the body
of the i-th clause (for 1 < i < k). These clauses are the defining clauses of a  defining
with respect to definition D. clauses
The set of defining conditions of a will be represented by D(a), that is,
D(a) ={T'1,..., Tk}
Remark 2.8 We write the bodies I'; of definitional clauses as conjunctions
B{A...\B},
of the defining conditions Blll
They could also be written as a list or set B}, ..., B}, , where the comma
functions as a ‘structural conjunction’. The latter notation is more convenient
in a sequent calculus setting. However, for dialogues we would first have
to introduce a means to handle such lists or sets, whereas we can handle

conjunctions directly via the argumentation form for A. We will therefore use
the former notation throughout.

Definition 2.8 A definition is any finite set of definitional clauses. Defini-  definition
tions D have thus the general form

( a1<:f‘%
1
CL]_<:Fk1

an, <=TI'7

an <=1y
(In logic programming terms, definitions D are (a generalization of) logic pro-
grams where the bodies of program clauses can be arbitrary formulas.)

2.5 Definitional reasoning
We can now define an argumentation form that will allow us to reason about
such definitions.
Definition 2.9 For each atom a defined by definitional clauses
a<=BiN...A\NB,,
with defining conditions
I;=B{A...AB], (wherel<i<k)

the following argumentation form of definitional reasoning determines how an  definitional
atom a that is stated by X can be attacked by Y and how this attack can be reasoning
defended by X. We use ‘2’ as a special symbol to indicate the attack.
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definitional reasoning: assertion: X a
attack: Y2 (onlyifa#T)
defense: X T'; (X choosesi=1,...,k)

For the verum T we impose the following restriction: The move X T cannot
be attacked with Y 2.

Remark 2.9 We have defined the argumentation form of definitional rea-
soning in such a way that atoms—with the exception of the verum T—can
be attacked independently of whether there are definitional clauses having
these atoms in their head or not. In other words, whenever a player asserts
an atom, the other player may ask for its definition, regardless of whether
one has been given or not. And we will not give any dialogue conditions
which would prohibit attacks on undefined atoms just because they are unde-
fined.

The restriction with respect to the verum T is necessary if T is treated
as an atomic formula. Otherwise it would be attackable as well. This would
be in conflict with its intended meaning, suggested by its use as an indicator
of empty bodies of definitional clauses, that is, by standing for the empty
conjunction. The meaning of the verum T is stipulated by the imposed re-
striction.

Remark 2.10 The argumentation form of definitional reasoning is formu-
lated for atoms a defined by definitional clauses

a<DBiA...\B},

a<BfA...\ABE

That is, in definitional reasoning the I'; chosen by X in a defense to an at-
tack Y 2 on X a must be the body of a clause with head a in the case of
propositional clauses; bodies of definitional clauses not defining a cannot be
chosen.

Remark 2.11 The argumentation form of definitional reasoning comprises
the two principles of definitional reflection and definitional closure, which have
been introduced as sequent-style inferences by Hallnéds and Schroeder-Heister
[1990, 1991] (see also Hallnds [1991] and Schroeder-Heister [1993]).

In natural deduction, these principles can be formulated as follows. Let
the atom a be defined by

a<=1"
2R
a<=T}
Then, for 1 < i < k, the principle of definitional closure takes the form of an

introduction rule for atoms a:

%
a

(def. closure)
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And the principle of definitional reflection takes the form of a (general) elim-
ination rule for atoms a:

r)
a % ¢ (def. reflection)

The principle of definitional reflection is related to the inversion principle
(see Prawitz [1965]) and can be expressed as follows:

Whatever formula C' follows from each of the defining conditions
I'1,..., 'y of the atom a follows from a itself.

The principle of definitional reflection is justified if given definitions of atoms
can be assumed to be complete in the sense that the atoms are defined by
the given definitional clauses and by nothing else. In mathematical definitions
this is sometimes made explicit by giving definitional clauses for something
together with the remark that nothing else defines that something, or by saying
that one defines the smallest set for which some given definitional clauses hold.

Remark 2.12 The argumentation form of definitional reasoning is the di-
alogical equivalent to the principles of definitional closure and definitional
reflection. Both principles are incorporated in the one argumentation form of
definitional reasoning.

For dialogues, the difference between definitional closure and definitional
reflection appears on the level of strategies. Here only one defense move PT';
has to be given for an attack O &, whereas all possible defense moves OT;
have to be given for an attack P 2. In other words, in the first case only
the defining conditions I'; of one clause defining the attacked atom have to
be given, whereas in the second case the defining conditions I'; of each clause
defining the attacked atom have to be given.

Thus definitional reasoning in dialogues corresponds to the principles of
definitional closure and definitional reflection in natural deduction as follows:

(i) Instances of the argumentation form of definitional reasoning in which
the attack move is O Z correspond to applications of definitional closure,
and

(ii) instances of the argumentation form of definitional reasoning in which the
attack move is P & correspond to applications of definitional reflection.

2.6 Definitional dialogues
Next we will introduce definitional dialogues based on EIP-dialogues.

Definition 2.10 Definitional dialogues are EIP-dialogues where the following
changes are made:

The conditions (D00) and (DO01) are replaced by the following conditions
(D00’) and (DO01’), where the restriction of the expressions in §(0) and d(m)
to complex formulas is discarded; that is, a definitional dialogue can start with
the assertion of an atomic formula, and atomic formulas can be attacked:

2-8

definitional
reflection

nversion
principle

definitional

dialogues



(DO0") 6(n) is a P-signed expression if n is even and an O-signed expression
if n is odd. The expression in §(0) is a (complex or atomic) formula.

(DO01") If n(n) = [m, A], then the expression in §(m) is a formula and §(n) is
an attack on this formula as determined by the relevant argumentation
form.

Condition (D02) remains without change.

Condition (D10) is omitted altogether, so that P can now assert atomic
formulas without O having asserted them before. Conditions (D11’), (D12)
and (E) remain without change. Condition (D14) is replaced by the following
condition (D14*) which is (D14) restricted to complex formulas:

(D14*) O can attack a complex formula C' if and only if (i) C' has not yet
been asserted by O, or (ii) C has already been attacked by P.

The following condition is added in order to prohibit attacks by O on atoms
asserted by O before:

(D15) If for an atom a there is a move (§(1) = Oa,n(l) = [k, Z]), then there
is no attack (6(n) = O Z,n(n) = [m, A]) for 6(m) = Pa with k <1 <
m < n.

That is, O may attack an atom a by definitional reasoning only if it
has not been asserted by O before.

Furthermore, the following proviso for applications of definitional reasoning
in the presence of variables is added (where we write Ao to denote the result
of the application of a substitution o to a formula A):

(S) For any substitution o replacing variables x,y,... by terms t, the appli-
cation of definitional reasoning with attack P & on a is restricted to the
cases where D(ao) C (D(a))o.

The notions ‘dialogue won by P’, ‘dialogue tree’ and ‘strategy’ as defined
for EIP-dialogues are directly carried over to the corresponding notions for
definitional dialogues.

Remark 2.13 The omission of condition (D10) is compensated by the fact
that O can attack any atom asserted by P with a move O Z.

The restriction of condition (D14) to complex formulas (yielding condition
(D14*)) was not necessary in the treatment of EIP-dialogues because attacks
on atomic formulas are not possible there.

2.6.1 Examples for propositional definitional reasoning

Example 2.14 We consider the definition

a<=T
d<T

1
d<a

c<=aNd

With respect to Dy, the following is a strategy for the atom c:
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0. Pc

1. 09 [0, 4]
2. Pand 1, D]
3. ON1 [2,A] | One [2,4]
4. Pa [3,D]| Pd [3,D]
5. 02 [4,A |02 [4,A4]
6. PT [5D]|Pa [5D]
7. 02 [6,4]
8. PT [7,D]

At position 0 the proponent P asserts the atom c. In definitional dialogues this
is allowed by condition (D00’), whereas in standard dialogues with condition
(D00) only complex formulas can be asserted in initial moves at position 0. At
position 1 this assertion is attacked by O according to the argumentation form
of definitional reasoning. The proponent P defends this attack by asserting
the defining conditions a A d of the attacked atom c, as given by the last clause
of definition D;. The opponent O attacks a A d at position 3, and P defends
at position 4 by asserting the atoms a and d, respectively. The proponent
P can assert the atomic formulas ¢ and d—without O having asserted them
before—as there is no condition (D10) in definitional dialogues, which would
prohibit these moves. However, the opponent O can attack any atoms asserted
by P (if not prohibited by condition (D15)), and does so with the move O
at position 5 in each of the two dialogues.

In the left dialogue, the proponent defends the opponent’s attack on a by
asserting T at position 6 (there are no defining conditions for the atom a;
it is given as a fact by the first clause in D). In the right dialogue, the
proponent chooses to defend by asserting the defining condition a of d, as
given in the third clause of D;. The right dialogue then proceeds as the left
one. Alternatively, the proponent could have defended the opponent’s attack
by choosing to use the second clause of D;. This clause gives d as a fact,
and the proponent’s defense would thus be the verum T. That is, the right
dialogue would end with the move P T already at position 6.

Both dialogues in the above strategy end with the assertion of the verum T.
As there is no attack possible on T, both dialogues are won by P. The
strategy contains only such applications of definitional reasoning in which the
opponent attacks atomic formulas with moves O Z; that is, only the principle
of definitional closure is employed here.

Example 2.15 An example where the principle of definitional reflection is
used with respect to the definition D; (just given in Example 2.14) is the
following strategy for the formula d — a:

0. Pd—a

1. Od 0, A]
2. P9 1, Al
3. OT [2,D]|0Oa [2,D]
4. Pa [1,D]| Pa [1,D]
5. 02 [4,A4]

6. PT [5D]



The first application of definitional reasoning (comprising positions 1-3) is ac-
cording to the principle of definitional reflection. Here the defining conditions
of each of the definitional clauses for the attacked atom d have to be consid-
ered. As D; contains two clauses for d, there are two defense moves (made
at position 3) to be considered. In the left dialogue, the proponent can only
defend the opponent’s attack made at position 1 by asserting the atom a. The
following attack by O, asking for defining conditions of a, is defended by P
with T (using the first clause of D;, which is the only definitional clause for
a). Here the principle of definitional closure has been employed. In the right
dialogue, the proponent makes the same defense move at position 4 as in the
left dialogue. Due to condition (D15) the opponent cannot attack the atom a:
O has asserted a before (at position 3).

The proponent could also make the move P Z at position 4 in the right
dialogue instead. The dialogue would then end thus:

3. Oa [2,D]
4. P2 [3,4]
5. OT [4,D]
6. Pa [1,D]

This yields a strategy in which the principle of definitional reflection has been
employed twice.

2.6.2 Examples for first-order definitional reasoning

Definition 2.11 A substitution o is a unifier of two atoms a and b if ac = bo,
that is, if ac and bo are syntactically identical.

A substitution o is a most general unifier of two atoms a and b if for all
unifiers 7 of a and b it holds that 7 = gp for a substitution p.

Remark 2.16 In the case of first-order clauses one has to consider substitu-
tion instances of heads and bodies of clauses.

Let the substitution o be a most general unifier for the atom a and the
head a’ of at least one first-order clause. Then the body I'; of such a clause
with head a’ can be chosen in a defense X I';o to an attack Y 2 on X a since
aoc = a’o. That is, in order to defend such an attack, we first have to look for
a most general unifier o which unifies a with the head of a clause o’ <T;. If it
exists (this is decidable by the unification algorithm), we apply it to I';, and
the defense move is X I';o.

For example, if the first-order clause a(t) < b(zx) is given by definition, then
an attack Y 2 on a move X a(z) can be defended with the move b(¢). That
is, the definitional reasoning for the given clause is of the form

X a(r)
Y2
X b(t)

where the substitution o = [t/z] is here the most general unifier for the atom
a(x) and the head a(t) of the definitional clause. Applying o to the body b(z)
of the clause yields b(t), which is asserted in the defense move.
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Example 2.17 We now consider the following (first-order) definition Dy, in
which the atoms even(x) and odd(x) are two unary relation symbols, and s
is a unary function symbol (interpreted as the successor function on natural
numbers):

even(0) <= T
Dy | even(s(x)) < odd(x)
odd(z) < — even(z)

Then for the given definition D, the following definitional dialogue is a strategy
for = even(s(0)):

P — even(s(0))

O even(s(0))

P % (variable binding: [0/z])
O 0dd(0)

P % (variable binding: [0/z])
O — even(0)

P even(0)
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The applications of definitional reasoning comprising the moves at positions
1-3 and 3-5, respectively, are according to the principle of definitional re-
flection. The opponent’s first defense move depends on the substitution [0/z],
which unifies the attacked atom even(s(0)) with the head even(s(z)) of clause 2
and yields the corresponding defining condition odd(x)[0/z] = odd(0), as-
serted by O at position 3. The opponent’s second defense move depends
on the same substitution [0/x]; it unifies odd(0) with the head odd(x) of
the third clause, allowing the opponent to defend with the defining condi-
tion — even(x)[0/x] = —even(0) in the move at position 5. The moves at
positions 6-8 are definitional reasoning by the principle of definitional clo-
sure. As T cannot be attacked, the dialogue ends with the proponent’s move
at position 8. By reasoning about the definition D2 we have thus shown
= even(s(0)).

From a logic programming perspective this can be described as follows:
The initial move expresses in a formal way a query about the given defi-
nition (or program) Dy like “Does — even(s(0)) hold with respect to Dy?”.
We then try to answer that query by searching for a strategy with respect
to Do, that is, by employing definitional reasoning (in addition to purely
logical reasoning). Finding a strategy means that the query has a positive
answer. In addition, one can in general gain further information from the
variable bindings which have been computed in the construction of a strat-

egy.
2.7 Definitional dialogues and contraction

In the following, we consider the paradoxical definitional clause

a <= a
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(using = A := A— 1 for all formulas A, this is just an abbreviation for a<=a— L
here). It is related to Curry’s Paradox—respectively to one of its special cases,
namely Russell’s Paradox—where for t € {z | A} < A[t/z] and t = {z | =(z €
x)} with A = —(x € ) we have t € t < —(t € t). The latter clause is of the
form a < —a.

Example 2.18 For the given definitional clause a <= —a there is a strategy
for a as well as for —a:

0. Pa 0. P-a

1. 02 |0,4] 1. Oa [0, 4]
2. P-a [1,D] 2. P2 [1,4]
3. Oa 2, 4] 3. O-a [2,D]
4. P2 [3,4] 4. Pa (3, 4]
5. O-a [4,D]

6. Pa [5A]

Remark 2.19 These two strategies correspond to the following two natural
deduction derivations for the given definitional clause a <= —a, respectively:

o] [~a'

(= E) laff [~a®
o (def. reﬂec‘cion)1 [a)? (= E) Cu
— (1) (def. reflection)
¢ (def. closure) —a (= 1)

(Where again —a :=a — L.)

Remark 2.20 The existence of a strategy for a as well as for —a in Exam-
ple 2.18 depends on the fact that in the last move the proponent P can state
the formula a (in the moves (6(6) = Pa,n(6) = [5,4]) and (§(4) = Pa,
n(4) = [3, A]), respectively), which has been attacked by P with definitional
reasoning before (in the moves (6(4) = P Z,n(4) = [3, A]) and (6(2) = P 2,
n(2) = [1, A]), respectively).

That a is stated in the last move of a dialogue in a strategy means that
a is used without reference to its definition, like the assumption a used as
minor premiss in the inference (— E) of the corresponding natural deduction
derivations.

However, here this move is possible only after having reflected on the defi-
nition of a by definitional reasoning; this corresponds to the use of the assump-
tion a as the major premiss (i.e. the left premiss) in the inference of definitional
reflection in the natural deduction derivations. Hence, the formula a has been
used both with and without referring to its definition. This means that the
differently used occurrences of the formula a have been contracted implicitly.

In other words, the proponent P has not only made twofold use of the
formula a (asserted by O at position 3) in the moves at positions 4 and 6 of
the left dialogue, respectively in the moves at positions 2 and 4 of the right
dialogue (i.e., contractions of the form (3) as given in Remark 1.22), but the
formula a has also been used in two different senses: once as an arbitrary
assumption and once according to its given definition.
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Remark 2.21 One way to avoid paradoxes of the above kind lies thus in re-
stricting the structural operation of contraction in a suitable way. Disallowing
contraction altogether would be too strong, since there would then no longer
be strategies for formulas like =(a A —a) and =—(a V —a) (cf. Example 1.23).
What is needed is a restriction of contraction to only such occurrences of
formulas which are not used in different senses.
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Third Lecture:
Dialogues for Implications as Rules

3.1 Introduction

In the last lecture we have considered extensions of logic by a certain kind of
definitions. These definitions D are finite sets of definitional clauses for atomic
formulas whose defining conditions can be any (atomic or complex) formula.
They have the general form

(CL1<:F%

a] < Fllﬂ

anp <=TI7

an <=1}

where the a; are atomic formulas and the ng are (atomic or complex) formulas.
The definitional clauses

a; <= F%i
in such definitions can also be read as rules
i

a;

Indeed, with the principle of definitional closure, definitional clauses were used
as rules. In addition, we have used the principle of definitional reflection. Both
principles were incorporated in the argumentation form of definitional reason-
ing, and with definitional dialogues a dialogical framework was formulated for
definitional reasoning about clausal definitions. It can be observed that def-
initional clauses are very similar to implicative statements. The theoretical
basis for definitional dialogues were EIF-dialogues, which—when won by the
proponent P—need not end with the assertion of an atomic formula, but can
also end with the assertion of a complex formula. This was effected by the
following dialogue condition:

(D14) O can attack a formula C' if and only if (i) C' has not yet been asserted
by O, or (ii) C has already been attacked by P.

In this third lecture we want to reconsider the meaning of the logical constant
of implication ‘—’ by interpreting implications A— B as rules. For sequent cal-
culus, Schroeder-Heister [2011] has introduced an alternative left introduction
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rule for implication, which is motivated by the interpretation of implications
as rules. Here we will look at its dialogical counterpart by giving a dialogi-
cal framework for implications as rules (see also Piecha and Schroeder-Heister
[2012)).

3.2 Implications as rules

Usually, constructive interpretations of implication are more or less directly
given by the Brouwer-Heyting—Kolmogorov (BHK) interpretation, according
to which a proof of an implication A — B consists of a construction trans-
forming any given proof of A into a proof of B; in the formulation of Heyting
[1971, p. 102f.]:

The implication p — q can be asserted, if and only if we possess a
construction t, which, joined to any construction proving p (sup-
posing that the latter be effected), would automatically effect a
construction proving q. In other words, a proof of p, together with
t, would form a proof of q.

The standard dialogical interpretation of implication is based on the same idea:
An implication A — B is attacked by claiming A and defended by claiming B.
In order to have a strategy for A — B, the proponent must be able to produce
a substrategy (cf. Definition 3.8 below) for B from what the opponent uses in
defending A. A difference to standard constructive interpretations is that the
opponent need not necessarily give a full proof of A which is then transformed
into a proof of B. Instead, the proponent may force the opponent to produce
certain fragments of a proof of A that are sufficient to produce a substrategy
for B.

A more elementary view of implication is based on the conception that
an implication A — B is a rule which allows one to pass over from A to B.
This view is particularly supported by the treatment of implication in natural
deduction. There modus ponens (i.e., implication elimination (— E))

A A—B
B

can be read as the application of A — B as a rule, which is used to infer B
from A, that is, modus ponens can be read as a schema of rule application:

2 (A—B)

The introduction of an implication A — B by
4]
_B_
A—B

(where assumptions A can be discharged) can be read as establishing a rule,
namely by deriving its conclusion B from its premiss A. Applications of logic
such as logic programming or definitional reasoning support this approach.
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When implications are read as rules, an elementary meaning is given to impli-
cation which is conceptually prior to the meaning of the other logical constants
(see Schroeder-Heister [2011]).

In the following, we explain how the implications-as-rules approach can be
carried over to dialogues. This is done in two steps: We first introduce pre-
liminary EI°-dialogues, which implement the implications-as-rules approach.
These preliminary dialogues will be found lacking, since they are not sufficient
for intuitionistic logic. In the second step, we correct this by making an addi-
tion to the preliminary EI°-dialogues, yielding EI°-dialogues for intuitionistic
logic. We will only treat the propositional case; the results can be general-
ized to the first-order case. Our approach is again constructive, respectively
intuitionistic.

3.3 Preliminary EI°-dialogues

The guiding idea for implications-as-rules dialogues is the following: Once an
implication C'— A has been claimed by the opponent, it is considered to be a
rule in a kind of ‘database’, which later can be used by the proponent to reduce
the justification of its conclusion A to the justification of its premiss C. This
is achieved by allowing the proponent to defend an attack on A by asserting
C whenever C' — A has been claimed by the opponent before. In case no
such claim has been made before (i.e., if no applicable rule is available in the
database), the argument for A continues as usual with an opponent attack on
A (which must eventually be defended by the proponent), depending on the
respective form of A. When making an assertion A, the proponent P must
be prepared to either defend A in the ‘standard’ way against an attack of the
opponent O, or else make the assertion C for some C', for which O has already
claimed C'— A, that is, for which the implication-as-rule C'— A is sufficient to
generate A. This is implemented by saying that every assertion made by P is
symbolically questioned by O, following which P chooses which of the two ways
described P is prepared to take. Contrary to the proponent P, the opponent O
is not given a choice. The opponent’s non-implicational assertions are attacked
and defended as usual, whereas the opponent’s implicational assertions are
considered as providing rules which the proponent can use, but not question;
so there are no attacks and defenses defined for them.

Definition 3.1 For each logical constant we first define argumentation forms
which determine how a complex formula (having the respective constant in
outermost position) that has been asserted by the opponent O can be attacked
(if possible) and how this attack can be defended (if possible):

AF(AF):  assertion: O A1 A Ay
attack: P A; (P chooses i =1 or i = 2)
defense: O A;

AF(VHE): assertion: O AV Ag
attack: PV
defense: O A; (O chooses i =1 or i = 2)

argumentation
forms



AF(—F)°: assertion: O A — B
attack:  no attack
defense: no defense

AF(—F): assertion: O—-A
attack: PA
defense: no defense

Except for AF(—t)°, these argumentation forms coincide with the standard
ones (cf. Definition 1.2) in case of assertions made by the opponent O. (The
argumentation form AF(— F)° could also be omitted, to the same effect. How-
ever, we prefer to give the argumentation form AF(—F)° in order to make it
explicit that implications A — B asserted by O cannot be attacked.)

We now extend our language by the two special symbols ? and | - |. For
assertions made by the proponent P there is a pair of argumentation forms for
each logical constant (depicted below as trees having two branches which are
separated by |). An assertion A made by the proponent P can be questioned by
the opponent with the move O 7 (such a move is only possible if the expression
stated in the P-move is an assertion, that is, a formula; if it is not an assertion
but a symbolic attack, then it cannot be questioned with the move O 7).

The proponent P can then answer this question either by allowing an at-
tack on the assertion (this is indicated by the special symbol | - |; see the
argumentation forms on the left side of | below), or by asserting any formula
C for which O has asserted the implication C'— A at an earlier position. We
call this the rule condition (R):

(R) P may answer a question O 7 on a formula A by choosing C' provided O
has asserted the formula C'— A before.

The argumentation forms for assertions made by the proponent P are then
defined as follows:

AF(FA):  assertion: P AN A
question: 07
choice: P |A; A Ag| PC (R)

attack:  OA; (i=1or2)
defense: P A;

AF(FV): assertion: PAV A
question: 07
choice: P |A; V Ag| PC (R)

attack: OV
defense: PA; (i=1or2)

AF(F—): assertion: PA—B
question: 07
choice: P |A— B| PC (R)
attack: OA
defense: P B
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AF(F-): assertion: P-A

question: (ONg
choice: P |-A| PC (R)
attack: O A

defense: no defense

In the case of an attack O A; according to the argumentation form AF (- A) for
conjunctive formulas asserted by P, the opponent O choosesi = 1 or i = 2, and
in the case of a defense P A; to an attack O V according to the argumentation
form AF(F V) for disjunctive formulas asserted by P, the proponent P chooses
i =1 or ¢ = 2. The argumentation forms on the left (i.e., the respective left
branches) correspond to the argumentation forms given in Definition 1.2 for
‘standard’ dialogues (where the device of question and choice moves is not
needed). The argumentation forms on the right (i.e., the respective right
branches) reflect the implications-as-rules view.

For assertions of atomic formulas ¢ made by the proponent P an argumen-
tation form is given by the rule condition (R) itself:

AF(R): assertion: Pa
question: O7?
choice: PC  only if O has asserted C' — a before

Remark 3.1 In Definition 1.2 argumentation forms were defined indepen-
dently of whether the assertion is made by the proponent P or by the oppo-
nent O. This symmetry is not preserved here.

Definition 3.2 We extend the definition of mowves (see Definition 1.3) as fol-
lows:

As before, pairs (d(n),n(n)) are called moves, where §(n), for n > 0, is
again a signed expression, and 7(n) is again a pair [m, Z|, for 0 < m < n,
where Z is now either A (for ‘attack’), D (for ‘defense’), @ (for ‘question’) or
C (for ‘choice’). As before, n(n) = [m, Z] is empty for n = 0, that is, n(0) = .

We have thus the following types of moves:

attack move (6(n) = X e,n(n) = [m, A])
defense move
question move
choice move

(

Remark 3.2 A question move can only be made by O, and a choice move
can only be made by P. The other types of moves are available for both the
proponent P and the opponent O.

In a choice move, 6(n) can have the form P |A| or P A. In the first case, P
allows an attack on the formula A. In the second case, P asserts the formula
A in accordance with the rule condition (R), that is, A is the antecedent of
an implication asserted by O before.

Dialogues for the implications-as-rules approach can now be defined as
follows.
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Definition 3.3 A preliminary EI°-dialogue is a sequence of moves (§(n),
n(n)) (n=0,1,2,...) satisfying the following conditions:

(DO0’) 6(n) is a P-signed expression if n is even and an O-signed expression
if n is odd. The expression in §(0) is a (complex or atomic) formula.

(D01°) If n(n) = [m, A] for even n, then the expression in §(m) is a complex
formula. If n(n) = [n—1, A] for odd n, then the expression in d(n— 1)
is of the form |B| for a complex formula B. In both cases d(n) is an
attack on this formula as determined by the relevant argumentation
form.

(D02) 1If n(p) = [n, D], then n(n) = [m, A] for m < n < p and d(p) is the
defense of the attack §(n) as determined by the relevant argumentation
form.

(D03°) If n(n) = [m, Q] (for odd n), then for m < n the expression in §(m) is
a (complex or atomic) formula, n(m) = [I, Z] for l <m, Z = A, D or
C, and the expression in §(n) is the question mark ‘7.

(D04°) If n(n) = [m,C] (for even n), then n(m) = [I,Q] for | < m < n and
0(n) is the choice answering the question §(m) as determined by the
relevant argumentation form.

(D11") Ifn(p) = [n, D] for odd n,n < n' < p, n'—niseven and n(n’) = [m, A],
then there is a p’ such that n’ < p’ < p and n(p) = [0/, D].

That is, if at a position p — 1 there are more than one open attacks
by O, then only the last of them may be defended by P at position p.

(D12") For every odd n there is at most one m such that n(m) = [n, D].
That is, an attack by O may be defended by P at most once.

(D14") O can question a formula C' if and only if (i) C' has not yet been
asserted by O, or (ii) C has already been attacked by P.

(E) All moves (6(n),n(n)) for n odd are of the form (§(n),n(n) = [n —
1,7]), for Z =Q, A or D.

That is, an opponent move made at position n is either a question, an
attack or a defense of the immediately preceding move made by the
proponent at position n — 1.

The notions ‘dialogue won by P’; ‘dialogue tree’ and ‘strategy’ as defined
for DIP-dialogues are directly carried over to the corresponding notions for
(preliminary) EI°-dialogues.

Remark 3.3 Preliminary EI°-dialogues are similar to EIP-dialogues without
condition (D10) for the argumentation forms given in Definition 3.1 and satis-
fying the condition (D14’) instead of (D14), where (D14’) differs from (D14)
only in that the latter is a condition for O attacking a formula C, whereas the
former is a condition for O questioning a formula C.

Condition (DO00') is the same as for definitional dialogues (cf. Definition
2.10). It allows (preliminary) EI°-dialogues to start with the assertion of an
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atomic formula, contrary to the restriction to complex formulas as, for ex-
ample, in EIP-dialogues (cf. Definition 2.3). Condition (D01°) differs from
condition (D01) in EIP-dialogues in that it allows for attacks by O on expres-
sions of the form |A| for complex formulas A. Condition (D02) is as given in
Definition 1.4 for dialogues. Conditions (D03°) and (D04°) have been added
for the question and choice moves, respectively.

We recall (cf. Remark 2.3) that condition (E) implies condition (D13), and
that (E) also implies condition (D11) for odd p and condition (D12) for odd
n. The conditions (D11) and (D12) have thus been weakened here to the
conditions (D11") and (D12), respectively.

Remark 3.4 The absence of condition (D10) in the definition of preliminary
EI°-dialogues is compensated for by allowing the opponent O to question
assertions of atomic formulas made by the proponent P. In dialogues with
(D10) there is, for example, no strategy for the formula a — b, since the
dialogue

0. Pa—b
1. Oa [0, A]

cannot be continued with the move (§(2) = Pb,n(2) = [1, D]); this would only
be possible if b were asserted by O before.

In (preliminary) EI°-dialogues (where (D10) is absent) there is no strategy
for a — b either. The (preliminary) EI°-dialogue begins with the moves

0. Pa—b

1. O7? [0, Q]
2. Pla—b| [1,C]
3. Oa (2, 4]
4. Pb 3, D]
5 07 [4, Q]

where P can now assert b at position 4 without O having asserted it before.
However, the opponent O can make a question move at position 5, in accor-
dance with the argumentation form AF(R). The proponent P cannot make
the choice move (6(6) = P |b|,n(6) = [5,C]) here, since there is no such argu-
mentation form for atomic formulas. The only possible choice move would be
one according to the argumentation form AF(R), that is, a move of the form
(0(6) = PC,n(6) = [5,C]) for a formula C'— b asserted by the opponent O
before. But such a formula has not been asserted by O in this dialogue.

Remark 3.5 Due to condition (D14'), (preliminary) EI°-dialogues won by
P need not end with the assertion of an atomic formula but can end with the
assertion of a complex formula.

For example, the following dialogue is a (preliminary) EI°-strategy for the
formula (a V b) - ——=(a Vv b):

0. P(aVvb)——-=(aVb)
1. 07 [0, Q]
2. PllaVvb)——-=(aVDd) [1,C]

(continued on next page)
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The opponent O cannot question a V b, since neither of the two conditions
(i) and (ii) of (D14’) is satisfied: a V b has already been asserted by O at
position 3, and a V b has not been attacked by P.

Example 3.6 The following dialogue is a (preliminary) EI°-strategy for the
formula (a — b) = ((b—¢) = (a — ¢)):

0. Pla—=b)—=((b—c)—(a—0)
1. 07 0, Q]
2. Plla—b)—=((b—c)—(a—0)| [1,C]
3. Oa—b [2,A] “assuming a — b as a rule”
4. P(b—c)—=(a—c) (3, D]
5. 07 4, Q)
6. Pl(b—c)— (a—0)| 5, C]
7. Ob—c [6,A4] ‘“assuming b — c as a rule”
8. Pa—c [7, D]
9. 07 8, Q]
10. Pla— ¢ 9, C]
11. Oa [10, A]
12. Pec [11, D]
13. 07 [12,Q]
14. Pb [13,C] ‘“using b — c as a rule”
15. 07 14, Q]
16. Pa [15,C] “using a — b as a rule”

At position 3, the opponent asserts the implication a — b. The formula b,
which occurs also as the succedent of this implication, is questioned at po-
sition 15. In accordance with the rule condition (R), the proponent asserts
a—the antecedent of the implication—in the last move; the opponent cannot
question this move due to condition (D14").

The implication b — ¢ is asserted by O in the move at position 7. The
opponent questions c¢ at position 13, which enables P to answer according to
the rule condition (R) with the choice move P b at position 14.

The implications @ — b and b — ¢ have thus been used as rules: the latter
implication-as-rule allowed P to answer the question on ¢ with b, and the
former allowed P to answer the question on b with a.

3.4 EI°-dialogues with cut

For the preliminary EI°-dialogues considered so far, there is no strategy for
the formula a — ((a — (b A ¢)) — b). Consider the following dialogue:

0. Pa—((a—(bAc))—Db)

(continued on next page)
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1. 07 [0,Q]
2. Pla—=((a—=((DAc)—b)| [1,C]
3. Oa 2, A]
4. Pla—(bAc))—b [3, D]
5. 07 [4,Q]
6. Plla— (bAc)) =D [5,C]|
7. Oa—(bAc) [6, A]
8. Pb [7, D]
9. 07 8, Q]

The moves at positions 0—4 and at positions 4-7 + 12 are made according to
the argumentation form AF(F—). In the choice moves at positions 2 and 6
the proponent P can only choose |a— ((a— (bAc¢))—b)| and [(a— (bAc)) —b],
respectively, since O has not asserted any implications before which could be
used as rules by choosing their antecedents. At position 7 the opponent asserts
the implication a — (b A ¢). At position 8 the proponent P defends the attack
Oa — (b A c) by asserting b; assertions by P of atomic formulas not asserted
by O before are not prohibited in (preliminary) EI°-dialogues (they would be
prohibited by condition (D10), for example in EIP-dialogues). This move can
be questioned by O at position 9, and P loses this dialogue, since P cannot
make another move at position 10:

(i) P can neither choose |b| nor C, since no move O C' — b has been made
for such a formula C,

(ii) there is no attack for Oa — (b A ¢) (by definition of AF(—+)°),

(iii) and for a being atomic there is no attack for the move Oa made at
position 3.

Although there is no preliminary EI°-strategy, there is an EIP-strategy for
the formula a = ((a = (bA¢)) = b):

0. Pa—((a—(bAc))—Db)

1. Oa [0, A]
2. Pla—=(bAc)—b [1, D]
3. Oa—(bAc) (2, A]
i Pa 3, A]
5. ObAc [4, D]
6. PNy [5, A]
7. Ob [6, D]
8. Pb [3, D]

Thus preliminary FEI°-dialogues cannot be complete for intuitionistic logic
(contrary to EIP-dialogues, for which we have Theorem 2.5).

In order to achieve completeness of the dialogical implications-as-rules
framework for intuitionistic logic we have to add a form of cut to our pre-
liminary EI°-dialogues. We first define an argumentation form for cut, extend
our definition of moves for cut moves, and adjust our definition of preliminary
EI°-dialogues accordingly, yielding the final definition of EI°-dialogues.
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The implications-as-rules approach as such is independent of the presence
of cut. However, cut moves have to be allowed if not only a fragment of
intuitionistic (propositional) logic is to be captured.

Definition 3.4 We define an argumentation form AF(Cut) such that any
expression e (i.e., question, symbolic attack or formula) stated by O can be

followed by a move P A, and this move can then be followed by the opponent
move O A:

AF(Cut): statement: Oe
cut: PA
cut: OA

The formula A is called cut formula in this argumentation form.

Remark 3.7 The argumentation form AF(Cut) differs from the other ar-
gumentation forms in that the move O e need not be an assertion (i.e., the
statement of a formula) but can be the statement of any expression e (i.e.,
question, symbolic attack or formula).

Another difference is that the cut formula is completely independent of the
expression e. Calling the P-move an attack and the subsequent O-move a
defense as in the other argumentation forms would thus be inadequate. We
therefore simply speak of cut mowves in both cases.

The idea behind AF(Cut) is that at any (even) position the proponent P
can introduce an arbitrary formula A as a lemma. The proponent P must then
later be prepared both to defend this lemma A as an assertion and to defend
the original claim (i.e., the assertion made in the initial move at position 0)
given this lemma, that is, given the opponent’s claim of A.

Definition 3.5 We extend the definition of moves (see Definition 3.2) further
by adding the following type of move:

cut move (0(n) = X A,n(n) = [Cut]).
(Note that here in the pair n(n) = [m, Z], Z = Cut and m is empty.)

Definition 3.6 FI°-dialogues are preliminary FI°-dialogues with the follow-
ing additional dialogue condition (D05°) and two small adjustments in condi-
tions (D03°) and (E) for cut moves:

(D03°) If n(n) = [m, Q] (for odd n), then for m < n the expression in d(m)
is a (complex or atomic) formula, n(m) = [I, Z] for  <m, Z = A, D,
C or Cut (where [ is empty if Z = Cut), and the expression in §(n) is
the question mark ‘7’

(D05°) If n(n) = [Cut] for even n, then n(m) = [I, Z] (where [ is empty if
Z = Cut) for | <m < n and d(n) is a formula (i.e., the cut formula).
If n(n) = [Cut] for odd n, then n(m) = [Cut] and d6(n) = O A for
0(m) =P A (where m < n).

(E) All moves (6(n),n(n)) for n odd are of the form (6(n),n(n) = [n —
1,7]), for Z =Q, A, D or Cut (where n — 1 is empty if Z = Cut).
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That is, an opponent move made at position n is either a question, an
attack or a defense of the immediately preceding move made by the
proponent at position n — 1, or it is a cut move with d6(n) = O A for
o(n—1)=PA.

Definition 3.7 A formula A is called EI°-dialogue-provable (short: EI°-prov-
able) if there is an EI°-strategy for A. Notation: g A.

Example 3.8 In the presence of cut, there is an EI°-strategy for the formula
a— ((a—(bAc)) —b):

0. Pa—=((a—=((bAc)—Db)

1. 0?7 0, Q]
2. Pla— ((a—(bAc)) —=b)| [1,C]
3. Oa 2, A]
4. Pa—(bAc))—b (3, D]
5. 0?7 [4, Q]
6. Plla— (bAc))—b| [5,C]
7. Oa— (bAc) 6, A]
8. PbAc [Cut]
9. O7 8,Q] | ObAc [Cut]
10. Pa 9,C] | PN 9, A]
11. Ob 10, D]
12. Pb [7, D]

Instead of defending the opponent’s attack a — (b A ¢) made at position 7, the
proponent continues by asserting the succedent b A ¢ of that implication in the
cut move at position 8. It is questioned at position 9 (in the left dialogue).
In accordance with the rule condition (R), the proponent can now answer
this question move by asserting in the choice move at position 10 (in the
left dialogue) the antecedent a of the implication whose succedent has been
questioned. The implication a — (b A ¢) asserted by O at position 7 was thus
used as a rule. The opponent cannot question the formula a due to condition
(D14"): O has already asserted a (in the attack move at position 3), and P
has not attacked a (such an attack is not even possible, since a is atomic).

In the right dialogue, the opponent makes the corresponding cut move at
position 9, which is attacked by P and defended by O with the assertion of b.
Now P can defend the opponent’s attack from position 7 by asserting b; as O
has already asserted b without b having been attacked by P, the opponent O
cannot question b due to condition (D14’), and the proponent P also wins the
right dialogue.

3.5 Completeness

Completeness for EI°-dialogues and intuitionistic logic can be proved by show-
ing that there is an EI°-strategy for a formula A if and only if there is an EI?-
strategy for A (see Theorem 3.12 below). Completeness (see Corollary 3.13
below) then follows from our completeness result for FIP-dialogues (see The-
orem 2.5).
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Definition 3.8 A substrategy is a subtree s of a dialogue tree t comprising as
root node a node at an even position in ¢ and all descendents in ¢ such that

(i) s does not branch at even positions,
(ii) s has as many nodes at odd positions as there are possible moves for O,
(iii) and all leaves are proponent moves such that O cannot make another

move.

Lemma 3.9 (i) The weak cut elimination property holds for EI°-strategies.
That is, every EI°-strategy containing cut moves made according to the ar-
gumentation form AF(Cut) can be transformed into an EI°-strategy of the
form

m. OA—B[m—1,7]

n. P B [Cut]
n+1. 07 [n,Q)] O B [Cut]
n+2. PA[n+1,C] S2
n+3. 07 [n+2,Q]

S1

where the O-move at position m is either an attack or a defense (i.e., either
Z = A or Z = D), and the move (§(n + 1) = OB,n(n + 1) = [Cut]) is
the uppermost cut move made by O (i.e., there is no cut move at positions
k < n—1). The O-move at position n+ 3 might not be possible due to (D14").
In this case the left dialogue ends with the P-move at position n + 2.

(Note that the cut formula B is a subformula of A — B, asserted by O at
position m.)

(ii) Furthermore, the substrategy so is either of the same form as the above
EI°-strategy, or it depends on a sequence of moves made according to AF(AF),

AF(VF), AF(—F)° or AF(=F).

Corollary 3.10 As a consequence of the weak cut elimination property, EI°-
strategies have the subformula property. (This is in full analogy to the re-
sults on the weak cut elimination property and the subformula property for
sequent calculus derivations with the alternative left implication introduction
rule (—F)°; cf. Schroeder-Heister [2011].)

Lemma 3.11 (i) EI°-strategies for formulas of the form
A= ((A—=(BANC))— B)

containing a cut move where the cut formula is of the form B A C cannot be
transformed into EI°-strategies (for the respective formula) containing no cut
move. However, they can be transformed into EIP-strategies (for the respective
formula).

(i) Every other EI°-strateqy (for a given formula) containing a cut move can
be transformed into an EIP-strategy (for the given formula) as well.

3-12

substrategy

weak cut elimina-
tion property

subformula
property



Theorem 3.12 There is an FEI°-strategy for a formula A if and only if there
is an EIV-strategy for A, that is, bgre A if and only if g A.

Corollary 3.13 (Completeness) With Theorem 2.5 we have that the EI°-
provable formulas are exactly the formulas provable in intuitionistic logic.

3.6 Discussion

One of the main differences between standard dialogues (like DIP- or EIP-
dialogues) and EI°-dialogues is that the argumentation forms in the latter
are no longer symmetric with respect to proponent and opponent; that is, the
player independence of the argumentation forms that obtains in the standard
dialogues is given up in EI°-dialogues: different argumentation forms have to
be given for proponent and opponent. Although in standard dialogues propo-
nent and opponent are also not interchangeable due to the dialogue conditions
(cf. Remark 1.7), there is a perfect symmetry with respect to the argumenta-
tion forms. If the idea of having player independent argumentation forms is
considered to be essential in the dialogical paradigm, then giving it up may
seem to amount to giving up the dialogical setting itself as a foundational
approach. However, from the implications-as-rules point of view it could be
argued that implication is different from the other logical constants, and that
this difference requires an asymmetric treatment with respect to the argumen-
tation forms.

As a consequence of this asymmetry in the treatment of implication there is
another asymmetry: In EI°-dialogues the proponent can defend an assertion
by means of the rule condition (R) independently of its logical form. This
is not possible in standard dialogues where a defense of an assertion always
depends on its logical form, and where formulas are always decomposed into
subformulas according to their logical form. Nonetheless, we have shown that
the subformula property holds at least for EI°-strategies.

But certain tenets within the dialogical tradition—such as the player inde-
pendence of argumentation forms or the decomposition of formulas according
to their logical form—do not have to be taken as being essential in dialogical
approaches. Particularly not for implications as rules: Rules are not logical
constants but belong to the general structural framework that underlies defini-
tions or meaning explanations of logical constants. Given that the proponent
has the dialogical role of claiming something to hold, and the opponent the
role of providing the assumptions under which something is supposed to hold,
the implication-as-rule A — B means for the proponent that B must be de-
fended on the background A, whereas the opponent only grants with A — B
the right to wuse this implication as a rule, without any propositional claim.
This is exactly what is captured in the FI°-dialogues for implications-as-rules.

An important aspect here is the significance which is given to modus ponens.
For the implications-as-rules view, modus ponens is essential for the meaning
of implication as it expresses the idea of application, which is the characteristic
feature of a rule. In natural deduction, modus ponens can be understood as
the application of the implication A — B as a rule which allows us to infer B
from A. In EI°-dialogues this means that a dialogue on B can be reduced to
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a dialogue on A, if an implication-as-rule A — B is given. We have thus an
argumentative interpretation for implications as rules.

A further complication is introduced by the need of (a restricted form of)
cut in order to achieve full intuitionistic logic. Although this need is present in
both the proof-theoretic setting (e.g. using sequent calculus) and the dialogical
setting for implications-as-rules, the addition of an argumentation form for cut
might be conceived as being alien to the dialogical approach as such, as this
approach has always been considered as being cut-free per se. But from the
perspective of implications-as-rules such a view proves to be too narrow—at
least if full intuitionistic logic is to be achieved.
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