
Introduction to Resolution
and Logic Programming

Thomas Piecha

University of Belgrade

October/November 2018

Preface

These are the lecture notes of an Erasmus+ mini-course given at the Philosophy
Department of the University of Belgrade in October/November 2018. The objectives
of this mini-course were to give an introduction to resolution methods, to approach
computability on the basis of logic programming, and to provide some useful tools along
the way, such as Skolemization and unification.
Iwould like to thankall students,coming fromphilosophyaswell as frommathematics, for
their participation. I am very grateful to Miloš Adžić for his kind invitation, organization
and generous hospitality.

Belgrade, October/November 2018 T. P.

Contents

1 Propositional resolution 5
1.1 The resolution calculus . 5
1.2 Resolution refutation . 7
1.3 Completeness . 10

2 First-order resolution 13
2.1 Substitution . 13
2.2 Skolemization . 15
2.3 Unification and first-order resolution 18
2.4 Most general unifiers and the unification algorithm 23

3 SLD-resolution and logic programming 27
3.1 Logic programs and SLD-resolution 27
3.2 Non-determinism in SLD-derivations 31
3.3 Selection functions . 32
3.4 SLD-trees . 33
3.5 Soundness and completeness of SLD-resolution 35

A Appendix 39
A.1 Construction of conjunctive normal form 39
A.2 Construction of prenex normal form 39
A.3 Correctness of the unification algorithm 41
A.4 Addendum to the example on page 34 42

References 45

Index 47

3

1 Propositional resolution

1.1 The resolution calculus

Logical consequence or universal validity of formulas can be shown by using resolution.
We first introduce the resolution calculus,which is soundwith respect to classical logic.We
then consider resolution refutations. The basic idea is to establish the universal validity of
a formulaA byusing resolution to show that¬A is unsatisfiable. For resolution refutations
the resolution calculus consists of only one rule. However, resolution presupposes sets
of clauses; to obtain them, formulas have to be transformed into conjunctive normal
form first.

Definition 1.1 (i) A clause is a sequent, that is, an expression A1, . . . , An ` B1, . . . , Bm, clause
where A1, . . . , An, B1, . . . , Bm are atomic formulas.

(ii) To the left of the sequent sign ` stands the antecedent, to the right the succedent.

Definition 1.2 (i) A literal is an atom A (positive literal) or its negation ¬A (negative literal
literal).

(ii) Two literals are called complementary, if one is the negation of the other. complementary

Definition 1.3 A formula is in conjunctive normal form (CNF for short), if it has the conjunctive normal
formform of a conjunction of disjunctions of literals.

Remarks. (i) The sequent A1, . . . , An ` B1, . . . , Bm stands for the disjunction ¬A1 ∨
. . . ∨ ¬An ∨ B1 ∨ . . . ∨ Bm of literals.

(ii) Antecedent and succedent of a clause are considered as sets; that is, multiplicity
and order of list elements are irrelevant.

(iii) A clause is also considered as a set of literals.

(iv) Metalinguistic variables for finite sets of atoms are X,Y,Z, possibly with indices;
for clauses: S, S1, S2, . . . ; and for sets of clauses: Γ,∆,

(v) Since sequents correspond to formulas, we can use the notation of logical conse-
quence for formulas also for sequents: Γ � S.

(vi) X,A ` Y,B stands for X ∪ {A} ` Y ∪ {B}, where A and B could here also be an
element of X or Y , respectively.

(vii) The empty clause contains no atoms. Notation: ` or �.

The empty clause is unsatisfiable.

Definition 1.4 For atoms A and possibly empty sets of atoms X,Y, . . . the propositional resolution calculus
resolution calculus is given by the axiom (or axiom schema)

(Ax)
X,A ` A,Y

and the propositional resolution rule: resolution rule

X1 ` Y1, A A,X2 ` Y2 (R)
X1, X2 ` Y1, Y2

The conclusion of (R) is called resolvent (w.r.t. A) of the premisses. resolvent

5

Definition 1.5 We inductively define derivations in the resolution calculus as follows derivation

(where we write D
S

to express that derivation D ends with clause S):

(i) X ` Y is a derivation (of X ` Y from X ` Y).

(ii) (Ax)
X,A ` A,Y is a derivation.

(iii) For derivations D1

X1 ` Y1, A
and D2

A,X2 ` Y2
also

D1

X1 ` Y1, A
D2

A,X2 ` Y2 (R)
X1, X2 ` Y1, Y2

is a derivation.

Definition 1.6 The set of assumptions (or hypotheses) of a derivation is recursively defined assumptions
as follows:

(i) Hyp(X ` Y) := {X ` Y}.

(ii) Hyp
(
(Ax)

X,A ` A,Y
)
:= ∅.

(iii) Hyp

 D1

X1 ` Y1, A
D2

A,X2 ` Y2 (R)
X1, X2 ` Y1, Y2

 := Hyp
(

D1

X1 ` Y1, A

)
∪Hyp

(
D2

A,X2 ` Y2

)
.

A derivation is thus a binary tree (branching upward), whose leaves are assumptions. In
the case of the axiom (Ax) its empty premiss is an empty assumption and a leave.

Definition 1.7 The derivability relation Γ `Res S holds iff there is a derivation D
S

from derivability relation

assumptions Hyp
(
D
S

)
⊆ Γ that ends with clause S.

Thus Γ `Res S means that the clause S is derivable from the set of clauses Γ in the derivable
propositional resolution calculus. (The derivability relation `Res is not to be confused
with the sequent sign ` .)

Remarks. (i) The axiom creates tautological clauses. A clause tautological clause

¬A1 ∨ . . . ∨ ¬An ∨ B1 ∨ . . . ∨ Bm

is tautological iff it contains two complementary literals (i.e., if Ai = Bj for at least
one pair i, j). In this case the clause contains the subformula ¬A ∨ A, which is the
case iff the clause is an axiom.

(ii) The axiom can be used to weaken clauses. Using the axiomX1, A ` A,Y1 the clause
A,X2 ` Y2 can be weakened by

(Ax)
X1, A ` A,Y1 A,X2 ` Y2 (R)

X1, A,X2 ` Y1, Y2

to X1, A,X2 ` Y1, Y2. Correspondingly, clauses of the form X2 ` A,Y2 can be
weakened to X1, X2 ` A,Y1, Y2.

6

Theorem 1.8 (Soundness)
The resolution calculus is sound, that is, it holds: If Γ `Res S, then Γ � S.
Proof. Exercise. qed

1.2 Resolution refutation

In the following we consider the resolution calculus as a refutation calculus. The axiom is
no longer needed in this case, although sets of clauses to be refuted may contain clauses
of the form of the axiom. The resolution calculus then consists only of the resolution
rule

X1 ` Y1, A A,X2 ` Y2 (R)
X1, X2 ` Y1, Y2

We will assume that A /∈ Y1 and A /∈ X2.

Definition 1.9 A resolution refutation of a set Γ of clauses is a derivation of the empty resolution refutation
clause ` (or �, respectively) from clauses in Γ.

Since the resolution rule is sound there must for each interpretation be at least one false
clause in Γ, if there is a refutation refutation of Γ. In other words: A resolution refutation
of Γ establishes Γ `Res �, and it is by the soundness of the resolution rule a proof of
Γ � �, that is, of the unsatisfiability of Γ.
If one considers a formula A, one has to translate it into a set of clauses Cl(A) first, in
order to be able to apply resolution.

Definition 1.10 A resolution proof of a formula A is a resolution refutation of Cl(¬A). resolution proof

From a resolution proof of A follows � A, since in general

Γ � A ⇐⇒ A is true in all models of Γ

⇐⇒ Γ ∪ {¬A} has no model

⇐⇒ Γ ∪ {¬A} is unsatisfiable

and for Γ = ∅ thus in particular

� A ⇐⇒ ¬A is unsatisfiable.

Due to the soundness of the resolution rule, a derivation of the unsatisfiable empty clause
� implies the unsatisfiability of Cl(¬A), and thus also the unsatisfiability of ¬A.
However, before one can attempt a resolution proof of a formula A one must first
construct the conjunctive normal form of¬A in order to obtain the set of clausesCl(¬A).
The CNF is not constructed by using a semantic procedure (e.g. truth tables); this would
decide the formula and would thus render resolution redundant. Instead, one uses a
syntactical construction like the one given in Appendix A.1.
To each conjunct in a CNF corresponds a clause. Hence, to the CNF

(¬A11 ∨ . . .∨¬A1k1 ∨B11 ∨ . . .∨B1l1)∧ . . .∧ (¬Aj1 ∨ . . .∨¬Ajkj ∨Bj1 ∨ . . .∨Bjlj)

of a formula A there corresponds a set of clauses set of clauses

Cl(A) = {A11, . . . , A1k1 ` B11, . . . , B1l1 ; . . . ; Aj1, . . . , Ajkj ` Bj1, . . . , Bjlj}

to which resolution can be applied. (We use the semicolon to separate the elements of
sets of clauses.)

7

Remark. In disjunctions of literals A1 ∨ . . .∨An there may be several occurrences of the
same literal. If Ai and Aj (for 1 ≤ i < j ≤ n) are two occurrences of the same literal,
then the disjunction

A1 ∨ . . . ∨ Ai ∨ Ai+1 ∨ . . . ∨ Aj−1 ∨ Aj+1 ∨ . . . ∨ An

in which the occurrence Aj is eliminated, is called a factor of the initial disjunction. If factor
there are no multiple occurrences of a literal, then the disjunction of literals is called
factor-free. factor-free
Since antecedent and succedent of a clause are considered as sets, a formula like
¬A ∨ ¬A ∨ B ∨ B (for atoms A,B) has the corresponding clause A ` B , to which the
factor-free formula ¬A ∨ B corresponds.

Theorem 1.11 (Import-Export)
It holds Γ � A→ B iff Γ ∪ {A} � B .

Proof. Exercise. qed

Corollary 1.12 Since

A1→ (A2→ (· · · (An→ B) · · ·)) �� (A1 ∧ A2 ∧ . . . ∧ An)→ B

holds, we have A1, . . . , An � B iff � A1 ∧ . . . ∧ An→ B .

Remarks. (i) Instead of Cl(¬(A→ B)) one can also consider Cl(A) ∪ Cl(¬B).
(ii) In the case of logical consequences A1, . . . , An � B one can apply resolution to

Cl(¬(A1 ∧ . . . ∧ An→ B)) or
⋃

1≤i≤n

Cl(Ai) ∪ Cl(¬B).

Examples. Let A,B,C be atoms. (We omit some intermediate steps in the respective
constructions of the CNF.)

(i) � A→ A ∨ B
CNF of ¬(A→ A ∨ B):

¬(A→ A ∨ B) ¬(¬A ∨ A ∨ B)
 ¬¬A ∧ ¬A ∧ ¬B
 A ∧ ¬A ∧ ¬B
 { ` A ; A ` ; B ` } = Cl(¬(A→ A ∨ B))

Resolution refutation: ` A A ` (R)`
We have shown

Cl(¬(A→ A ∨ B)) `Res �

and by soundness follows

Cl(¬(A→ A ∨ B)) � �

Since � is unsatisfiable, Cl(¬(A→ A ∨ B)) and hence ¬(A→ A ∨ B) must be
unsatisfiable, that is, � A→ A ∨ B .

8

(ii) � A ∨ (B ∨ C)→ (A ∨ B) ∨ C
CNF of ¬(A ∨ (B ∨ C)→ (A ∨ B) ∨ C):

¬(A ∨ (B ∨ C)→ (A ∨ B) ∨ C) ¬(¬(A ∨ (B ∨ C)) ∨ ((A ∨ B) ∨ C))
 (A ∨ (B ∨ C)) ∧ ¬((A ∨ B) ∨ C)
 (A ∨ B ∨ C) ∧ ¬A ∧ ¬B ∧ ¬C
 { ` A,B,C ; A ` ; B ` ; C ` }

Resolution refutation: ` A,B,C A `
(R)` B,C B `

(R)` C C ` (R)`
Due to the Import-Export Theorem we can alternatively consider A ∨ (B ∨ C) �
(A ∨ B) ∨ C :
CNF of A ∨ (B ∨ C): A ∨ B ∨ C { ` A,B,C}.
CNF of ¬((A∨B)∨C): ¬((A∨B)∨C) ¬A∧¬B ∧¬C {A ` ; B ` ; C `}.
One thus obtains the same set of clauses { ` A,B,C ; A ` ; A ` ; B ` ; C ` }
and the shown resolution refutation.

(iii) � (¬A→¬B)→ (B → A)
CNF of ¬((¬A→¬B)→ (B → A)):

¬((¬A→¬B)→ (B → A)) ¬((A ∨ ¬B)→ (¬B ∨ A))
 ¬(¬(A ∨ ¬B) ∨ ¬B ∨ A)
 ¬((¬A ∧ B) ∨ ¬B ∨ A)
 ¬(¬A ∧ B) ∧ B ∧ ¬A
 (A ∨ ¬B) ∧ B ∧ ¬A
 {B ` A ; ` B ; A ` }

Resolution refutation:
` B

B ` A A ` (R)
B ` (R)`

Alternatively for ¬A→¬B � B → A:
CNF of ¬A→¬B : A ∨ ¬B {B ` A},
CNF of ¬(B → A): B ∧ ¬A { ` B ; A ` },
Set of clauses (as above): {B ` A ; ` B ; A `}; with the above resolution refutation.

Remarks. (i) A large part of the effort goes into the construction of the CNF.

(ii) The CNF need not be logically equivalent to the initial formula, however. For the
refutation calculus it is sufficient to have an equi-satisfiable CNF, that is, we only equi-satisfiable
need that the CNF is satisfiable iff the initial formula is satisfiable.

(iii) Equi-satisfiability is a much weaker property than logical validity:

Let A be a contingent formula. Then A is satisfiable iff ¬A is satisfiable. But A and
¬A cannot be logically equivalent, of course.

9

(iv) The number of steps in the construction of a logically equivalent CNF or of a
disjunctive normal form (DNF) is exponential in the number of propositional
variables.

(v) However, there exist polynomial-time algorithms for the construction of equi-
satisfiable CNF (see e.g. Leitsch, 1997, pages 19–21). This is an advantage for
resolution. (There is no polynomial-time algorithm for the construction of equi-
tautological CNF.)

We now present an algorithm for finding a resolution refutation (Theorem 1.14), which
decides for any given finite set of clauses Γ whether there exists a resolution refutation
for Γ or not.

Definition 1.13 (i) It isRA(S1, S2) RA(S1, S2)the resolvent of clauses S1 and S2 with respect to A,
if such a resolvent exists; otherwise letRA(S1, S2) be undefined.

(ii) It is RA(Γ) := {RA(S1, S2) | S1, S2 ∈ Γ} RA(Γ)the set of all possible resolution results
with respect to A.

(iii) Let ΓA be the set of all clauses in Γ that contain A.

Then ResA(Γ) := (Γ \ ΓA) ∪RA(ΓA). ResA(Γ)

Theorem 1.14 Let the following procedure be given, which we formulate for sets of clauses
Γ, in which exactly the atoms A1, . . . , An occur.

For i from 1 to n:

(1) Eliminate tautological clauses from Γ. Let the resulting set of clauses be Γ′.

(2) Construct ResAi (Γ
′).

(3) Set Γ := ResAi (Γ
′).

Then the following holds: The procedure produces the set of clauses {�} iff there exists a
refutation refutation for Γ.

Proof. Exercise. (Maybe using the completeness results given in the next section.) qed

Example. We consider the set of clauses Γ = {A2 ` A1 ; ` A2 ; A1 ` ; A1, A2 ` A2}.
(1) Eliminate the tautological clause A1, A2 ` A2: Γ′ := Γ \ {A1, A2 ` A2}.
(2) ResA1(Γ

′) = (Γ′ \ Γ′A1
) ∪RA1(Γ

′
A1
) = { ` A2} ∪ {A2 ` }

(3) Γ := { ` A2 ; A2 ` }
(1) Γ contains no tautological clauses. Γ′ := Γ.

(2) ResA2(Γ
′) = (Γ′ \ Γ′A2

) ∪RA2(Γ
′
A2
) = ∅ ∪ {�}

(3) Γ := {�}.

1.3 Completeness

Soundness of the resolution calculus (Theorem 1.8) guarantees that each clause S
which is derivable from a set of clauses Γ is also a logical consequence of Γ, that is,
Γ `Res S =⇒ Γ � S. In the refutation calculus we could in particular use soundness to
infer from a resolution refutation of Γ that Γ is unsatisfiable. In addition, by Theorem 1.14

10

there is a procedure, which decides for any given (propositional) set of clauses whether a
resolution refutation exists or not.
One can also show that any clause S which is a logical consequence of a set of clauses Γ
can be derived from Γ in the resolution calculus. In other words, the resolution calculus
is complete, that is, Γ � S =⇒ Γ `Res S. This can be shown by first proving that
the refutation calculus is complete (Theorem 1.16); the completeness of the resolution
calculus (Theorem 1.17) can then be obtained in the basis of this result.

Definition 1.15 (i) Res(S1, S2, S3) means that S3 is a resolvent of S1 and S2.

(ii) Res(Γ) := {S | Res(S1, S2, S) for S1, S2 ∈ Γ} is the set of all resolvents S of clauses
S1, S2 ∈ Γ.

(iii) The resolution step Rsn(Γ) of a set of clauses Γ is defined as follows: resolution step

Rs0(Γ) := Γ

Rsn+1(Γ) := Rsn(Γ) ∪ Res(Rsn(Γ))

(iv) It is
R(Γ) :=

⋃
n∈N
Rsn(Γ)

the resolution closure of Γ. resolution closure

Example. Let Γ = { ` A ; A ` B ; A,B ` }. Then

Rs0(Γ) = Γ = { ` A ; A ` B ; A,B ` }
Rs1(Γ) = Rs0(Γ) ∪ Res(Rs0(Γ)) = Γ ∪ Res(Γ) = Γ ∪ Res({ ` A ; A ` B ; A,B ` })

= { ` A ; A ` B ; A,B ` } ∪ { ` B ; B ` ; A ` }
= { ` A ; A ` B ; A,B ` ; ` B ; B ` ; A ` }

Rs2(Γ) = Rs1(Γ) ∪ Res(Rs1(Γ))
= Rs1(Γ) ∪ Res({ ` A ; A ` B ; A,B ` ; ` B ; B ` ; A ` })
= Rs1(Γ) ∪ { ` B ; A ` ; B ` ; �}
= { ` A ; A ` B ; A,B ` ; ` B ; B ` ; A ` ; �}

Rs3(Γ) = Rs2(Γ) (since no new resolvents can be generated with �).

Hence, the resolution closure is R(Γ) = Rs2(Γ).

Due to compactness, we can restrict ourselves to finite sets of clauses in the following.

Theorem 1.16 (Completeness of the refutation calculus)
If the set of clauses Γ is unsatisfiable, then there is an n ∈ N with � ∈ Rsn(Γ), and thus
also � ∈ R(Γ).

Proof. Cp. Goltz & Herre, 1990, p. 45f. qed

Theorem 1.17 (Completeness of the resolution calculus)
Let � /∈ Γ. Then the propositional resolution calculus is complete, that is: If Γ � S, then
Γ `Res S.

11

Proof. Exercise. Provide a procedure that transforms any given resolution refutation
into a derivation of S from Γ in the resolution calculus, if Γ � S. qed

Together with soundness (Theorem 1.8) we thus have for � /∈ Γ: Γ � S iff Γ `Res S.

The restriction � /∈ Γ in Theorem 1.17 is necessary, since the resolution calculus does
not allow for a weakening of the empty clause �. For � ∈ Γ we have Γ � S for any
clause S, since Γ is unsatisfiable. In case Γ \ {�} is satisfiable, we then have Γ 0Res S
for all non-tautological clauses S /∈ Γ. (All tautological clauses and all clauses in Γ are
trivially derivable.) But then the propositional resolution calculus cannot be complete.
Alternatively one can choose one of the following two options:

(i) In case � ∈ Γ we replace the empty clause � by two clauses ` A and A `. Let the
new set of clauses be Γ′.

Since Γ′ is unsatisfiable, just like Γ, we also have Γ′ � S for all S. For the calculus
we have Γ′ `Res S for all S, since now any clause S = (X ` Y) can be derived
from Γ′:

` A (Ax)
X,A ` A,Y

(R)
X ` A,Y A `

(R)
X ` Y

(Instead of replacing � in Γ by the clauses ` A andA ` , one can also simply extend
Γ by these two clauses to a set Γe , because Γe \ {�} is unsatisfiable independently
of whether Γ \ {�} is satisfiable or not. One could thus also weaken the restriction
� /∈ Γ in Theorem 1.17 by demanding � /∈ Γ only in case Γ \ {�} is satisfiable.
Since if Γ \ {�} is already unsatisfiable, then any clause can be derived from this
set.)

(ii) We allow for � ∈ Γ but extend the resolution calculus by a weakening rule

X1 ` Y1 (V)
X1, X2 ` Y1, Y2

where X1 and X2 may in particular be empty. Then any clause can be derived from
the empty clause as well.

For each of the two options the resolution calculus (extended by (V) in the second
option) is sound and complete.

If the resolution calculus is used as a refutation calculus (i.e.,without axiom anweakening
rule), then one is only interested in finding derivations of the empty clause from given
sets of clauses. The empty clause is then always the end point in such derivations.

12

2 First-order resolution

We consider first-order languages L, in which the non-logical symbols are relation
symbols P,Q,R, . . . , individual constants (constants for short) a, b, c, . . . and function
symbols f, g, h, Terms t, s, . . . are constructed from variables x, y, z, . . . , constants
and function symbols, as usual.

2.1 Substitution

Definition 2.1 (i) A substitution is a function that maps variables to terms and is substitution
non-identical for only finitely many variables.

(ii) We write substitutions as finite sets (using square brackets [,]) of the form

[x1/t1, . . . , xn/tn] (for 0 ≤ i ≤ n),

for pairwise distinct variables xi and terms ti such that ti 6= xi .
In the notation [x1/t1, . . . , xn/tn] we thus only specify the (always finitely many)
non-identical assignments of terms to variables of a substitution.

(iii) The expression xi/ti is called a binding for xi . binding

We also say “ti is substituted for xi” or “xi is replaced by ti”.

(iv) We use ó, ñ, ô, ϑ, . . . as names for substitutions.

(v) A substitution ó = [x1/t1, . . . , xn/tn] is called ground substitution, if each term ti is ground substitution
a ground term.

(vi) If ó = ∅, then ó is called the empty substitution and is denoted by å. empty substitution

Examples. (i) [x1/f(x), y/g(a, z), z/x] is a substitution.

(ii) [x/h(a, b)] is a ground substitution.

Definition 2.2 Let ó = [x1/t1, . . . , xn/tn] be a substitution and E an expression, that is,
a formula or a term.

(i) The simultaneous replacement of each free occurrence of xi in E by ti for 0 ≤ i ≤ n
is called application of ó to E. application

Notation: Eó. Substitutions thus operate to the left.

In case E is a formula, ti in E has to be freely substitutable for xi ; that is, xi may freely substitutable
only be replaced by ti , if variables occurring in ti will not get bound by a quantifier
in E.

(ii) The resulting expression Eó is called (substitution-) instance of E for ó. instance

(iii) If X = {E1, . . . , En} is a finite set of expressions, then Xó stands for the set
{E1ó, . . . , Enó}.

Remark. Since substitutions are carried out simultaneously, it is

f(x, y)[x/y, y/b] = f(y, b)

and not f(b, b). The latter would be obtained by subsequent replacements:

(f(x, y)[x/y])[y/b] = f(y, y)[y/b] = f(b, b)

13

Definition 2.3 The composition óô of two substitutions composition

ó = [x1/s1, . . . , xn/sn] and ô = [y1/t1, . . . , ym/tm]

with 0 ≤ i ≤ n and 0 ≤ j ≤ m is given as follows: We form the series of bindings

x1/(s1ô), . . . , xn/(snô), y1/t1, . . . , ym/tm.

In this series we eliminate

– all bindings xi/(siô), for which xi = (siô),

– and all bindings yj/tj , for which yj ∈ {x1, . . . , xn}.
The substitution consisting of the bindings in the resulting series is the composition óô of
ó and ô.

Example. Let ó = [x/f(y), y/z] and ô = [x/a, y/b, z/y]. Then the series of bindings is

x/(f(y)[x/a, y/b, z/y])

x/f(b)

, y/(z[x/a, y/b, z/y])

y/y

, x/a, y/b, z/y

inwhichwe have to eliminate the bindingsy/y, x/a andy/b. One obtains the composition
óô = [x/f(b), z/y].

Lemma 2.4 Let ñ, ó, ϑ be substitutions and å the empty substitution. Then the following
holds:

(i) ñå = åñ = ñ.

(ii) (ñó)ϑ = ñ(óϑ).

(iii) (Eñ)ó = E(ñó), for arbitrary formulas and terms E.

Proof. Exercise. qed

Lemma 2.5 The composition of substitutions is not commutative.

Proof. Exercise. qed

Definition 2.6 Let S be a clause with FV(S) = {x1, . . . , xn} for n ≥ 0, and let ó =
[x1/t1, . . . , xn/tn] be a ground substitution. Then Só is a ground instance of S. ground instance

Theorem 2.7 (Skolem–Herbrand–Gödel)
A set of clauses Γ is unsatisfiable iff there is a finite unsatisfiable set Γ′ of ground instances
of clauses from Γ.

Proof. See Gallier, 2015, § 7.6. qed

The Skolem–Herbrand–Gödel Theorem is formulated for the semantic notion of un-
satisfiability. There is also Herbrand’s Theorem, which holds for the syntactic notion of
provability (see e.g. Troelstra & Schwichtenberg, 2000): A formula A in prenex normal
form with kernel B(x1, . . . , xn) is provable (in a proof system like the sequent calculus
LK, for example) iff there is a disjunction D of substitution instances of B(x1, . . . , xn),
which is derivable by propositional rules only, and where A is derivable from D by using
only first-order (and maybe structural) rules.

14

2.2 Skolemization

In order to generate a set of clauses for a given formula in prenex normal form in
a language L one first has to eliminate quantifiers in an adequate way. This can be
achieved by Skolemization (named after Thoralf Skolem, 1887–1963), which yields a
quantifier-free formula in an extended language LS ⊇ L . This formula is in general
no longer logically equivalent to the initial formula, but it is in any case equi-satisfiable
with it.
To explain the idea of Skolemization we consider the following statement, which is true
in the standard interpretation:

For all n ∈ N there is an m ∈ N such that n < m.

For the functionf(n) = n+1 we have n < f(n) for all n. The variablem, which is bound
by the existential quantifier, can thus be replaced by a function f(n). This renders the
existential quantifier useless, and it can thus be removed. If, in addition, one understands
free variables universally, then the universal quantifier can be removed as well. If we
also allow for interpretations that deviate from the standard interpretation, then the
resulting statement is no longer logically equivalent to the initial statement; however, the
two statements are equi-satisfiable.
The above statement has the form

∀x∃yP(x, y)

where we here want to presuppose that this is a formula in a language L without
function symbols. One now replaces in ∀x∃yP(x, y) the variable y, which is bound by
an existential quantifier, by a function term f(x). We have thus extended L by the
unary function symbol f. If we now also remove the universal quantifier, then we obtain
as Skolem normal form the formula P(x,f(x)). This formula is satisfiable iff the initial
formula is satisfiable.

Definition 2.8 The universal closure ∀A of a formula A is the formula universal closure

∀x1 . . . ∀xnA[y1/x1, . . . , yn/xn]

where y1, . . . , yn are all free variables in A, and x1, . . . , xn are variables not occurring
in A. (This is a non-deterministic definition, since the pairwise distinct variables xi can
otherwise be chosen freely.)

Definition 2.9 Let A ∈ L be a formula of the form Q1x1 . . .QnxnB in prenex normal
form with kernel B . Then a Skolem normal form AS of A in a suitable language LS Skolem normal form
extending L is defined by the following procedure:

(1) Set AS = ∀A.
(2) If the prefix of AS contains only universal quantifiers, eliminate them and halt. If

the prefix is empty, then halt as well. AS is a Skolem normal form of A.

(3) Let Qixi be the first existential quantifier (from the left) in AS. Let xi1 , . . . , xij be
the variables to the left of xi ; they are the variables in {x1, . . . , xi−1} that have not
been eliminated yet.

(4) If in AS there are no universal quantifiers to the left of xi , then extend L by adding
a new constant ai and replace each occurrence of xi in the kernel of AS by ai .

15

(5) Otherwise extendL by adding a new j-ary function signfi . Replace eachoccurrence
of xi in the kernel of AS by the term fi(xi1 , . . . , xij).

(6) Eliminate ∃xi from the prefix of AS. Go to step (2).

Examples. We use indexed variables in the following. The choice of individual constants
and function signs is then fixed by the procedure. In formulas with non-indexed variables
one has to take care that in steps (4) and (5) new constants and new function signs are
introduced, respectively (cp. Example (v)).

(i) ∃x1P(x1) P(a1)
(ii) ∃x1∀x2P(x1, x2) ∀x2P(a1, x2) P(a1, x2)
(iii) ∀x1∃x2P(x1, x2) ∀x1P(x1, f2(x1)) P(x1, f2(x1))
(iv) ∃x1∀x2∃x3P(x1, x2, x3) ∀x2∃x3P(a1, x2, x3)

 ∀x2P(a1, x2, f3(x2))
 P(a1, x2, f3(x2))

(v) ∀x1∃x2∀x3∃x4P(x1, x2, x3, x4) ∀x1∀x3∃x4P(x1, f2(x1), x3, x4)
 ∀x1∀x3P(x1, f2(x1), x3, f3(x1, x3))
 P(x1, f2(x1), x3, f4(x1, x3))

For non-indexed variables:

∀x∃y∀z∃uP(x, y, z, u) ∀x∀z∃uP(x,f(x), z, u)
 ∀x∀zP(x,f(x), z, g(x, z))
 P(x,f(x), z, g(x, z))

Alternatively, one can skolemize according to the following definition, where universal
quantifiers are already eliminated in intermediate steps.

Definition 2.10 Let A ∈ L be a formula of the form Q1x1 . . .QnxnB (for n ≥ 0) in
prenex normal form with kernel B . The following procedure yields a Skolem normal Skolem normal form
form AS of A in a suitable language LS ⊇ L .

For i from 1 to n:

(1) If n = 0, set AS := A.

(2) If Qi is a universal quantifier, set A := Qi+1xi+1 . . .QnxnB .

(3) If Qi is an existential quantifier, and y1, . . . , ym are the variables occurring free in
A, set

A := Qi+1xi+1 . . .QnxnB[xi/f(y1, . . . , ym)]

where f is a new m-ary function sign (i.e., f does not yet occur in A), or a new
constant, in case m = 0.

Remarks. (i) The procedure is non-deterministic, if one does not fix an order of signs
to be introduced.

(ii) In contradistinction to the procedure given in Definition 2.9, where in the first step
one has to form the universal closure, one can apply the latter procedure directly
also to open formulas. In step (3) all variables occurring free in A are taken care of.

16

Examples. (i) ∃xP(x) P(a)
(ii) ∃x∀yP(x, y) ∀yP(a, y) P(a, y)
(iii) ∀x∃yP(x, y) ∃yP(x, y) P(x,f(x))
(iv) ∃x∀y∃zP(x, y, z) ∀y∃zP(a, y, z) ∃zP(a, y, z) P(a, y, f(y))
(v) ∀x∃y∀z∃uP(x, y, z, u) ∃y∀z∃uP(x, y, z, u)

 ∀z∃uP(x,f(x), z, u)
 ∃uP(x,f(x), z, u)
 P(x,f(x), z, g(x, z))

In general, the Skolem normal form AS of a formula A is not logically equivalent to A:
We always have ∀AS � A, but A 2 AS for certain formulas A. For example, consider
the formula ∃xP(x) with Skolem normal form P(a). The structure 〈{0, 1}, I〉 with
I(P) = {0} and I(a) = 1 is a model of ∃xP(x), but it is not a model of P(a).
Since not every formula has a logically equivalent Skolem normal form, one sometimes
speaks of a Skolem standard form.

However, equi-satisfiability holds:

Theorem 2.11 It is ∀A satisfiable under an interpretation iff ∀AS is satisfiable in a suit-
ably extended interpretation, in which the constants and function signs introduced by
Skolemization are interpreted.

Proof. See Nienhuys-Cheng & de Wolf, 1997 (ch. 3) or Doets, 1994 (ch. 3), where only
closed formulas A are considered. qed

Corollary 2.12 (i) In order to show that ∀A is unsatisfiable, that is, to refute ∀A, it is
sufficient to refute ∀AS.

(ii) Let C1 ∧ . . .∧Cm be a CNF of AS, that is, the conjunctive normal form of the Skolem
normal form (conjunctive Skolem normal form for short) of the initial formula A.
In order to show that ∀A is unsatisfiable it is sufficient to refute ∀C1 ∧ . . . ∧ ∀Cm.

The conjunctive Skolem normal form C1∧ . . .∧Cm ofA can be written as a set of clauses set of clauses
(just as in propositional logic); we denote this set of clauses by ASC (conjunctive Skolem
normal form in clause form).

clauseClauses are again defined as sequents A1, . . . , An ` B1, . . . , Bm, where the atomic
formulas A1, . . . , An, B1, . . . , Bm are now first-order atoms.
If one defines a refutation procedure for clauses in such a way that free variables are refutation procedure
understood universally (see Section 2.3), then in order to show that ∀A is unsatisfiable it
is sufficient to refute ASC with this procedure; to show the universal validity of a closed
formula A it is sufficient to refute (¬A)SC with this procedure.
For an arbitrary first-order formula A the following three steps have thus to be carried
out:

(1) Construct a Skolem normal form for ¬A.
(2) Transform it into a CNF.

(3) Apply the refutation procedure.

or

17

(1) Construct a prenex normal form for ¬A with kernel in CNF.

(2) Skolemize.

(3) Apply the refutation procedure.

For claims of logical consequences A1, . . . , An � A this means:

(1) Construct (A1)SC, . . . , (An)SC and (¬A)SC.
Here the terms introduced by the respective Skolemizations have to be chosen
in such a way that the sets of these terms for (A1)SC, . . . , (An)SC and (¬A)SC are
pairwise disjoint.

(2) Apply the refutation procedure.

Examples. (The Skolem normal form is constructed according to Definition 2.10 in
each case.)

(i) � ∃x∀yP(x, y)→∀y∃xP(x, y)

¬(∃x∀yP(x, y)→∀y∃xP(x, y)) (negation of the initial formula)

 ¬(∃x∀yP(x, y)→∀z∃uP(u, z)) (renaming of bound variables)

 ∃x∀yP(x, y) ∧ ∃z∀u¬P(u, z) (move negation inward)

 ∃x∀y∃z∀u(P(x, y) ∧ ¬P(u, z)) (PNF with kernel in CNF)

 ∀y∃z∀u(P(a, y) ∧ ¬P(u, z)) (skolemize . . .)

 ∃z∀u(P(a, y) ∧ ¬P(u, z))
 ∀u(P(a, y) ∧ ¬P(u, f(y)))
 P(a, y) ∧ ¬P(u, f(y)) (Skolem normal form in CNF)

 { ` P(a, y) ; P(u, f(y)) ` } (set of clauses)

(ii) ∃x∀yP(x, y) � ∀y∃xP(x, y)

∃x∀yP(x, y) ∀yP(a, y) P(a, y)

¬∀y∃xP(x, y) ∃y∀x¬P(x, y) ∀x¬P(x, b) ¬P(x, b)

One obtains the set of clauses { ` P(a, y) ; P(x, b) ` }.

The Import-Export Theorem 1.11 holds for first-order logic, too; thus the claim of
universal validity in (i) holds iff the claimed logical consequence in (ii) holds. Nonetheless,
the resulting sets of clauses differ: In (ii) the constant b occurs instead of the function
sign f. This is not a problem, however, since the free variables in each clause are
understood universally.
Although both sets of clauses are unsatisfiable, a refutation using only the propositional
resolution rule is not possible, since P(a, y) and P(u, f(y)), respectively P(a, y) and
P(x, b), are in both cases two different formulas. (The fact that these are not propositional
but first-order formulas is secondary here.)

2.3 Unification and first-order resolution

In order to be able to obtain a resolution refutation also for unsatisfiable sets of clauses
like those in the last example, one has to identify atoms A and B , for which {A,¬B} is
unsatisfiable, in a suitable way by using unification. This is achieved by giving an instance
A′ of A and an instance B ′ of B such that A′ and B ′ are syntactically identical.

18

Definition 2.13 (i) If the expression (i.e., the formula or the term) E ′ is an instance
of the expression E (i.e., E ′ = Eó, for a substitution ó), then E is more general more general
than E ′.

(ii) For two substitutions ó, ô, we call ó more general than ô, if there is a substitution ϑ
such that óϑ = ô.

(iii) It is dom(ϑ) := {x | xϑ 6= x} and ran(ϑ) := {yi | yi occurs in xiϑ, where
xi ∈ dom(ϑ).

(iv) A substitution ϑ is a variable substitution, if all xiϑ for xi ∈ dom(ϑ) are variables. variable substitution

(v) A variable substitution ϑ is a renaming, if ϑ is a bijective mapping of the variables. renaming
(A renaming is thus a permutation of variables.)

(vi) If ϑ is a renaming, then Eϑ is called a variant of E. variant

Examples. (i) It is x more general than g(a, h(c)), since for [x/g(a, h(c))] the term
g(a, h(c)) is an instance of x.

(ii) It is f(x, y) more general than f(x, x), since f(x, y)[y/x] = f(x, x).

(iii) [x/y] is more general than [x/a, y/a], since [x/y][y/a] = [x/a, y/a].

(iv) It is ó more general than ó for any substitution ó, since óå = ó for the empty
substitution å.

(v) [x/y] is not more general than [x/a].

Suppose there were a substitution ϑ such that the binding x/a is contained in [x/y]ϑ.
Then y/a must be contained in ϑ, and thus y ∈ dom([x/y]ϑ). Consequently, there
can be no substitution ϑ with [x/y]ϑ = [x/a].

(vi) [x/z, y/z] is a variable substitution.

(vii) [x/z, z/y, y/x] is a renaming.

The empty substitution å is a renaming, too.

(viii)It is f(x, y) a variant of f(y, x), since f(y, x)[y/x, x/y] = f(x, y).

(ix) It is f(x, z) a variant of f(x, y), since f(x, y)[y/z, z/y] = f(x, z).

The binding z/y is needed; otherwise the given substitution would not be a renaming
according to our definition.

(x) The term f(x, x) is not a variant of f(x, y).

If it were a variant, then f(x, y)ϑ = f(x, x) would have to hold for a renaming ϑ
with binding y/x. Since ϑ is a renaming, ϑ must also contain a binding x/y with
x 6= y. But then f(x, y)ϑ = f(y, x) 6= f(x, x).

Definition 2.14 (i) A substitution ó is a unifier of two atoms A and B , if the following unifier
holds: Aó = Bó (i.e., if the two expressions Aó and Bó are syntactically identical).

(ii) If there exists a unifier ó of A and B , then the atoms A and B are called unifiable. unifiable

If Γ = {A,B} for two atoms A and B with unifier ó, then we also say that ó unifies
the set Γ.

Example. The two atoms P(a, x) and P(y, b) are unifiable: the substitution ó =
[x/b, y/a] is a unifier, since P(a, x)ó = P(y, b)ó.

19

Definition 2.15 The first-order resolution rule is first-order resolution
rule

X1 ` Y1, A B,X2 ` Y2 (R)
(X1, X2 ` Y1, Y2)ó

where ó is a unifier for A and B , and where the sets of free variables of the two premisses
have to be disjoint.

Example. The two clauses Q(x) ` P(a, x) and P(y, b) ` R(y) have no variables in
common, and the substitution [x/b, y/a] unifies P(a, x) and P(y, b). Hence

Q(x) ` P(a, x) P(y, b) ` R(y)
[x/b, y/a] (R)

Q(b) ` R(a)

is a correct application of the first-order resolution rule. (We noted the used unifier
besides the rule bar.)

The free variables in the premisses are understood universally; arbitrary terms may thus
be substituted for them. If ó is a substitution which unifies A and B , then the application
of the unifier ó to the formulas in the first-order resolution rule leads to the propositional
resolution rule (by form):

X1 ` Y1, A

ó

X1ó ` Y1ó,Aó(= Bó)

B,X2 ` Y2

ó

Bó(= Aó), X2ó ` Y2ó

X1ó,X2ó ` Y1ó,Y2ó

(Since the formulas are in a first-order language, one does not obtain the propositional
resolution rule in the strict sense, as this rule was only defined for propositional formulas.
But this is not essential here.)

Example. For ó = [x/b, y/a] being a unifier for P(a, x) and P(y, b) one obtains:

Q(x) ` P(a, x)

ó

Q(b) ` P(a, b)

P(y, b) ` R(y)

ó

P(a, b) ` R(a)
(R)

Q(b) ` R(a)

Since free variables are understood universally, the restriction to disjoint sets of free
variables of the two premisses in (R) is not a restriction in generality. Disjoint sets can
always be obtained by suitable substitutions for the free variables that separate the free separation of free

variablesvariables in different clauses. (Compare also Corollary 2.12 (ii).)
For example, if one considers the two clauses

` P(a), Q(x) and P(a) ` R(x)

then one obtains by (incorrect) resolution

` P(a), Q(x) P(a) ` R(x)

` Q(x), R(x)

20

the clause ` Q(x), R(x) as resolvent; the resolution step is incorrect, since x occurs
in both premisses as a free variable. If one first separates the free variables instead, for
example by the renaming

P(a) ` R(x)[x/y] = P(a) ` R(y)

then one obtains the clause ` Q(x), R(y) as resolvent. The two resolvents are not
logically equivalent, since

Q(x) ∨R(y) � Q(x) ∨R(x) but Q(x) ∨R(x) 2 Q(x) ∨R(y).

The problem consists in the fact that the variable x occurs in both initial clauses, although
the two clauses are independent. Hence, we are not really dealing with two occurrences
of the same variable x, but rather with two different variables that have the same name.
This distinction of two variables is, however, lost in the above (incorrect) resolution step.
In order to obtain the most general resolvent in each case, one always has to first separate
the variables occurring in the premisses by a renaming.

Examples. (i) We can now continue the example (i) resp. (ii) from p. 18:

{ ` P(a, y) ; P(u, f(y)) ` }
separation
of variables
 { ` P(a, y) ; P(u, f(v)) ` }

Resolution refutation:

` P(a, y) P(u, f(v)) `
[y/f(v), u/a] (R)`

Respectively for { ` P(a, y) ; P(x, b)) ` }:

` P(a, y) P(x, b) `
[x/a, y/b] (R)`

(ii) ∃x(P(x) ∧ ¬Q(x)),∀x(P(x)→R(x)) � ∃x(R(x) ∧ ¬Q(x))

∃x(P(x) ∧ ¬Q(x)) ∀x(P(x)→R(x)) ¬∃x(R(x) ∧ ¬Q(x))
 {Q(a) ` ; ` P(a)} ∀x(¬P(x) ∨R(x)) ∀x(¬R(x) ∨Q(x))

 {P(x) ` R(x)} {R(y) ` Q(y)}

One can skolemize separately, because the variables can be separated.

One obtains the set of clauses {Q(a) ` ; ` P(a) ; P(x) ` R(x) ; R(y) ` Q(y)}.
Resolution refutation:

` P(a)
P(x) ` R(x) R(y) ` Q(y)

[x/y] (R)
P(y) ` Q(y)

[y/a] (R)
` Q(a) Q(a) `
å (R)`

The first-order resolution rule (R) alone is not sufficient to, for example, derive from the
two clauses

` P(x), P(y) and P(z), P(u) `

21

the empty clause, although the corresponding set

{P(x) ∨ P(y),¬P(z) ∨ ¬P(u)}

is unsatisfiable. Each resolution step results in a clause with two atoms, for example

` P(x), P(y) P(z), P(u) `
[y/z] (R)

P(u) ` P(x)

Since in each resolution step the sets of free variables of the two premisses have to be
disjoint, one could only continue with suitable variants; for example as follows:

` P(v), P(y)
` P(x), P(y) P(z), P(u) `

[y/z] (R)
P(u) ` P(x)

[y/u] (R)
` P(v), P(u)

where ` P(v), P(u) is a variant of the first clause ` P(x), P(y). But this also only leads
to a clause with two atoms, which in this case has the form of the first initial clause.
Likewise, one obtains only clauses with two atoms in all other cases.
In order to obtain a sound resolution procedure, one needs to be able to form so-called
factors of clauses in addition.

Definition 2.16 A factor S ′ of a clause S is the result of an application of a substitution factor
to S such that several atoms in S get unified.

We enable the derivation of factors by adding the following rules.

Definition 2.17 The factoring rule (F) is given as a pair of rules for factorizable atoms factoring rule
A,B in the antecedent or succedent, respectively, as follows:

X,A,B ` Y
(F)

(X,A ` Y)ó
X ` A,B,Y

(F)
(X ` A,Y)ó

where ó is a unifier for A and B .

The factoring rule is a substitution rule, in whose application A and B are identified
by unification. This is justified by the fact that variables in clauses are understood
universally.

Example. By using factoring we can obtain a resolution refutation of

{ ` P(x), P(y) ; P(z), P(u) ` }

as follows:
` P(x), P(y)

[y/x] (F)
` P(x)

P(z), P(u) `
[u/z] (F)

P(z) `
[x/z] (R)`

It is also possible to combine (R) and (F) in a single rule by allowing to unify and
resolve more than one pair of formulas in one step.

22

Definition 2.18 The generalized resolution rule (R+ F) is: generalized
resolution rule

X1 ` Y1, A, B C,D,X2 ` Y2 (R+ F)
(X1, X2 ` Y1, Y2)ó

if ó unifies the set {A,B,C,D}.

Example. For the set of clauses given in the last example one can derive the empty clause
by just one application of the generalized resolution rule:

` P(x), P(y) P(z), P(u) `
[y/x, u/z][z/x] (R+ F)`

2.4 Most general unifiers and the unification algorithm

In order to obtain completeness of resolution, one has to use most general unifiers. These
can be computed by the unification algorithm.

Definition 2.19 A substitution ó is a most general unifier (mgu for short) of A and B , if most general unifier
for all unifiers ô of A and B we have ô = óñ, for a substitution ñ.

Examples. (i) For P(f(x, g(a, y))) and P(f(b, z)) the substitution [x/b, z/g(a, y)] is
a most general unifier.

For the given atoms, [x/b, y/c, z/g(a, c)] is a unifier, but it is not a most general
unifier, since [x/b, y/c, z/g(a, c)] = [x/b, z/g(a, y)][y/c].

(ii) For the set {P(x), P(y)} both [x/y] and [y/x] are most general unifiers.

Hence, most general unifiers are not determined uniquely.

(iii) The substitution ó = [x/z, y/z] is not an mgu for {P(x), P(y)}, since there is no
substitution ñ such that [x/y] = óñ.

In particular, [z/y] is no such substitution ñ, since ó[z/y] = [x/y, z/y] 6= [x/y].

Theorem 2.20 Multiple most general unifiers of A and B differ only by renaming.

Proof. See Lassez, Maher & Marriot, 1987, p. 605. qed

Definition 2.21 Let Γ be a finite set of terms or atoms. Then the difference set U of Γ is difference set
defined as follows:

Find the leftmost position at which not all expressions in Γ have the same symbol, and
select from each expression in Γ the subexpression which begins at this position.

The set of all these subexpressions is the difference set.

Examples. (i) Let Γ = {P(a, f(x, y), g(z)), P(a, z, h(u)), P(a, x, y)}.
(The relevant subexpressions are underlined.)

Then the difference set is U = {f(x, y), z, x}.
(ii) The difference set for Γ = {Q(x), R(x, y)} is U = {Q(x), R(x, y)}.

We can restrict ourselves to sets of two elements Γ = {A,B} for atoms A,B . For these,
the following unification algorithm creates an mgu, if A and B are unifiable. unification algorithm

23

Unification algorithm

Input: A set Γ = {A,B} of two atoms A and B .

Output: An mgu for Γ, if A and B are unifiable.

(1) Set n = 0 and ó0 = å, where å is the empty substitution.

(2) If Γón is a singleton, then halt; ón is an mgu for Γ.

Otherwise form the difference set Un of Γón.

(3) If there is a variable x and a term t in Un such that the variable x does not occur in
t, then set ón+1 = ón[x/t] (that is, form the composition ón[x/t] with the preceding
substitution ón), increment n by 1, and go to (2).

Otherwise stop with the output that Γ is not unifiable.

For applications of the unification algorithm in resolution the input Γ = {A,B} has the
property FV(A) ∩ FV(B) = ∅; this is the case, since in a resolution step we demand that
the sets of free variables of the two premisses are disjoint.
For inputs Γ = {A,B} with FV(A) ∩ FV(B) 6= ∅ one can first separate the variables
occurring in the atoms A and B . Such a separation is justified (as for clauses) by the fact
that A and B can always be understood as being independent.

Remark. The check in step (3) whether x occurs in t is called occur check. Without it the occur check
algorithm would not terminate in each case. For example, without the occur check the
algorithm would yield the following for the non-unifiable set Γ = {P(x, x), P(y,f(x))}:

(1) ó0 = å

(2) U0 = {x, y}
(3) ó1 = [x/y], Γó1 = {P(y, y), P(y,f(y))}

(2) U1 = {y,f(y)}
(3) The variable y occurs in the term f(y)! Without occur check one obtains:

ó2 = [x/y][y/f(y)] = [x/f(y), y/f(y)],

Γó2 = {P(f(y), f(y)), P(f(y), f(f(y)))}

(2) U2 = {y,f(y)}
(3) The variable y occurs in the term f(y)! Without occur check one obtains:

ó3 = [x/f(y), y/f(y)][y/f(y)] = [x/f(f(y)), y/f(f(y))],

Γó3 = {P(f(f(y)), f(f(y))), P(f(f(y)), f(f(f(y))))}

..
.

Hence, the algorithmwould not terminate; instead it would always set ón+1 = ón[y/f(y)]
in step (3).

Examples. (i) Γ = {P(f(x), g(y)), P(z, z)}

(1) ó0 = å

(2) U0 = {f(x), z}
(3) ó1 = [z/f(x)], Γó1 = {P(f(x), g(y)), P(f(x), f(x))}
(2) U1 = {g(y), f(x)}

24

(3) The difference set U1 contains no variable as an element; thus P(f(x), g(y))
and P(z, z) are not unifiable.

(ii) Γ = {P(f(x), y), P(z, a)}

(1) ó0 = å

(2) U0 = {f(x), z}
(3) ó1 = [z/f(x)], Γó1 = {P(f(x), y), P(f(x), a)}
(2) U1 = {y, a}
(3) ó2 = [z/f(x)][y/a], Γó2 = {P(f(x), a), P(f(x), a)} = {P(f(x), a)}
(2) Γó2 is a singleton; thus Γ is unifiable with mgu ó2 = [z/f(x)][y/a].

(iii) Γ = {P(x, x), P(y,f(y))}

(1) ó0 = å

(2) U0 = {x, y}
(3) ó1 = [x/y], Γó1 = {P(y, y), P(y,f(y))}
(2) U1 = {y,f(y)}
(3) The variable y occurs in f(y) (occur check); thus P(x, x) and P(y,f(y)) are

not unifiable.

(iv) Γ = {P(a, x, h(g(z))), P(u, h(y), h(y))}
(1) ó0 = å

(2) U0 = {a, u}
(3) ó1 = [u/a], Γó1 = {P(a, x, h(g(z))), P(a, h(y), h(y))}
(2) U1 = {x, h(y)}
(3) ó2 = [u/a][x/h(y)], Γó2 = {P(a, h(y), h(g(z))), P(a, h(y), h(y))}
(2) U2 = {g(z), y}
(3) ó3 = [u/a][x/h(y)][y/g(z)], Γó3 = {P(a, h(g(z)), h(g(z)))}
(2) Γó3 is a singleton; thus Γ is unifiable with mgu ó3 = [u/a][x/h(y)][y/g(z)] =

[u/a, x/h(g(z)), y/g(z)].

Definition 2.23 A substitution ϑ is called idempotent, if ϑϑ = ϑ. idempotent

Lemma 2.24 Let ϑ be a unifier for A and B . Then the following statements are equivalent:

(i) It is ϑ an idempotent most general unifier of A and B .

(ii) For each unifier ó of A and B we have ϑó = ó.

Proof. (i) =⇒ (ii). Let ϑ be an idempotent most general unifier for A and B , and
ó a unifier for A and B . Then there is a substitution ñ such that ó = ϑñ. Therefore
ϑó = ϑ(ϑñ) = (ϑϑ)ñ = ϑñ = ó.

(ii) =⇒ (i). Suppose ϑó = ó holds for any unifier ó of A and B . Then it holds in
particular for the most general unifier ϑ that ϑϑ = ϑ, that is, ϑ is idempotent. qed

Not every most general unifier is also idempotent. For the identical atoms P(a) and
P(a) the substitution [x/y, y/x] is trivially an mgu, but [x/y, y/x][x/y, y/x] = å 6=
[x/y, y/x].

25

Lemma 2.25 A substitution ϑ is idempotent iff dom(ϑ) ∩ ran(ϑ)=∅.

Proof. Exercise. qed

Remark. Bychecking thatdom(ϑ)∩ran(ϑ) = ∅one easily finds that [x/u, z/f(u, v), y/v]
is idempotent, while [x/u, z/f(u, v), v/y] is not.

Theorem 2.26 (Correctness of the unification algorithm)
Let A and B be two atoms. Then the following holds:

(i) The unification algorithm always terminates.

(ii) If A and B are unifiable, then the unification algorithm computes a most general
unifier for A and B .

(iii) If A and B are not unifiable, then the unification algorithm terminates with the output
that A and B are not unifiable.

Proof. See Appendix A.3. qed

Definition 2.27 A unifier ϑ of two atoms A and B is called relevant, if relevant

FV(ϑ) ⊆ FV(A) ∪ FV(B)

(i.e., if ϑ does not introduce any new variables that neither occur in A nor in B).

The unification algorithm obviously yields a relevant unifier for A and B , if A and B are
unifiable. Note that in step (3) only such substitutions are added that contain variables
occurring in A or B .

Lemma 2.28 Let ϑ be an idempotent most general unifier for A and B . Then ϑ is relevant.

Proof. See Apt, 1997, p. 38 (Theorem 2.22). qed

The reverse direction does not hold, that is, not every relevant mgu is also idempotent.
The substitution ϑ = [x/f(z, y), y/z, z/y] is a relevant mgu of {x,f(y, z)}; however, it
is not idempotent, since ϑϑ = [x/f(y, z)] 6= ϑ.

Due to the unification algorithm the following holds:

(i) Unifiability of two atoms is decidable.

(ii) If two atoms have a unifier, then they also have a most general unifier.

(iii) Most general unifiers can be computed.

(iv) If two atoms are unifiable, then they have an idempotent most general unifier.

(v) The idempotent most general unifier is also relevant.

26

3 SLD-resolution and logic programming

Logic programming in the strict sense is based on a restricted form of resolution, namely
SLD-resolution. In SLD-resolution the language is further restricted to so-called Horn
clauses (named after Alfred Horn, 1918–2001) that may contain any number of negative
literals but at most one positive literal. In addition, each resolution step may contain as
premisses only one Horn clause with no positive literal and one Horn clause with exactly
one positive literal. The latter has to be chosen as a variant from a given set of clauses,
the so-called logic program. These restrictions lead to more simple resolution derivations.
Nevertheless, the Horn clause fragment of first-order logic is undecidable (like first-order
logic itself). Moreover, unifiers computed in a derivation become more important;
they represent answers to queries that are addressed to the respective logic program.
Logic programming in the sense of SLD-resolution is computationally adequate, that is,
any partial recursive function can be computed by a logic program, and any function
definable by a logic program is partial recursive.

3.1 Logic programs and SLD-resolution

Definition 3.1 (i) A Horn clause is a clause with at most one positive literal, that is, a Horn clause
clause of the form X ` or X ` A (where A is a positive literal, and where the set X
of atoms may also be empty).

A clause with exactly one positive literal is called a definite Horn clause. definite Horn clause

Using the reverse implication ‘←’ one also writes ← X or A← X , respectively. reverse implication

Motivation for the notation: X ` A can be read as “A, if X”, X ` as “X is false”
(or as “absurdity, if X”).

(ii) A clause of the form ← X is also called goal clause (goal for short) or query. goal clause

The empty goal is denoted by ←.

(iii) A clause of the form A← X is also called a rule; A is its head, and X is its body. rule

A clause of the form A← is also called a fact.

(iv) program clauseProgram clauses are rules or facts (i.e., definite Horn clauses).

(v) A logic program (program for short) Π is a finite set of program clauses. logic program

Definition 3.2 A (non-restricted) SLD-resolution step has the form SLD-resolution step

← X,A B ← Y
ó

(← X,Y)ó

where ó is a unifier for A and B , and the sets of free variables of the two premisses have
to be disjoint.

Remarks. (i) In this definition,ó just has to be a unifier forA andB , and not necessarily
a most general unifier. The SLD-resolution step is in this sense non-restricted.
However, completeness can only be obtained, if in each step most general unifiers
are used.

We presuppose in the following that we always use the unification algorithm to
find ó, which ensures that ó is a most general unifier.

27

(ii) In view of the selection function to be discussed below (see Section 3.3) we will view
the bodies of clauses as lists of atoms instead of sets of atoms. That is, the order
and multiplicity of atoms becomes relevant.

Definition 3.3
(i) An SLD-derivation of a goal G from a program Π consists of SLD-derivation

– a series G0, G1, . . . , Gn of goals,

– a series S1, . . . , Sn of variants of clauses in Π,

– a series ϑ1, . . . , ϑn of substitutions,

such that G0 = G , and for all i < n the following holds (where the lists of atoms Xi ,
Yi and Zi+1 can also be empty):

– Gi is of the form ← Xi , Ai , Yi ; this includes the case ←.

– Si+1 is of the form Bi+1 ← Zi+1.

– Si+1 has no variables in common with Gi or G0ϑ1 . . . ϑi .

– ϑi+1 is an mgu of Ai and Bi+1.

– Gi+1 = (← Xi , Zi+1, Yi)ϑi+1.

(ii) The number n + 1 is called the length of the SLD-derivation. length

(iii) The transition from a goal Gi to a new goal Gi+1 is an SLD-resolution step. SLD-resolution step

(iv) The clause Si is called i-th input clause. input clause

(v) The atom Ai is called selected atom. selected atom

An SLD-derivation of length n + 1 has the following form:

G0 S1, ϑ1

G1 S2, ϑ1

G2
...

...

Gn−1 Sn, ϑn

Gn

But SLD-derivations can also be infinite.

Remark. In a resolution step from Gi to Gi+1 the following happens:

(1) In the goal Gi an atom Ai is selected.

(2) A clause is chosen from the program Π.

28

(3) By a separation of variables (if necessary) one obtains from the chosen program
clause the variant Si+1; this is the new input clause Bi+1 ← Zi+1.

(4) If there exists an mgu ϑi+1 for the head Bi+1 of the clause Si+1 and the selected
atom Ai , then Ai is replaced by the body Zi+1 of Si+1, and ϑi+1 is applied to the
new goal Gi+1.

Definition 3.4 Let a logic program Π and a goal ← X be given. An SLD-refutation SLD-refutation
of ← X relative to Π is an SLD-derivation that starts with ← X as left uppermost
assumption, uses only (variants of) clauses from Π as further assumptions, and ends
with the empty clause ←.

Definition 3.5 (i) An SLD-derivation is called successful, if it is an SLD-refutation, successful
that is, if Gn is the empty clause ←.

(ii) The compositionϑ1 . . . ϑn of themost general unifiers in a successful SLD-derivation
can be restricted to FV(G0). This composition is then called computed answer computed answer

substitutionsubstitution for the goal G0, and G0ϑ1 . . . ϑn is called computed instance of G0.

Let V be a set of variables. Then ϑ | V denotes the restriction of ϑ to the variables restriction to
variablesin V.

(iii) An SLD-derivation is called failed, if Gn is not the empty clause, and no (variant failed
of a) clause from Π is applicable for the atom selected in Gn.

Definition 3.6 An SLD-proof of X from Π is an SLD-refutation of ← X relative to Π. SLD-proof

Remarks. (i) If one writes down the SLD-resolution steps according to Definition 3.2,
then an SLD-proof of X1 from Π has the following form:

← X1 A1 ← Y1 ó1← X2 A2 ← Y2 ó2
← X3

..
..
..
.

←

The substitutions ó1, ó2, . . . are the unifiers computed in the respective resolution
steps. (These are most general unifiers, if the unification algorithm is used.)

(ii) The abbreviation SLD stands for the following:

S: A selection function is used to select an atom in the current goal.

L: The form of the derivation is linear.
This becomes particularly clear, if the SLD-derivation is written down as follows:

G0 G1 G2 · · · Gn−1 Gn . . .
S1, ϑ1 S2, ϑ2 Sn, ϑn

D: Logic programs consist of definite Horn clauses.

In our first-order languages L we we also use ‘speaking’ relation symbols like add,
function signs like s (for successor) and constants like 0, in order to indicate their

29

intended interpretation. In doing so, we just extend the alphabet; the new symbols are not
introduced with any fixed meaning, however. Their meaning is only given operationally
with respect to SLD-resolution.
Note that we cannot implement an n-ary function directly by using only function terms.
Instead, we have to use n+1-ary relation symbols that are used to define the graph of the
n-ary function. For example, in the case of addition we cannot specify f(x, y) = x + y;
instead, we have to define a relation (symbol) add(x, y, z) such that x + y = z (in case
we choose z to be the value of the addition function with arguments x and y).

Example. We consider the logic program Πadd for addition. It consists of two program
clauses, namely a fact S1 and a rule S2:

S1. add(x, 0, x)←
S2. add(x, s(y), s(z))← add(x, y, z)

An SLD-refutation of the goal

← add(s(s(0)), s(s(0)), z)

relative to the program Πadd is then for example:

← add(s(s(0)), s(s(0)), z) add(x1, s(y1), s(z1))← add(x1, y1, z1)

← add(s(s(0)), s(0), z1) add(x2, s(y2), s(z2))← add(x2, y2, z2)

← add(s(s(0)), 0, z2) add(x3, 0, x3)←

←

[x1/s(s(0)), y1/s(0), z/s(z1)] = ϑ1

[x2/s(s(0)), y2/0, z1/s(z2)] = ϑ2

[x3/s(s(0)), z2/s(s(0))] = ϑ3

We now restrict the composition ϑ1ϑ2ϑ3 of the most general unifiers to the variables
occurring in the goal ← add(s(s(0)), s(s(0)), z) (i.e., to z) to obtain the computed
answer substitution:

ϑ1ϑ2ϑ3 | FV(← add(s(s(0)), s(s(0)), z))
= ϑ1ϑ2ϑ3 | {z}
= [x1/s(s(0)), y1/s(0), z/s(z1)][x2/s(s(0)), y2/0, z1/s(z2)]ϑ3 | {z}
= [x1/s(s(0)), x2/s(s(0)), y1/s(0), y2/0, z/s(s(z2))][x3/s(s(0)), z2/s(s(0))] | {z}
= [x1/s(s(0)), x2/s(s(0)), x3/s(s(0)), y1/s(0), y2/0, z/s(s(s(s(0))))] | {z}
= [z/s(s(s(s(0))))]

The computed answer substitution is thus [z/s(s(s(s(0))))]; the computed instance of
the goal is ← add(s(s(0)), s(s(0)), s(s(s(s(0))))). (For the intended interpretation we
therefore have 2 + 2 = 4.)

30

For the query ← add(x, y, z) there exists a successful derivation relative to Πadd :

← add(x, y, z) add(x1, 0, x1)←

←

[x/x1, y/0, z/x1]

There are also infinite SLD-derivations like, for example,

← add(x, y, z) add(x1, s(y1), s(z1))← add(x1, y1, z1)

← add(x1, y1, z1) add(x2, s(y2), s(z2))← add(x2, y2, z2)

← add(x2, y2, z2)
......

[x/x1, y/s(y1), z/s(z1)]

[x1/x2, y1/s(y2), z1/s(z2)]

For the query ← add(x, y, z), P(x) there is, for example, the following failed derivation
relative to Πadd :

← add(x, 0, x), P(x) add(x1, 0, x1)←

← P(x1)

[x/x1]

SLD-derivations can thus be successful, infinite or failed.

In contradistinction to first-order resolution for arbitrary formulas (which have to be
skolemized first), SLD-resolution deals with formulas that already have a certain form.
These formulas are program clauses, which describe some problem or subject area, and
goal clauses, which describe our questions concerning the problem or the subject area.
The corresponding logic is undecidable, but can be automated in the framework of logic
programming.

3.2 Non-determinism in SLD-derivations

In SLD-derivations there are different kinds of non-determinism to be considered, since
in each resolution step four decisions have to be made:

(A) The selection of an atom in the current goal.

(B) The choice of a program clause for the selected atom.

(C) The renaming of variables in the chosen program clause; that is, the choice of a
variant.

(D) The choice of the most general unifier.

31

On the one hand, the non-determinism due to (C) and (D) is unproblematic. The choice
of the most general unifier (D) is fixed by our use of the unification algorithm. Moreover,
by Theorem 2.20 the concrete variant of a most general unifier does not matter with
respect to the computed answer substitution for a goal G . Likewise, the chosen variant
(C) does not matter, since different renamings only lead to variants of the computed
answer substitution. Hence, the renaming of variables cannot lead to a loss of possible
answers.
On the other hand, it is decisive for SLD-resolution how the non-determinism due to
(A) and (B) is dealt with. The selection (A) of an atom in the current goal clause is
determined by selection functions, which we consider next. Afterwards we deal with the
choice (B) of the program clause for the selected atom by using SLD-trees.

3.3 Selection functions

Definition 3.7 A selection functionR maps a given SLD-derivation selection function

G0 S1, ϑ1

G1
...

...

Gi−1 Si , ϑi

Gi

(short: 〈G0, G1, . . . , Gi〉, 〈S1, . . . , Si〉, 〈ϑ1, . . . , ϑi〉) for i ≥ 0 to an atom Aj in the goal
clause Gi = (← A1, . . . , Ak) for 1 ≤ j ≤ k, if Gi is not the empty clause. It is Aj the
selected atom. selected atom

A selection function R is thus a ternary function from SLD-derivations to natural
numbers, which obeys the following condition:

If
Gi = (← A1, . . . , Ak) for k ≥ 1

and
j = R(〈G0, G1, . . . , Gi〉, 〈S1, . . . , Si〉, 〈ϑ1, . . . , ϑi〉),

then 1 ≤ j ≤ k must hold.

We then say thatR selects the atom Aj in Gi .

Definition 3.8 LetR be the selection function used in an SLD-derivation. SLD-derivation
viaR

We then say
that it is an SLD-derivation viaR.

The selection of an atom can depend on the whole SLD-derivation developed so far.
This allows, for example, for the implementation of a first in, first out selection strategy,

32

in which one always selects an atom in the current goal that occurred in previous goals
at least as often as the other atoms. For example, for the two SLD-derivations

← P,Q Q ← R

← P,R

and

← Q,R Q ← P

← P,R

which both end with the same goal, this means that in the left goal the atom P is selected,
while in the right goal the atom R is selected. If one restricted selection functions in such
a way that they map goals (instead of SLD-derivation) to an atom (the selected atom),
then the same atom would be selected in both cases (as long as we do not use a random
function for the selection).
The programming language Prolog, which is based on SLD-resolution, uses a simple
selection function that always selects the leftmost atom in a goal.
A consequence of the completeness result for SLD-resolution (see Theorem 3.13 below)
is that the successful SLD-derivations are independent of the used selection function.
This can also be shown directly by proving that the selection of atoms Ai and Aj in two
consecutive goals can always be swapped, that is, by first selecting Aj and then Ai (while
swapping the input clauses accordingly); this result is called the Switching Lemma.

3.4 SLD-trees

Although the existence of a successful SLD-derivation does not depend on the used
selection function (i.e., the non-determinismdue to (A) is in this sense unproblematic), the
choice of the program clause (non-determinism due to (B)) is decisive for finding such an
SLD-derivation. Non-determinism due to (B) creates a search space for SLD-derivations
viaR, the so-called SLD-tree.

Definition 3.9 An SLD-tree for a goalG0 relative to a programΠ via a selection function SLD-tree
R is a (downward branching) tree, given as follows:

(i) Each node of the tree is a (possibly empty) goal.

(ii) The root node is G0.

(iii) Each node Gi with selected atom Ai has exactly one successor for each clause S
from Π that is applicable to Ai .

The successor is a resolvent of Gi and S (respectively of Gi and the chosen variant
of S) with respect to Ai .

(iv) Nodes which are the empty goal have no successors.

Branches in SLD-trees are SLD-derivations for G0 relative to Π. We write these in the
form

G0 G1 G2 · · · Gn−1 Gn . . .
S1, ϑ1 S2, ϑ2 Sn, ϑn

from the top (i.e., from the root nodeG0) downwards, as shown in the following examples.

33

Definition 3.10 (i) An SLD-tree is called successful, if it contains the empty clause. successful

(Branches ending with the empty clause are marked ‘success’.)

(ii) An SLD-tree is called finitely failed, if it is finite but not successful. This is the case finitely failed
if every branch is a failed SLD-derivation.

(Branches of failed SLD-derivations are marked ‘failed’.)

Example. We consider the logic program

S1. P(x, z)← Q(x, y), P(y, z)
S2. P(x, x)←
S3. Q(a, b)←

and the goal clause

G. ← P(x, b)

If the selection function always selects the leftmost atom, then we obtain an SLD-tree
of the following form. The input clauses used in the i-th resolution step are those
variants S i1, S

i
2 and S

i
3 of the corresponding program clauses S1, S2 and S3, respectively,

in which the renamed variables get the index i . These variants are given explicitly in
Appendix A.4, where one can find the three branches of the following SLD-tree (i.e., the
three SLD-derivations) written down separately, together with the substitutions that
have been used to produce the most general unifiers.

← P(x, b)

← Q(x1, y), P(y, b) ←

success, [x/b]

← P(b, b)

← Q(b, y), P(y, b)

failed

←

success, [x/a]

S1
1[x/x1, z/b] S1

2 [x/b, x1/b]

S2
3[x1/a, y/b]

S3
1[x3/b, z/b] S3

2 [x3/b]

The SLD-tree is finite and successful. The computed answer substitutions are

[x/x1, z/b][x1/a, y/b][x3/b] | {x} = [x/a, x1/a, y/b, z/b][x3/b] | {x}
= [x/a, x1/a, y/b, z/b, x3/b] | {x}
= [x/a] (middle branch)

and

[x/b, x1/b] | {x} = [x/b] (right branch).

34

Other SLD-trees differ from the shown SLD-tree only with respect to renamings, but
they have the same form.

In the above SLD-tree, a depth-first search would descend into the left, failed branch.
By backtracking, that is, by returning to an earlier branching, where we can choose backtracking
an alternative, we can nevertheless find the successful middle branch. By backtracking
again, we then also find the right branch and another computed answer substitution.

If the selection function always selects the rightmost atom, then we obtain an SLD-tree
of the following form. (In the i-th resolution step, the variants S i1, S

i
2 and S

i
3 of the

corresponding program clauses S1, S2 and S3, respectively, are chosen as explained
above.)

← P(x, b)

← Q(x1, y), P(y, b) ←
success, [x/b]

← Q(x1, x2), Q(x2, y2), P(y2, b) ← Q(x1, b)

←Q(x1,x2),Q(x2,x3),Q(x3,y3),P(y3,b) ←Q(x,y),Q(y,b) ←
success, [x/a]

...
...

← Q(x, a)

failedinfinite subtree

S1
1[x/x1, z/b] S1

2 [x/b, x1/b]

S2
1[y/x2, z/b] S2

2 [x2/b, y/b]

S3
1[y2/x3, z/b] S3

2 [x3/b, y2/b] S3
3 [x1/a]

S4
1 S4

2 S4
3 [y/a]

This SLD-tree is also successful, with the same computed answer substitutions [x/a]
and [x/b] as in the first SLD-tree. In contradistinction to the first, this second tree is
infinite, however; in the left branch one can always create new goal clauses.

If a depth-first search starts in the left branch, then the successful SLD-derivations to
the right will never be found, since the left branch is infinite, and backtracking is of
course only possible in finite branches. Whereas in a breadth-first search every successful
SLD-derivation will always be found.

3.5 Soundness and completeness of SLD-resolution

Definition 3.11 (i) For clauses S = (A← X) let S be the formula ∀(∧∧X →A), where
∧∧X stands for the conjunction of all atoms in X .

35

(ii) For facts S = (A←) we have the formula S = ∀(∧∧∅→ A) = ∀(>→ A) = ∀A.
(iii) For goal clauses G = (← X) we have the formula G = ∀¬(∧∧X).

We also write ∧∧G for the conjunction of all atoms occurring in the body X of a
goal clause G = (← X).

To the empty clause ← corresponds the formula ¬>. In this case ∧∧G (= ∧∧X) is
the empty conjunction, and it is ∧∧G = >.

(iv) For a logic program Π a set of formulas Π := {S | S ∈ Π} is given, which contains
only closed formulas.

Example. For S = (P(x, y)← Q(x, z), P(z, y)) we have

S = (∀x∀y∀z(Q(x, z) ∧ P(z, y)→ P(x, y))).

Due to the logical equivalence

∀x∀y∀z(Q(x, z) ∧ P(z, y)→ P(x, y)) ��∀x∀y(∃z(Q(x, z) ∧ P(z, y))→ P(x, y))

we understand variables that occur only in the body of a clause as being existentially
quantified.

Theorem 3.12 (Soundness of SLD-resolution)
If ϑ is a computed answer substitution for the goal G relative to a logic program Π, then
Π � ∧∧Gϑ holds.

Proof. See Lloyd, 1993, § 8 and Stärk (1990). qed

Theorem 3.13 (Completeness of SLD-resolution)
LetR be a selection function. If Π � ∧∧Gó, then there exists a successful SLD-derivation
of G from Π relative to R with a computed answer substitution ϑ such that Gϑ is more
general than Gó (i.e., there is a substitution ô with Gϑô = Gó).

Proof. See Lloyd, 1993, § 8 and Stärk (1990). qed

Since the selection function is arbitrary here, completeness holds for any given selection
function. Nevertheless, the way one chooses a program clause for a selected atom may
yield a loss of completeness in the sense that although there might exist a successful
SLD-derivation we do not find it.
For example, we may always choose program clauses in the order of their appearance in
the program. For the program Π, given by the two clauses

S1. P(a)← P(a)
S2. P(a)←

the formula P(a) follows from Π, that is, Π � P(a). But we cannot generate a successful
SLD-derivation for the goal ← P(a). Only clause S1 will be chosen, never clause S2.
But only by using S2 one can derive the empty clause.
This does not contradict the completeness theorem, however, since the completeness
theorem is only a statement about the existence of a successful SLD-derivation; it says
nothing about whether such a derivation is also found in each case.

36

Logic programming based on SLD-resolution establishes a notion of computability
that is extensionally equivalent to notions of computability like Turing-computability,
ë-definability etc., which exactly characterize the partial recursive functions.

Theorem 3.14 (Computational adequacy of logic programs)
Let f be an n-ary partial recursive function. Then there exists a logic program Πf
and an n + 1-ary relation symbol pf such that all computed answer substitutions for
the set of clauses Πf ∪ { ← pf(sk1(0), . . . , skn (0), x)} have the form [x/sk(0)], and
for all k1, . . . , kn, k ≥ 0 we have f(k1, . . . , kn) = k iff [x/sk(0)] is a computed answer
substitution for Πf ∪ {← pf(sk1(0), . . . , skn (0), x)}.

Proof. See Lloyd, 1993, Theorem 9.6. qed

37

A Appendix

A.1 Construction of conjunctive normal form

(1) Eliminate logical constants different from ¬,∧,∨; that is, eliminate occurrences of
→ by the following transformation:

(A→ B) (¬A ∨ B)

(2) Move negations inward (De Morgan) and eliminate double negations:

¬(A ∧ B) (¬A ∨ ¬B)
¬(A ∨ B) (¬A ∧ ¬B)

¬¬A A

(3) Move ∧ outwards by using distributivity:

(A ∧ B) ∨ C (A ∨ C) ∧ (B ∨ C)

Associativity of ∧ and ∨ are used implicitly.

A.2 Construction of prenex normal form

Definition A.1 (i) A formula A in a language L is in prenex normal form (PNF for prenex normal form
short), if it has the form Q1x1 . . .QnxnB where B is quantifier-free, n ≥ 0, Qi either
∀ or ∃, and all xi are pairwise distinct.

(ii) It is Q1x1 . . .Qnxn the prefix of the formula A, and B is called the kernel or the
matrix of A.

If n = 0, then A is quantifier-free and identical with B .

Theorem A.2 Let A be a formula. Then there is a formula B in prenex normal form such
that A and B are logically equivalent.

Proof. We present a procedure that transforms the formula A into a logically equivalent
formula B in prenex normal form. The transformation steps are based on logical
equivalences, which are not proved here. Each step is illustrated by using the formula

∀z(∀x(P(x)→ P(f(x))) ∨ ¬∀x(Q(x) ∨R(x, a)))

as an example.

(1) Eliminate all empty quantifiers in A, that is

(a) ∀xA1 A1, if x is not free in A1; (b) ∃xA1 A1, if x is not free in A1.

It is A ��A1.

Example. ∀z(∀x(P(x)→ P(f(x))) ∨ ¬∀x(Q(x) ∨R(x, a)))
∀x(P(x)→ P(f(x))) ∨ ¬∀x(Q(x) ∨R(x, a))

39

(2) Rename bound variables in A1 in such a way that all quantifiers have different
variables, no variable occurs free as well as bound, and free variables do not get
bound.

Let the resulting formula be A2. It is A1 ��A2.

Example. ∀x(P(x)→ P(f(x))) ∨ ¬∀x(Q(x) ∨R(x, a))
∀x(P(x)→ P(f(x))) ∨ ¬∀y(Q(y) ∨R(y, a))

(3) Move negations inwards, so that they occur only in front of atoms, and eliminate
double negations:

(a) ¬∀xC ∃x¬C
(b) ¬∃xC ∀x¬C
(c) ¬(C ∧D) (¬C ∨ ¬D)

(d) ¬(C ∨D) (¬C ∧ ¬D)
(e) ¬(C →D) (C ∧ ¬D)
(f) ¬¬C C

Let the resulting formula be A3. It is A2 ��A3.

Example. ∀x(P(x)→ P(f(x))) ∨ ¬∀y(Q(y) ∨R(y, a))
∀x(P(x)→ P(f(x))) ∨ ∃y¬(Q(y) ∨R(y, a))
∀x(P(x)→ P(f(x))) ∨ ∃y(¬Q(y) ∧ ¬R(y, a))

(4) Move quantifiers outwards:

(a) ∀xC ∧D ∀x(C ∧D)
(b) C ∧ ∀xD ∀x(C ∧D)
(c) ∃xC ∧D ∃x(C ∧D)
(d) C ∧ ∃xD ∃x(C ∧D)
(e) ∀xC ∨D ∀x(C ∨D)
(f) C ∨ ∀xD ∀x(C ∨D)

(g) ∃xC ∨D ∃x(C ∨D)
(h) C ∨ ∃xD ∃x(C ∨D)
(i) ∀xC →D ∃x(C →D)
(j) C →∀xD ∀x(C →D)
(k) ∃xC →D ∀x(C →D)
(l) C →∃xD ∃x(C →D)

By (2) it is guaranteed that no free variables become bound.

The resulting formula is the desired prenex normal formB of the initial formulaA. It
isA3 ��B , and, sinceA ��A1 ��A2 ��A3 ��B , alsoA ��B . That is, the prenex
normal form is logically equivalent to the initial formula.

Example. ∀x(P(x)→ P(f(x))) ∨ ∃y(¬Q(y) ∧ ¬R(y, a))
∀x((P(x)→ P(f(x))) ∨ ∃y(¬Q(y) ∧ ¬R(y, a)))
∀x∃y((P(x)→ P(f(x))) ∨ (¬Q(y) ∧ ¬R(y, a)))

or alternatively ∀x(P(x)→ P(f(x))) ∨ ∃y(¬Q(y) ∧ ¬R(y, a))
∃y(∀x(P(x)→ P(f(x))) ∨ (¬Q(y) ∧ ¬R(y, a)))
∃y∀x((P(x)→ P(f(x))) ∨ (¬Q(y) ∧ ¬R(y, a)))

In this procedure only the order of steps (1)-(4) has to be observed. Within these steps
the substeps (1a)/(1b), (3a)-(3f) and (4a)-(4l) can be applied in any order.

40

Examples. (i) ∀z(∃xP(x)→¬∃xQ(x, y)) (1a)
 ∃xP(x)→¬∃xQ(x, y)
(2)
 ∃xP(x)→¬∃zQ(z, y)
(3b)
 ∃xP(x)→∀z¬Q(z, y)
(4j)
 ∀z(∃xP(x)→¬Q(z, y))
(4k)
 ∀z∀x(P(x)→¬Q(z, y))

(ii) Alternatively one can first apply (4k) and afterwards (4j):

∃xP(x)→∀z¬Q(z, y) (4k)
 ∀x(P(x)→∀z¬Q(z, y)) (4j)

 ∀x∀z(P(x)→¬Q(z, y))

The prenex normal form of a given formula is not uniquely determined, since

(i) bound variables can be renamed differently,

(ii) the order in which quantifiers are moved outwards is not determined,

(iii) and the kernelmay in principle be replaced by any logically equivalent quantifier-free
formula.

A.3 Correctness of the unification algorithm

Theorem A.3
Let A and B be two atoms. Then the following holds:

(i) The unification algorithm always terminates.

(ii) If A and B are unifiable, then the unification algorithm computes a most general
unifier for A and B .

(iii) If A and B are not unifiable, then the unification algorithm terminates with the output
that A and B are not unifiable.

Proof. (i) The difference set Un contains only finitely many variables, and in step (3) a
variable is eliminated. Step (3) can thus be called only a finite number of times.

(ii) We first show:

(∗) If ϑ is a unifier for A and B , then the algorithm does not terminate in step (3),
and in step (2) ónϑ = ϑ holds each time.

For n = 0 it is ó0 = å. Thus ó0ϑ = ϑ.

Suppose we are in step (2) with ónϑ = ϑ.

In case Aón = Bón the algorithm terminates in step (2).

In case Aón 6= Bón the difference set Un is formed, and the algorithm goes to
step (3).

Let Un = {t, t′}. It is tónϑ = tϑ = t′ϑ = t′ónϑ, since ϑ is by the supposition made
in (∗) a unifier for A and B . Consequently, tϑ = t′ϑ.

Case 1: t is a variable x.
Since xϑ = t′ϑ and x 6= t′, the variable x cannot occur in t′.
Then ón+1 = ón[x/t′] holds.
Since xϑ = t′ϑ, we have [x/t′]ϑ = ϑ.
This implies ón+1ϑ = (ón[x/t′])ϑ = ón([x/t′]ϑ) = ónϑ = ϑ.

41

Case 2: t′ is a variable. Analogous to case 1.

Case 3: Neither t nor t′ is a variable.
Since tϑ = t′ϑ, the terms t and t′ must begin with the same symbol.
However, by supposition, Un = {t, t′} holds, that is, t and t′ are exactly
those subterms, for which Aón 6= Bón. Hence this case is impossible, and
the algorithm does not terminate in step (3).

We have thus shown (∗).
Let nowA andB be unifiable. From (∗) togetherwith (i) it follows that the algorithm
terminates after n steps in step (2). The output ón is a unifier for A and B .

Let ϑ be another unifier for A and B . Then it follows with (∗) that ónϑ = ϑ. Since
ϑ is arbitrary, we can conclude with Lemma 2.24 that ón is an idempotent most
general unifier.

(iii) If A and B are not unifiable, then the unification algorithm cannot terminate in
step (2) (A andB would be unifiable in this case). But since the algorithm terminates
in any case, as shown in (i), it has in this case to terminate in step (3) with the
output that A and B are not unifiable. qed

A.4 Addendum to the example on page 34

Left branch: ← P(x, b) P(x1, z)← Q(x1, y), P(y, z)

← Q(x1, y), P(y, b) Q(a, b)←

← P(b, b) P(x3, z)← Q(x3, y), P(y, z)

← Q(b, y), P(y, b)
failed

[x/x1][z/b] = [x/x1, z/b]

[x1/a][y/b] = [x1/a, y/b]

[x3/b][z/b] = [x3/b, z/b]

Right branch: ← P(x, b) P(x1, x1)←

←
success, [x/b]

[x/x1][x1/b] = [x/b, x1/b]

42

Middle branch: ← P(x, b) P(x1, z)← Q(x1, y), P(y, z)

← Q(x1, y), P(y, b) Q(a, b)←

← P(b, b) P(x3, x3)←

←
success, [x/a]

[x/x1][z/b] = [x/x1, z/b]

[x1/a][y/b] = [x1/a, y/b]

[x3/b]

43

References

K. R. Apt (1997), From Logic Programming to Prolog. London: Prentice Hall.

P. Blackburn, J. Bos & K. Striegnitz (2006), Learn Prolog Now!. London: College
Publications, freely available online: http://www.learnprolognow.org/.

W. F. Clocksin & C. S. Mellish (2003), Programming in Prolog, 5th edition. Berlin:
Springer.

K. Doets (1994), From Logic to Logic Programming. Cambridge, Massachusetts: The
MIT Press.

J. H. Gallier (2015), Logic for Computer Science. Foundations of Automatic Theorem
Proving, 2nd edition. Mineola: Dover Publications.

H. J. Goltz & H. Herre (1990), Grundlagen der logischen Programmierung. Weinheim:
Wiley-VCH.

J-L. Lassez, M. J. Maher & K. Marriot (1987), Unification Revisited. In: J. Minker
(ed.), Foundations of Deductive Databases and Logic Programming, Los Altos: Morgan
Kaufmann. Pages 587–625.

A. Leitsch (1997), The Resolution Calculus. Berlin: Springer.

J. W. Lloyd (1993), Foundations of Logic Programming, 2nd edition. Berlin: Springer.

S.-H. Nienhuys-Cheng &R. deWolf (1997),Foundations of Inductive Logic Programming.
Lecture Notes in Artificial Intelligence 1228, Berlin: Springer.

R. F. Stärk (1990), A direct proof for the completeness of SLD-resolution. In: E. Börger,
H. Kleine Büning &M.M. Richter (eds), CSL ’89, 3rdWorkshop on Computer Science
Logic,Kaiserslautern,Germany,October 2–6, 1989. Lecture Notes in Computer Science
440, Berlin: Springer. Pages 382–383.

A. S. Troelstra & H. Schwichtenberg (2000),Basic Proof Theory, 2nd edition. Cambridge
University Press.

45

http://www.learnprolognow.org/

Index

antecedent, 5
application, 13
assumption, 6

backtracking, 35
binding, 13
body (of a clause), 27
breadth-first search, 35

clause, 5, 17
empty, 5, 12, 29
first-order, 17
Horn-, 27
propositional, 5
tautological, 6

CNF, 5, 39
complementary literals, 5
completeness

SLD-resolution, 36
refutation calculus, 11
resolution calculus, 11

composition, 14
computed answer substitution, 29, 30,

32, 36, 37
computed instance, 29
conjunctive normal form, 5, 39
conjunctive Skolem normal form, 17

in clause form, 17
constants, 13

definite Horn clause, 27
depth-first search, 35
derivability relation, 6
derivable, 6
derivation

SLD-, 28
in the resolution calculus, 6

difference set, 23

empty clause, 5, 12, 29
equi-satisfiability, 17
equi-satisfiable, 9
equi-tautological, 10

fact, 27
factor, 8, 22
factor-free, 8
factoring rule, 22

freely substitutable, 13
function symbols, 13

generalized resolution rule, 23
goal, 27
goal clause, 27
ground instance, 14
ground substitution, 13

head (of a clause), 27
Herbrand’s Theorem, 14
Horn clause, 27

definite, 27, 29
hypothesis, 6

idempotent, 25
Import-Export Theorem, 8, 18
individual constants, 13
input clause, 28
instance, 13

kernel, 39

length of an SLD-derivation, 28
literal, 5

negative, 5
positive, 5

logic program, 27
logic programming, 31

matrix, 39
mgu, 23
more general, 19

negative literal, 5
normal form

prenex, 39
Skolem, 15, 16

occur check, 24

partial recursive function, 27, 37
PNF, 39
positive literal, 5
prefix, 39
program, 27
program clause, 27
Prolog, 33

query, 27

refutation calculus, 7

47

completeness, 11
refutation procedure, 17
relation symbols, 13
relevant, 26
renaming, 19
resolution calculus, 5

completeness, 11
soundness, 7

resolution closure, 11
resolution proof, 7
resolution refutation, 7
resolution rule

first-order, 20
generalized, 23
propositional, 5

resolution step, 11
resolvent, 5, 10
restriction to variables, 29
reverse implication, 27
rule, 27

selected atom, 28, 32
selection function, 28, 32
separation of free variables, 20
sequent, 5
sequent sign, 5
set of clauses, 7, 17
Skolem normal form, 15
Skolem–Herbrand–Gödel Theorem, 14
Skolemization, 15
SLD-derivation, 28

failed, 29
infinite, 31

successful, 29
viaR, 32

SLD-proof, 29
SLD-refutation, 29
SLD-resolution, 27
SLD-resolution step, 28

non-restricted, 27
SLD-tree, 32, 33

finitely failed, 34
successful, 34

soundness
SLD-resolution, 36
resolution calculus, 7
resolution rule, 7

substitution, 13
empty, 13
idempotent, 25

succedent, 5

tautological clause, 6
terms, 13

unifiable, 19
unification, 18
unification algorithm, 23
unifier, 19

idempotent most general, 25
most general, 23
relevant, 26

universal closure, 15

variable substitution, 19
variant, 19

48

	Propositional resolution
	The resolution calculus
	Resolution refutation
	Completeness

	First-order resolution
	Substitution
	Skolemization
	Unification and first-order resolution
	Most general unifiers and the unification algorithm

	SLD-resolution and logic programming
	Logic programs and SLD-resolution
	Non-determinism in SLD-derivations
	Selection functions
	SLD-trees
	Soundness and completeness of SLD-resolution

	Appendix
	Construction of conjunctive normal form
	Construction of prenex normal form
	Correctness of the unification algorithm
	Addendum to the example on page 34

	References
	Index

