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Readings

A. Papoulis and A. U. Pillai. Probability, Random Variables and
Stochastic Processes.
Mc Graw Hill, fourth edition, 2002 Chapter 6
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Online References

MIT Course on Probabilistic Systems Analysis and Applied
Probability (by John Tsitsiklis)

I Discrete RVs II: Functions of RV, conditional probabilities,
specific distribution, total expectation theorem, joint
probabilities
https://www.youtube.com/watch?v=-qCEoqpwjf4

I Discrete RVs III: Conditional distributions and joint
distributions continued
https://www.youtube.com/watch?v=EObHWIEKGjA

I Multiple Continuous RVs: conditional pdf and cdf, joint pdf
and cdf
https://www.youtube.com/watch?v=CadZXGNauY0
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4.8 Joint distributions

Definition: Random vector
Assume a probability space (Ω,F ,P). A vector-valued function
X (·) : Ω→ Rn;ω 7→ X(ω) which attributes to every singleton ω a
vector of real numbers X(ω) is called a random vector.
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4.8 Joint distributions

Definition: Joint density function

The joint density for two discrete random variables X1 and X2 is
given as

fX(x1, x2) =

{
P(X1 = x1i ∩ X2 = x2i ) ∀i , j
0 else

Properties:
I fX(x1, x2) ≥ 0 ∀ (x1, x2) ∈ R2

I
∑
i

∑
j

fX(x1i , x2j) = 1
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4.8 Joint distributions

Definition: Joint cumulative distribution function
The cdf for two discrete random variables X1 and X2 is given as

FX(x1, x2) = P(X1 ≤ x1 ∩ X2 ≤ x2) =
∑

x1i≤x1

∑
x2i≤x2

fX(x1i , x2i )

it follows that

P(a ≤ X1 ≤ b ∩ c ≤ X2 ≤ d) =
∑

a≤x1≤b

∑
c≤x2≤d

fX(x1i , x2i )
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4.8 Joint distributions

if X1 and X2 are two continuous random variables, the following
holds:

pdf fX(x1i , x2i ) =
∂2FX(x1, x2)

∂x1∂x2

cdf FX(x1, x2) =

x1∫
−∞

x2∫
−∞

fX(u1, u2)du2du1
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4.9 Marginal Distributions

derive the distribution of the individual variable from the joint
distribution function
→ sum or integrate out the other variable

fX1(x1i ) =


∑
j

fX (x1i , x2j) if X is discrete

∞∫
−∞

fX (x1, x2)dx2 if X is continuous
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4.9 Marginal Distributions

two random variables are statistically independent if their joint
density is the product of the marginal densities:

fX (x1, x2) = fx1(x1) · fx2(x2)⇔ X and Y are independent

under independence the cdf factors as well:

FXY (x , y) = FX (x) · FY (y)

Expectations in a joint distribution are computed with respect to
the marginals
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4.10 Covariance and correlation

Cov[X1,X2] = E[(X1 − E[X1])(X2 − E[X2])]

Properties:
I symmetry: Cov[X1,X2] = Cov[X2,X1]

I linear transformation:

Y1 = b0 + b1X1 Y2 = c0 + c1X2

⇒ Cov[Y1,Y2] = b1c1Cov[X1,X2]

I Cov[X1,X2] =
∑

i

∑
j

x1ix2j fX (x1i , x2j)− E[X1]E[X2]

=

∞∫
−∞

∞∫
−∞

x1x2fX (x1, x2)dx2dx1 − E[X1]E[X2]
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4.10 Covariance and correlation

Pearson’s correlation coefficient

ρx1,x2 =
Cov(X1,X2)√

Var(X1) · Var(X2)
=

σx1,x2

σx1σx2

I if X1 and X2 are independent, they are also uncorrelated
I attention: uncorrelated does not imply independence!
I exception: normal distribution, characterized by 1st and 2nd

moment
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4.11 Conditional Distributions

I Distribution of the varibale X1 given that X2 takes on a certain
value x1

I Closely related to conditional probabilities:

P(X1 = x1|X2 = x2) =
P(X1 = x1 ∩ X2 = x2)

P(X2 = x2)

conditional pdf of X1 given X2 = x2:

fX1|X2(x1|x2) =
fX1,X2(x1, x2)

fX2(x2)
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4.11 Conditional Distributions

conditional cdf of X1 given X2 = x2:

P(X1 = x1|X2 = x2) =
∑

x1i≤X

fX1|X2(x1i |x2) = FX1|X2(x1|x2)

if X1 and X2 are independent, the conditional probability and the
marginal probability coincide:

fX1|X2(x1|x2) = fX1(x1)

because

fX1X2(x1, x2) = fX1(x1) · fX2(x2)
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4.11 Conditional Distributions

the joint pdf can be derived from conditional and marginal densities
in 2 ways:

fX1X2 = fX1|X2(x1|x2) · fX2(x2) = fX2|X1(x2|x1) · fX1(x1)
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4.12 Conditional Moments

E[Y k |X = x ] =
∑

j

yk
j ·

P(X = x ∩ Y = yj)

P(X = x)

=
∑

j

yk
j · P(Y = yj |X = x)

=
∑

j

yk
j · fY |X (yj |x)

=
∑

j

yk
j ·

fXY (x , yj)

fX (x)
if Y is discrete

E[Y k |X = x ] =

∞∫
−∞

yk · fXY (x , y)

fX (x)
if Y is continuous
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4.12 Conditional Moments

Var[Y |X = x ] = EY |X [(Y − E[Y |X = x ])2]

=
∑

j

(yj − E[Y |X = x ])2 · fY |X (yj |x)

if Y is discrete

Var[Y |X = x ] = EY |X [(Y − E[Y |X = x ])2]

=

∞∫
−∞

(y − E[Y |X = x ])2 · fY |X (y |x)dy

if Y is continuous
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4.12 Conditional Moments
Law of total Expectations/ Law of iterated Expectations

E[Y ] = EX [E[Y |X ]]

EX
[
EY |X [Y |X ]

]
= E[Y ] =

∞∫
−∞

 ∞∫
−∞

y · fXY (x , y)

fX (x)
dy

 fX (x)dx

EY |X is a random value as X is a random variable
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