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1. Introduction
Semiconductor research and the Nobel Prize in physics seem to be contradic-
tory since one may come to the conclusion that such a complicated system like
a semiconuctor is not useful for very fundamental discoveries. Indeed, most of
the experimental data in solid state physics are analyzed on the basis of
simplified theories, and very often the properties of a semiconductor device is
described by empirical formulas since the microscopic details are too compli-
cated. Up to 1980 nobody expected that there exists an effect like the Quantized
Hall Effect, which depends exclusively on fundamental constants and is
not affected by irregularities in the semiconductor like impurities or interface
effects.

The discovery of the Quantized Hall Effect (QHE) was the result of system-
atic measurements on silicon field effect transistors-the most important device
in microelectronics. Such devices are not only important for applications but
also for basic research. The pioneering work by Fowler, Fang, Howard and
Stiles [l] has shown that new quantum phenomena become visible if the
electrons of a conductor are confined within a typical length of 10 nm. Their
discoveries opened the field of two-dimensional electron systems which since
1975 is the subject of a conference series [2]. It has been demonstrated that this
field is important for the description of nearly all optical and electrical proper-
ties of microelectronic devices. A two-dimensional electron gas is absolutely
necessary for the observation of the Quantized Hall Effect, and the realization
and properties of such a system will be discussed in section 2. In addition to
the quantum phenomena connected with the confinement of electrons within a
two-dimensional layer, another quantization - the Landau quantization of the
electron motion in a strong magnetic field - is essential for the interpretation of
the Quantized Hall Effect (section 3). Some experimental results will be
summarized in section 4 and the application of the QHE in metrology is the
subject of section 5.

2 Two-Dimensional Electron Gas
The fundamental properties of the QHE are a consequence of the fact that the
energy spectrum of the electronic system used for the experiments is a
discrete energy spectrum. Normally, the energy E of mobile electrons in a
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semiconductor is quasicontinuous and can be compared with the kinetic
energy of free electrons with wave vector k but with an effective mass m*

If the energy for the motion in one direction (usually z-direction) is fixed, one
obtains a quasi-two-dimensional electron gas (2DEG), and a strong magnetic
field perpendicular to the two-dimensional plane will lead-as discussed later-
to a fully quantized energy spectrum which is necessary for the observation of
the QHE.

A two-dimensional electron gas can be realized at the surface of a semicon-
ductor like silicon or gallium arsenide where the surface is usually in contact
with a material which acts as an insulator (SiO2 for silicon field effect transistors
and, e.g. AlxG al-xAs for heterostructures). Typical cross sections of such
devices are shown in Fig 1. Electrons are confined close to the surface of the
semiconductor by an electrostatic field Fz normal to the interface, originating
from positive charges (see Fig. 1) which causes a drop in the electron potential
towards the surface.

Fig. I. A two-dimensional electron gas (2DEG) can be formed at the semiconductor surface if the
electrons are fixed close to the surface by an external electric field. Silicon MOSFETs (a) and
GaAs-Al xG al-xAs heterostructures (b) are typical structures used for the realization of a 2DEG.

If the width of this potential well is small compared to the de Broglie
wavelength of the electrons, the energy of the carriers are grouped in so-called
electric subbands Ei corresponding to quantized levels for the motion in z-
direction, the direction normal to the surface. In lowest approximation, the
electronic subbands can be estimated by calculating the energy eigenvalues of
an electron in a triangular potential with an infinite barrier at the surface (z=0)
and a constant electric field Fs for z 2 0, which keeps the electrons close to the
surface. The result of such calculations can be approximated by the equation
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(2)

j = 0 , 1 , 2 . . .

In some materials, like silicon, different effective masses m* and m*’ may be
present which leads to different series Ej and E'j.

Equation (2) must be incorrect if the energy levels Ej are occupied with
electrons, since the electric field Fs will be screened by the electronic charge.

For a more quantitative calculation of the energies of the electric subbands it
is necessary to solve the Schrödinger equation for the actual potential VL which
changes with the distribution of the electrons in the inversion layer. Typical
results of such calculation for both silicon MOSFETs and GaAs-heterostruc-
tures are shown in Fig. 2 [3,4]. Usually, the electron concentration of the two-
dimensional system is fixed for a heterostructure (Fig. 1 b) but can be varied in
a MOSFET by changing the gate voltage.

Fig, 2. Calculations of the electric subbands and the electron distribution within the surface channel
of a silicon MOSFET (a) and a GaAs-Al xG al-xAs heterostructure [3, 4].

Experimentally, the separation between electric subbands, which is of the
order of 10 meV, can be measured by analyzing the resonance absorption of
electromagnetic waves with a polarization of the electric field perpendicular to
the interface [5].

At low temperatures (T<4 K) and small carrier densities for the 2DEG
(Fermi energy EF relative to the lowest electric subbands E0 small compared
with the subband separation El-E0) only the lowest electric subband is occu-
pied with electrons (electric quantum limit), which leads to a strictly two-
dimensional electron gas with an energy spectrum

where k,, is a wavevector within the two-dimensional plane.
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Fig. 3. Typical shape and cross-section of a GaAs-Al xG al-xAs hcterostructure used for Hall effect
measurements.

For electrical measurements on a 2DEG, heavily doped n+-contacts at the
semiconductor surface are used as current contacts and potential probes. The
shape of a typical sample used for QHE-experiments (GaAs-heterostructure) is
shown in Fig. 3. The electrical current is flowing through the surface channel,
since the fully depleted AlxGal-xAs acts as an insulator (the same is true for the
SiO2 of a MOSFET) and the p-type semiconductor is electrically separated
from the 2DEG by a p-n junction. It should be noted that the sample shown in
Fig. 3 is basically identical with new devices which may be important for the
next computer generation [6]. Measurements related to the Quantized Hall
Effect which include an analysis and characterization of the 2DEG are there-
fore important for the development of devices, too.

3. Quantum Transport of a 2DEG in Strong Magnetic Fields
A strong magnetic field B with a component Bz, normal to the interface causes
the electrons in the two-dimensional layer to move in cyclotron orbits parallel
to the surface. As a consequence of the orbital quantization the energy levels of
the 2DEG can be written schematically in the form

with the cyclotron energy ho, = heB/m *, the spin quantum numbers s = ±1/2

the Landé factor g and the Bohr magneton µB 

The wave function of a 2DEG in a strong magnetic field may be written in a
form where the y-coordinate y0 of the center of the cyclotron orbit is a good
quantum number [7].

?)=e ikxRl(Y-Yo) (5)
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Fig. 4. Sketch for the energy dependence of the density of states (a), conductivity CT,, (b), and Hall
resistance RH (c) at a fixed magnetic field.

Fig. 5. Model of a two-dimensional metallic loop used for the derivation of the quantized Hall
resistance.



K. von Klitzing

where CD, is the solution of the harmonic-oscillator equation
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(6)

and y0 is related to k by

y 0 = Iik/eB
(7)

The degeneracy factor for each Landau level is given by the number of center
coordinates y0. within the sample. For a given device with the dimension Lx. Ly,
the center coordinates y0  are separated by the amount

so that the degeneracy factor N0 = Ly/∆y0 is identical with NO = LxL yeB/h the
number of flux quanta within the sample. The degeneracy factor per unit area
is therefore:

(9)

It should be noted that this degeneracy factor for each Landau level is indepen-
dent of semiconductor parameters like effective mass.

In a more general way one can show [8] that the commutator for the center
coordinates of the cyclotron orbit [xo,yo] = ih/eB is finite, which is equivalent to
the result that each state occupies in real space the area F0 = h/eB correspond-
ing to the area of a flux quantum.

The classical expression for the Hall voltage UH of a 2DEG with a surface
carrier density ns is

where I is the current through the sample. A calculation of the Hall resistance
R H = UH/I under the condition that i energy levels are fully occupied
(ns = iN), leads to the expression for the quantized Hall resistance

i =  1 , 2 , 3

A quantized Hall resistance is always expected if the carrier density ns, and the magnetic
field B are adjusted in such a way that the filling factor i of the energy Levels (Eq. 4)

is an integer.
Under this condition the conductivity uxX (current flow in the direction of the

electric field) becomes zero since the electrons are moving like free particles
exclusively perpendicular to the electric field and no diffusion (originating from
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scattering) in the direction of the electric field is possible. Within the self-
consistent Born approximation [9] the discrete energy spectrum broadens as
shown in Fig. 4a. This theory predicts that the conductivity oXX  is mainly
proportional to the square of the density of states at the Fermi energy EF which
leads to a vanishing conductivity oxx in the quantum Hall regime and quan-
tized plateaus in the Hall resistance RH (Fig. 4c).

The simple one-electron picture for the Hall effect of an ideal two-dimensional
system in a strong magnetic field leads already to the correct value for the
quantized Hall resistance (Eq. 11) at integer filling factors of the Landau levels.
However, a microscopic interpretation of the QHE has to include the influences
of the finite size of the sample, the finite temperature, the electron-electron
interaction, impurities and the finite current density (including the inhomoge-
nious current distribution within the sample) on the experimental result. Up to
now, no corrections to the value h/ie2 of the quantized Hall resistance are
predicted if the conductivity oxx is zero. Experimentally, oxx is never exactly
zero in the quantum Hall regime (see section 4) but becomes unmeasurably
small at high magnetic fields and low temperatures. A quantitative theory of the
QHE has to include an analysis of the longitudinal conductivity O, under real
experimental conditions, and a large number of publications are discussing the
dependence of the conductivity on the temperature, magnetic field, current
density, sample size etc. The fact that the value of the quantized Hall resistance
seems to be exactly correct for oxx = 0 has led to the conclusion that the
knowledge of microscopic details of the device is not necessary for a calculation
of the quantized value. Consequently Laughlin [10] tried to deduce the result
in a more general way from gauge invariances. He considered the situation
shown in Fig. 5. A ribbon of a two-dimensional system is bent into a loop and
pierced everywhere by a magnetic field B normal to its surface. A voltage drop
U H is applied between the two edges of the ring. Under the condition of
vanishing conductivity (J,, (no energy dissipation), energy is conserved and one
can write Faraday’s law of induction in a form which relates the current I in the
loop to the adiabatic derivative of the total energy of the system E with respect
to the magnetic flux @ threading the loop

(13)

If the flux is varied by a flux quantum Qo = h/e, the wavefunction enclosing the
flux must change by a phase factor 2π corresponding to a transition of a state
with wavevector k into its neighbour state k + (2π) (2π) / (Lx), where Lx is the circum-
ference of the ring. The total change in energy corresponds to a transport of
states from one edge to the other with

AE=i.e.UH (14)

The integer i corresponds to the number of filled Landau levels if the free
electron model is used, but can be in principle any positive or negative integer
number.
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From Eq. (13) the relation between the dissipationless Hall current and the
Hall voltage can be deduced

(15)

h
which leads to the quantized Hall resistance RH = TV.

ie

In this picture the main reason for the Hall quantization is the flux quantiza-
tion h/e and the quantization of charge into elementary charges e. In analogy,
the fractional quantum Hall effect, which will not be discussed in this paper, is
interpreted on the basis of elementary excitations of quasiparticles with a charge e* =

The simple theory predicts that the ratio between the carrier density and the
magnetic field has to be adjusted with very high precision in order to get
exactly integer filling factors (Eq. 12) and therefore quantized values for the
Hall resistance. Fortunately, the Hall quantization is observed not only at
special magnetic field values but in a wide magnetic field range, so that an
accurate fixing of the magnetic field or the carrier density for high precision
measurements of the quantized resistance value is not necessary. Experimental
data of such Hall plateaus are shown in the next section and it is believed that
localized states are responsible for the observed stabilization of the Hall
resistance at certain quantized values.

After the discovery of the QHE a large number of theoretical paper were
published discussing the influence of localized states on the Hall effect [11 - 14]
and these calculations demonstrate that the Hall plateaus can be explained if
localized states in the tails of the Landau levels are assumed. Theoretical
investigations have shown that a mobility edge exists in the tails of Landau
levels separating extended states from localized states [15-18]. The mobility
edges are located close to the center of a Landau level for long-range potential
fluctuations. Contrary to the conclusion reached by Abrahams, et al [19] that
all states of a two-dimensional system are localized, one has to assume that in a
strong magnetic field at least one state of each Landau level is extended in
order to observe a quantized Hall resistance. Some calculations indicate that
the extended states are connected with edge states [17].

In principle, an explanation of the Hall plateaus without including localized
states in the tails of the Landau levels is possible if a reservoir of states is
present outside the two-dimensional system [20, 21]. Such a reservoir for
electrons, which should be in equilibrium with the 2DEG, fixes the Fermi
energy within the energy gap between the Landau levels if the magnetic field or
the number of electrons is changed. However, this mechanism seems to be
more unlikely than localization in the the tails of the Landau levels due to
disorder. The following discussion assumes therefore a model with extended
and localized states within one Landau level and a density of states as sketched
in Fig. 6.
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Fig. 6. Model for the broadened density of states of a 2 DEG in a strong magnetic field. Mobility
edges close to the center of the Landau levels separate extended states from localized states.

4. Experimental Data
Magnetoquantum transport measurements on two-dimensional systems are
known and published for more than 20 years. The first data were obtained with
silicon MOSFETs and at the beginning mainly results for the conductivity oXX
as a function of the carrier density (gate voltage) were analyzed. A typical
curve is shown in Fig. 7. The conductivity oscillates as a function of the filling
of the Landau levels and becomes zero at certain gate voltages Vg. In strong
magnetic fields CJ~ vanishes not only at a fixed value Vg but in a range AVs,  and
Kawaji was the first one who pointed out that some kind of immobile electrons
must be introduced [22], since the conductivity CY~ remains zero even if the
carrier density is changed. However, no reliable theory was available for a
discussion of localized electrons, whereas the peak value of oXX was well
explained by calculations based on the self-consistent Born approximation and
short-range scatterers which predict CJ~ ~ (n + l/2) independent of the
magnetic field.

The theory for the Hall conductivity is much more complicated, and in the
lowest approximation one expects that the Hall conductivity oXY deviates from

the classical curve oXYo = - y( hw ere ns is the total number of electrons in

the two-dimensional system per unit area) by an amount Ao,,, which depends
mainly on the third power of the density of states at the Fermi energy [23].
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Fig. 7. Conductivity oxx of a silicon MOSFET at different magnetic fields B as a function of the gate
voltage Vg.

However, no agreement between theory and experiment was obtained. Today, it
is believed, that Ao, is mainly influenced by localized states, which can
explain the fact that not only a positive but also a negative sign for AoXY  is
observed. Up to 1980 all experimental Hall effect data were analyzed on the
basis of an incorrect model so that the quantized Hall resistance, which is
already visible in the data published in 1978 [24] remained unexplained.

Whereas the conductivity oxX can be measured directly by using a Corbino
disk geometry for the sample, the Hall conductivity is not directly accessible in
an experiment but can be calculated from the longitudinal resistivity exx and
the Hall resistivity exY measured on samples with Hall geometry (see Fig. 3):

Fig. 8 shows measurements for exx and eXY  of a silicon MOSFET as a
function of the gate voltage at a fixed magnetic field. The corresponding oxx-
and oxY -data are calculated on the basis of Eq. (16).

The classical curve ox,,’ = - n,e in Fig. 8 is drawn on the basis of the incorrectB
model, that the experimental data should lie always below the classical curve
(= fixed sign for A o,,) so that the plateau value o,,, = const. (observable in the
gate voltage region where o,X becomes zero) should change with the width of the
plateau. Wider plateaus should give smaller values for ]oX,l.  The main discovery
in 1980 was [23] that the value of the Hall resistance in the plateau region is not
influenced by the plateau width as shown in Fig. 9. Even the aspect ratio L/W
(L = length, W = width of the sample), which influences normally the accuracy
in Hall effect measurements, becomes unimportant as shown in Fig. 10. Usually,
the measured Hall resistance RH

exp  is always smaller than the theoretical value

R H

t h e o r  =  px y[  2 6 ,  2 7 ]
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Fig. 8. Measured exx- and  &,-data of a sil icon MOSFET as a function of the gate voltage at

B = 14.2  together with the calculated I&- and o,-curves.

Fig. 9.  Measurements of the Hall  resistance RH and the resistivity Rx as a function of the gate
voltage at different magnetic field values. The plateau values RH = h/4e2 are independent of the
width of the plateaus.

However, as shown in Fig. 11, the correction 1-G becomes zero (independent of

the aspect ratio) if o,, -+ 0 or the Hall angle θ approaches 90º (tan θ =

This means that any shape of the sample can be used in QHE-experiments as
long as the Hall angle is 90º (or oXX = 0). However, outside the plateau region

(a,, - pXX + 0) the measured Hall resistance R H
exp = F is indeed always
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Fig. 10.  Hall resistance RH for two different samples with different aspect ratios L/W as a function

of the gate voltage (B = 13.9 T).

smaller than the theoretical pxy value [28]. This leads to the experimental result
that an additional minimum in RH

eXP becomes visible outside the plateau region
as shown in Fig. 9, which disappears if the correction due to the finite
length of the sample is included (See Fig. 12). The first high-precision
measurements in 1980 of the plateau value in RH(Vg) showed already that
these resistance values are quantized in integer parts of h/e2 = 25812.8 R
within the experimental uncertainty of 3 ppm.

The Hall plateaus are much more pronounced in measurements on GaAs-

AlxGal-xAs heterostructures, since the small effective mass m* of the electrons
in GaAs (m*(Si) /m* (GaAs) > 3) leads to a relatively large energy splitting
between Landau levels (Eq. 4), and the high quality of the GaAs-Al,Ga&s
interface (nearly no surface roughness) leads to a high mobility µ of the
electrons, so that the condition µB > 1 for Landau quantizations is fulfilled
already at relatively low magnetic fields. Fig. 13 shows that well-developed Hall
plateaus are visible for this material already at a magnetic field strength of 4
tesla. Since a finite carrier density is usually present in heterostructures, even
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r

Fig. 11. Calculations of the correction term G in Hall resistance measurements due to the finite

length to width ratio L/W of the device (l/L = 0,5).

at a gate voltage Vg= 0V, most of the published transport data are based on
measurements without applied gate voltage as a function of the magnetic field.
A typical result is shown in Fig. 14. The Hall resistance RH = eXY increases
steplike with plateaus in the magnetic field region where the longitudinal
resistance eXX vanishes. The width of the e,,-peaks in the limit of zero tempera-
ture can be used for a determination of the amount of extended states and the
analysis [29] shows, that only few percent of the states of a Landau level are not
localized. The fraction of extended states within one Landau level decreases
with increasing magnetic field (Fig. 15) but the number of extended states
within each level remains approximately constant since the degeneracy of each
Landau level increases proportionally to the magnetic field.

At finite temperatures eXX is never exactly zero and the same is true for the
slope of the eXY-curve  in the plateau region. But in reality, the slope dt&dB  at
T<2K and magnetic fields above 8 Tesla is so small that the eX,-value  stays
constant within the experimental uncertainty of 6 ⋅ 10-8 even if the magnetic
field is changed by 5 %. Simultaneously the resistivity eXX is usually smaller
than lm~. However, at higher temperatures or lower magnetic fields a finite
resistivity eXX and a finite slope dex,,/dns (or de,,/dB)  can be measured. The data
are well described within the model of extended states at the energy position of
the undisturbed Landau level En and a finite density of localized states between
the Landau levels (mobility gap). Like in amorphous systems, the temperature
dependence of the conductivity oxX (or resistivity exx)  is thermally activated
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Fig. 12. Comparison between the measured quantities RH and Rx and the corresponding resistivity
components Q xy and exx,  respectively.

with an activation energy Ea corresponding to the energy difference between
the Fermi energy EF and the mobility edge. The largest activation energy with
a value Ea = 1/2h~, (if the spin splitting is negligibly small and the mobility
edge is located at the center En of a Landau level) is expected if the Fermi
energy is located exactly at the midpoint between two Landau levels.

Experimentally, an activated resistivity

(18)
is observed in a wide temperature range for different two-dimensional systems
(deviations from this behaviour, which appear mainly at temperatures below
1K, will be discussed separately) and a result is shown in Fig. 16. The
activation energies (deduced from these data) arc plotted in Fig. 17 for both,
silicon MOSFETs and GaAs-AlxG al-xAs heterostructures as a function of the
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Fig. 13. Measured curves for the Hall resistance R H and the longitudinal resistance Rx of a GaAs-
A lxG al-xAs heterostructure as a function of the gate voltage at different magnetic fields.

magnetic field and the data agree fairly well with the expected curve Ea =
1/2ho,.  Up to now, it is not clear whether the small systematic shift of the
measured activation energies to higher values originates from a temperature
dependent prefactor in Eq. (18) or is a result of the enhancement of the energy
gap due to many body effects.

The assumption, that the mobility edge is located close to the center of a
Landau level En is supported by the fact that for the samples used in the
experiments only few percent of the states of a Landau level are extended [29].
From a systematic analysis of the activation energy as a function of the tilling
factor of a Landau level it is possible to determine the density of states D(E)
[30]. The surprising result is, that the density of states (DOS) is finite and
approximately constant within 60% of the mobility gap as shown in Fig. (18).
This background DOS depends on the electron mobility as summarized in Fig.

(19).
An accurate determination of the DOS close to the center of the Landau level

is not possible by this method since the Fermi energy becomes temperature
dependent if the DOS changes drastically within the energy range of 3kT.
However, from an analysis of the capacitance C as a function of the Fermi
energy the peak value of the DOS and its shape close to En can be deduced [31,
32].
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Fig. 14. Experimental curves for the Hall  resistance RH = exY and the resistivity exx-R, of a
heterostructure as a function of the magnetic field at a fixed carrier density corresponding to a gate
voltage Vg, = 0V. The temperature is about 8mK.

This analysis is based on the equation

( 19)

The combination of the different methods for the determination of the DOS
leads to a result as shown in Fig. (20). Similar results are obtained from other
experiments, too [33, 34] but no theoretical explanation is available.

If one assumes that only the occupation of extended states influences the
Hall effect, than the slope dg,,/dn,  in the plateau region should be dominated
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Fig. 15. Fraction of extended states relative to the number of states of one Landau level as a function

of the magnetic field.

by the same activation energy as found for &x(T).  Experimentally [35], a one
to one relation between the minimal resistivity @xxmin  at integer filling factors
and the slope of the Hall plateau has been found (Fig. 21) so that the flatness of
the plateau increases with decreasing resistivity, which means lower tempera-
ture or higher magnetic fields.

The temperature dependence of the resistivity for Fermi energies within the
mobility gap deviates from an activated behaviour at low temperatures, typi-
cally at T<lK. Such deviations are found in measurements on disordered
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Thermally activated
magnetic field values.

resistivity exx at a filling factor i = 4 for a silicon MOSFET at different
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Fig. 17. Measured activation energies at filling factors i = 2 (GaAs heterostructure) or i = 4 (Si-
MOSFET) as a function of the magnetic field. The data are compared with the energy 0,5ho,.

systems, too, and are interpreted as variable range hopping. For a two-dimen-
sional system with exponentially localized states a behaviour

exx ~ exp [- (To/T)‘/~I (20)

is expected. For a Gaussian localization the following dependence is predicted

[36, 37]

The analysis of the experimental data demonstrates (Fig. 22) that the measure-
ments are best described on the basis of Eq. (21). The same behaviour has been
found in measurements on another two-dimensional system, on InP-InGaAs
heterostructures [38].

The contribution of the variable range hopping (VRH) process to the Hall
effect is negligibly small [39] so that experimentally the temperature depend-
ence of de.Jdn,  remains thermally activated even if the resistivity exx is
dominated by VRH.
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Fig. 18. Measured density of states (deduced from an analysis of the activated resisitivity) as a
function of the energy relative to the center between two Landau levels (GaAs-heterostructure).

The QHE breaks down if the Hall field becomes larger than about
EH = 60V/cm at magnetic fields of 5 Tesla.

EHThis corresponds to a classical drift velocity vD = - = 1200m/s. At the
B

critical Hall field EH (or current density j) the resistivity increases abruptly by
orders of magnitude and the Hall plateau disappears. This phenomenon has
been observed by different authors for different materials [40-47]. A typical
result is shown in Fig. 23. At a current density of j C = 0,5 A/m the resistivity exx
at the center of the plateau (filling factor i = 2) increases drastically. This
instability, which develops within a time scale of less than 100 ns seems to
originate from a runaway in the electron temperature but also other mechan-
ism like electric field dependent delocalization, Zener tunneling or emission of
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Fig. 19. Background density of states as a function of the mobility of the device.

acoustic phonons, if the drift velocity exceeds the sound velocity, can be used
for an explanation [48-50].

Fig. 23 shows that exx increases already at current densities well below the
critical value j, which may be explained by a broadening of the extended state
region and therefore a reduction in the mobility gap AE. If the resistivity exx is
thermally activated and the mobility gap changes linearly with the Hall field
(which is proportional to the current density j) then a variation

is expected. Such a dependence is seen in Fig. 24 but a quantitative analysis is
difficult since the current distribution within the sample is usually inhomogen-
ious and the Hall field, calculated from the Hall voltage and the width of the
sample, represents only a mean value. Even for an ideal two-dimensional
system an inhomogenious Hall potential distribution across the width of the
sample is expected [51-53] with an enhancement of the current density close
to the boundaries of the sample.

The experimental situation is still more complicated as shown in Fig. 25. The
potential distribution depends strongly on the magnetic field. Within the
plateau region the current path moves with increasing magnetic field across the
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Fig. 20. Experimental1y d de uced density of states of a GaAs heterostructure at B = 4T compared
with the calculated result based on the self-consistent Born approximation (SCBA).

width of the sample from one edge to the other one. A gradient in the carrier
density within the two-dimensional system seems to be the most plausible
explanation but in addition an inhomogeneity produced by the current itself
may play a role. Up to now, not enough microscopic details about the two-
dimensional system are known so that at present a microscopic theory, which
describes the QHE under real experimental conditions, is not available. How-
ever, all experiments and theories indicate that in the limit of vanishing
resistivity @xx the value of the quantized Hall resistance depends exclusively on
fundamental constants. This leads to a direct application of the QHE in
metrology.
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Fig. 21. Relation between the slope of the Hall plateaus dg,,/dn,  and the corresponding e,,-value
at integer filling factors.

5. Application of the Quantum Hall Effect in Metrology
The applications of the Quantum Hall Effect are very similar to the applica-
tions of the Josephson-Effect which can be used for the determination of the
fundamental constant h/e or for the realization of a voltage standard. In
analogy, the QHE can be used for a determination of h/e2 or as a resistance
standard. [54].

Since the inverse fine structure constant a-’ is more or less identical with
h/e2 (the proportional constant is a fixed number which includes the velocity of
light), high precision measurements of the quantized Hall resistance are impor-
tant for all areas in physics which are connected with the finestructure con-
stant.

Experimentally, the precision measurement of a is reduced to the problem of
measuring an electrical resistance with high accuracy and the different meth-
ods and results are summarized in the Proceedings of the 1984 Conference on
Precision Electromagnetic Measurements (CPEM 84) [55]. The mean value of
measurements at laboratories in three different countries is

The internationally recommended value (1973) is
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and the preliminary value for the tinestructure constant based on a new least
square adjustment of fundamental constants (1985) is

Different groups have demonstrated that the experimental result is within the
experimental uncertainty of less than 3.7 · 1 0-8 independent of the material
(Si, GaAs, In0.ssGao,47As) and of the growing technique of the devices (MBE
or MOCVD) [56]. The main problem in high precision measurements of a is-
at present-the calibration and stability of the reference resistor. Fig. 26 shows
the drift of the maintained 1Sresistor  at different national laboratories. The
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Fig. 23. Current-voltage characteristic of a GaAs-Al,Ga,-,As  heterostructure at a filling factor
i = 2 (T = 1,4K). The device geometry and the p,,(B)-curve  are shown in the inserts.

very first application of the QHE is the determination of the drift coefficient of
the standard resistors since the quantized Hall resistance is more stable and
more reproducible than any wire resistor. A nice demonstration of such an
application is shown in Fig. 27. In this experiment the quantized Hall resis-
tance RH has been measured at the “Physikalisch Technische Bundesanstalt”
relative to a reference resistor RR as a function of time. The ratio RH/ RR

changes approximately linearly with time but the result is independent of the
QHE-sample. This demonstrates that the reference resistor changes its value
with time. The one standard deviation of the experimental data from the mean
value is only 2.4 · 1 0-8  so that the QHE can be used already today as a relative
standard to maintain a laboratory unit of resistance based on wire-wound
resistors. There exists an agreement that the QHE should be used as an
absolute resistance standard if three independent laboratories measure the
same value for the quantized Hall resistance (in SI-units) with an uncertainty
of less than 2· 1 0-7. It is expected that these measurements will be finished
until the end of 1986.



Fig. 24. Nonohmic conductivity oxx of a GaAs heterostructure at different temperatures T L (f i l l ing
factor i = 2). An instability is observed at source-drain fields larger than 40 V/cm.
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Fig.  26.  Time dependence of the I  Ω standard resistors maintained at the differcnt national
laboratories.
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Fig. 27. Ratio RH/ RR between the quantized Hall resistance RH and a wire resistor RR as a function

of time, The result is time dependent but indcpcndent of the Hall device used in the experiment.
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