
Wilhelm Schickard-Institut für Informatik

Diploma Thesis

Fusion of Sensory and Motor

Egomotion-Information for UAVs
by

Tobias Beck

Advisors:

Prof. Dr. rer. nat. Hanspeter A. Mallot

Chair in Cognitive Neurosciences

Prof. Dr. rer. nat. Andreas Zell

Chair in Computer Architecture

Registration Date: February 4th 2009

Due Date: November 18th 2009

This thesis is a presentation of original research work. Wherever contributions of others are
involved, every effort is made to indicate this clearly, with due reference to the literature,
and acknowledgement of collaborative research and discussions.

I hereby declare and confirm that this thesis is entirely the result of my own work except
where otherwise indicated.

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Tobias Beck
Tübingen, November 17, 2009

Thesis advisors Author
Prof. Dr. rer. nat. Hanspeter A. Mallot
Prof. Dr. rer. nat. Andreas Zell Tobias Beck

Fusion of Sensory and Motor Egomotion-Information for UAVs

Abstract
Robots permeate ever more areas of our lives. From entertainment uses to military applica-
tions, more people previously not familiar with these complex machines come into contact
with robots or other autonomous vehicles. To simplify their control, additional navigational
and other auxiliary systems are developed. In order to facilitate navigational support for the
controller by the robot, the robot needs to be aware of its own motion and the consequences
of its actions in its environment. This thesis focuses on the possibility of achieving an im-
proved estimation of a robot’s egomotion by employing several sensors, especially inertial,
gyroscopic and optical sensors, in combination with a recursive state estimator.

A recursive nonlinear continuous-discrete-time formulation of such an estimator is de-
rived step by step, presenting existing solutions from the original Kalman filter to the
eventual continuous-discrete square root Unscented Kalman filter with sequential updates.
The necessary process and observation models are derived. They represent dynamic non-
linear functions describing the evolution of the system state over time as well as expected
sensory observations with respect to a given state estimate. The model parameters are
acquired empirically.

In state estimation experiments, it is shown that the estimation algorithm can approx-
imate the attitude and angular velocity of the UAV successfully. However, the choice of
sensors denies the correct estimation of the linear velocity and location, because no sensor
delivers absolute measurements on their effects.

v

Acknowledgments

This work was created as part of the graduation requirements for the diploma
degree in the course of studies of Bioinformatics at the Eberhard Karls Universität Tübingen.
The diploma thesis was developed at the robotics lab of the cognitive neurosciences chair
under Prof. Dr. Hanspeter Mallot. My thanks go to him and Prof. Dr. Andreas Zell at
the chair of computer architecture at the Wilhelm-Schickard-Insitut für Informatik at the
Universität Tübingen, for offering and supervising this interesting and challenging task in
a combined effort.

In this context I would like to thank the following people who have all contributed in
some form to this endeavor:
My colleagues at the robotics lab for their intellectual support, and for offering a gratifying
and stimulating research and working environment. In particular Fabian Recktenwald for
his supportive advice and insightful discussions. Special thanks go out to Dr. Hansjürgen
Dahmen for his time, ideas and support, as well as for sharing his mathematical expertise
and wisdom.

I offer my thanks to my proof readers for lending their time to my work and offering
constructive criticism. Your help is greatly appreciated.

Finally, my family for their love and support. Bianca, Matt, Otto, Mami, Omi & Opa:
Thank you for always believing in me.

vii

Contents

Title Page . i
Abstract . v
Acknowledgments . vii
Table of Contents . ix
List of Algorithms . xii

1 Introduction 1
1.1 Overview . 1

1.1.1 Notation Conventions . 2
1.1.2 Unmanned Aerial Vehicles . 3
1.1.3 Egomotion . 4
1.1.4 Perception . 5
1.1.5 State Estimation . 6
1.1.6 Physical Model . 7

1.2 Problem Statement . 8
1.3 Thesis Outline . 8

1.3.1 Main thesis chapters . 8
1.3.2 Appendices . 9

2 Bayesian Estimation 10
2.1 Introduction . 10

2.1.1 Chapter Outline . 11
2.1.2 Recursive Bayesian Estimation . 11

2.2 The Kalman Filter . 15
2.2.1 Linear Estimation . 17
2.2.2 Nonlinear Estimation . 19

2.3 The Unscented Kalman Filter . 23
2.3.1 Unscented Transformation . 24
2.3.2 Scaled Unscented Transformation . 27
2.3.3 Continuous Time Estimation . 30
2.3.4 Sequential Updates . 35
2.3.5 Latency Compensation . 39

ix

x Contents

3 Process and Observation Models 45
3.1 Introduction . 45

3.1.1 Chapter Outline . 46
3.2 Prerequisites . 46

3.2.1 Spatial Algebra . 47
3.2.2 Reference Frames . 54
3.2.3 Quaternions . 58
3.2.4 Quadrocopter Control . 63

3.3 UAV Hardware . 64
3.3.1 Quadrocopter . 64
3.3.2 Base Station . 65
3.3.3 Sensors . 66
3.3.4 Inertia . 68

3.4 Derivation . 70
3.4.1 System State . 70
3.4.2 Process Model . 73
3.4.3 Observation Model . 83
3.4.4 Initialization Phase . 88

4 Experiments and Results 92
4.1 Chapter Outline . 92
4.2 Physical Model . 92

4.2.1 IIC to RPM . 93
4.2.2 Rotor Coefficient . 97
4.2.3 Air Drag Coefficient . 100

4.3 State Estimation . 112
4.3.1 Simulation . 112
4.3.2 Yaw Rotation . 114
4.3.3 Pitch Rotation . 116
4.3.4 Translation . 118
4.3.5 Conclusion . 119

5 Conclusions and Future Work 120

Bibliography 122

A EKF Inaccuracies 126

B Air Drag Experiments 129
B.1 X-Y-plane . 129

B.1.1 10 Degrees . 129
B.1.2 20 Degrees . 130
B.1.3 -10 Degrees to -40 Degrees . 131

B.2 Z-axis . 134
B.2.1 100 Degrees . 134

Contents xi

B.2.2 110 Degrees . 135
B.2.3 120 Degrees . 136

C Algorithms 137

List of Algorithms

C.1 The Kalman Filter . 137
C.2 The Extended Kalman Filter . 138
C.3 The Scaled Unscented Transformation . 139
C.4 The Unscented Kalman Filter . 140
C.5 The Square Root Unscented Kalman Bucy Filter 141
C.6 The Square Root continuous-discrete UKF 142
C.7 The Square Root UKF with Latency Compensation 143

xii

Chapter 1

Introduction

1.1 Overview

Robots are permeating ever more areas of our lives. In our homes, domestic
appliances clean our floors autonomously[1] while children play with robots dancing a pro-
grammed routine and older generations design complex self-built and -programmed LEGO
robots[2]. In branches of our governments such as police and firefighters, robots are used to
scout dangerous territory, while in the military mobile attack drones reduce the risk of hu-
man casualties[3]. Figure 1.1 shows some examples for drones. Established medical applica-
tions of robots are currently non-autonomous tools for improved surgical intervention[4, 5, 6]
or artificial limbs[7], but the vision of nanobots circulating through our bodies looms closer
as these robots become smaller[8].

Robots’ areas of application are as numerous as the problems they are supposed to solve.
The examples mentioned above only represent a small part of the exciting role robots are
playing and are going to play in our world. Current leading scientific research focuses
on mobile robots able to execute missions in unknown environments with as little human
control as necessary or possible, as can be seen in the current and future Mars missions[9,
10]. Developing autonomous mobile robots includes challenges in various disciplines, from
navigation and route planning over obstacle avoidance to mission control and the choice
of sensors and actuators needed for each task. Challenges such as the DARPA Urban
Challenge[11] reflect the scientific community’s current state of the art while pushing for
new advancements in the field.

Mobile robots can be distinguished into three types based on their locomotion: sea-, air-
and land-based, with land-based robots having been researched the most, since sea and air
navigating robots face more restrictions and higher requirements, e.g. a land-based robot
can carry heavier equipment and stay stationary more easily than a flying robot. The lower
requirements allowed a larger research community an easier and earlier start to studying
land-based mobile robots. As challenges of land-based mobile robots are resolved to a
certain extent and required technologies become affordable, sea- and air-based robots can
become the focus of wide-spread research.

1

2 Chapter 1: Introduction

(a) LEGO Mindstorms NXT (b) Hermes 450 Civil Registration UAV

(c) MQ-8B Fire Scout (d) ScanEagle with Catapult Launcher

Figure 1.1: UAV Examples.

This thesis treats air-based navigation by concentrating on a certain type of flying mobile
robot, or Unmanned Aerial Vehicle: a small, low-altitude quadrocopter with a maximum
payload of 0.3kg. This section will present an overview of this work’s main topics along
with a short introduction to each chapter.

1.1.1 Notation Conventions

A common understanding of the symbols used in this work is helpful to better
comprehend the descriptions and formulae given. Throughout the thesis, mainly continuous
dynamic systems with multi-dimensional system states are dealt with. In a few cases, to
lay the groundwork for continuous systems, discrete and linear systems are regarded. Here
time variables such as t, t0, tk are integers representing multiples of the unity time interval
set as discrete time step. Vectors will be denoted as small bold-face letters such as x, z or
xk, a vector at a certain point in time tk. Matrices will be denoted by capital bold-face

Chapter 1: Introduction 3

letters Q, R and Vk indexed analogously to vectors depicting a matrix V at time tk.

t, tk Time in general; present time
t0 Time at which observations start

x,x (t),xk Basic random variable, actual system state
z,z (t),zk Observed random variable, measurement

ẑk Expected measurement
z̃k Innovation, difference of real and expected measurement
x̂−k Optimal estimate of xk given z0:k−1 = {z0, . . . , zk−1}
x̂k Optimal estimate of xk given z0:k = {z0, . . . , zk}

p (x) Probability distribution of x
p (x|z) Conditional probability of x being true if z was seen

p (xk|zk,xk−1) Probability of xk being true if zk was seen and xk−1 were true

Table 1.1: Optimal Estimates.

1.1.2 Unmanned Aerial Vehicles

A remotely controlled aircraft is called an Unmanned Aerial Vehicle, or UAV.
Note that UAVs need not be autonomous, only the absence of a human controller or pilot
within the vehicle determines this definition. Minimization of the payload required by air-
based mobile robots results in diverse solutions, e.g. gas-filled blimps, rocket-propelled
planes, or helicopters, each with its own advantages and disadvantages. Blimps do not have
good mobility, as compared to helicopters, but their advantage is their independence from
having to run rotors to stay in the air. Rocket-propelled planes need high speeds to avoid
crashing down, making them appropriate for high altitude missions and certain low altitude
missions spanning large coverage areas. Helicopters embody a highly mobile vehicle for low
altitude missions in cluttered terrains. The slower velocity allows for more mobility, with
an emphasis on the ability to stay stationary and hover, but limits the area one can cover
before energy runs out. As with all air-based mobile robots, the craft’s size restrains its
maximum payload and a compromise between air time and features on board needs to be
struck.

As noted above, this work focuses on quadrocopters. A quadrocopter is a type of he-
licopter with four horizontal and no vertical rotors. It is a small drone for low altitude
missions in crowded terrain, the specific model this thesis covers is the AirRobot AR-100
(Figure 1.2). The AR-100 hardware and features are described in more detail in section 3.3.

The advantages of quadrocopters, stable and stationary flight, good maneuverability and
their small size allow them to be used in cluttered terrain, without fear of unintentionally
hurting casual bystanders. Unfortunately, successfully piloting a quadrocopter still demands
special training, above all if the machine is equipped with expensive hardware and used in

4 Chapter 1: Introduction

Figure 1.2: AirRobot AR-100.

difficult mission scenarios. In current real life scenarios these machines are usually controlled
by trained personnel, but industry and military, turning to science, want to remove the
difficult piloting from the controller’s worries and allow him to concentrate on his actual
assignment, letting the UAV assume control to a certain extent concerning locomotion and
navigation.

1.1.3 Egomotion

For navigational purposes, mobile robots need to be aware of where they are and
how fast they are going. An easy solution to a part of this problem can be achieved by
including GPS support (Global Positioning System) and using absolute GPS coordinates
to navigate. While this is comparatively easy to implement, it offers only rudimentary
navigation throughout the world. GPS only works where its signals can be received and used
effectively, negating its use for navigating indoors or in complex crowded locations where too
many reflections and interferences degrade the signal. Complex navigational objectives such
as obstacle avoidance or object tracking need additional or more sophisticated methods.

Another solution is Dead Reckoning. Dead Reckoning is the method of computing one’s
location by the change of position from a given initial location. In other words navigation
by integrating information about one’s own movement. Egomotion is the motion of the
robot within its environment, as seen by the robot itself. This poses the question of how
to calculate one’s own egomotion. Land-based robots can compute their egomotion e.g.
by monitoring the turning of their wheels. But flying robots cannot determine their total
velocity via their rotors’ speeds as easily as that, because they move within a highly dynamic

Chapter 1: Introduction 5

carrier system (air). Wind is a strong external force acting on these vehicles, therefore other
sensors must be considered to calculate the robot’s egomotion.

Egomotion is necessary for many navigational tasks and can be calculated using e.g. in-
ertial or visual sensor measurements. Having this information about the robot’s motion is
sufficient for navigation by Dead Reckoning, but incommensurate for more complex tasks,
e.g. obstacle avoidance, where motion of other objects is needed. How egomotion is com-
puted and estimated is covered in Chapter 3. More examples of what kinds of sensors exist
and are used are covered in the next Subsection 1.1.4.

1.1.4 Perception

In order to navigate through an unknown dynamic world, a robot needs sensors
to perceive information about its environment, since it cannot access the world’s system
state directly as in some simulations. There are different types of sensing modalities, as for
example smell, touch, vision or sound. Some examples for technical sensors are listed in
Table 1.2. Which sensors to use in a robot is a design choice: some might work better in

Type of Sensor Application

Inertial and Gyroscopic Egomotion
Camera Egomotion
Compass Orientation

Barometer Height
Thermometer Temperature

Laser Distance To Objects
Ultrasound Distance To Close Objects

GPS Position

Table 1.2: Sensor Types.

certain environments, others might fit the planned missions better. Each sensor’s charac-
teristics need to be taken into account when designing a new robot and the overall choice
must be tailored to its range of duty. In the case of the AR-100, the available sensors are
listed below and described in more detail in section 3.3.3:

• IMU (Inertial Measurement Unit)

• Compass/Magnetometer

• Camera

• Barometer

• GPS

6 Chapter 1: Introduction

Since a variable of a physical system cannot be accessed directly, sensors providing measure-
ments about that variable are introduced. These sensors invariably have a certain maximal
precision and minimal error-margin as determined by their construction method, leading to
noisy or incomplete measurements.

The errors introduced by this indirect access to variables via observations pollute the
determination of the current system state, e.g. the current location. The goal is a noise free
or at least reduced estimation of the system state. This leads to the next subsection, where
a short overview of State Estimation methods is presented.

1.1.5 State Estimation

As mentioned above, most of the time the system’s physical state cannot be ob-
served directly, but needs to be determined by way of taking noisy measurements of indirect
effects of the state(Figure 1.3), hereby introducing errors. These observations are analyzed
to approximate the inaccessible system state. Errors and incomplete measurements com-
plicate the approximation process, therefore methods for system state estimation imple-
menting a calculation of the certainty of a particular state estimate being correct have been
developed. During the years of their application, modifications and extensions to these al-
gorithms were devised in estimation theory. Among these are recursive Bayesian estimation
and Kalman Filters, which are covered in more detail in Chapter 2.

Figure 1.3: Observable Measurement and Hidden State.

Bayesian estimation methods adjust probabilities of system states given new evidence.
To achieve this, the hidden variables are predicted for the next time step, when the actual
observation is compared with the expected measurement. For prediction, a mathematical
process model of the system must be defined, describing the evolution over time from a given
state configuration, as introduced in the next section and discussed in detail in Chapter 3.
Bayes’ theorem describes how to adjust the probability distribution of the system variables
after a measurement is received. In other words, it changes our belief in the system variables

Chapter 1: Introduction 7

to accommodate the additional observational information, lending itself well to the predict-
correct update cycle. The Bayes’ rule defines the factor of the impact the evidence has on
the belief in the hypothesis, it is given as

P (H|E) =
P (E|H)P (H)

P (E)
.

H is the hypothesis, that is one configuration (of many) of the hidden system variables, x
in this paper’s notation and E represents the evidence or measurement, here denoted as z.
P (H) is the prior probability density function, p(x), of the state, which is assumed to be
known beforehand and P (E) the marginal probability known a priori of the observation E
(or z) occurring, with

P (E) =
∑
H

P (E|H)P (H),

where the last two terms are the conditional probability P (E|H) of encountering observation
E if H happens to be true and the posterior probability (density function) P (H|E) of H
given measurement E or z. Rewritten in the terms of Chapter 2:

p(x|z) =
p(z|x)p(x)

p(z)
. (1.1)

For recursive calculation and incorporation of successive measurements, the posterior
probability p(x|z) is taken as the prior p(x) in Equation (1.1). Kalman Filters follow this
principle and are specialized for Gaussian random distributions.

1.1.6 Physical Model

In order to predict how a mobile robot behaves, a model approximating the robot’s
physical characteristics and dynamics to a sufficient degree must be formulated. Such a
model consists of a system state and of mathematical functions evolving the system state
over a certain time span. The detail of a model’s desired accuracy controls the level of the
robot’s physical characteristics that need to be included in the equations of motion. This
includes for example mass, drag coefficient, surface area for air drag, rotor coefficients et
cetera.

Physical Models can be discrete or continuous, linear or non-linear, differential or absolute.
An example for such a discrete, linear absolute representation of a sinusoidal motion is:

f(tk+1) = sin(tk+1)

An example for the same motion but as a continuous and differential process model:

df(t)
dt

= cos(t)

8 Chapter 1: Introduction

The physical models necessary for state estimation not only need to predict a system
state, but also calculate expected observations from such an estimated state prediction.
This component of the physical model is called the observation model, and it specific for
each sensor used.

Chapter 3 takes a closer look at how the system state is constructed and how the dynamics
were modeled in the case of the AR-100.

1.2 Problem Statement

The UAV AR-100 is equipped with a video camera and an IMU as visual and
inertial sensors, among others. Their sensor modalities are completely different. Where the
camera captures visual cues from which optic flow and subsequently translational direction
and rotation information is calculated, the IMU captures linear accelerations and gyro-
scopic velocities, which is in one case the first derivative of the actual wanted information,
linear velocity. These contrasting characteristics allow a combination of the measurements,
capitalizing on their advantages and compensating for their disadvantages to receive an
improved observation result.

Sensory and motor information of the mobile robot shall be combined intelligently to re-
ceive a better estimation of its egomotion than possible with each measurement taken alone.
A qualified statistical method for state estimation as well as an appropriate architecture
for sensor fusion shall be chosen. Furthermore, the necessity of a physical model of the
dynamics of the mobile robot for estimation of the robot’s egomotion is to be evaluated.

The goal of this thesis is the implementation of the chosen method for data fusion of
inertial and visual measurements and state estimation extending on the already existing
control framework in C++. Quantitative tests to evaluate the robustness and performance
of the method are also to be conducted. The consequence of the inertial drift on the
estimation of egomotion as well as how well the chosen method prevents this drift is to be
examined.

1.3 Thesis Outline

The remainder of the thesis is organized as follows:

1.3.1 Main thesis chapters

Chapter 2 gives an introduction to optimal Gaussian approximate recursive Bayesian es-
timation, presenting the Kalman filter framework and highlighting the flaws of the extended
Kalman filter. This reason, why a better solution for Gaussian approximate nonlinear es-
timation than the EKF is needed, leads into the second and main part of this chapter. It
presents the Unscented Kalman filter and several variants thereof incrementally, to finally
reach the developed solution implemented as part of this thesis.

Chapter 1: Introduction 9

Chapter 3 derives the physical models necessary for state estimation. The first part
establishes prerequisite theoretical background required for the model formulations. This
is followed by a short presentation of the hardware available for this thesis, i.e. the UAV
and its base station, before subsequently developping the dynamic nonlinear process and
observation models. The physical process model describes the dynamic properties of the
UAV, how its state evolves over time. The observation model presents the mapping of the
estimated system state to expected observations of said state.

Chapter 4 focuses on the conducted experiments and explains their setup in detail. The
experiments examine parameters required for the physical model such as rotor and air drag
coefficients. The obtained results are presented and discussed. Experiments concerning the
performance of the state estimation algorithm are presented and the implications of their
results discussed.

Chapter 5 discusses and summarizes the results of this work, drawing conclusions and
indicating possible directions for future research.

1.3.2 Appendices

Some of the material is moved to the Appendices section in order to maintain the
presentational flow of this document. These include a discussion on the inaccuracies of the
EKF, additional experiment results and listings of the algorithms presented and developped
in this work.

Chapter 2

Bayesian Estimation

2.1 Introduction

Autonomous mobile robots depend on knowledge about the state of their environ-
ments to be able to make effective goal-directed decisions. Lack thereof would mean an
inability to react to changes in their environment, rendering the robots practically useless.
Direct access to the world’s internal state is only possible in simulated environments, where
a programming design choice could be to have the robot have access to the system’s hidden
state information, e.g. current absolute position of the robot, wind velocities throughout
the simulated world, locations and other properties of arbitrary objects etc. Considered
from the perspective of real world scenarios, this kind of access remains wishful thinking.

In the real world, the system’s (internal) state cannot be accessed directly but needs to
be observed via its indirect effects on the robot’s sensors. By perceiving events indirectly
connected to the system’s internal state, the robot can draw conclusions based on its own
observation model mapping the measurements to system variables. This indirect observation
introduces errors to the calculation of the system state, degrading the robot’s performance
in making an optimal decision. Here is where estimation theory enters the stage. Its task is
to take the noisy or incomplete measurements and, based on a mathematical process model
of the system together with the above mentioned observation model defining a mapping
between system variables and measurements, to remove the noise as much as possible and
calculate an estimate of the system state.

The problem statement to create such an estimator can be formulated as the question:
“How do we optimally estimate the hidden system variables in a recursive fashion as noisy
or incomplete measurements come available online?”[12]. This chapter will present solutions
to that question, focusing on variations of recursive Bayesian estimation.

In estimation theory, when working with assumptions about random measurement noise,
imprecise measurement equipment or other unmodeled effects supporting random modeling,
it is customary to regard the measurement z as a random variable or random vector when
multi-dimensional. A random variable has a probability distribution. In the case of discrete

10

Chapter 2: Bayesian Estimation 11

systems, this is called the probability function, for continuous systems it is called the density
function. The observation vector’s probability density function (PDF) p(z|x), also called
the likelihood function, is assumed to be dependent on the inner state’s configuration. It
represents the probability of observation z being encountered if the system state is x.

In Bayesian estimation, the state x is also regarded as a random variable having a known
prior probability p(x). It encompasses all that is known of the system state before the
experimental outcome is observed. The corrected probability of the system state, x, given an
observed measurement, z, is p(x|z). Bayes’ rule in Equation (2.1) details how the posterior
should be calculated to incorporate the new information from the received measurement.
How to turn this rule into a recursively applicable method will be discussed in the next
section.

p(x|z) =
p(z|x)p(x)

p(z)
(2.1)

2.1.1 Chapter Outline

After a short introduction to recursive Bayesian estimation in the next section,
the major remaining part of the chapter covers different versions of Kalman Filters. The
part on Kalman filters starts with a detailed look at the discrete and linear Kalman Filter,
orienting itself at the description given by Welch and Bishop in [13]. Subsequently, the
nonlinear alternative, the Extended Kalman Filter (EKF), is presented, commenting on its
disadvantages. Having seen two discrete time versions, the continuous time Kalman-Bucy-
Filter algorithm is discussed before moving on to the Unscented Kalman Filter (UKF),
explaining the original in detail as well as presenting two of its extensions or modifications.

2.1.2 Recursive Bayesian Estimation

As discussed above, Equation (2.1), Bayes’ Theorem, is the basis for this estimation
method. A belief about a hypothesis, p(x), is updated as measurements arrive. The system
state, x, can also be described as a Markov Process and the measurements, z, as the observed
outputs of a hidden Markov Model. A Markov Process of first order is a mathematical
model for describing the evolution of future states depending only on the current state
of the system. Systems conferred with this Markov property are also called memory-less
systems. If the calculation of future states of a Markov process includes and depends on
more past system states than only the current state, then such a process is called a higher
order Markov process. A Hidden Markov Model (HMM) is a model of such a Markov
process whose state is only indirectly (not directly) observable.

Figure 2.1 shows the stochastic relations between system states and measurements of
a first order Hidden Markov Model at successive time instants. It is clear to see that at
each time step k, the next future state, xk+1, only depends on the current system state xk.
This stochastic relationship, formulated as a conditional probability distribution equation,

12 Chapter 2: Bayesian Estimation

Figure 2.1: First Order Hidden Markov Model.
A Hidden Markov Model of a first order Markov process.

is given as
p (xk|xk−1,xk−2, ...,x0) = p (xk|xk−1) . (2.2)

Also illustrated in Figure 2.1 above is the conditional independence between a measurement
zk and system states at time instants different from k. A measurement zk only depends on
the system state at its time instant k, xk, i.e.

p (zk|xk,xk−1, ...,x0) = p (zk|xk) . (2.3)

The denominator of Bayes’ rule is the probability distribution of the measurement, p (zk).
It is a scalar constant relative to the system state and can be computed over the set of all
possible system states as

p (zk|zk−1) =
∫
p (zk|xk) p (xk|zk−1) dxk

= p (zk)

=
∫
p (zk|xk) p (xk) dxk

= α−1.

(2.4)

Therefore, for the posterior probability distribution, the calculation of p (zk) is usually
neglected and only the nominator is computed and normalized, so that its integral is unitary.

Because of this, only p(zk|xk)p(xk) must be specified to calculate the posterior with Bayes’
theorem. Applying this information and the above equations, the Bayes’ rule of Equation
(2.1) can be calculated:

p(xk|zk) =
p (zk|xk) p (xk)

p (zk)
= αp (zk|xk) p (xk)

Chapter 2: Bayesian Estimation 13

To reiterate, p (xk) is the a-priori defined prior probability distribution of the possible
configurations of the system state. The term p (zk|xk) is the conditional probability of
encountering observation zk if the system state happens to be xk. The posterior, p(xk|zk),
taking into account all measurements z1:k,

z1:k = {zk, zk−1, ..., z1} ,

comprises the complete solution to the recursive estimation problem, allowing us to calculate
any optimal approximate of the state, such as the conditional mean:

x̂k = E [xk|z1:k] =
∫

xkp (xk|zk) dxk.

This enables the reformulation of the problem statement:
“How do we recursively compute the posterior density as new measurements arrive online?”

Recursive Bayesian estimation is the optimal solution for this problem. By applying
Bayes’ rule and conditional independence between measurements as well as using the math-
ematical process and observation models, we can deduce a formula for the solution:

p (xk|z1:k) =
p (z1:k|xk) p (xk)

p (z1:k)

=
p (zk, z1:k−1|xk) p (xk)

p (zk, z1:k−1)

=
p (zk|z1:k−1,xk) p (xk) p (z1:k−1|xk)

p (zk|z1:k−1) p (z1:k−1)

(2.5)

=
p (zk|z1:k−1,xk) p (xk) p (xk|z1:k−1) p (z1:k−1)

p (zk|z1:k−1) p (z1:k−1) p (xk)
(2.6)

=
p (zk|z1:k−1,xk) p (xk|z1:k−1)

p (zk|z1:k−1)
(2.7)

=
p (zk|xk) p (xk|z1:k−1)

p (zk|z1:k−1)
(2.8)

In (2.6) Bayes’ Rule was applied and in (2.8) the conditional independence between mea-
surements was used. To grasp the Bayesian recursive process better, we will divide (2.8)
into two main steps, prediction and correction, and show the computations happening in
them.

Time Update - “Prediction”

First in the prediction step, the posterior at time k− 1, p (xk−1|zk−1), is extrapo-
lated forward in time to calculate the prior at time k:

p (xk|z1:k−1) =
∫
p (xk|xk−1) p (xk−1|z1:k−1) dxk−1. (2.9)

14 Chapter 2: Bayesian Estimation

Figure 2.2: Predict & Correct Cycle.

This is done using the probabilistic process model, here function f , given as

xk = f (xk−1,uk,vk; w) . (2.10)

Here, function f ’s arguments are the state to project forward in time, xk−1, potential
known external influences acting on the system such as control input, uk, and the pro-
cess model’s inherent noise, vk. The process model f as well as the observation model h
can be parametrized by a vector w. The models are covered in detail in Chapter 3.

The probability distribution p (xk|xk−1) is also called the state transition density, since
it describes the probability distribution to go from one state xk−1 to the next in time:

p (xk|xk−1) =
∫
δ (xk − f (xk−1,uk,vk; w)) p (vk) dvk, (2.11)

where δ (·) denotes the Dirac-delta function. The Dirac-delta function is a generalized func-
tion that is equal to zero for all arguments but zero, where it has an infinitely large peak[14].
It is not strictly a function, because its integral is not zero, but it can be manipulated like
a function in many cases.

Measurement Update - “Correction”

The next step is correcting the prediction by integrating the incoming noisy mea-
surement into our posterior density. With the help of the observation likelihood, p (zk|xk),
the posterior is updated to reflect the current strength of belief into the system state after
incorporating the measurement:

p (xk|z1:k) =
p (zk|xk) p (xk|z1:k−1)

p (zk|z1:k−1)
. (2.12)

From Equation (2.4) we know that α = (p (zk|z1:k−1))−1 is a scalar constant. The scaling
factor α can be calculated with

p (zk|z1:k−1) =
∫
p (zk|xk) p (xk|z1:k−1) dxk (2.13)

Chapter 2: Bayesian Estimation 15

and equation (2.12) can be written as

p (xk|z1:k) = Cp (zk|xk) p (xk|z1:k−1) .

The observation likelihood is computed similarly to the state transition density:

p (zk|xk) =
∫
δ (zk − h (xk,nk; w)) p (nk) dnk, (2.14)

where the observation model is implemented in function h, given as

zk = h (xk,nk; w) ,

accepting as arguments the system state and the observation noise and an optional param-
eter vector, w. p (nk) is the observation noise distribution as introduced by the measuring
instruments.

To summarize, figure 2.3 displays the important calculation steps for the recursive process.

Figure 2.3: Recursive Bayesian Estimation Summary.

While this is the optimal solution to the recursive estimation problem, the computational
cost to calculate the four multi-dimensional integrals is only manageable in linear Gaussian
models of systems, for which the optimal solution is given by the Kalman Filter[15].

2.2 The Kalman Filter

The Kalman Filter, originally published by R.E. Kálmán in 1960[15], describes
a recursive solution to the linear discrete-time estimation problem. In the close to 50

16 Chapter 2: Bayesian Estimation

years afterward it has been applied countless times and modified into several versions to
fit specific types of estimation problems, such as nonlinear data as well as continuous time
driven systems. This does not mean that the Kalman Filter framework cannot be used on
continuous problems, but only that the recursion is linear, its optimal terms given by:

x̂−k = E [f (xk−1,uk,vk)] , (2.15)
ẑ−k = E

[
h
(
x−k ,nk

)]
, (2.16)

Kk = E
[(

xk − x̂−k
) (

zk − ẑ−k
)T]

E
[(

zk − ẑ−k
) (

zk − ẑ−k
)T]−1

= Pxk z̃k
P−1
z̃k
,

(2.17)

as seen in [12]. Expectations of nonlinear functions of random variables need to be made
here, which can only be calculated accurately for linear models with Gaussian random
variables. This does not disallow its application to nonlinear systems, but requires further
approximations to be made in order to be able to apply the framework to nonlinear systems.
Some such approximations can be seen in the EKF (Extended Kalman Filter), as discussed
in section 2.2.2.

Before we take a detailed look at the simple discrete-time Kalman Filter, further no-
tational conventions need to be addressed. The most important are listed for convenient
reference and quick checkups in Table 2.1.

In the linear case, the process model, f (xk−1,uk,vk; w), is a linear combination of a
square state transition matrix, F, multiplied with the prior state vector, xk−1, a square
matrix B for the effect on the state transition of the optional control input, uk, and the
process noise, vk. The observation model is similarly given by a square matrix H and the
observation noise, nk. The process and measurement noises are assumed to be zero-mean,
independent of each other with normal (Gaussian) probability distributions:1

p (vk) = N (0,Q) ,
p (nk) = N (0,R) .

The solution Kálmán derived calculates auxiliary factors such as the estimate error covari-
ance, P, and the Kalman Gain, K, whose purposes are explained in the next section. Since
this solution is recursive, we need to distinguish between our a priori and a posteriori vari-
ables, be they state estimates or covariances. To accomplish this, the superscript minus − is
used to denote the a priori variable as in [13], e.g. the prior estimate, x̂−k , and the a priori
estimate error covariance, P−k . The same variable without superscript minus denotes its
posterior version, such as the posterior state estmate, x̂k, and the posterior estimate error
covariance, Pk. To be able to address the calculations in a more detailed manner, following
assumptions are made without loss of generality: Let x ∈ Rn, z ∈ Rm and u ∈ Rr. Likewise
let the noises v ∈ Rn and n ∈ Rm. This leads to dimensions of the matrices as given in
Table 2.1.

1Although these matrices are presented as static, in practice they can change dynamically over time and
be properly indexed, e.g. Fk.

Chapter 2: Bayesian Estimation 17

Symbol Dimension Description

F n× n state transition matrix
B n× r control input effect matrix
H m× n measurement mapping matrix
Q n× n symm. pos.-def. matrix of process noise covariance
R m×m symm. pos.-def. matrix of observation noise covariance
P n× n estimate error covariance matrix
K n×m Kalman Gain, blending factor matrix

P−k n× n prior estimate error covariance matrix

Table 2.1: Notational Conventions.

2.2.1 Linear Estimation

The original (Discrete) Kalman Filter estimates a system state directed by a linear
discrete-time process model, f , from Equation (2.10):

xk = f (xk−1,uk,vk)
= Fxk−1 + Buk + vk,

(2.18)

and relates system states to its noisy measurements, zk, via a linear observation model, h:

zk = h (xk,nk)
= Hxk + nk.

(2.19)

The Kalman filter is an optimal solution to the recursive Bayesian estimation problem:
how to calculate the posterior distribution accurately in a recursive way[15]. Therefore, the
formulae derived by Kálmán follow the same structure of recursive Bayesian estimation.
For this reason, Kálmán’s solution is presented in the same order as before: First, the time
update step is presented, followed by the measurement update step.

Time Update - “Prediction”

The equation to forward the system state estimate in time is similar to (2.18),
given as

x̂−k = Fx̂k−1 + Buk, (2.20)

but without the effect of the process noise, equal to f (xk−1,uk, 0). F is a square matrix
containing the process model calculations for progressing a system state in time. It is
called the state transition matrix or function. The result of the time progression is linearly
combined with the effects of the optional input variable, uk, on the system state. For
example, uk can be the control input for a robot. Since the input is independent from the
system state, it offers additional information that the process model cannot extract from the
state estimate alone. How the control input affects the state is defined in the n×m matrix

18 Chapter 2: Bayesian Estimation

B. The process noise cannot be ignored to properly estimate the state, so it is treated by
calculating the a priori estimate error covariance P−k :

P−k = FPk−1FT + Q. (2.21)

Equation (2.21) includes the process noise that overlays the system state by adding the
noise covariance to the forwarded error covariance. The state estimate error covariance Pk

represents how strong we believe the state estimate x̂k is polluted by noise.

Measurement Update - “Correction”

In the measurement update step an observation, zk, is received from a sensor
that perceived indirect effects of the actual system state, xk, on the environment. This
measurement is used to correct the current a priori estimate of the system state, x̂−k .
Formulae behave similarly to the process noise equations by not using the measurement
noise directly but by adding the measurement noise covariance to the error covariance, P.
Furthermore, they calculate another auxiliary factor, K.

Let’s take a look at all measurement update equations and examine them in order:

Kk = P−k HT
(
HP−k HT + R

)−1
, (2.22)

x̂k = x̂−k + Kk

(
zk −Hx̂−k

)
, (2.23)

Pk = (1−KkH) P−k . (2.24)

In (2.22), the a priori estimate error covariance and observation model are used to calculate
the Kalman Gain Kk. Its purpose is to minimize the posterior estimate error covariance,
Pk = E

[
(xk − x̂k) (xk − x̂k)

T
]
, so that the filter stays optimal and does not degrade. There

are various mathematical formulations for calculation of the Kalman Gain, yet these forms
are algebraically the same and differ only in their computational complexities. In other
words, K is the gain or blending factor by which the a priori estimate x̂−k is adjusted with
the innovative difference z̃k,

z̃k =
(
zk −Hx̂−k

)
,

between the actual measurement zk and the expected ẑk,

ẑk = Hx̂−k

in (2.23). The difference z̃k is also called the innovation or residual, embodying the informa-
tion gained by the observation. The Kalman Gain represents the strength of the influence
of the innovation on the state estimate, i.e. if the trust is stronger in the prior estimate
or in the measurement. A detailed look at the derivation of the Kalman gain is presented
in [16]. After the correcting adjustment of the state estimate, the a posteriori estimate
error covariance, Pk, is updated in Equation (2.24) to portray the belief in the current
estimate, where 1 is the identity matrix with appropriate dimension. Various forms for the
computation of Pk exist as well.

Chapter 2: Bayesian Estimation 19

Homologous to recursive Bayesian estimation, the Kalman Filter runs in a predict-correct
cycle as portrayed in Figure 2.2. To start the loop, initial values are necessary for the
variables in the mathematical formulae, i.e. here x̂0 and P0. Figure 2.4 of the Kalman
filter’s predict-correct-cycle reflects this necessity.

Regarding the Kalman Filter framework as a whole, after each predict and correct pair
the cycle loops the process and uses the previous a posteriori estimate, x̂k−1, to predict
the new a priori estimates, x̂−k and P−k . This recursive characteristic is the reason why
the Kalman Filter can be applied to real world problems as the optimal solution for linear
models in discrete time intervals. Instead of having to calculate offline on the complete sets
of estimates and measurements at each step, as e.g. the Wiener Filter does, the Kalman
Filter computes the estimates of the current step and reuses them for the next recursion step.
To illustrate this fact, the figure showing an abstract sketch of the predict and correct cycle

Figure 2.4: The Detailed Kalman Filter Loop.

is extended to contain the equations for the update steps in Figure 2.4, and an algorithmic
formulation of the Kalman filter is provided with Algorithm C.1 in Appendix C.

2.2.2 Nonlinear Estimation

The Kalman Filter framework can be applied to linear and nonlinear systems. In
the nonlinear case certain approximations must be made to continue to adhere to Kálmán’s
assumptions. His assumptions are (from [12, 15]):

1. Consistent minimum variance estimates of system random variables (and consequently
the posterior state distribution) can be calculated by maintaining only their first and
second order moments (means and covariances, resp.)

2. The posterior update is a linear function of the prior knowledge of the system,
p (xk|z1:k−1), and the new observed information, p (zk|xk). In other words, it is as-
sumed that Equation (2.12) can be accurately approximated by a linear function.

20 Chapter 2: Bayesian Estimation

3. Accurate predictions of the state and of the observation can be calculated (using
process and observation model). These are needed to approximate first and second
order moments of p (xk|z1:k−1) and p (zk|xk).

Written and implied, but not emphasized, is the fact that the densities do not have to be
Gaussian, but the estimator only retains the Gaussian elements (mean and covariance) of
these densities. This suffices only if the first assumption holds, that minimum variance
estimates can be calculated (from means and covariances) in a consistent way. If this is
true, “then the resulting Gaussian approximate posterior [distribution] will have significant
support overlap with the true posterior”, signifying that the true distribution is fairly similar
to a Gaussian distribution.

Assumption 2 is made to permit computational feasibility and practical realization of
the estimator using efficient implementations of linear algebra methods. For linear models
to which the discrete Kalman Filter can be applied, this requirement is already satisfied.
Nonlinear model descriptions necessitate linearization for the update step in the Kalman
Filter framework. Such a linearization of (2.12) is applied in the Extended Kalman Filter
(EKF). The EKF has become a well-established method in research and industry used to
reduce noise in a wide variety of applications.

The equations of the EKF are similar to those of the linear Kalman Filter, in fact, Figure
2.4 can be transferred almost completely to the Extended Kalman Filter, barring some
few adjustments. The main differences are the process and observation models. Here, the
functions f and h describing these models are nonlinear:

xk = f (xk−1,uk,vk) , (2.25)
zk = h (xk,nk) . (2.26)

The optimal terms for the filter recursion are still (2.15)-(2.17):

x̂−k = E [f (xk−1,uk,vk)] ,
ẑ−k = E [h (xk,nk)] ,

Kk = E
[(

xk − x̂−k
) (

zk − ẑ−k
)T]

E
[(

zk − ẑ−k
) (

zk − ẑ−k
)T]−1

.

The non-linearity of the process and observation model functions is approximated by
Taylor Series Expansion. Taylor Series Expansion is the method of approximating a differ-
entiable function around a point by a finite number of terms of a Taylor Series. Furthermore,
a Taylor Series is an infinite sum of Taylor polynomials of an arbitrary differentiable func-
tion f around a given point (2.28). These Taylor polynomials are terms whose coefficients
are calculated from the derivatives at the given point (a, f (a)) of function f , as in (2.28).
Taylor’s Theorem states that a differentiable function can be approximated locally around
a given point by orders of the specific Taylor Series. Especially, it states that an infinite

Chapter 2: Bayesian Estimation 21

Taylor Series indeed represents the function f at that point:

f (x) ≈ f (a) +
f ′ (a)

1!
(x− a) +

f ′′ (a)
2!

(x− a)2 +
f (3) (a)

3!
(x− a)3 + · · · (2.27)

=
∞∑
n=0

f (n) (a)
n!

(x− a)n . (2.28)

Calculating the Taylor Series to an infinite depth for mathematically accurate results is
computationally not feasible, so a compromise has to be made to only calculate the terms
up to an n-th order. The resulting error between the approximate and the actual value
should be small for x near enough to a, in order to comply to Kálmán’s assumptions to stay
an optimal estimator. Taylor presents methods to estimate precisely how small the error is.

The Extended Kalman Filter applies the Taylor Expansion to multiple variables, the
formulation using multi-index notation2 given as

f (x) ≈
n∑

|α|=k

1
α!
∂αf (a)
∂xα

(x− a)α ,

where

α = (α1, α2, . . . , αn) ,
|α| = α1 + α2 + · · ·+ αn,

α! = α1! · α2! · · ·αn!,
xα = xα1

1 xα2
2 · · ·x

αn
n ,

∂α = ∂α1
1 ∂α2

2 · · · ∂
αn
n ,

and where
∂αi
i =

∂αi

∂xαi
i

.

The EKF approximates only to the first order, calculating the Jacobian matrices (F and H)
for the nonlinear (and differentiable) functions of the process model f and the observation
model h, as well as for the noise variables (vk and nk) of the models, i.e. the matrices V
and L. This results in the matrices as defined by the following partial derivatives:

Fk =
∂f
∂x

∣∣∣∣
x̂k−1,uk

⇒
[
Fk

]
[i,j]

=
∂f[i]
∂x[j]

∣∣∣∣
x̂k−1,uk

(2.29)

Hk =
∂h
∂x

∣∣∣∣
x̂−k−1

⇒
[
Hk

]
[i,j]

=
∂h[i]

∂x[j]

∣∣∣∣
x̂−k−1

(2.30)

Vk =
∂f
∂v

∣∣∣∣
x̂k−1,uk

⇒
[
Vk

]
[i,j]

=
∂f[i]
∂v[j]

∣∣∣∣
x̂k−1,uk

(2.31)

Lk =
∂h
∂n

∣∣∣∣
x̂−k−1

⇒
[
Lk
]
[i,j]

=
∂h[i]

∂n[j]

∣∣∣∣
x̂−k−1

. (2.32)

2More on multi-index notation can be found in [17].

22 Chapter 2: Bayesian Estimation

The matrices from (2.32) are recalculated every time step, as indicated by the index k.

Figure 2.5: The Detailed Extended Kalman Filter Loop.

Figure 2.5 shows the familiar predict-correct cycle with the EKF equations. An algorith-
mic formulation of the extended Kalman filter is presented in Algorithm C.2.

Inaccuracies of the EKF

Unfortunately, the linearization by approximation using first-order truncated Tay-
lor Expansion in general breaks the “optimal” property of the Kalman Filter framework.
Since the EKF only considers the zeroth and first elements of the series in its approximation,
all higher order derivatives need to be effectively zero in order for the approximations to be
valid. Put differently, the zeroth and first order terms (mean and covariance) of Equation
(2.27) must dominate over the higher order derivatives. Figure 2.6 gives an example for this
weak point, showing a vehicle traveling on a circular path with uncertainty in speed.

Another disadvantage of the EKF is that its covariance usually underestimates the effect
of noise on the state estimate, overrating the confidence or belief in the state estimate.
Furthermore, although the probability distribution of the random variable x (as captured by
its covariance Px) is important for the validity of the EKF’s linearization, the fact that x is a
random variable with an intrinsic uncertainty is completely ignored during the linearization
process. That is, by linearizing around a single point (the current state estimate) the crucial
expectation operator E from Equations (2.15)-(2.17) is lost. The same applies to the noise
variables v and n.

Should the estimate (state or covariance) stray too far from the correct state, then the
EKF will diverge quickly.
Further detailed mathematical and experimental discussion of the flaws of the extended
Kalman filter can be found in [12], with a short reproduction thereof presented in Appendix
A.

Chapter 2: Bayesian Estimation 23

(a) True Mean and covariance of a
vehicle at time tk

(b) True mean and covariance pre-
diction to time tk+1

(c) EKF prediction of mean with lin-
ear covariance propagation

(d) EKF prediction adjusted to
compensate for linearization error

Figure 2.6: EKF Linearization Error Example (from [18]).
A) The true state and covariance terms at time instant tk. B) The true state and
covariance terms at next time step tk+1. C) The EKF linearizes a nonlinear process
function of the vehicle’s motion at time instant t and predicts the position and error
covariance based on the linearized model. D) The posterior state and covariance after
correction with the measurement of the actual state was applied.

2.3 The Unscented Kalman Filter

The Unscented Kalman Filter is, as the name implies, a recursive estimator based
on the optimal Gaussian approximate Kalman filter framework addressing some of the
shortcomings of the EKF. To reiterate the previous section, the two discussed deficiencies
of the EKF were:

1. Disregard of probabilistic uncertainty of underlying system state and noise random
variables during linearization.

2. Limited accuracy of first order Taylor Expansion.

24 Chapter 2: Bayesian Estimation

It is necessary to address these issues in order to improve the accuracy, consistency and
efficiency of the EKF. The proposal by Julier et al.[19] considers a completely different
strategy to approximate the optimal state estimate, observation estimate and optimal gain
of the Kalman Filter from Equations (2.15) to (2.17). Julier’s estimator, the Unscented
Kalman Filter (UKF), is a deterministic sampling-based Kalman Filter without the need to
calculate derivatives of the system equations. The EKF uses these derivatives to linearize
the nonlinear functions by approximating them at a single point with a first order truncated
Taylor Series expansion. The truncation at the first order often introduces large estimation
errors in the estimated statistics of the posterior distributions of the states, especially if
the models f and h are highly nonlinear and the local linearity assumption breaks down,
meaning the effects of the higher order terms of the Taylor series become significant.

The UKF, on the other hand, does not try to linearize the nonlinear process and ob-
servation models but uses the true nonlinear models to propagate the random variables
and consecutively approximates the posterior probability distribution of the state random
variable. The UKF is nonetheless a Kalman filter and therefore treats the state random
variable as a Gaussian random variable, but the distribution is defined by deterministically
chosen sample points, capturing its true mean and covariance completely. These sample
points are propagated through the nonlinear system (in addition to the state random vari-
able) and afterward capture the posterior mean and covariance precisely to the 2nd order
for any non-linearity. The deterministic method to choose the sample points is called the
Unscented Transformation and is elaborated in the next section. A generalizing extension of
the Unscented Transformation, the Scaled Unscented Transformation, constitutes the major
algorithmic improvement of the unscented Kalman filter.

2.3.1 Unscented Transformation

The Unscented Transformation (UT) [18] is based on the approach that estimating
a probability distribution is easier than approximating an arbitrary nonlinear function. It
is a procedure to calculate the statistics (not limited to mean and covariance) of a random
variable subjected to a nonlinear transformation. The general problem is having an N -
dimensional random vector x, with mean x̄ and covariance Px, propagated through an
arbitrary nonlinear function g, given as

y = g (x) ,

and wanting to predict the posterior mean ȳ and covariance Py of the M -dimensional
random variable y. In Kalman filtering specifically, there are two such nonlinear transfor-
mations, the process and observation models f and h as in Equations (2.25) and (2.26),
used to predict the state at the next time step x̂−k or the corresponding observation ẑk.

The general method applied by the UT is to deterministically choose a number of sample
points, e.g. 2N + 1, to generate a discrete distribution with the same first and second (and
possibly higher) moments as the prior distribution, then directly transform these points
through the nonlinear functions. The posterior mean and covariance of this transformed

Chapter 2: Bayesian Estimation 25

set can then be calculated, representing the estimate of the nonlinear transformation of the
original distribution. Dividing this basic method into the three major steps results in:

1. Compute set of sigma points as matrix X.

2. Transform each point in the set: Yi = g (Xi), columns of matrix Y.

3. Calculate ȳ and Py by computing mean and covariance of points Yi.

Figure 2.7 summarizes this unscented transformation routine in a schematic diagram.

Figure 2.7: Schematic diagram of the unscented transformation.
The three major steps of the SUT are emphasized. 1.) Calculate Sigma Points from
state and covariance. 2.) Propagate through nonlinear function. 3.) Calculate
posterior mean, covariance and cross-covariance.

The three major steps to calculate the posterior statistics, only mean and covariance for
now, are explained in detail below:

26 Chapter 2: Bayesian Estimation

1. Given the prior mean, x̄, and covariance, Px, of anN -dimensional Gaussian probability
distribution of x, the set S of 2N + 1 weighted samples, called sigma points, is calculated,
capturing the true mean and covariance. One strategy to select appropriate sigma points is
given as follows,

X0 = x̄ , w0 =
κ

N + κ
(i = 0) ,

Xi = x̄ +
(√

(N + κ) Px

)
i

, wi =
1

2 (N + κ)
(0 < i ≤ N) ,

Xi = x̄−
(√

(N + κ) Px

)
i−N

, wi =
1

2 (N + κ)
(N < i ≤ 2N) .

Where X is a N×(2N + 1) matrix of sigma points, with each column Xi being a sigma point
in the state space.

(√
(N + κ) Px

)
i

is the ith column of the square root of the weighted
covariance matrix, wi is the weight for the ith sigma point and κ is a scaling parameter
controlling the effects of fourth and higher order moments. The matrix square-root of a
positive-definite matrix is not deterministically unique, therefore any orthonormal transfor-
mation of the square root (and thereby also of the set of sigma points) can be chosen as
the square root (and as the set of sigma points). This invalidates the restrictions of using
orthogonal or symmetric matrix square roots that are numerically sensitive and compu-
tationally expensive to find, allowing the application of efficient and stable methods such
as the Cholesky decomposition. In addition, alternative sigma point selection techniques
can be employed to capture higher order moments, commonly requiring a larger amount of
sigma points.

2. Subsequently to calculating the set of sigma points, each point Xi is propagated
through the nonlinear function as follows,

Yi = g (Xi) ∀ i,

producing the set {Yi} ⊂ RM so that Y ⊂ RM×2N+1.

3. During the next step, the approximate mean, covariance and cross-covariance of y are
computed as follows:

ȳ ≈
2N∑
i=0

wiYi,

Py ≈
2N∑
i=0

wi (Yi − ȳ) (Yi − ȳ)T ,

Pxy ≈
2N∑
i=0

wi (Xi − x̄) (Yi − ȳ)T .

(2.33)

Figure 2.8 illustrates the advantage of this method using the example from Figure 2.6 of
a vehicle traveling on a circular path with an uncertainty in speed.

Chapter 2: Bayesian Estimation 27

(a) Vehicle on circular path with uncer-
tainty in speed

(b) UKF predicts mean and covariance
correctly using UT

Figure 2.8: UKF Example for Unscented Transform.

Analyzing the performance of this sigma point calculation scheme, the approximations
are calculated accurately to the second order for any nonlinear function and up to the third
order of the Taylor series expansion for true Gaussian priors. Errors are introduced above
the respective second or third order moments, but are scaled by the parameter κ, as dis-
cussed later. This reflects a great improvement over the accuracy of the EKF’s linearization
technique.

Before turning to the effects of the parameter κ, the properties concerning the remaining
variables of the unscented transformation must be discussed. As N (dimension of state
space) increases, so does the radius of the sphere encompassing all sigma points, amplifying
the risk of including non-local effects within the sampling, although the posterior mean and
covariance are still captured correctly to the second order. Depending on the magnitude
of the non-linearity however, this can lead to significant difficulties. The parameter κ was
introduced to deal with that dilemma, enabling the scaling of the sigma points closer to
and farther away from the prior mean x̄. This distance |Xi − x̄| is proportional to

√
N + κ.

The parameter κ affects this distance in the following way: If κ = 0, then the distance is
simply proportional to

√
N . For κ > 0 the sigma points are adjusted away from x̄ and

when κ < 0 then the points are scaled towards x̄. The special case of κ = 3 − N cancels
the effect of N , but when κ < 0 then the weight w0 < 0 and the event of the calculated
covariance becoming non-positive semi-definite is suddenly possible.
In order to solve this problem, the scaled unscented transformation was developed[20].

2.3.2 Scaled Unscented Transformation

The scaled unscented transformation introduces another scaling parameter, α, and
replaces the sigma points of the UT set S = {wi,Xi|0 ≤ i ≤ 2N} with those of the set

28 Chapter 2: Bayesian Estimation

S ′ = {w′i,X′i|0 ≤ i ≤ 2N}, where

X′i = X0 + α (X0 −Xi) (0 ≤ i ≤ 2N) ,

w′i =

{
w0
α2 +

(
1− 1

α2

)
(i = 0) ,

wi
α2 (0 < i ≤ 2N) .

The parameter α with 0 ≤ α ≤ 1 scales the “radius” of the sigma point distribution to
control (and even avoid) the impact of sampling non-local effects when the non-linearities
are strong. Ideally, α should be a small number.

The two steps of calculating a sigma point set S and then scaling that set to receive S ′ can
be merged into a single step. For that single step, the sigma point selection and weighting
use a new variable, λ, as a function of α, κ and N , given as

λ = α2 (N + κ)−N.

The formulae for sigma point selection and weights are consequently adjusted to:

X0 = x̄ , wm0 =
λ

N + λ
(i = 0), (2.34)

Xi = x̄ +
(√

(N + λ) Px

)
i

(0 < i ≤ N), wc0 =
λ

N + λ
+
(
1− α2 + β

)
(i = 0), (2.35)

Xi = x̄−
(√

(N + λ) Px

)
i−N

(N < i ≤ 2N), wmi = wci =
1

2 (N + λ)
(0 < i ≤ 2N). (2.36)

Here are two things to note: Firstly, the zeroth terms of the mean and the covariance
have differing weights: wm is the weight vector for the mean and wc for the covariance with
elements wmi and wci . Secondly, because the magnitude of the errors of the fourth and higher
order moments is directly affected by the weighting of the zeroth sigma point[20], a third
parameter β is introduced to the zeroth term of the covariance weight vector wc0. β is non-
negative (β ≥ 0) and can be used to incorporate prior knowledge of the fourth (kurtosis) or
higher order Taylor series’ terms. This knowledge is used to minimize the aforementioned
errors at the higher orders. In the special case that x is Gaussian distributed, β = 2 is
optimal[12]. The choice of parameters is problem specific. Research of optimization of the
SUT’s parameters is still ongoing. Some default values are given in the summary below.

To conclude the extension of the standard (“simplex”) unscented transformation, an al-
gorithmic notation is given in Algorithm C.3 and the Scaled Unscented Transformation is
summarized as follows:

1. Choose problem-specific Parameters α, β and κ:

• 0 ≤ α ≤ 1 controls the degree of spread of the sigma point distribution around
x̄, default α = 0.001.

• β ≥ 0 scales effect of zeroth sigma point, for minimization of 4th or higher order
moment errors, if prior knowledge is available. (β = 2 optimal for Gaussian).

Chapter 2: Bayesian Estimation 29

• κ ∈ R scales sigma points towards or away from the mean, default κ = 0.

2. Calculate Sigma Points, using Equations (2.34)-(2.36).

3. Propagate each Sigma Point through given nonlinear function g (·),

yi = g (Xi) ∀ i ∈ {0, . . . , 2n} .

4. Calculate posterior mean, covariance and cross-covariance with Equations (2.33).

To depict the improvement of the Scaled Unscented Transformation in comparison to the
EKF’s linearization technique, Figure 2.9 is reproduced from [12]. In the Unscented Kalman

Figure 2.9: Accuracy comparison between EKF and SUT from [12].
From left to right, the posterior statistics are calculated for a random variable that is
propagated through an arbitrary nonlinear transformation: A) True statistics, B) 1st

order linearization (EKF), C) SUT. The superior performance of the SUT approach
is evident.

Filter, the posterior statistics of the Scaled Unscented Transformation are recursively used
as prior statistics of the next time step. The UKF method is formulated in Algorithm C.4.

30 Chapter 2: Bayesian Estimation

2.3.3 Continuous Time Estimation

All estimators discussed above work in discrete time steps to propagate the random
variables through linear or nonlinear models. The systems that these models represent,
though, usually run in continuous time in the real world and are very common in engineering
and physics application:

d

dt
x (t) = f (x (t) ,u (t) , t) + v (t) ,

z (t) =
d

dt
y (t) = h (x (t) , t) + n (t) ,

where z (t) is the formal derivative of the measurement process. Therefore, a continuous
time formulation of the models and consequently of the filters should intuitively yield bet-
ter results, since the continuous time stochastic process formulation models the underlying
system more accurately. Another advantage of a continuous time version is the numerical
stability concerning the progression of the estimate error covariance. In contrast to a dis-
crete time formulation of the noise process, where the covariance can become non-positive
definite, a continuous time formulation of the noise processes cannot force the estimate er-
ror covariance to become non-positive definite. The continuous time version of the simple
Kalman Filter is given as the Kalman-Bucy-Filter. A continuous time version of the EKF
exists as the extended Kalman-Bucy filter[21, 22]. However, as demonstrated in the previ-
ous section, the EKF is far inferior to the UKF’s performance, accuracy and consistency,
therefore the focus of this section will be on the continuous time definition of the Unscented
Kalman Filter. This section orientates itself around one such formulation of the UKF given
by Särkkä[23].

Linear Estimation

For linear process and observation models, a continuous time formulation has been
developed as the Kalman-Bucy filter[21, 22]. The process and observation models the KBF
is based on are given as

d

dt
x (t) = F (t) x (t) + v (t) ,

z (t) =
d

dt
y (t) = H (t) x (t) + n (t) ,

where v (t) ∼ N (0,Q (t)) and n (t) ∼ N (0,R (t)).

The differential equations for the filter update are as follows,

d

dt
x̂ (t) = F (t) x̂ (t) + K (t) (z (t)−H (t) x̂ (t)) ,

d

dt
P (t) = F (t) P (t) + P (t) (F (t))T + Q (t)−K (t) R (t) (K (t))T ,

K (t) = P (t) (H (t))T (R (t))−1 .

(2.37)

Chapter 2: Bayesian Estimation 31

This simplified version considers noise properties in continuous time, under which condiction
the observation noise covariance R (t) also represents the covariance of the innovation.
Moreover, the distinction between the prediction and correction steps does not exist in
continuous time[24]. These equations must be solved for a point in time to be able to draw
a conclusion concerning the estimates at that time point. However, this is difficult because
of the nonlinear terms in the covariance differential equation, achieving optimal estimates
in few cases.

Nonlinear Estimation

For nonlinear estimation, the linearization concept of the EKF can be applied to
the Kalman-Bucy filter, but this option has the same shortcomings of the EKF attached. A
continuous time version of the UKF would be more desirable. Särkkä presents a formulation
of the continuous UKF, also called the unscented Kalman-Bucy filter, which we will describe
here[23]. Before that however, additional notational conventions are necessary to tidy up
the presentation for easier reading.

Notational Conventions To clean up the notation, we write the expressions in matrix
form:

Y = g (X) ,

where X ∈ RN×(2N+1) is the matrix of (scaled) sigma points (with columns Xi), g an
arbitrary nonlinear function and Y the matrix of transformed sigma points (in our case
Y will be the propagated state estimates matrix X̂− as well as the expected observations
matrix Ẑ).

The matrix of the scaled unscented transformation, X, is calculated in matrix form with

X (t) = [m (t) · · · m (t)] + γ
[
0
√

Px (t) −
√

Px (t)
]
, (2.38)

where γ =
√
N + λ and m (t) = x̄ (t) is the prior mean at time t. The posterior mean,

covariance and cross-covariance are then calculated after the nonlinear transformation was
applied using the following equations,

ȳ (t) = Y (t)wm,

Py (t) = Y (t)W (Y (t))T ,

Pxy (t) = X (t)W (Y (t))T .

Here, W is the weight matrix with dimension (2N + 1)× (2N + 1), calculated from the two
weight vectors wm and wc from Equations (2.34) to (2.36) as follows:

W = (1− [wm wm · · · wm]) diag (wc) (1− [wm wm · · · wm])T . (2.39)

1 is the identity matrix with appropriate dimension, and diag (wc) is a diagonal matrix with
the elements of the weight vector wc as its diagonal band and the rest equal to zero. Table
2.2 shows another summary of symbols used.

32 Chapter 2: Bayesian Estimation

Symbol Dimension Description

X (tk) N × (2N + 1) Sigma point matrix at point in time tk
A (tk) N ×N Cholesky decomposition of Px (tk)
Φ (·) N ×N Auxiliary function to get lower triangular part of matrix
Z (t) M × (2N + 1) Matrix with measurement z (t) in each column
Ẑ (t) M × (2N + 1) Matrix of expected measurements
Z̄ (t) M × (2N + 1) Matrix with mean of expected measurements in each column

Table 2.2: UKF Notational Conventions.

Unscented Kalman-Bucy filter: By taking the equations of the discrete time UKF
(Algorithm C.4) to the formal limit, the stochastic differential equations corresponding to
the UKF time and measurement update processes can be derived [23] as follows,

K (t) = X (t)W (h (X (t) , t))T [R (t)]−1 ,

d

dt
m (t) = f (X (t) , t)wm + K (t) [z (t)− h (X (t) , t)wm] ,

d

dt
P (t) = X (t)W (f (X (t) , t))T + f (X (t) , t)W (X (t))T

+ Q (t)−K (t) R (t) (K (t))T ,

(2.40)

where z (t) is defined as the formal derivative of the nonlinear observation model,

z (t) =
d

dt
y (t) = h (x (t) , t) + n (t) ,

also called the differential measurement.

Although the mathematical equations are correct, often errors arise due to computa-
tional limitations such as finite numerical precision of computer arithmetic. For this reason
Kalman filter equations are often implemented in such a way that the matrix square roots
of covariance matrices are used instead of the matrices’ actual values [25]. Since the UKF
already uses the matrix square roots in its sigma points selection, the numerically stable
square root version of continuous time UKF is attained by formulating the filter equations
(2.40) as a differential equation for sigma points [23].

Square Root Unscented Kalman-Bucy filter: Here, the sigma point matrix is defined
similar to Equation (2.38):

X (t) = [m (t) m (t) · · · m (t)] + γ [0 A (t) −A (t)] , (2.41)

where A (t) is the lower triangular matrix of the Cholesky factorization (the square root)
of the covariance P (t), given as

A (t) = chol (P (t)) .

Chapter 2: Bayesian Estimation 33

Therefore the initial A (t0) can be calculated from the initial covariance P (t0) by Cholesky
decomposition. The initial matrix square root, A (t0), is the only one that needs to be
calculated by actual Cholesky decomposition. The square root A (t) for all t > 0 can be
extracted from X (t) at any step by very simple methods (see M , Φ and their applications
in (2.42)). As a consequence, the covariance P (t) of the state never needs to be evaluated
in the implementation of the algorithm.

The filter equations are given as

K (t) = X (t)W (h (X (t) , t))T
[
V (t) R (t) (V (t))T

]−1
,

M (t) = (A (t))−1
[
X (t)W (f (X (t) , t))T + f (X (t) , t)W (X (t))T

+ L (t) Q (t) (L (t))T

−K (t) V (t) R (t) (V (t))T (K (t))T
] (

(A (t))−1
)T

,

d

dt
[X (t)]i = f (X (t) , t)wm + K (t) [z (t)− h (X (t) , t)wm]

+ γ [0 A (t) Φ (M (t)) −A (t) Φ (M (t))]i ,

(2.42)

where Φ (·) is a simple function returning the lower triangular part of its argument matrix,
defined as

Φij (M) =

Mij (i > j)
1
2Mij (i = j)
0 (i < j) ,

(2.43)

where i is the row number and j the column number of the element of matrix M . The
process and observation noise covariance matrices have been divided into two matrices
each. The previous symbol of the process noise covariance, Q (t), here denotes the diagonal
dispersion matrix for the process noise and matrix L represents an arbitrary time-varying
matrix independent of the state and measurement, so that

v (t) ∼ N
(

0,L (t) Q (t) (L (t))T
)
.

Analogously, the previous symbol representing the observation noise covariance, R, now
represents the diagonal dispersion matrix of the measurement noise and V an arbitrary
time-varying matrix independent of the state and measurement, so that

n (t) ∼ N
(

0,V (t) R (t) (V (t))T
)
.

Continuous-Discrete UKF: With this numerically stable, continuous time formulation
of the UKF, continuous time prediction equations can be derived as special cases of Equa-
tions (2.42)[26]. These prediction equations can be used in a continuous-discrete version of
the UKF, which is an Unscented Kalman filter with a continuous time process model and a

34 Chapter 2: Bayesian Estimation

discrete time observation model (continuous time prediction and discrete correction step).
The differential square root equations for the continuous time prediction step are given as

M (t) = (A (t))−1
[
X (t)W (f (X (t) , t))T + f (X (t) , t)W (X (t))T

+ L (t) Q (t) (L (t))T
] (

(A (t))−1
)T

,

d

dt
[X (t)]i = f (X (t) , t)wm + γ [0 A (t) Φ (M (t)) −A (t) Φ (M (t))]i .

To obtain the mean estimate, integration is started from t0 and continues from step to step
over the time interval [tk−1, tk]. The correction step equations are given by the correction
equations of the discrete time UKF from Algorithm C.4. Square root versions thereof have
also been developed[27], presented in Algorithm C.6. In order to calculate square roots
efficiently, e.g. of the measurement covariance, Py,k = YkWYT

k , additional operators are
introduced:

qr {·} QR-Decomposition, modified:
The standard QR-Decomposition of a matrix A ∈ Rn×m, not necessarily of square
dimension but with n ≥ m, returns two matrices, an orthogonal matrix,Q ∈ Rn×n,
with QQT = 1 and an upper (right) triangular matrix, R ∈ Rn×m, with the bottom
(n−m) rows of R consisting entirely of zeroes, given as

AT = QR.

Here, a modified version of the QR-decomposition returns the transpose of the n ×
n upper right triangular matrix of R. The computational complexity of a QR-
Decomposition is O

(
nm2

)
, but note that performing a Cholesky factorization directly

on P = AAT is O
(
m3/6

)
plus O

(
nm2

)
for forming AAT .

The argument supplied to calculate the observation error covariance square root ma-
trix is a matrix consisting of the columns (Ẑi,k − z̄k) for 0 < i ≤ 2N . The zeroth
column needs to be treated separately (see cholupdate), because its weight, wc0, can
be negative.

cholupdate {·, ·, ·} Cholesky Factor Update:
If A is the original lower triangular Cholesky factor of P = AAT , then the updated
Cholesky factor, Ǎ, of the rank-1 updated (downdate for negative coefficients) matrix,
P̌, given as

P̌ = P±
√
cuuT ,

is denoted as
Ǎ = cholupdate {A,u,±c} .

If u is a matrix instead of a vector, then the result is m consecutive updates of A
using the m columns of u. The computational complexity of this algorithm is only
O
(
m2
)
.

Chapter 2: Bayesian Estimation 35

Adjusted to the formulation and notation of this paper, the discrete time square root
measurement update equations are given as follows:

z̄k = Ẑkwm = h
(
X̂−k , tk

)
wm,

A′y,k = qr
{√

wc1

(
Ẑk − z̄k

)
1:2N,k

√
R
}
,

Ay,k = cholupdate
{

A′y,k,
(
Ẑk − z̄k

)
0,k
, wc0

}
,

Pxy,k = X−kW
(
Ẑk
)T

(2.44)

with which the Kalman Gain is calculated by

Kk = Pxy,k

(
(Ay,k)

−1
)T

(Ay,k)
−1 , (2.45)

and the state estimate corrected as follows,

mk = m−k + Kk (zk − z̄k) ,
U = KkAy,k,

Ak = cholupdate
{
A−k , U,−1

}
.

(2.46)

Equations (2.44) propagate the predicted state estimate, X̂− (tk), through the nonlinear
observation model function, then calculate the observation mean, covariance square root
and cross-covariance. Given Pxy,k, the Kalman Gain can be calculated in Equation (2.45)
followed by the correction of the estimated mean, m−k , with the current measurement, zk,
and the update of the a posteriori estimate error covariance square root matrix, Ak, in
Equations (2.46).

The calculation of the matrix square roots of the measurement error covariance,
√

YkWYT
k ,

and the posterior state estimate covariance, Ak, has been divided into two separate steps:
a QR-Decomposition and a Cholesky update. This has been done mainly for two reasons:
Firstly, it is more efficient than a direct Cholesky factorization of YkWYT

k , and secondly,
the zeroth column needs to be treated separately for numerical stability, since its weight,
wc0, can be negative. This algorithm can be further extended for the implementation with
the application of sequential measurement updates, as presented in the next section.

2.3.4 Sequential Updates

A modification to the normal Kalman Filter was developed to address difficulties of
the observation model encountered through the decades, namely the adjustment to Sequen-
tial Updates. This modification only affects the filter equations of the measurement update
step, therefore this section will not list time update equations. The original approach of
sequential updates was to decompose the measurement vector into scalar quantities and
then to process these scalar measurements sequentially. The main purpose of this scalar

36 Chapter 2: Bayesian Estimation

conversion was to avoid the matrix inversions necessary in the computation of the Kalman
Gain matrix, and thereby gain a reduction in computational time and hence an increase in
real-time capability[28].

In the case of several sensors as measurement sources for the filter, these sensors usually
supply data of different dimensions and at individual rates from each other. Thus such
a complex sensor fusion and synchronization problem would be “solved” by forcing the
sensors to a crude virtual common clock frequency equal to the lowest frequency of the
sensors. Such an approach opens up new questions and challenges, such as what to do with
observation data of sensors that have reported either multiple times or not yet during the
periodic time interval? Since all measurements are being combined in a single measurement
update function, simply ignoring the missing measurement data would not work. To solve
this problem, sequential updates introduce a formulation where each sensor has its own
observation model function.

The observation model equations for an Unscented Kalman filter with sequential updates
are then, given the state estimate X̂−k = f

(
X̂ (tk−1) , tk

)
and the error covariance matrix

P−k = P−x (tk), or the square root equivalent A (t), changed to accommodate the new
measurement vector zk, given as

zk = z (tk) =

z1 (tk)
...

zr (tk)

 .

The measurement vector in general is z (tk) ∈ RM , but consists of r individual measurement
data vectors3, zl (tk), of possibly varying dimensions. Each of these component vectors
corresponds to one single sensor supplying its measurement data. In consequence, each
sensor is based on its own observation model hl with nl ∼ N (0,Rl), given as

zl (tk) = hl (x (tk) , tk) + nl (tk) ,

where the filter observation model is represented by a concatenation of the single sensor
models as follows,

h
(
X̂ (t) , t

)
=

h1

(
X̂ (t) , t

)
...

hr
(
X̂ (t) , t

)
 .

The sigma point matrix of state estimates is then mapped to a matrix of expected measure-
ments by the nonlinear observation process, defined by

Ẑl (tk) = hl
(
X̂−k , tk

)
.

Chapter 2: Bayesian Estimation 37

Figure 2.10: Square Root UKF Sequential Updates.
Measurement vectors zl (tk), illustrated as different colored vectors of various dimen-
sions, are applied sequentially. The estimation variables are calculated recursively.

The design of the sequential updates is the following (illustrated in Figure 2.10): At
every measurement update step, the available observation corrections are applied in the
sequential order they were made. Let the number of aiding measurements be r, resulting
in r small measurement updates. To denote the number of measurement updates that
have been applied, the equation terms of time instant tk are indexed with that number,
e.g. X̂l, and the index k for the time instant is removed from the formulations, since all
terms in the correction step are at time step k. The initial terms for l = 0 are given as
X̂0 = X̂−k = X̂− (tk), P0 = P−k = P− (tk) or A0 = A−k = A− (tk).

3Starting to count at 1, not 0, i.e. l = 1, . . . , r.

38 Chapter 2: Bayesian Estimation

For measurement zl (tk), the adjusted correction step equations for the corresponding
sequential update step l are then given as:

Ẑl = hl
(
X̂l−1, tl

)
,

z̄l = Ẑlwm,

Py,l = ẐlW ẐTl + Rl,

Pxy,l = X̂lW ẐTl ,

(2.47)

and

Kl = Pxy,l (Py,l)
−1 ,

x̂l = x̂l−1 + Kl (zl − z̄l) ,

Pl = Pl−1 −KlPy,l (Kl)
T .

(2.48)

Their square root versions are

Ẑl = hl
(
X̂l, tl

)
,

z̄l = Ẑlwm,

Ay,l =
√

ẐlW ẐTl + Rl,

Pxy,l = X̂lW ẐTl ,

(2.49)

and

Kl = Pxy,l (Ay,l)
−1
(

(Ay,l)
−1
)T

,

x̂l = x̂l−1 + Kl (zl − z̄l) ,
U = KlAy,l,

Al = cholupdate {Al−1, U,−1} .

(2.50)

See the definitions of QR-Decomposition and Cholesky update in the previous section for
calculating the square root efficiently. At the end of the sequential updates in the correction
step, the r-th terms are set to be the posterior variables: X̂r = X̂k = X̂ (tk), Pr = Pk =
P (tk) and Ar = Ak = A (tk).

The sequential updates modification alters the observation model insofar, as it allows for
an arbitrary number of measurement sensors to have their own observation model functions
(and corresponding noise statistics). Additionally, the measurements will only be integrated
in the measurement update step if sensor measurements are available for the filter at that
time instant, enduring (and ignoring) missing measurements while applying available mea-
surements in the correction process. This simplifies the addition of new sensors into the
observation model as well as the synchronization of sensors with differing data update rates.

Chapter 2: Bayesian Estimation 39

2.3.5 Latency Compensation

The goal of an estimator, as discussed in this paper, is to optimally estimate a
system state variable, given sensor measurements of that state’s indirect effects. To apply
these measurements optimally, their time instances are obviously critical for the correction
process if the underlying system is dynamical. In the case that a delayed measurement is
applied by the observation update process to correct a state estimate at the wrong time
instant, errors are introduced that should be avoided. This lagged measurement is an
observation of effects of a state estimate that were valid earlier in time, but since the
system has evolved during the time between the making of the observation and its usage
in the correction process, the state that the measurement portrays is not the one that the
system is in at the time of the correction step.

To be specific, at time instant tk a measurement z (tk−n) with information of effects
of a past state x (tk−n) is used to correct state estimate x̂ (tk), as illustrated in Figure
2.11. Between tk−n and tk are n − 1 correction steps, and at the n-th step the delayed

Figure 2.11: Delayed sensor measurement applied at delayed instant in time.

measurement is supposed to be used for correction purposes. An example for such delayed
sensor measurements could be egomotion information from visual cues such as optic flow,
which takes time to calculate depending on the resolution of the images supplied to the optic
flow and egomotion calculation algorithms, as well as on the complexity of said algorithms.
Another example are GPS sensors with their processing delay, calculating the Geodetic
coordinates from received satellite data.

40 Chapter 2: Bayesian Estimation

Merwe and Wan implemented an idea by Julier to accommodate for this delay at the
correction process level [12]. In the implementation, they view the problem not as extrap-
olating a measurement forward in time, but rather as taking a cross-correlation backwards
through time. To fuse the delayed measurement correctly, Equation (2.23) becomes

x̂k = x̂−k + Kkz̃k−n, (2.51)

where the delayed innovation is given as

z̃k−n = zk−n − ẑk−n. (2.52)

The Kalman Gain for the delayed fusion, where lag = k − n, is calculated as

Kk = Pxk z̃lag

(
Pz̃lag

)−1
, (2.53)

where the first term, given as

Pxk z̃lag
= E

[(
xk − x̂−k

)
(zlag − ẑlag)

T
]
, (2.54)

is not easily calculated. Equation (2.54) can be approximated for the UKF by

Pxk z̃lag
≈ X−kW

(
h
(
X̂−lag

))T
.

The maintenance of the temporal cross-covariance matrices during the time span until
the delayed measurement arrives can be accomplished through augmentation of the system
state and redefinition of the process and observation models. The state vector is augmented
to contain the state estimate at tlag, the time the lagged measurement is physically taken,
in addition to the original state of the current time, xk, defined as

xak =
(

xk
xlag

)
. (2.55)

The process model is augmented to

xak = f̆
(
xak−1, tk,vk

)
(2.56)

=
(

f (xk−1, tk,vk)
xlag

)
, (2.57)

where f (·) is the original process model and vk the original process noise. The augmented
process model will therefore update the first component of the augmented state vector as
before, using the original process model, while the system state of the delayed measurement,
xlag, is kept constant.

Chapter 2: Bayesian Estimation 41

Using the previous notation, let’s assume that at time tk−n = tlag the lagged sensor makes
its physical measurement, but will only output the result n correction steps later at time
tk. Consequently, at time tk−n the state estimate is augmented to

x̂ak−n =
(

x̂k−n
x̂k−n

)
=
(

x̂lag
x̂lag

)
, (2.58)

and the covariance becomes

Pxa
k−n

=
(

Pxk−n
Pxk−n

Pxk−n
Pxk−n

)
. (2.59)

These terms are propagated as usual through the (augmented) UKF time update equations
to result in the following state and covariance estimates:

x̂a−k−n+1 =
(

x̂−k−n+1

x̂k−n

)
(2.60)

P−xa
k−n+1

=
(

P−xk−n+1
P−xk−n+1xk−n

P−xk−nxk−n+1
P−xk−n

)
. (2.61)

The off-diagonal sub-blocks are the important cross-covariance matrices needed to fuse the
time-delayed measurement using Equations (2.51), (2.52) and (2.53). Which leads to the
remaining issue, the measurement update step: How should the augmented state be updated
during the latency period when a normal (non time delayed) measurement arrives? One
solution is to not update it at all, e.g. Equation (2.62) by using a Schmidt-Kalman filter
that introduces an indicator matrix M, an identity matrix where the elements not to be
updated are set to zero, in our case the bottom half.

Kk = MPxk z̃k−n

(
Pz̃k−n

)−1 (2.62)

Another way to handle measurement updates during the latency phase is to not use the
indicator matrix but apply the measurement updates normally. This results in the original
state estimate x̂lag in the augmented system state not staying constant. It will be corrected
based on subsequently observed information, in fact smoothing the state estimate x̂lag, in
the sense that past estimates can be improved in some way based on successive future
observations, a well established fact in signal-processing filter theory [29]. In other words,
while waiting for the lagged sensor to report its observation during the latency period,
intermittent measurements are used to improve the past estimate of the system state that
the sensor will be reporting on. This way, once the measurement arrives and the innovation
is calculated with Equation (2.52), the expected measurement for the delayed observation,
ẑlag, will be more accurate, since the lagged state estimate, x̂lag, used to calculate it will
now be smoothed.

Augmented Observation Model The observation model is adjusted for the augmented
state vector and covariance in such a way, that for all normal (non-delayed) measurements
the observation model calculates the observation prediction from the current state estimate

42 Chapter 2: Bayesian Estimation

part of the state vector, and in the case of time instant tk if tlag = tk−n when the delayed
measurement arrives, the correction process uses the measurement to correct the smoothed
delayed state estimate part of the vector, giving the following equations for the model:

ẑ (ti) = h̆ (x̂ai ,vi)

=

{
h (x̂i,vi) (i 6= lag)

h (x̂lag,vlag) (i = lag).

(2.63)

After the delayed measurement is used to correct the current estimate of the state (upper
part of augmented vector), the state vector and covariance are cropped to their original
sizes, discarding the dragged-along delayed state estimate and its covariance information.

The latency compensation technique introduced above assumes that the filter knows either
the fixed lag that a sensor suffers or the frequency with which it delivers its measurements,
so that missing deliveries can be detected. For that reason the method is sometimes called
a Fixed Lag Smoother. In the case of a sensor’s fixed latency, the latency length can be
timed, as e.g. for some GPS sensors. For the other case, when the filter needs to detect
that a measurement should have arrived for the correction step, a sensor event map can
be built in an initialization procedure of the filter, where average firing rates for sensors
are calculated from their actual behavior. Given the knowledge of the length of the fixed
latency or the sensor’s firing rate, a definition of an Unscented Kalman filter with latency
compensation can be formulated.

SRUKF Formulation

The approach above can be applied directly to the Sigma Point Kalman filter
framework, expanding the state vector to the form of Equations (2.55) and (2.58) and its
covariance using Equation (2.59). From these data the sigma points are drawn as usual
using the chosen sigma point selection scheme. These points are then propagated through
the augmented process model, and the new sigma points and estimate error covariance
are updated with the regular square root UKF equations. In the correction step, prop-
erly constructed observation models predict the measurements from these sigma points,
incorporating the time-varying nature of measurement vectors.

Let’s assume that the state vector is expanded in the instant of time tlag, so the mean
state estimate x̄lag as well as the matrix square root A of its covariance are augmented as
given in Equations (2.58) and (2.59). During the times when one or more state estimates
for delayed measurements are maintained, the only thing that changes are the dimensions of
some vectors and matrices as well as the process and observation models to their augmented
complements. During times without maintenance of a delayed estimate term, the UKF
formulations are the same, only the mentioned dimensions are back to normal. The discrete
time Square Root Unscented Kalman filter formulations are given below as seen during
expectation of delayed measurements:

Chapter 2: Bayesian Estimation 43

1. From the augmented state and square root covariance the sigma points are drawn
according to Equations (2.34)-(2.36), forming the matrix X (tlag), given as

x̄k−1 =
(

x̂lag
x̂lag

)
,

Xk−1 = [x̄k−1 x̄k−1 + γAk−1 x̄k−1 − γAk−1] .
(2.64)

2. Next, the sigma points are propagated through the augmented process model from
Equation (2.57), their mean and square root covariance matrix updated and the new
sigma points, X−lag+1, calculated4 as

X′k = f̆ (Xk−1, tk,vk) ,

x̄−k = X̂′kwm,

A′k = qr
{√

wc1

(
X̂k − x̄−k

)
1:2N,k

√
Q
}
,

A−k = cholupdate
{

A′k,
(
X̂k − x̄−k

)
0,k
, wc0

}
.

(2.65)

3. The sigma points are recalculated using the predicted mean and estimate error co-
variance square root matrix in the following way:

X−k =
[
x̄−k x̄−k + γA−k x̄−k − γA−k

]
. (2.66)

4. These predicted sigma points are then propagated through the (augmented) observa-
tion model from Equation (2.63) to calculate the expected measurements, the mean
of predicted measurements, the innovation covariance square root as well as the cross-
covariance, given as

z̄k = Ẑkwm = h̆
(
X−k , tk,nk

)
wm,

A′y,k = qr
{√

wc1

(
Ẑk − z̄k

)
1:2N,k

√
R
}
,

Ay,k = cholupdate
{

A′y,k,
(
Ẑk − z̄k

)
0,k
, wc0

}
,

Pxy,k = X−kW
(
Ẑk
)T

.

(2.67)

5. This enables the calculation of the Kalman gain and the subsequent correction of
the state estimate using the innovation gained from the current measurement, z̃k, no

4The“prime”operator of X′ only signifies an auxiliary matrix different from X, it is not used as denotation
for first derivative.

44 Chapter 2: Bayesian Estimation

matter if delayed or not.

Kk = Pxy,k

(
(Ay,k)

−1
)T

(Ay,k)
−1 ,

x̂k = x̄−k + Kk (zk − z̄k) ,
U = KkAy,k,

Ak = cholupdate
{
A−k , U,−1

}
.

(2.68)

6. If the measurement, zk, is a delayed measurement, then its corresponding lagged state
estimate being maintained in the augmented state vector is now obsolete, as well
as the information contained in the augmented covariance square root. Therefore,
the posterior state estimate vector along with the covariance square root matrix are
cropped to remove the obsolete information as follows,

x̂ak =
(

x̂k
x̂lag

)
⇒ x̂k,

Aa
xa

k
=
(

Axk
Axkxlag

Axlagxk
Axlag

)
⇒ Axk

.

(2.69)

7. Recursion Step: The posterior mean and covariance square root calculated (and
cropped) above are subsequently used as prior variables for the next recursion step,
calculating the sigma points for the next time update.

The SR-UKF with latency compensation is summarized in Algorithm C.7.

Chapter 3

Process and Observation Models

3.1 Introduction

The main purpose compelling an autonomous mobile entity within some environ-
ment to “think” or compute is the question What do I want to do next? For robots, this
task is the main force driving computations about consideration of possible actions. They
compare the predicted consequences of their options to decide which to take. While for
human beings this often happens subconsciously, there are many occurrences of logical rea-
soning and comparisons of possible next steps. To properly decide which action to take
next, the consequences of that action must be known or must be able to be predicted by the
autonomous agent. In order to conjecture the effects of actions on both the agent as well
as its environment, the development of physical models of the agent and its environment is
necessary.

A model is a representation or description of an object or system. It is designed to show
the workings of the object or system using a certain descriptive expression. That type
of expression can be a plan properly defined in written language, or it could be a scaled
sculptural or mechanical replication of the original. The choice always depends on what
aspect of the object or system is supposed to be modeled.

In physics along with robotics, models of objects and systems are usually formulated
mathematically. These models should be a representation as accurate as possible or neces-
sary of the material properties, characteristics and dynamics of the original. Such models
are also called physical models, as they regard the original from the physics’ point of view,
i.e. describing its physical properties.

In the particular case of mobile robots, the goal is to describe the dynamics of the robot
in its specific environment mathematically, with the intent that algorithms deliver precise
predictions and estimations on the robot’s motion trajectories. For a robot to be able to
give accurate predictions, it needs to assemble information on consequences of its actions
that are not completely defined in the model, as well as perceive the current state of the
dynamic system or environment it is in. To that effect a robot is equipped with an arbitrary

45

46 Chapter 3: Process and Observation Models

number of sensors appropriate for its scope of duties. The mapping of these sensors’ data to
the model’s interior representation is described by the physical model. Though sometimes
it is separated into an extra formulation as part of the complete model, to better cooperate
with an existing estimation framework.

The physical models necessary for robots to predict the development of their egomotion
over time on one side, and on the other side collect information on the environment and
the effects of their actions on it, are called the Process and Observation Models, respec-
tively. Both models are derived in this chapter, after explaining the mathematical tools and
conventions used in their formulations.

3.1.1 Chapter Outline

This chapter covers the mathematical representations of the dynamic system of
a quadrocopter in its environment. The dynamic properties of the robot as well as the
mappings of external influences of the environment or information on the environment to
the robot are derived.

First, the mathematical notation used to simplify the angular and linear equations is
introduced. While this notation, called Spatial Vector Notation, is powerful and interposes
its own algebra with changes to some vector and matrix operations, only a small part of its
versatility is needed and used. Only these decisive parts are explained.

Once the spatial algebra is established, the different frames of reference are defined: the
body reference frame and the world reference frame. With the reference frames established,
the representation of orientation is treated. Instead of Euler angles, quaternion notation is
used and its advantages are presented.

To understand the technique quadrocopters employ to affect their flight motion, quadro-
copter control is explained in detail.

Having introduced all required mathematical notations and methods, the system state of
the unscented Kalman filter is defined. Its components as well as their respective reference
frames are determined, followed by the derivations of the process model and the observation
models of available sensors integrated in the filter.

3.2 Prerequisites

In order to understand the derivation of the process and observation models, a
basic knowledge from several disciplines is required. This section introduces the reader to
some of that prerequisite knowledge in a short, summarized way.

Chapter 3: Process and Observation Models 47

3.2.1 Spatial Algebra

To describe the dynamics of a robot system, the dynamic equations of motion
provide the relationships between actuation and contact forces acting on the robot and the
acceleration and motion trajectories that result. In usual mathematical notation, separate
equations for angular and linear components are used to describe the complete dynamics
of the system. This results in a complex set of formulations that need to be implemented
for the robot. This complexity is reflected in the implementation, resulting in code that
is not as efficient as it could be. In addition to the need for computational efficiency,
clarity and ease of development are important factors for formulation of algorithms. To this
extent, spatial vector notation has been applied to effectively simplify the formulations of
the dynamic equations of motion. Spatial vector algebra is a concise vector notation for
describing rigid-body acceleration, velocity, inertia, etc. using six-dimensional vectors and
tensors.

There is no single standard in robotics for notation of robot dynamics. Various notations
are used including 3-D vectors, 4× 4 matrices and several types of 6-D vector notations. In
general, six-dimensional formulations are the best, offering both a cleaner and more compact
alternative to 3-D vectors and a more powerful notation than 4×4 matrices. Therefore, 6-D
vectors are used in the description of the robot dynamics. Specifically, the spatial vector
algebra described in [30] is used to formulate the dynamic equations of motion.

In this thesis, vectors are usually represented as bold letters (e.g. z,v). To differentiate
between vectors of arbitrary dimensions and spatial vectors, spatial vectors will be denoted
using bold letters (e.g. z,v), while arbitrary (3-D or other) vectors will be denoted using
bold italic letters (e.g. z,v). In addition, only in this section on spatial algebra, the
coordinate vectors are underlined to distinguish them from the vectors they represent (e.g.
z and z, representing z and z).

Motion and Force

Based on mathematical reasons, distinguishing between those vectors that repre-
sent motions of rigid objects and those representing the forces acting on them is helpful.
Therefore, in spatial vector algebra motion vectors are placed in a vector space called M6,
and force vectors in a space called F6. This assists in defining mathematical operators acting
on motion and force vectors for a compact formulation. Motion vectors describe quantities
such as acceleration, velocity, directions of motion freedom; force vectors describe force,
momentum, contact normals, et cetera.

Basis Vectors

In 3-D vector space, suppose that v is a 3-D vector and v = (vx, vy, vz)
T is the

Cartesian coordinate vector representing v in an orthonormal basis {x̂, ŷ, ẑ}. The relation-
ship between v and v is then given by

v = x̂vx + ŷvy + ẑvz.

48 Chapter 3: Process and Observation Models

For spatial vectors the same idea applies, only instead of Cartesian coordinate systems we
use Plücker coordinate systems.

Plücker coordinates are six-dimensional vectors fixed by a Plücker basis. This results in
a total of 12 basis vectors, six for the motion vector space and six for the force vector space.
Given a Cartesian coordinate frame, Oxyz, the Plücker basis vectors are defined as follows:
three unit rotations about the directed lines Ox,Oy,Oz, denoted by dOx,dOy,dOz; three
unit translations in the directions x, y, z, denoted by dx,dy,dz; three unit couples about the
directions x, y, z denoted by ex, ey, ez; and three unit forces in the direction of the directed
lines Ox,Oy,Oz denoted by eOx, eOy, eOz. Figure 3.1 illustrates these relationships.

(a) Plücker basis vectors for motion vector
space.

(b) Plücker basis vectors for force vector
space.

Figure 3.1: Plücker coordinate frames.

Spatial Velocity and Force

Traditionally, given any point O, the velocity of a rigid body can be described by
two 3-D vectors, ω and vO, representing the angular velocity and the linear velocity of the
body-fixed point currently at O, respectively. It is important to note that vO is not the
velocity of O itself, but only the velocity of the body-fixed point that happens to coincide
with O at the current instant.

In spatial vector notation, the velocity of this same rigid body can be described by only
a single spatial motion vector, v ∈ M6. To obtain v from ω and vO, a Cartesian coordinate
frame Oxyz with its origin at O is introduced first. This frame defines a Cartesian coordinate
system for ω and vO as well as a Plücker coordinate system for v. From these coordinate
systems, the following relationship can be shown:

v = dOxωx + dOyωy + dOzωz + dxvOx + dyvOy + dzvOz. (3.1)

Chapter 3: Process and Observation Models 49

where ωx, . . . , vOz are the Cartesian coordinates of ω and vO in Oxyz. Consequently, the
Plücker coordinates of v are the concatenated Cartesian coordinates of ω and vO. The
coordinate vector representing v in Oxyz can be written as

vO =

 ωx
...
vOz

 =
(
ω
vO

)
. (3.2)

As a convenient abbreviation of the list of Plücker coordinates, the notation on the far right
of equation (3.2) can be used.

Spatial force vectors are defined in an analogous way. Again, given any point O, any
system of forces acting on a single rigid body can be expressed equivalently in two compo-
nents, a single force f acting on a line passing through O, together with a pure couple, nO,
as the moment of the force system around O. In this manner, these two vectors describe
the forces acting on a rigid body in much the same way that ω and vO describe its velocity.
The same system of forces can be described by a single spatial force vector, f ∈ F6. Going
back to the frame Oxyz, it can be shown that

f = exnOx + eynOy + eznOz + eOxfx + eOyfy + eOzfz, (3.3)

where nOx, . . . , fz are the Cartesian coordinates of nO and f in Oxyz. The coordinate vector
corresponding to f is then written as

fO =

nOx...
fz

 =
(
nO
f

)
. (3.4)

These are the Plücker coordinates of f in Oxyz and the rightmost notation can be used as
a convenient short-form for the list of Plücker coordinates.

Addition and Scalar Multiplication

Addition and scalar multiplication of spatial vectors is the same as it is for arbitrary
vectors: element-wise. That means that if, for example two forces, f1 and f2, act on the
same rigid body, the resultant force is f = f1 + f2; similarly if two distinct rigid bodies
have velocities of v1 and v2, then the velocity of the second body relative to the first is the
difference v2 − v1. Furthermore, if f denotes a force of 1N acting along a certain line in
space, then αf denotes a force of αN acting along the same line. Addition between motion
and force vectors is not allowed, since it does not exist in physics.

The scalar product between a spatial motion and force vector, m and f , on the other
hand is defined, unlike products such as f · f and m · m. The scalar product obviously
results in a scalar value and is given by

f ·m = m · f = mT f .

50 Chapter 3: Process and Observation Models

Coordinate Transformations

For motion and force vectors different coordinate transformation rules apply. Let A
and B be two coordinate frames, where each defines a coordinate frame of the same name.
Likewise, let mA, mB, fA and fB be coordinate vectors representing the spatial vectors
m ∈ M6 and f ∈ F6 in A and B coordinates, respectively. The coordinate transformation
rules are then

mB = BXAmA (3.5)

and

fB = BXF
AfA, (3.6)

where BXA and BXF
A are the transformation matrices from coordinate system A to B for

motion and force vectors, respectively. The transformation matrices are related by the
identity

BXF
A ≡

(
BXA

)−T ≡ (AXB

)T
. (3.7)

As illustrated in Figure 3.2, let the position and orientation of frame B relative to frame A

Figure 3.2: Coordinate Transformation from frame A to B.
Position vector BpA of coordinate frame B relative to A, 3× 3 rotation matrix BRA

describing the rotation of B relative to A.

be described by a 3-D position vector BpA and a 3× 3 rotation matrix BRA, respectively.
The formula for the transformation matrix from A to B, BXA, is then given as

BXA =
(
BRA 0

0 BRA

)(
1 0

−S
(
BpA

)
1

)
=

(
BRA 0

BRAS
(
BpA

)T BRA

)
,

(3.8)

Chapter 3: Process and Observation Models 51

and its inverse is

AXB =
(

1 0
S
(
BpA

)
1

)(
ARB 0

0 ARB

)
=
(

ARB 0
S
(
BpA

)
ARB

ARB

)
.

(3.9)

The sub-block S
(
p
)

of the transformation matrix is the 3 × 3 skew-symmetric matrix
formulation of the vector cross-product S

(
p
)
v = p× v, where S

(
p
)

is defined as

S
(
p
)

=

 0 −pz py
pz 0 −px
−py px 0

 . (3.10)

Spatial force vectors obey different transformation rules to motion vectors. The transfor-
mation matrix for force vectors corresponding to the transformation from frame A to frame
B, BXF

A, is given by the relationship

BXF
A ≡

(
BXA

)−T ≡
(
AXB

)T
≡

(
ART

B

(
S
(
BpA

)
ARB

)T
0 ART

B

)

≡
(
BRA −S

(
BpA

)
BRA

0 BRA

)
.

(3.11)

Spatial Acceleration

The definition of spatial acceleration is given as the rate of change of spatial
velocity. This means that spatial acceleration is not equal to the classical definition of rigid-
body acceleration, or classical acceleration here. The essential difference is the following:

a =
(
ω̇
v̇O

)
and a′ =

(
ω̇
v̇′O

)
, (3.12)

where a represents the spatial acceleration, a′ is the classical acceleration, v̇O is the deriva-
tive of vO taking O as fixed in space, while v̇′O is the derivative of v′O taking O to be fixed
in the body. This difference in the fixing of O in space or in the body gives the relation
between spatial and classical acceleration as

a′ = a +
(

0
ω × vO

)
. (3.13)

Taking the derivatives of a position vector r representing the position of the body-fixed
point at O relative to any fixed point, we get

vO = ṙ,

v̇′O = r̈,

v̇O = r̈ − ω × vO.

52 Chapter 3: Process and Observation Models

This property of spatial acceleration results in easier application. Giving an example from
[31], if two bodies B1 and B2 have velocities v1 and v2, respectively, and vrel is the relative
velocity of B2 with respect to B1, then

v2 = v1 + vrel.

Now, the correlation between their spatial accelerations can be calculated by simply differ-
entiating the velocity formula:

d

dt
(v2 = v1 + vrel) ⇒ a2 = a1 + arel.

Note that there are no Coriolis or centrifugal effects and terms to worry about. Spatial accel-
erations are composed only of additions exactly like velocities. This represents a significant
improvement over the formulation for calculation of classical acceleration.

In the modelling of the dynamic process and observation system equations, this charac-
teristic of spatial acceleration will not be needed, but was given for reasons of completeness
and to show its advantages over classical acceleration.

Spatial Inertia

Figure 3.3: Spatial Momentum and Inertia

The spatial momentum of a rigid body, h, is given by the concatenation of its
angular and linear momenta (Figure 3.3). The momenta are the products of the angular
and linear inertia with the body’s angular and linear velocities, respectively. Suppose that
this rigid body has a mass of m, with a center of mass at point in space C and rotational
inertia Icm about C and is traveling with linear velocity vC and angular velocity ω, denoted
as spatial velocity vC =

(
ωTvTC

)T . Then its linear momentum, h = mvC , and its angular

Chapter 3: Process and Observation Models 53

momentum, hC = Icmω, describe the spatial momentum of the rigid body with respect to
the point C as follows,

hC =
(
hC
h

)
=
(
I
cm
ω

mvC

)
.

For the angular momentum around any general point O it is true that hO = hC + c × h,
where c =

−−→
OC. This leads to

hO =
(
hO
h

)
=
(

1 S (c)
0 1

)
hC . (3.14)

Since the spatial momentum is the product of spatial inertia and spatial velocity, hC =
ICvC , this implies

IC =
(
I
cm 0
0 m1

)
. (3.15)

This formulation for spatial inertia of a rigid body, expressed at its center of mass, together
with Equation (3.14) enable the derivation of a formulation of the spatial inertia for any
point O, given as

hO =
(

1 S (c)
0 1

)(
I
cm 0
0 m1

)
vC

=
(

1 S (c)
0 1

)(
I
cm 0
0 m1

)(
1 0

S (c)T 1

)
vO

=

(
I
cm +mS (c)S (c)T mS (c)T

mS (c)T m1

)
vO.

Since hO = IOvO, the spatial inertia for any point O is given as

IO =

(
I
cm +mS (c)S (c)T mS (c)T

mS (c)T m1

)
, (3.16)

which can also be written as

IO =

(
IO mS (c)T

mS (c)T m1

)
, (3.17)

where IO = I
cm +mS (c)S (c)T is the angular inertia of the rigid body around O.

With respect to this thesis, the same is true for spatial inertia as for spatial acceleration
above: The difference between classical and spatial inertia is not necessary in the actual
formulations of the models. These apply only if the motion of the rigid body is described in
an inertial frame of reference, not a non-inertial body-fixed frame of reference. The robot’s
inertia is given with respect to the robot’s center of gravity, which is the origin of the body
frame. Thereby the translation vector c in Equation (3.17) becomes zero. Furthermore,
during the time update the body frame is considered stationary, turning IO into a constant
diagonal matrix.

54 Chapter 3: Process and Observation Models

More on spatial vector algebra and its applications can be found in the book by Roy
Featherstone on dynamics algorithms in robotics [30]. The different reference frames are
explained in the next section.

3.2.2 Reference Frames

The goal of localization, a subset of navigation, is being able to tell one’s position
and orientation with respect to some point of origin. In addition, for navigation, knowledge
of properties concerning egomotion, acceleration and locations of other objects, for example
obstacles, is fundamental. To be able to relate one coordinate information to another, these
need to be grounded in coordinate frames, or frames of reference. These frames can have
multiple coordinate systems attached as references, each with its own units and basis. If
the information to be related is not based in the same frame, then the relationship between
the different frames, the coordinate transformation, must be known in order to transform
and compare the different based values.

This relationship can only be computed if the distinct frames are grounded to a common
point and frame of reference. In mobile robotics, usually the reference frame for absolute
values concerning motion and location is the inertial reference frame with its origin in the
center of the Earth. It is often helpful for mathematical formulations and computational
complexity to define additional coordinate frames and systems. Before presenting the spe-
cific definitions of the body and world reference frames, reference frames in general will be
introduced.

Coordinate or reference frames can be static or dynamic, but always relative to some
other reference frame, e.g. a coordinate system that is grounded at the center of mass of a
moving robot regards itself as static, but views a reference frame with origin at the center
of the Earth as moving the inverted actual speed of the robot.

A simple example is given in Figure 3.4, illustrating two persons looking at each other,
each on the other side of a street. In the reference frame of each person, the directions left,
right and forward are all the inversions to the directions in the reference frame of the other
person. Only a coordinate frame grounded in a shared environment equally relevant to both
persons, in this example the magnetic directions of North, East, South and West as given
by the compass, is identical to both persons, even though they themselves are at different
positions and orientations in their shared environment.

In the definition of a frame of reference, one can distinguish between observational frames
of reference and coordinate systems. The term observational state of reference is usually used
if the state of motion within the frame is addressed, rather than the choice of coordinates.
On the other hand, a coordinate system can be used for many different applications, where
the state of motion need not be important.

Chapter 3: Process and Observation Models 55

Figure 3.4: Different Reference Frames.
Two observational frames of reference are based in different persons that are rotated
and translocated with respect to each other. Only the world based reference frame is
a common reference system for the two persons.

The mathematical fundament of a coordinate system is a set of basis vectors, where
linear combinations of their scalar multiples are used to describe the complete space of
coordinates. One such a linear combination of an n-dimensional coordinate system is called
a coordinate, written as a simple ordered set of n numbers: v = [u1, u2, . . . , un]. On
the other hand, an observational frame of reference is a physical concept relating to an
observer and the observer’s motion. This state of motion is the only characterization of
such an observational frame of reference. Various distinct coordinate systems can of course
be linked to a single observational frame. Two types of observational frames of reference
exist: inertial and non-inertial. In inertial frames of reference, every physical law takes the
same form in each frame, i.e. the laws of physics apply without (major) modifications.

There are frames of reference that are used frequently in aerospace research and industry.
Two varieties of those are used in this thesis, one of them a modified version of a widely used
frame definition. The first is a non-inertial and the second an inertial frame of reference,
here called the body frame and the world frame, respectively.

56 Chapter 3: Process and Observation Models

Body Frame

The body frame is a non-inertial frame of reference fixed in the moving robot. It
defines a coordinate system with its origin set in the center of mass of the drone and its
basis axes aligned with the body axes (Figure 3.5):

• The x-axis points through the nose of the drone.

• The y-axis points to the right of the x-axis (facing in pilot’s view direction), perpen-
dicular to the x-axis.

• The z-axis points through the bottom of the craft, perpendicular to the x-y-plane,
satisfying the Right-Handed rule.

Figure 3.5: Body Frame of Reference.

Consequently, the coordinate system is fixed both in origin and orientation to the body of
the drone. Since the drone is moving, so is the body frame. Rotations can be defined by
Euler angles Φ, Θ, Ψ around the frame’s axes(Figure 3.5). They are:

• Φ: Roll around x-axis.

• Θ: Pitch around y-axis.

• Ψ: Yaw around z-axis.

If the coordinate frame of a vector in equations is not clear from the context, then the sub-
index defining the respective frame of reference is essential. Vectors given in coordinates
with respect to the body frame are sub-indexed by a capital B, e.g. vB.

Chapter 3: Process and Observation Models 57

World Frame

The world frame, an inertial frame of reference, defines a coordinate system initially
based on the non-inertial NED coordinate system (North-East-Down). The N orth-East-
Down system has its origin fixed at the center of gravity of the moving aircraft, while its
axes are fixed along the geodetic directions defined by the Earth’s surface:

• The N -axis points north parallel to the geoid surface, in the polar direction.

• The E-axis points east parallel to the geoid surface, along a latitude curve.

• The D-axis points downward, toward the Earth’s surface, anti parallel to the surface’s
outward normal.

Since the operational area spread and time duration of missions for such a small-sized
lightweight drone are relatively small, the rotation of the Earth can be ignored in the
formulations of the equations of motion.

Initially means that during an initialization phase, when the robot is not allowed to
move but its sensors are taking measurements, the NED directions are calculated from the
measurements and the current location corresponding to the center of gravity of the robot
is marked as the origin, see section 3.4.4. After initialization the origin of that world frame
stays static where the initialization took place while the robot can move about. This modifies
the non-inertial NED frame into the inertial world frame. Vectors described in coordinates
with respect to the coordinate system attached to the world frame are sub-indexed with a
capital W , e.g. aW , when not clear from the context.

Coordinate Transformations

The respective coordinate transformations for spatial vectors from world to body
frame and reverse can be calculated from the position vector, p. defined in section 3.4.1. To
summarize that section in one sentence, the position vector not only contains the current
3-D location of the robot, but also its current orientation in quaternion representation, both
with respect to the world frame coordinate system.

The information contained in p suffices to calculate the transformation matrix from world
to body frame, BXW , its inverse, the transformation matrix from body to world frame,
WXB, as well as their spatial force vector counterparts. As seen in Section 3.2.1, the 3×3
rotation matrix, BRW , and the translation vector, BpW , are necessary for Equation (3.8).
The 3-D translation vector is given as

BpW =

pNpE
pD

 , (3.18)

where its elements are taken directly from the position vector, p, of the current system
state, see Equation (3.42).

58 Chapter 3: Process and Observation Models

The rotation matrix, BRW , using the conversion from quaternion representation of rota-
tions to 3×3 rotation matrix form, is defined as follows [31],

BRW = 2

q20 + q21 − 0.5 q1q2 + q0q3 q1q3 − q0q2
q1q2 − q0q3 q20 + q22 − 0.5 q2q3 + q0q1
q1q3 + q0q2 q2q3 − q0q1 q20 + q23 − 0.5

 , (3.19)

where quaternion q = (q0, q1, q2, q3)T is given as the orientation of the drone, taken directly
from p as well.

Given the translation vector and the rotation matrix, the transformation matrix can be
calculated using Equations (3.8) and (3.10):

BXW =

(
BRW 0

BRWS
(
BpW

)T BRW

)
. (3.20)

The inverse, the transformation matrix from body to world frame, WXB, is calculated as
follows, using Equation (3.9):

WXB =
(

WRB 0
−S

(
WpB

)
WRB

WRB

)
=
(

BRT
W 0

S
(
BpW

)
BRT

W
BRT

W

)
.

(3.21)

The transformation matrices for spatial force vectors can be calculated analogously using
Equation (3.11). With these transformation matrices, all necessary coordinate transforma-
tions in the process and observation model equations can be performed. The matrices are
dynamic, i.e. they change over time, corresponding to the change of p over time and are
reevaluated at every update step.

3.2.3 Quaternions

The orientation of a vehicle can be described with the Euler angles Φ, Θ and Ψ,
but Euler angles have a disadvantage called the Gimbal Lock. A Gimbal is a ring that
can rotate around an axis. Three gimbals are mounted concentrically to compensate for
rotations in three-dimensional space. Euler angles are used to represent rotations in 3-D
space by three consecutive rotational movements about three axes perpendicular to each
other. This similarity to linear coordinates makes Euler angles intuitive, but its intuitive
simplicity comes with the cost of a big disadvantage: gimbal lock.

Gimbal lock occurs when two of the three gimbals are driven into the same place, conse-
quently unable to compensate for rotations around one axis in three-dimensional space. The
problem that occurs is not really a technical arrest of the gimbal’s mobility, these are still
able to rotate around their respective axes. But a loss of one degree of freedom nevertheless
happens because of the parallel orientation of two gimbal axes, as illustrated in Figure 3.6.

Chapter 3: Process and Observation Models 59

One solution is the introduction of a fourth dimension, a fourth gimbal driven by a motor to
keep large angles between roll and yaw gimbal axes. Another solution is to install a motor
to the third gimbal which flips the gimbal by 180◦ if the angle between roll and yaw axes
drops below a small threshold. This second alternative was used in the Apollo 11 moon
mission with a threshold of 85◦ for the pitch angle, but the computer program crashed and
froze the IMU[32].

(a) No Gimbal Lock. (b) Gimbal Lock.

Figure 3.6: Gimbal configurations.
If two gimbal axes are driven into parallel orientation, then these two gimbals can only
compensate one degree of freedom instead of two, therefore one degree of freedom is
lost.1,2

A mathematical solution is given by Quaternions, a four-dimensional non-commutative
number system extending the complex numbers that can be employed to describe three-
dimensional rotations gimbal-lock-free. A quaternion, q, is represented by a four-tuple q of
real numbers, defined as

q =

q0
q1
q2
q3

 . (3.22)

The relationship between the four-tuple and the quaternion is defined by a linear combina-
tion as follows,

q = q0 + iq1 + jq2 + kq3, (3.23)

where i, j and k are imaginary numbers satisfying

ii = jj = kk = ijk = −1. (3.24)

The non-commutativity of quaternions and these imaginary numbers should be emphasized
again, i.e. ij 6= ji, but ij = −ji.

60 Chapter 3: Process and Observation Models

Additionally, because multiple rotation movements are necessary for Euler angles, the
order of these is important and needs to be defined beforehand. A quaternion does not
describe multiple consecutive rotational movements to arrive at the final rotation, but de-
scribes a single rotation. Intuitively, this can be understood as a different formulation for
the axis-angle representation of a rotation: given an angle α and an axis directed by a
normalized vector n = (nx, ny, nz)

T , the quaternion with the values of Equation (3.25)
represents a single rotation of α radians around the axis driven by vector n,

q =

cos α2
nx sin α

2
ny sin α

2
nz sin α

2

 . (3.25)

Consequently, no gimbal lock can occur.

Quaternion rotations are combined by multiplication, i.e. given a first and a second
successive rotation q1 and q2, the combined rotation can be calculated as q1q2 or q2q1,
depending on the frame of reference being a body frame moving with the rotating entity
or an absolute world frame not moving with the rotating craft, respectively. To have pure
rotations without scaling, the quaternion must have an absolute value of 1, i.e. it must be
a unit quaternion. The norm of a quaternion is defined as the square root of the product
of the quaternion q and its conjugate q∗, see Equation (3.26). The conjugate of q =
q0 + iq1 + jq2 +kq3 is defined as q∗ = q0− iq1− jq2−kq3, resulting in the following equation
for the norm of a quaternion,

‖q‖ =
√
qq∗ =

√
q20 + q21 + q22 + q23. (3.26)

Hence, if q is a unit quaternion, then its conjugate is its inverse, q∗ = q−1.

The unit prerequisite leads to another advantage of quaternion representation of rotations
over matrix representation. A quaternion that lost its unit characteristic during computa-
tions because of numerical imprecisions can always be normalized, leading to a slightly
inaccurate rotation, but a pure rotation nevertheless. This is unlike numerical inconsis-
tencies in rotation matrices, where these matrices do not represent pure rotations anymore
after numerical imprecision destroyed their orthogonality or changed the unity of their de-
terminants.

Conversions

Conversion from Euler angle representation to quaternions is done using the fol-
lowing equations, where we choose the order of the angles as Roll-Pitch-Yaw. Formulated as
about which body axis to rotate, the order is x-y-z and the angles are Φ,Θ,Ψ, respectively.

Chapter 3: Process and Observation Models 61

The quaternion elements can be calculated from the Euler angles as follows,

q0 = c1c2c3 − s1s2s3,
q1 = s1c2c3 + c1s2s3,

q2 = c1s2c3 − s1c2s3,
q3 = s1s2c3 + c1c2s3,

(3.27)

where

c1 = cos
Φ
2

; c2 = cos
Θ
2

; c3 = cos
Ψ
2
,

s1 = sin
Φ
2

; s2 = sin
Θ
2

; s3 = sin
Ψ
2
.

The proof for this conversion is done using the single rotations (as quaternions) applied in
the correct order of Euler angles as defined above:

• Qx the rotation element about the x-axis

• Qy the rotation element about the y-axis

• Qz the rotation element about the z-axis

Thus, using Equation (3.25), these rotations are given as

Qx = cos
Φ
2

+ i sin
Φ
2

= c1 + is1

Qy = cos
Θ
2

+ j sin
Θ
2

= c2 + js2

Qz = cos
Ψ
2

+ k sin
Ψ
2

= c3 + ks3.

(3.28)

This gives the combined rotation

Q = (QxQy)Qz
= ((c1 + is1) (c2 + js2)) (c3 + ks3)
= (c1c2 + jc1s2 + is1c2 + ijs1s2) (c3 + ks3)
= c1c2c3 + jc1s2c3 + is1c2c3 + ks1s2c3 + kc1c2s3 + jkc1s2s3 + iks1c2s3 + kks1s2s3
= (c1c2c3 − s1s2s3) + i (s1c2c3 + c1s2s3) + j (c1s2c3 − s1c2s3) + k (s1s2c3 + c1c2s3) .

(3.29)

For the conversion from quaternion representation to Euler angles, reverse trigonometric
functions must be used. Since trigonometric functions are surjective, their inverse functions
have many possible results. It is common to assume the functions return angles within
certain intervals, i.e. arcsin (·) returns the angle within [−90◦, 90◦], and arctan 2 (·) returns

62 Chapter 3: Process and Observation Models

the angle within [−180◦, 180◦]. The conversion equations for roll (Φ), pitch (Θ) and yaw
(Ψ) are given as

Φ = arctan 2
(
2q0q1 − 2q2q3, q20 − q21 + q22 − q23

)
,

Θ = arcsin (2q0q3 + 2q1q2) ,

Ψ = arctan 2
(
2q0q2 − 2q1q3, q20 + q21 − q22 − q23

)
.

These equations work correctly for all points except the singularities at pitch angles of −90◦

and 90◦, where the roll and yaw angles would then be given as 0◦. This is the gimbal lock
mentioned above. To detect gimbal lock and subsequently calculate correct values for these
points, a test is introduced. In the quaternion representation, the pitch angle is calculated
and compared to a threshold, e.g. 85◦ for the Apollo 11 project, and the angles adjusted
accordingly. This comparison is given as

q0q3 + q1q2 > 0.499 ∗ (q20 + q21 + q22 + q23), and for the other pole

q0q3 + q1q2 < −0.499 ∗ (q20 + q21 + q22 + q23),

where 0.499 represents half of the cutoff threshold for the pitch angle quaternion component.
The angles are then calculated as follows,

if ((q0q3 + q1q2) > 0.499 ∗
(
q20 + q21 + q22 + q23

))
Φ = 0,

Θ =
π

2
,

Ψ = 2 arctan 2 (q1, q0) ,

else if ((q0q3 + q1q2) < −0.499 ∗
(
q20 + q21 + q22 + q23

))
Φ = 0,

Θ = −π
2
,

Ψ = −2 arctan 2 (q1, q0) ,
else

Φ = arctan 2
(
2q0q1 − 2q2q3, q20 − q21 + q22 − q23

)
,

Θ = arcsin (2q0q3 + 2q1q2) ,

Ψ = arctan 2
(
2q0q2 − 2q1q3, q20 + q21 − q22 − q23

)
.

(3.30)

For representation of angular velocity (given in Euler angles) in quaternion representation,
i.e. the derivative of a quaternion over time, the following equation can be derived[30]:

d

dt
q (t) =

1
2
Qω∗ (t)

=
1
2

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

ω∗ (t) ,
(3.31)

Chapter 3: Process and Observation Models 63

where ω∗ (t) is the 3-D angular velocity at time instant t, ω (t), augmented to 4 dimensions,
ω∗ (t) = (a‖ω‖ (1− ‖q‖) , ωx, ωy, ωz)T , and Q is calculated from the orientation quaternion
q at the start of integration. The resulting orientation is then calculated via numerical
integration over the given time frame. 0 < a < 1 is a scalar constant whose exact value is
not critical, e.g. a = 0.1[30].

Thereby, the unit quaternion of q = (1, 0, 0, 0)T is calculated to represent the orientation
of the drone in world frame coordinates when each of the body frame axes x,y, z is parallel to
the corresponding world frame axisN,E andD, respectively, i.e. (x ‖ N)∧(y ‖ E)∧(z ‖ D).
In other words, q = (1, 0, 0, 0)T represents the orientation when all Euler angles are equal
to zero, Φ = Θ = Ψ = 0◦.

3.2.4 Quadrocopter Control

In order to understand the basic principles regarding flight control of a quadro-
copter, the steering of such a four-propelled aircraft is explained. As seen in various figures
above, the rotors are positioned equidistant from each other around a central point along
a rigid cross frame. This cross shape also gives them the name X4-flyers. The rotors can
be controlled individually, enabling vertical take-off and landing as well as omnidirectional
flight.

The omnidirectional control is achieved by differential command of the thrust generated
by each of the four rotors (Figure 3.7). The up-down motion is controlled by collectively

Figure 3.7: Quadrocopter Force Model.
The four rotors generate a collective thrust force contrary to the z-axis. Opposite
rotors rotate in the same direction, generating reactive torque forces (dotted arrows)
employed in yaw rotation control.

increasing or decreasing the revolutions per minute (RPMs) of all four rotors. Sideways

64 Chapter 3: Process and Observation Models

motion is accomplished by leaning into the desired direction and increasing collective thrust
to counteract the craft’s tendency to side-slip toward the ground. This leaning motion
consists of a roll and pitch component around the x- and y-axis, respectively. The roll or
pitch component results from decreasing the RPMs of the rotor in the desired direction
and increasing the RPMs of the opposite rotor proportionately, that the collective thrust is
preserved.

The yaw rotational element is based on a technique with a little more finesse: A turning
rotor has to overcome air resistance depending on the rotor’s speed and surface properties,
its blade’s area and pitch and other factors (Section 3.4.2). The reactive force from that
rotor’s air drag acts on the rotor in the opposite direction of the rotor’s own rotation (dotted
arrows in Figure 3.7). Rotors on the same axis rotate in the same direction, but contrary
to the rotors on the other axis. Thereby, as long as all rotors turn at the same speed,
the generated reactive torque forces of all rotors cancel each other out and result in a net
reactive torque force of zero: The quadrocopter does not rotate around the z-axis. If the
speed of one set of rotors is increased, the induced torques fall out of their equilibrium
and the aircraft rotates in the direction of the total torque. This yaw rotation has no
translational effect in direction of the x- or y-axes, and the z-axis component from increase
of rotor speeds can be compensated by reducing the speed of the other diagonal pair.

3.3 UAV Hardware

The quadrocopter used for this thesis is the AirRobot AR-1003. It is a small,
light-weight UAV. The AR-100 is an industrially engineered and produced vehicle that is
already seeing application in military, public and private sectors. It is a remote-controlled
quadrocopter, equipped with various sensors, that has been the subject of a European
research project called µDRONES4. The drone is not completely autonomous, it needs a
base station to send its mission or flight commands. This section presents the sensors
and other physical characteristics of the AR-100 which are necessary for the process and
observation models.

Unfortunately, much of the hard- and software used onboard the AR-100 is protected
by non-disclosure agreements of the company. This protection against industrial espionage
also makes the drone more difficult to work with, since many variables are unknown.

3.3.1 Quadrocopter

The rotors of the quadrocopter are specially made low-weight carbon fiber rotors.
They are 14“ rotors (radius about 17.8cm) with a maximum blade width of 4.5cm. The
motors that spin them are four brushless outrunner motors using a current of about 7A
with a peak current of 35A. The UAV is powered by a 14.7V Lithium-ion battery with an

3More information at www.airrobot.com

4More information at www.ist-microdrones.org

www.airrobot.com
www.ist-microdrones.org

Chapter 3: Process and Observation Models 65

electrical charge of up to 2400mAh. This combination leads to maximum flight times of 25
minutes, given good weather conditions and quasi-stationary flight behavior.

The rotor speeds cannot be set directly by the manual controller or by the base station
software. The control of the quadrocopter is achieved by higher level commands, i.e. sending
the desired roll, pitch or yaw angle to the UAV. Its onboard control software then converts
these instructions to motor commands, thus offering only indirect control of the rotor speeds.
The available manual control inputs are the default remote control, a gamepad connected
to the base station or the keyboard of the base station. The two control pads use sticks
to steer the UAV, using the positions of the sticks as actual control angle commands. The
keyboard control, on the other side, can set the angles incrementally and remain there,
until the angle is changed manually. This offers a slower but more accurate alternative to
the control by gamepad or remote control. The keyboard control is used in some of the
experiments, where a constant flight behavior was desired (Chapter 4).

3.3.2 Base Station

For operation of the AR-100, a base station is necessary, consisting of a computer
with the control software[33], an uplink antenna for control commands, two down-link an-
tennae, one combined with a frame grabber for video data and one for sensor-related and
miscellaneous data, and optionally a separate remote control. The base station computer
handles all of the computations concerning mission planning, localization, optic flow and
egomotion calculations, Kalman filter calculations, et cetera.

Most of the time, the computer used in this scenario is an Intel Pentium 4 desktop
pc with 2.6GHz CPU clock frequency and 1GB of RAM. For the final experiments, an
Intel Core 2 Duo E6600 CPU with a 2.4GHz clock and 4GB RAM is employed. The
operating systems in both cases are 32bit Linux operating systems, but the P4 runs the
OpenSUSE 11 5 distribution with kernel 2.6.25.5 while the Core2Duo uses an up-to-date
Gentoo6 distribution with kernel 2.6.30-r7.

The control system software was written in the programming language C++ and compiled
using the Gnu Compiler version 4.3.4.

The frame grabber is portable sized from the company DIGITUS, but can only grab 25
frames per second at a resolution of 720×576 pixels, i.e. at the PAL standard. The camera
has a native resolution of 470 lines, though, so the frame grabber extrapolates the recorded
pictures to 576 lines.

5www.opensuse.org

6www.gentoo.org

www.opensuse.org
www.gentoo.org

66 Chapter 3: Process and Observation Models

Manual control can be accomplished either through using a remote control which sends
the commands directly to the AR-100, or through using the control software via keyboard of
gamepad control input. The manual remote control is a must for flying vehicles in Germany
because of laws governing the air space.

3.3.3 Sensors

The sensors that the AR-100 is equipped with are:

• Global Positioning sensor

• Inertial (and Gyroscopic) Measurement Unit

• Motor tachometer

• Video Camera

• Magnetometer

• Barometer

Since the GPS sensor was not yet operational under the Linux operating system, and the
goal of this paper is to formulate an estimation system without GPS information, the GPS
sensor is not used. The sensors do not time stamp their measurements, and the software
running on the robot cannot be modified, so the best available time stamp is using the time
instant of reception of data at the base station as the measurement time stamp. This way,
the state estimate always lags the signal latency behind the actual state of the robot. The
fastest measurements arrive at a time interval of about 24ms.

Inertial Measurement Unit

An IMU sensor is an inertial measurement unit consisting of three gyroscopes
and three inertial sensors. These sensors are aligned in such a way, that it measures the
three-dimensional angular velocities and linear accelerations of itself and of the object it is
attached to. There exist different types of IMUs, namely free-moving and strap-down. Free-
moving IMUs have actual gimbals inside and gimbal lock can occur, whereas strap-down
IMUs are very small electronic devices without the danger of a gimbal lock. The IMU used
in the AR-100 is a three-axis strap-down IMU, i.e. it measures the angular velocities and
the linear accelerations in three dimensions each.

Unfortunately, the exact specifications of the implemented IMU are secret. This means
that the standard deviation error and the maximal error of the sensor during a time interval
could not be determined.

Chapter 3: Process and Observation Models 67

Motor Tachometer

The motor speeds can be acquired by an electronic device measuring the voltage
and the current at the motor. The tachometer reports via I2C protocol, Inter-Integrated
Circuit, and the drone sends this information to the base station. The data sent is a
dimensionless value in the interval [64, 256] for each motor. Unfortunately, the mapping
from that value to the actual rotational speed of the rotor is kept secret. For that reason,
the essential proportionality constant is modeled and empirically tested in Section 4.2.1.

The resulting conversion formula is given as

wi [RPM] = 0.01878x2
i + 13.58696xi + 19.41708,

where xi is the I2C value of motor i, and wi the resulting rotor speed in [RPM].

Video Camera

The optical sensor of the AR-100 is a digital camera able to record 25 color images
per second at a resolution of 470 TV-lines. It uses an automatic white fader that cannot be
switched off and its horizontal angle of aperture is ±45◦. The camera is located within a
horizontal barrel underneath the quadrocopter, which can be rotated around its horizontal
axis within a frame of 130◦. This rotation is controlled by certain commandos to the drone.

The video information is broadcasted via an analog signal to the receiver of the base
station. This introduces errors to the video information, at times rendering some images
useless for the optic flow and egomotion analyses.

Magnetometer

The AR-100 is also equipped with an onboard magnetic compass. The sensor
readings range from 0◦ to 359◦ and represent the alignment of the body frame x-axis toward
magnetic north. To that effect, the following relationship is between the given measurements
and the magnetic orientation of the x-axis:

• 0◦ correlates to the x-axis pointing towards magnetic North.

• 90◦ correlates to the x-axis pointing towards magnetic East.

• 180◦ correlates to the x-axis pointing towards magnetic South.

• 270◦ correlates to the x-axis pointing towards magnetic West.

With the help of the magnetometer, the world frame is aligned during the initialization
phase (Section 3.4.4). After the initialization, sensor measurements are incorporated into
the state estimate correction (Section 3.4.3). In order to average the measurements in a
sensible way, the degree unit representation of orientation is not very suitable. Take for
example two measurements, one of 1◦ and the other of 359◦. Both point in almost the

68 Chapter 3: Process and Observation Models

same direction, with only a 2◦ difference. However, the arithmetic mean of the two values
is 180◦, the exactly opposite direction. Thus, the orientation given in units of degrees is
converted to a two dimensional vector. This vector corresponds to the x and y coordinates
of a unit vector pointing in the direction of the magnetometer observation. In other words,
the magnetometer is regarded two-dimensionally as a unit circle, with its observation report
in degrees taken as the polar coordinate of a unit vector corresponding to the x-axis of the
quadrocopter. This coordinate is then converted via trigonometric functions into cartesian
coordinates. The cartesian representation suits the calculation of the arithmetic mean. The
measurement for the angle β is then given as

zMagnet =
(

cos (β)
sin (β)

)
. (3.32)

Barometer

A common technique for measuring the height of an aircraft employs a barometer
to measure air pressure. Air pressure decreases with higher altitude, but it also depends on
air temperature and mean sea level. The specific model of barometer built into the AR-100
is not known, but common digital barometers are calibrated and temperature-compensating.
The barometer measurements are already converted into meters [m] by the software running
on the drone and then sent to the base station. An often observed problem that the
barometer on the UAV shows, is that the drone tends to create fluctuating pressure fields,
disturbing the altimeter related measurements of the barometer. These turbulences are
created by the running rotors, pushing the air away. This unpredictability of the barometer
is reflected in its noise covariance matrix (Section 3.4.3).

3.3.4 Inertia

For proper modeling of a mobile object, knowledge of its mass and inertia tensor
is fundamental. As discussed below, for modeling purposes the body of the AR-100 is
assumed to be a perfect rigid body with a diagonal inertia tensor. The shape of the inertial
body is modeled to be the sum of a solid spherical body in the center and a concentrically
placed circular loop in the x-y-plane. The sphere represents the central body containing the
electronics, sensors, camera, center frame and miscellaneous items located close to the center
of gravity. The circular loop models the four motors together with rotors, bumper wire and
the second half of the weight of the frame axes. Since the drone frame is sufficiently point-
symmetrical with respect to its center of gravity, this should be a good approximation of the
actual inertia matrix, which can only be determined empirically. With these assumptions,
the three-dimensional inertia tensor for the center sphere, ICS , is given as

ICS =

2
5mCSr

2
CS 0 0

0 2
5mCSr

2
CS 0

0 0 2
5mCSr

2
CS

 , (3.33)

where mCS is the mass in [kg] and rCS the radius in [m] of the solid center sphere of the AR-
100. Analogously, the inertia tensor for the outer circular loop, IOL, is defined as follows,

Chapter 3: Process and Observation Models 69

IOL =

1
2mOLr

2
OL 0 0

0 1
2mOLr

2
OL 0

0 0 mOLr
2
OL

 , (3.34)

where mOL is the mass in [kg] and rOL the radius in [m] of the circular loop of the AR-100.
The radius of the loop is equal to the distance of the rotors to the center of mass, hence it
is

rOL = d.

The distance d of the rotors to the robot’s center of mass is given as

d = rOL = 0.272m. (3.35)

The total approximate three-dimensional inertia tensor for the quadrocopter is then given
as

Icm = ICS + IOL

=

2
5mCSr

2
CS 0 0

0 2
5mCSr

2
CS 0

0 0 2
5mCSr

2
CS

+

1
2mOLd

2 0 0
0 1

2mOLd
2 0

0 0 mOLd
2

 (3.36)

=

2
5mCSr

2
CS + 1

2mOLd
2 0 0

0 2
5mCSr

2
CS + 1

2mOLd
2 0

0 0 2
5mCSr

2
CS +mOLd

2

 . (3.37)

The radius of the central sphere is measured as

rCS = 0.15m. (3.38)

The total mass of the drone including charged batteries, barrel camera, rotors and bumper
wire is measured as follows,

m = 0.9103kg. (3.39)

Table 3.1 lists the masses of more or less arbitrarily separated components of the AR-100.
The center sphere’s mass consists of the body center, the barrel camera, the battery and
half of the axes, which results in a mass of

mCS = 0.52848kg,

and the mass of the outer loop is the sum of half of the axes, all motors, all four rotors and
the bumper wire construction, which adds up to

mOL = 0.38182kg.

Employing Equation (3.37), the three-dimensional inertia tensor for the AR-100 is given as

Icm =

0.018881 0 0
0 0.018881 0
0 0 0.033005

 ,

70 Chapter 3: Process and Observation Models

Component Quantity Unit Mass [kg]

Body center 1 0.22046
Battery 1 0.1902
Camera 1 0.07592

Axis 4 0.02095
Motor 4 0.060
Rotor 4 0.00918

Bumper wire 1 0.0632
Total 0.9103

Table 3.1: Masses of components.

and the spatial inertia matrix, using Equation (3.17), around the robot’s center of gravity
with respect to the body frame is given as

I =

0.018881 0 0 0 0 0
0 0.018881 0 0 0 0
0 0 0.033005 0 0 0
0 0 0 0.9103 0 0
0 0 0 0 0.9103 0
0 0 0 0 0 0.9103

 . (3.40)

This concludes the section on the UAV hardware used during this thesis. In the next section
the nonlinear dynamic physical models are presented.

3.4 Derivation

This section defines the filter’s system state, explaining its components. Subse-
quently, the equations of the nonlinear process and observation models for the Kalman filter
are derived.

3.4.1 System State

The system state, x, is a multi-dimensional vector of values that can be in various
units independent of each other. It is the state that the Kalman filter is supposed to
estimate. For this thesis, the system state vector’s dimension is 26, consisting of relevant
information of the robot’s movement chosen for sensible localization. The system state is
updated via numerical integration in the time update step of the Kalman filter and corrected
during the measurement update step, see Chapter 2.2 on Kalman Filters and Sections 3.4.2
and 3.4.3 on the process and observation model formulations.

In short, the system state contains the position, velocity, IMU bias, motor speeds and the
estimated wind velocity concatenated to one 26-dimensional vector. This vector is given as

Chapter 3: Process and Observation Models 71

x =

p
v
b
m
w

 . (3.41)

Each element is introduced below. The detailed explanations covering their dynamics, the
process and observation models, are presented in the subsequent Sections 3.4.2 and 3.4.3.

Position

The position component, p, of the system state is a seven dimensional (7-D) vector
consisting of the drone’s orientation in quaternion representation and its three-dimensional
Cartesian location p. Both are in world frame coordinates, given as

pW =
(
q
p

)
= (q0, q1, q2, q3, pN , pE , pD)T .

(3.42)

Position p represents the information of how far the drone has moved away from its initial
position and what its current orientation with respect to the world frame is. The position
changes over time, and as covered in Section 3.2.2, p is used to calculate the coordinate
transformation matrices.

Velocity

The next part of the system state is the robot’s velocity, v, in body frame coor-
dinates. v is a spatial motion vector, i.e. a six dimensional (6-D) vector containing the
robot’s angular velocity in

[
rad
s

]
and its linear velocity in

[
m
s

]
:

vB =
(
ω
vl

)
= (ωx, ωy, ωz, vx, vy, vz)

T .

(3.43)

The velocity v is the current rate of change of the position of the craft. It is important to
note that is is given in angles instead of quaternions, and with respect to the body frame
instead of the world frame. The change in position (and orientation), ∆p, as computed via
numerical integration must be transformed to world frame coordinates before adding it to
the initial position.

Inertial Measurement Unit Bias

An IMU, or Inertial Measurement Unit, measures and reports on two different
types of a craft’s egomotion components. It measures the angular velocity and the linear
accelerations of the vehicle, each in three dimensions. This information, when collected
and integrated correctly, allows the tracking of the vehicle’s position and orientation, a

72 Chapter 3: Process and Observation Models

method called dead reckoning, as discussed in the introductory section 1.1.3. In general,
the IMU sensor measurements are corrupted by various types of errors such as scale factors,
misalignments, biases, and random noise. A major disadvantage of inertial sensing for dead
reckoning is the fact that these errors of the IMU sensor measurement are accumulated.
The integration procedure adds every detected change to the estimated position, and any
measurement errors, no matter how small, are accrued from step to step. This leads to
drift, an ever-increasing estimate error between the system’s estimate of the craft’s current
position and the actual location. In order for the model to be able to incorporate these
details, the IMU bias of linear acceleration and angular velocity measurements is modeled
as a random vector.

The IMU bias is a six dimensional vector of scalar values and is used to estimate how
strong the IMU is biased. It is given as

b =

bωx

bωy

bωz

bax

bay

baz

 . (3.44)

In other words, b describes the prevailing offset of the IMU’s measurements for each dimen-
sion in the following model,

zIMU (t) = ẑ (t) + b+ nb.

More on the IMU’s observation model is found in Section 3.4.3.

Motor Speeds

The vector m is a four dimensional vector containing the motor speeds of the
quadrocopter’s four motors. The motor speeds are taken as approximate rotor speeds,
given in units of revolutions per minute, [RPM]. The vector m is given as

m =

w1

w2

w3

w4

 . (3.45)

The arrangement of the numbering of the motors starts at the motor of the drone that
lies on the x-axis of the body frame. From there it continues in mathematically positive
direction around the quadrocopter, as viewed from above in direction of the z-axis (Figure
3.8).

Wind Velocity

The last element of the system state vector is a three-dimensional vector represent-
ing the velocity that is estimated for the prevailing wind. w only considers linear velocities

Chapter 3: Process and Observation Models 73

Figure 3.8: Motor Numbering.
Motor Number 1 is positioned in x-axis direction from the robot center of mass and
motor 4 lies along the y-axis.

of the wind in world frame coordinates, given as

wW =

wNwE
wD

 . (3.46)

It is assumed that the wind acts uniformly on the robot, which is modeled as an object with
a spherical body (Section 3.3.4). Therefore possible generated torques as a consequence of
linear wind forces are ignored.

This component is included for reasons of future extension, when wind velocity can be
estimated reasonably well. For this thesis, the wind velocity is assumed to be zero, with
minimal rate of change. Wind velocities are used for the prediction of the air drag of the
quadrocopter.

3.4.2 Process Model

After having established the structure of the system state vector, we can look at
how each of its components evolves over time. This section derives the differential process
model equations for the Kalman filter time update.

The equations of motion are formulated with respect to the body frame, regarding the
coordinate system as a non-moving frame of reference. This simplifies the equations, since
the inertia matrix is constant instead of dynamic over time. Further assumptions concerning
the robot to be modeled are:

74 Chapter 3: Process and Observation Models

1. The robot is assumed to be a perfect rigid body with diagonal three-dimensional
inertial tensor.

2. The motors are considered to be first order systems.

These assumptions enable a simplification of the mathematical equations while still reflect-
ing the actual craft’s characteristics to a sufficient degree[34, 35].

As a first approximation of the navigational equation, we can ignore differences of ref-
erence frames insofar as assume all values given in world frame reference. The navigation
equation is then given as

p̈ = a.

Through integration, the values for velocity and position are obtained:

ṗ = v =
∫

adt,

p =
∫

vdt.

The acceleration is the basis required for this navigation equation. In a force based model,
the acceleration can be calculated from these forces.

Forces

A change of the position of the mobile robot in world frame coordinates is a
consequence of forces acting on the robot. All forces add together to a final resultant force
fres, a spatial force vector, at time instant t with respect to the body frame, given as

fres = fg + fw + fm, (3.47)

where fg is the gravitational force, fw the effective force of air drag and wind on the robot,
and fm the force the robot’s four motors and rotors generate collectively. These single forces
can be calculated from an accumulation of predefined constants of the robot’s environment
and data contained in the system state x. Each component is treated separately below.

The gravitational force in body frame coordinates is computed for time instant t by trans-
forming the constant world frame gravity force vector, fg,W , into body frame coordinates
using Equation (3.11) as follows,

fg,B = BXF
W fg,W

=
(
BRW −S

(
BpW

)
BRW

0 BRW

)

0
0
0
0
0

fg,W

 .
(3.48)

Chapter 3: Process and Observation Models 75

The force that the robot produces with its rotors, fm, is itself a sum of multiple forces,
as presented in Section 3.2.4. fm describes the linear forces as well as the torques created
by the rotors’ revolutions as follows,

fm =
(

fτ
fT

)
. (3.49)

Let’s first derive the thrust component of fm before addressing the torques.

The linear thrust created by one rotor by pushing against air in direction of the z-axis,
fT,i, can be modeled as

fT,i = −bw2
i z, (3.50)

where wi is the speed of rotor i in [RPM], b > 0 is a positive proportionality constant
combining multiple constants into one, given in units of [kg ·m], and z is the basis vector
of the z-axis. b depends on the robot’s air drag coefficient, the orthogonal drag area, air
density and rotor specific characteristics, for example the pitch angle of the rotor blades and
additional geometric properties7. For quasi-stationary maneuvers in free, relatively still air
it is a reasonable assumption that the scalar b is indeed a constant[35].

The total self-induced thrust acting on the robot is then given as the sum of the single
thrust forces generated by all four rotors,

fT =
4∑
i=1

fT,i

= −b
4∑
i=1

w2
i z.

(3.51)

As described in Section 3.2.4, rotations around the three body axes are used to control
the flight motion into other directions than only up. Rotations around the x- and y-axes
control the direction of the thrust force, fT .

The torques around the x- and y-axes of the body frame to induce the roll- and pitch-
rotations, fτ |x and fτ |y, result as a sum of the thrust forces of the rotors on the respectively
opposite axis. In other words, the rotors on the y-axis control the rotation about the x-axis
and the other way round. The coefficients of the thrust forces of the single rotors are defined
with respect to right-handedness of the reference frames. The direction of a single thrust
force is given with respect to the right-handed rotation direction around a specific axis
(Figure 3.7). Positive rotation around the x-axis lifts motor number 2 and lowers motor

7b also depends on the cube of the radius of the rotor blades, the number of blades, the chord length
of the blades, the lift constant (linking angle of attack of the blade airfoil to the lift generated), the drag
constant (associated with the airframe) and the geometry of the wake but particularly on the pitch angle
of the rotor blades. For a detailed treatise of the aerodynamic model of a helicopter rotor, the reader is
referred to any standard text in the field, e.g. [36].

76 Chapter 3: Process and Observation Models

number 4. The distance of the rotors to the body frame origin, the robot’s center of gravity,
is important as the rotor’s thrust force acts as a leverage force concerning rotation. This
yields for the roll torque about the x-axis the equation given as

fτ |x = fT,2|x + fT,4|x
= db

(
w2

2 − w2
4

)
,

(3.52)

where d > 0 is the absolute displacement distance from the rotor to the center of mass of
the robot and fT,i|x is the leverage force of rotor i about the x-axis with respect to the
right-handed definition of rotation. Analogously, the pitch torque about the y-axis is given
as

fτ |y = fT,1|y fT,3|y
= db

(
w2

1 − w2
3

)
.

(3.53)

The remaining reactive torque for yaw rotations, fτ |z, due to air drag generated by a
rotor’s rotation can be modeled as

fτ |z = kw2
i , (3.54)

where wi is the speed of the rotor i in units of [RPM] and k > 0 is a positive proportionality
constant depending on the density of air and the same rotor characteristics as discussed for
the linear thrust forces, but given in units of

[
kg ·m2

]
. Since the rotors turn pairwise

in opposite directions, the reactive torques of the single rotors add up to a resultant yaw
torque, fτ,res|z, with coefficients depending on their directions with respect to the body
frame, taken from Figure 3.7. The resultant torque is given as

fτ,res|z = k

4∑
i=1

(−1)i−1w2
i , (3.55)

where the index i is the number of the rotor according to Figures 3.8 and 3.7. The reactive
yaw torque, fτ,res|z, is given in units of [Nm]

(
= kg·rad·m2

s2

)
.

Combining the derived equations for thrust forces and torques into the spatial force vector
from Equation (3.49), we receive

fm =
(

fτ
fT

)
= Ωm2

=

0 db 0 −db
db 0 −db 0
−k k −k k
0 0 0 0
0 0 0 0
−b −b −b −b

m
2,

(3.56)

Chapter 3: Process and Observation Models 77

where m2 is defined as the vector of element-wise squared rotor speeds, given as

m2 =

w2

1

w2
2

w2
3

w2
4

 .

Ω is defined as a constant 6×4 matrix to calculate the force fm, as given in Equation (3.56).

The quadrocopter must also overcome air drag. The reactive force of air drag, fw, acting
on the drone’s body can be modeled as

fw =
1
2
ρ‖vrel‖vrel, (3.57)

where ρ > 0 is a positive proportionality constant depending on air density, reference area for
air drag, and a drag coefficient, a dimensionless constant quantifying the object’s resistance
in a fluid environment associated with the object’s before mentioned reference area. The
drag force, fw, is by definition the force component in the direction of the air flow velocity.
vrel represents the relative velocity of the air flow to the vehicle, given as

vrel = vw − v, (3.58)

where the first term is the wind velocity from the system state vector, Equation (3.41),
given in coordinates with respect to the body frame. Defined as follows,

vw (t) = wB (t)

= BXW (t) wW (t) ,
(3.59)

where the linear component of spatial motion vector wW (t) is taken directly from the
current system state vector,x, its angular component set to zero. The second term of
Equation (3.59) is the current velocity of the vehicle, v (t) with its angular component set
to zero as well. v (t) is already expressed with respect to the body frame.

78 Chapter 3: Process and Observation Models

The three component forces described above can then be combined using Equation (3.47),
resulting in the equation given as

fres = fg + fw + fm

= BXF
WgW +

1
2
ρ‖vrel‖vrel + Ωm2

= BXF
WgW +

1
2
ρ
∥∥BXWwW − v

∥∥ (BXWwW − v
)

+ Ωm2

(3.60)

= BXF
W

0
0
0
0
0

9.81

+

1
2
ρ

∥∥∥∥BXW

(
0
wW

)
−
(

0
vl

)∥∥∥∥ [BXW

(
0
wW

)
−
(

0
vl

)]

+

0 db 0 −db
db 0 −db 0
−k k −k k
0 0 0 0
0 0 0 0
−b −b −b −b

w2

1

w2
2

w2
3

w2
4

 .

(3.61)

It is important to note that almost all terms in Equation (3.61) are time dependent, ex-
cluding Ω and gW .

The hardware-specific constants b, k, d and ρ must be acquired empirically. The parame-
ters for the AirRobot AR-100 used in this thesis necessary for the computation of Equation
(3.61) are compiled through measurements (Section 3.3.4) and experiments (Section 4.2).

Now that the equations for the forces acting on the drone are formulated, we can calculate
the robot’s acceleration resulting from these forces, following Newton’s second law of motion,

f = ma.

Given the spatial equivalent of mass in this equation, the constant inertia matrix, I, the
acceleration at time instant t can be calculated according to[30]

v̇ (t) = a (t) = I−1 [fres (t)] + na, (3.62)

where I is given in Equation (3.37) and na is the zero mean Gaussian process noise for
acceleration.

Chapter 3: Process and Observation Models 79

Kinematic Model

In our case, the rotor speeds are arriving at a comparably slow rate of about 8Hz.
This low rate is not well suited for the rotor-speed-driven dynamic model, where a high
temporal resolution is beneficial. The IMU sensor delivers measurements at a rate of about
24Hz and is thus better suited to drive the model of the AR-100. The IMU already measures
the linear acceleration caused by the sum of all forces. Therefore, instead of calculating the
acceleration using rotor speeds, the IMU readings are employed as parameters for the process
model. This disqualifies the use of the IMU during the correction step, since it is now being
applied in the time update step.

Velocity

Given the acceleration, the change of velocity over a given time interval can be
calculated. Suppose the time interval over which to calculate the change of velocity is
defined as [tk−1, tk], then ∆v (tk), given as

∆v (tk) =
∫ tk

tk−1

v̇ (x) dx (3.63)

=
∫ tk

tk−1

a (x) dx, (3.64)

defines that change of velocity. The total velocity at time instant t is given as

v (t) = v (t0) +
∫ t

t0

a (x) dx. (3.65)

For sufficiently small time intervals [tk−1, tk], it can be assumed that the forces are con-
stant during that time[12]. Then a (tk−1) = a (tk), simplifying the integration. The change
of velocity is given as

∆v|tktk−1
= a (tk−1) · (tk − tk−1) . (3.66)

The differential process model equation for evolution of the velocity is then given as the
acceleration in Equation (3.62).

Position

The rate of change of the position, ṗ∗B, with respect to body frame coordinates
and the orientation in Euler angles instead of quaternions, is given as

ṗ∗B (t) = v (t)

= v0 +
∫ t

0
a (x) dx.

(3.67)

80 Chapter 3: Process and Observation Models

For a sufficiently small time interval, [tk−1, tk], this results in the spatial motion vector as
follows

ṗ∗B (t)|tktk−1
= v (tk−1) +

∫ tk

tk−1

a (x) dx

= v (tk−1) + a (tk−1) · (tk − tk−1)
= v (tk−1) + a (tk−1) ·∆t.

This velocity is still given with respect to the body frame. It has to be transformed using
the body to world frame transformation matrix, WXB (tk−1), calculated from the position
component vector, p (tk−1) of the system state. The transformed velocity is given as

ṗ∗W (t)|tktk−1
= WXB (tk−1) ṗ∗B (t)|tktk−1

= vW (tk) .

During integration the body frame is regarded as not moving, simplifying the equations.
In other words, during integration the non-inertial moving body frame is treated as a non-
moving inertial reference frame. The motion trajectories are calculated for the still frame
and afterwards transformed to world frame motions with the help of the transformation
matrix of the static body frame. After integration, the body frame origin is defined as at
the location of the center of mass of the UAV again, rotated correctly.

After conversion, ṗ∗W (t)|tktk−1
is given in coordinates with respect to the world frame,

but the angular velocity must be converted to quaternion representation. To achieve this,
Equation (3.31) is applied, using the calculated world angle velocities from ṗ∗W (t)|tktk−1

.
These angular velocities are the roll, pitch and yaw Euler velocities Φ, Θ and Ψ, given as

vW = ṗ∗W (t)|tktk−1
=

Φ (t)
Θ (t)
Ψ (t)
vN (t)
vE (t)
vD (t)

 .

To convert these velocities into quaternion representation, the time derivative of the orien-
tation quaternion, d

dtq, is employed. Representing the rate of change of orientation, it is
given as

d

dt
q (t) =

1
2
Q (t)ω (t) (3.68)

=
1
2

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

a
√

Φ2 + Θ2 + Ψ2 (1− ‖q‖)
Φ
Θ
Ψ

 , (3.69)

Chapter 3: Process and Observation Models 81

where Q (t) is generated from the current orientation at tk−1. The angular velocities Φ, Θ
and Ψ are calculated as follows:

Φ
Θ
Ψ
vN
vE
vD

 = WXB (tk−1) (v (tk−1)) ,

because to calculate equation (3.69), the angular speed is taken as constant during the given
time frame.

The final seven-dimensional vector modeling the rate of change of the position vector in
the system state is given as

ṗW (t) =
(
d
dtq (t)
vW

)
‘ + np. (3.70)

The noise of the position rate of change, np, is modeled as additive zero mean Gaussian
noise. Its standard deviation is set to 0.01 for the quaternion component and 0.03ms for the
position.

IMU Bias, Motor Speeds, Wind Velocity

IMU sensor biases, the motor speeds and the wind velocity are all assumed to vary
by a random walk model with zero mean Gaussian driving terms[37], given as

ḃ = nb,

ṁ = nm,

ẇ = nw.

(3.71)

Their standard deviations are set according to empirical experience or actual available
technical information. The standard deviation, σ, for the IMU biases are three-dimensional
vectors with values set as 0.001 rads and 0.01m

s2
for the angular and linear components. The

standard deviation of the motor speed noise is set to 100RPM for each motor and the wind
velocity standard deviation is set at a low 0.003m

s2
. These are the differential process model

equations for their corresponding system state components.

Process Noise Covariance Matrix

The process noise covariance matrix, Q, represents the inverse of the accuracy
of the process model equations. Or in other words, it denotes the uncertainty that the
process model introduces into the state estimate. The process noise covariance matrix can
be dynamic over time, but it is also common to define a constant noise covariance matrix
to simplify the computations[38].

82 Chapter 3: Process and Observation Models

Some formulations also separate the process noise covariance matrix into two matrices,
given as

Q = LQ′LT , (3.72)

where Q′ ∈ Rn×n denotes a diagonal positive definite matrix and L ∈ Rn×n represents the
corresponding lower triangular positive semi-definite matrix absorbing all non-diagonality
of the noise covariance matrix. Accurate values for these matrices must be determined
mathematically and empirically8, but approximations thereof already deliver satisfactory
results[26]. The accurate determination of the matrices Q′ and L for the process noise
covariance matrix would go beyond the scope of this thesis, hence the covariance matrix is
defined with approximate values[37].

The process noise covariance matrix is defined as a diagonal concatenation of the noise
covariance matrices of the system state vector components, given as

Q = diag
[
Qnp ,Qnv ,Qnb

,Qnm ,Qnw ,
]

= diag [0.0001, 0.0001, 0.0001, 0.0001,

0.001, 0.001, 0.01,
[m
s

]2
0.001, 0.001, 0.001,

[
rad

s

]2

0.04, 0.04, 0.04,
[m
s

]2
0.001, 0.001, 0.001,

[
rad

s

]2

0.001, 0.001, 0.001,
[m
s

]2
10000, 10000, 10000, 10000, [RPM]2

0.00001, 0.00001, 0.00001
[m
s

]2]
.

(3.73)

In the IMU driven process model, the IMU noise statistics are used for the angular velocity
and linear acceleration.

8The interested reader is referred to standard books on the subject, e.g. [38].

Chapter 3: Process and Observation Models 83

Summary

The Equations (3.70), (3.64) and Equations (3.71) above can then be summarized
into the differential process model function, f , given as:

f (x, t,w) =
d

dt
x (t) (3.74)

=
d

dt

p (t)
v (t)
b (t)
m (t)
w (t)

 (3.75)

=

ṗW (t)
v̇ (t)

0
0
0

+

np
nv
nb
nm
nw

 , (3.76)

where w is the parameter vector driving the process model. This function is integrated
numerically over a given time interval to calculate the actual change of the system state.

3.4.3 Observation Model

The observation model calculates the measurements that are expected from each
specific sensor, using information available in the system state. The function representing
the observation model, h, is a concatenation of several observation model functions, one for
each sensor integrated into the Kalman filter framework. This observation model is defined
employing the sequential updates modification to the correction step, described in Section
2.3.4.

Similar to the derivation of the process model, the componental observation models are
derived first, after which the concatenated observation model equation is presented. As
discussed in Section 2.3.4, these sensor specific models are employed sequentially as required
during the correction process. Which model is applied when depends on the order in which
the measurements arrive.

Knowledge of the time instant of a measurement’s physical taking is important for an
accurate correction of the state estimate with that measurement. Therefore the observations
must be time stamped as precisely as possible.

The sensors’ noise covariance matrices can be dynamic and static. Accurate determi-
nation of the noise covariance matrices requires precise knowledge or investigation of the
noise characteristics. This process is costly and time-consuming9. And with the additional

9The interested reader is referred to research on stochastic processes and filter theory, e.g. [22]

84 Chapter 3: Process and Observation Models

handicap of industrial secrecy, the accurate determination of the matrices would have gone
beyond the scope of this thesis. For this thesis the noise covariance matrices are approx-
imated by constant matrices containing estimates of the specific sensor’s noise statistics.
These values are chosen from empirical experience of the sensors’ measurements and from
papers on state estimation[37, 12].

Measurement Vector

According to the formulation of the sequential updates, the measurement vector
z is compartmentalized. It contains the measurements of the sensors defined in this section
in an ordered fashion. The measurement vector and the order of its components is defined
as

z =

zquat
zimu
ztacho
zcam

zmagnet
zbaro

 . (3.77)

The single measurement components are defined below.

Quaternion Unity

The unity of the quaternion must be maintained in order for the rotations to stay
pure. This can be achieved through the introduction of a pseudo measurement concerning
the quaternion’s norm[37]. This pseudo measurement is applied at every correction step.
The observation model is given as

hquat = ẑquat (t) + nq

= ‖q (t) ‖2 + nq

= q20 + q21 + q22 + q23 + nq.

(3.78)

The pseudo observation data received from the pseudo sensor is always 1, i.e.

zquat (t) = 1.

For the noise covariance matrix a very small 0.00001 is chosen.

Inertial Measurement Unit

The inertial measurement unit delivers observations of the angular velocities and
linear accelerations of all three dimensions (Section 3.2.4). Additionally for the AR-100, it
also reports the current pitch and roll angles. These angles are given with respect to the

Chapter 3: Process and Observation Models 85

world frame, contrary to the motion information. The measurement vector is given as

zimu (t) =

ωx
ωy
ωz
ax
ay
az

ΦW

ΘW

. (3.79)

Therefore, the IMU observation model, hIMU , calculates the expected angular velocity and
linear acceleration from the current state estimate. The linear acceleration is calculated
by computing the forces acting on the UAV and deriving the acceleration with the help of
Newton’s second law of motion, analogous to the calculation of forces in section 3.4.2. The
acceleration is given as

a (t) = I−1fres (t) , (3.80)

where the total force, fres (t), is calculated according to equation (3.61). The linear accel-
eration component is taken from this spatial motion vector.

The angular velocity, ω̂, is directly available in the system state. It is the angular com-
ponent of the spatial velocity, v̂ (t), where

v̂ =
(
ω̂
v̂

)
.

The angles of the robot’s orientation must be converted from the quaternion represen-
tation of orientation in the system state to Euler angle representation. Equation (3.30)
is employed for this purpose, calculating the estimated roll and pitch angles, Φ̂ and Θ̂,
respectively.

These results are then combined with the estimated IMU bias to represent the expected
measurement, ẑ (t), given as

himu (x, t) = ẑimu (t)

=

ω̂x
ω̂y
ω̂z
âx
ây
âz
Φ̂
Θ̂

+

bωx

bωy

bωz

bax

bay

baz

0
0

(3.81)

86 Chapter 3: Process and Observation Models

The noise characteristics of the IMU implemented in teh AR-100 are approximated as

Rimu = diag

[
0.0001

[
rad

s

]2

, 0.0001
[
rad

s

]2

, 0.0001
[
rad

s

]2

,

0.04
[m
s2

]2
, 0.04

[m
s2

]2
, 0.04

[m
s2

]2
, 0.0007421 [rad]2 , 0.0007421 [rad]2

]
.

(3.82)

For the IMU driven process model, the measurement vector for the correction step as well
as the corresponding noise covariance matrix are cropped to contain only the Euler angle
measurements. Thus, the dimension of the measurement vector is 2 instead of 8.

Rotor Speeds

The rotor speeds are contained directly in the system state, x, in the component
vector m. Thus, the observation model is simple, given as

htacho (x, t) = ẑtacho (t)

=

m0

m1

m2

m3

 .
(3.83)

The noise covariance matrix is given as

Rm = diag [10, 10, 10, 10] . (3.84)

Camera

The camera sensor of the AR-100 is used to estimate its egomotion. The Kanatani
egomotion estimation algorithm supplies measurements of the direction of the linear veloc-
ity, a unit vector, and the absolute angular velocity. Combined, this is a six-dimensional
measurement vector.

As can be seen in Figure 3.8 of the AR-100, the camera is mounted at a -45◦ angle to the
x-axis. Thus the measurements have to be rotated around the z-axis by α = −45◦. This is
achieved by the constant spatial transformation matrix from camera to body frame, BXC ,
given as

BXC =
(
BRC 0

0 BRC

)
,

where the rotation matrix is given as

BRC =

cosα − sinα 0
sinα cosα 0

0 0 1

 .

Chapter 3: Process and Observation Models 87

The inverse is the transpose of the matrix,
CXB = BX−1

C = BXT
C .

The linear velocity contained in the state estimate must be normalized for the expected
measurement vector, ẑcam (t). The spatial motion vector containing the estimated angular
velocity and the normalized linear velocity is then transformed to the camera frame. The
observation model is given as

hcam (x, t) = CXB ẑcam (t)

= CXB

ωx
ωy
ωz

|v|−1vx
|v|−1vy
|v|−1vz

 .
(3.85)

The measurement noise covariance matrix is approximated as

Rcam = diag [0.01, 0.01, 0.01, 0.1, 0.1, 0.1] . (3.86)

Magnetometer

The magnetometer observation is the amplitude of the rotational displacement of
the body x-axis away from world North. It is a two-dimensional vector containing the sine
and cosine of the orientation angle. In effect, this describes the yaw angle of the robot
attitude. That angle, Ψ, can be calculated from the current estimated orientation using
Equation (3.30).

Once Ψ is calculated, the observation values must be obtained with the trigonometric
functions, giving the magnetometer observation model of

hmagnet (x, t) = ẑmagnet (t) (3.87)

=
(

cos Ψ
sin Ψ

)
. (3.88)

Since experiments were done indoors, where other magnetic sources can disturb or even
completely overshadow the signal, the observation noise covariance matrix is given as

Rmagnet = diag [0.001, 0.001] . (3.89)

Barometer

The barometer sensor onboard the AR-100 measures the current air pressure, but
is somewhat susceptible to self-induced changes in air pressure due to air pushed by its
rotors and possibly changes in temperature (Section 3.3.3). The reported measurement is
the height of the drone in meters, but given in opposite direction of the Down-axis of the
world NED frame. The height can be taken directly from the system state, only negating
its coeffient.

88 Chapter 3: Process and Observation Models

The observation model is defined as
hbaro (x, t) = ẑbaro (t)

= −pz.
(3.90)

Due to the occurrences of erroneous altitude measurements as discussed previously, the
noise covariance matrix contains a relatively large value. The observation noise covariance
matrix is given as

Rbaro = diag
[
14 [m]2

]
.

Summary

The nonlinear observation model was derived and presented in this section. Due to
the nature of sequential updates (Section 2.3.4), each sensor has its own observation model
function. It can be seen that this separateness of the models lends itself well to the sensor
fusion problem. Each sensor can be treated distinctly during the Kalman measurement
update step, sequentially applying all available observations. This is another bonus of this
formulation of the observation model and the Kalman filter modification. Their report
rates can remain uncoupled, further simplifying the sensor synchronization and data fusion
process. Each model function creates a corresponding measurement vector. These vectors
can vary in their dimensions absolutely independently between different sensors.

The sequential application strategy of the measurements in whichever order those have
become available for the current Kalman correction step generates a flexible observation
model. Nonetheless, to summarize the separate sensor observation models, a concatenation
of all different observation models presented in this section gives one view on the complete
observation model. The concatenated observation model is given as

h (X (t) , t) =

hquat (X (t) , t)
himu (X (t) , t)
htacho (X (t) , t)
hcam (X (t) , t)

hmagnet (X (t) , t)
hbaro (X (t) , t)

=

ẑquat
ẑimu
ẑtacho
ẑcam

ẑmagnet
ẑbaro

(3.91)

3.4.4 Initialization Phase

At the beginning of the mission, before the UAV moves but while its sensors are
already reporting measurements, the system state needs to be initialized to a reasonable con-
figuration. For each state component this means something different. Some are initialized
to zero, while other vector elements require complex computations.

Chapter 3: Process and Observation Models 89

The duration of the initialization phase must be chosen in such a way that every sensor
required for the initializing computations reports at least as often as necessary for a mean-
ingful average of the observations. In the case of the implementation using the AR-100, a
duration of 20 seconds was chosen to provide an ample number of observations.

During the initialization phase, the measurement readings are counted in number and
their values accumulated for each sensor separately. This is done in order to calculate the
arithmetic means of the measurements. From those means the initial system state vector
is calculated at the end of the initialization phase. That calculation at the end of the
initialization phase is covered in this section.

Once the initialization phase is passed, the state estimator switches from initialization to
estimation mode and treats the initialized system state and measurements according to the
common predict-correct cycle of Kalman filters.

Position

The world frame must be aligned to the actual world NED orientation. That is,
the NED orientation of the immobile UAV must be calculated employing the magnetometer
and IMU measurement means. Given in the magnetometer measurements is the North (and
East) orientation of the robot, and the IMU measurements contain the Down direction of
the NED reference frame.

Figure 3.9: Initialization of robot orientation.
The rotation from the body frame to the NED orientation needs to be determined.
Its inverse is the orientation of the robot within the world frame.

The idea is to calculate the body to world rotation, WRB, needed for the current robot
orientation, which is q = (1, 0, 0, 0)T , to be completely aligned with the NED frame axes.
The inverse of that rotation is then the initial orientation of the robot within the world

90 Chapter 3: Process and Observation Models

frame, qinit. In order to obtain that rotation, the IMU and magnetometer measurement
means need to be combined. This is achieved as follows:

1. Rotate z-axis of body frame to align with Down-axis of world frame.

2. Rotate around z-axis to align the x- and y-axes with the North- and East-axes of the
world frame, respectively.

The rotation to align the z-axis with the Down-axis is executed around a normal to the
plane spanned by the two axes. It is important to note that the magnetic North information
is not rotated along. A rotation could invalidate the orientation information, since the
magnetometer doesn’t compensate the North measurement for the robot’s askew orientation
out of the world frame North-East-plane. Rather, the North-axis information must be
projected onto the x-y-plane after this first rotation of the z-axis to compute the angle
for the second rotation. Subsequently, after obtaining the North-direction in the current
x-y-plane, the rotation around the current z-axis is performed to align the x-axis with
the projected North axis. In doing so, the y-axis is aligned with the East axis, since its
orientation is determined by the orientations of the two other axes.

The normal to the z-D-plane is given as

n = z ×D, (3.92)

where D is the normalized vector of the linear acceleration readings, or in other words the
three-dimensional direction of the Earth’s gravity. It represents the axis of the planned
rotation. The angle of the rotation, α, is calculated as follows,

α = arccos (z ·D) .

Given the axis and angle of the rotation needed to align the z-axis to the measured D, it
is converted into quaternion representation applying Equation (3.25),

qrotz =

cos α2
nx sin α

2
ny sin α

2
nz sin α

2

 .

For the next step, the original North orientation, driven by the unit vectorN , is projected
onto the plane spanned by the current x- and y-axes. The parallel component of the
projection is formulated as

Nxy = D × (N ×D) .

The component of the North direction parallel to the x-y-plane, Nxy, is the orientation
that the x-axis is supposed to be rotated to. D is the normal of that plane, the current
z-axis. Therefore the rotation axis is the current z-axis. The angle for the rotation is given
as

β = arccos (x ·Nxy) .

Chapter 3: Process and Observation Models 91

This yields a quaternion representation of the second rotation to align the x-axis to the
projected North direction as follows,

qrotx =

cos β2

Dx sin β
2

Dy sin β
2

Dz sin β
2

 .

The combined rotation for the body frame to align with the world frame is then given as

qrot = qrotx · qrotz ,

with respect to the world frame. The initial orientation of the robot is the inverse of that
rotation, as presented in section 3.2.3, given as the quaternion’s conjugate as

qinit = q∗rot =

qrot,0
−qrot,1
−qrot,2
−qrot,3

 .

The linear position of the robot is initialized to zero. Combined with the robot’s orien-
tation, the initial seven-dimensional position vector of the system state is given as

pinit =

qinit

0
0
0

 . (3.93)

Motor Speeds

The motor speeds and thereby rotor speeds are initialized to the arithmetic mean
of the set of measurements, Sm, received during the initialization phase. This should be the
approximate idle rotor speed, since the robot must remain immobile during the initialization
phase. The initial values are given as

minit =
1
|Sm|

∑
∀m∈Sm

m. (3.94)

Velocity, IMU Bias and Wind Velocity

The vehicle velocity, IMU bias and wind velocity are all initialized to zero.

vinit = 0, (3.95)
binit = 0, (3.96)
winit = 0. (3.97)

Chapter 4

Experiments and Results

4.1 Chapter Outline

In the course of this chapter, the conducted experiments concerning the robot’s
developed physical model and its implementation are presented.

The first experiment results to be given are of the experiment investigating the rela-
tionship between the unit of the robot’s tachometer and the generated rotor speeds. The
observed relationship is used to calculate a proportionality constant. That constant can
then be used in the process model to convert from the tachometer units to a standard
rotation velocity.

The experiments to obtain the necessary physical parameters for the model of the AR-
100 are presented next. The generated thrust in relation to a given rotor speed must be
predicted. Therefore the proportionality between rotor speed and generated thrust of a
single rotor is investigated. The constant describing this relationship is called the rotor
coefficient. This coefficient is determined for the rotors implemented in the AR-100.

Another relation is needed for the process model (Section 3.4.2), the proportionality
between relative wind velocity and generated drag force. That proportionality is examined
to determine a conversion function. The AR-100 air drag characteristics are researched in
detail.

After characteristic parameters of the model have been found and determined, the re-
sults of experiments scrutinizing the performance of the implementation are presented and
discussed.

4.2 Physical Model

Parameters describing the physical model of the AR-100 quadrocopter need to
be determined empirically. Additionally, the proportionality constant for the conversion

92

Chapter 4: Experiments and Results 93

from the I2C values to RPMs was unknown because of it was classified an industrial secret.
Therefore it is obtained empirically in this section.

4.2.1 IIC to RPM

Since the tachometer readings of the AR-100 are reported in an unknown unit of
the I2C protocol implemented by AirRobot, the conversion function from that unit to RPM
had to be determined. A relation of the I2C values to the voltage at the motors is assumed.
Because of the voltage to revolution speed characteristics of electric motors, as implemented
in the AR-100, a quadratic relationship is expected. The model equation is then of the form

y = ax2 + bx+ c, (4.1)

where x is the I2C value and y represents the corresponding rotor speed in [RPM]. a, b and
c are scalar constants. This relationship model is needed for the conversion of incoming
tachometer measurements into a common physical unit. Once the measurement data are
given with respect to a unit, here specifically revolutions per minute, they can be employed
in the UAV’s process and observation model equations.

Experimentation Setup

In order to measure the relationship between the I2C values and the rotor speed,
the drone was immobilized. One rotor and motor pair was chosen as representative for all
four rotors, in this case rotor number 1. With a phototransistor positioned close above the
rotor, the rotor’s running time was measured and displayed by an oscilloscope. A piece
of white tape was affixed to one blade of the rotor to improve the signal contrast. The
speed of the rotor was adjusted by controlling the I2C value for the motor indirectly via
incremental keyboard control commands. The keyboard control has the positive property
that the control commands can be set in incremental steps to a constant value (Section
3.2.4). This lets the UAV rotor remain at a more or less constant speed1, allowing accurate
measuring of the running time. The experimentation room was protected against wind. A
video camera was setup so that it could record both the oscilloscope display as well as the
I2C values received from the quadrocopter, which were displayed on a computer screen. In
this way, a simple synchronization of the oscilloscope readings and the reported I2C values
was achieved. Figure 4.1 illustrates the experimentation setup of the quadrocopter.

Unfortunately, the control commands sent to the aircraft are not direct rotor speed values
but desired attitude angles of the robot. The AR-100 employs an attitude and height stabi-
lization algorithm onboard that includes the IMU sensor readings as well as the barometer
measurements. This can cause jumpy variations in the I2C values set at the motors and
consequently the rotor speeds, because the quadrocopter compensates for sudden imaginary
drops or increases in height. The I2C values displayed on the computer screen nevertheless
are the exact values of the tachometer, but lagging behind the current state by the signal

1Constant speed insofar, as that the interferences by the stabilization control are not considered. The
attitude control can always affect the I2C values unrelated to the control commands.

94 Chapter 4: Experiments and Results

(a) Immobilized UAV for rotor speed measurement. (b) Oscilloscope and PC Monitor (camera
view).

Figure 4.1: I2C-RPM Experiment Setup.

latency inherent in the wireless communication system. The attitude stabilization program
of the AR-100 cannot be switched off.

Results and Discussion

Figure 4.2 shows the results of the first experiment. Its focus was on obtaining
a crude overview of the possible values and a preliminary test of the conversion model.
The measured speeds of the rotor in relation to the set I2C values show a trend supporting
the expectation for the proportionality relationship. The residuals in figure 4.2(b) show no
discernible tendency for small I2C values to suggest an incapability of the chosen model to
represent the actual system. For higher I2C values, the residuals appear larger. This means,
that for higher I2C values, the model seems to represent the actual relationship between
I2C values and rotor speeds less accurately. A more detailed analysis of the distribution of
the residuals of this preliminary experiment is appropriate.

The boxplot analysis of the residuals (Figure 4.2(b)) shows a slight skewness of the dis-
tribution to below the center, indicated by the low positions of the box and the median.
The skewness magnitude is roughly -10RPM. Relative to the rotor speed amplitudes, this
skewness of the residuals’ distribution is small and can be neglected. The box size implies
that a high number of sample cases is contained within a dense segment around the fit
function. In other words it signifies a high peakedness of the data distribution toward the
model function. Few outliers are encountered, but more of them lie above than below the
majority of samples. This can be a result of fluctuations in the motor speed based on in-
terferences by the attitude stabilization software. The low number of outliers also depends
on the low number of samples. These results support the suggested model but encourage
further investigation.

These initial experiment results do not yet represent the full I2C value spectrum, [64, 256],
at a satisfying resolution. Hence, in a second experiment the rotor speeds were measured

Chapter 4: Experiments and Results 95

(a) Plot of I2C values to RPM, with quadratic fit. (b) Boxplot analysis.

Figure 4.2: Results of preliminary I2C to RPM experiment with quadratic fit.
The samples already show a trend supporting the suggested model. Residuals do not
appear skewed, but the boxplot analysis shows a small negative skewness.

at smaller increments of the I2C value scale. Figure 4.3 presents the complete measurement
results. The proposed model relationship, which is a quadratic fit, and the corresponding
residuals are shown. From the plot, the correlated behavior of the measurements to the
expected proportionality relation is discernible. With growing I2C values, this correlation
looses its focus and strays further from the expectation. This is more obvious in the plot of
the residuals, but the errors to the fit seem scattered without a clear trend. This suggests
that the larger residuals at higher rotor speeds can be an effect of a degrading measur-
ing accuracy at those higher speeds. In-depth analysis of the residuals will address this
possibility.

Analysis of the residuals via boxplot (Figure 4.3(b)) shows the median of the residuals
to be zero. In accordance, the box is well positioned around zero, located in the middle
between the whiskers. These two properties reinforce the lack of skewness in the residual
distribution. In other words, the expectation is not skewed in some direction with respect to
the measurements. The box size, indicating the kurtosis, or peakedness, of the distribution,
is compact in relation to the whiskers. This symbolizes a focused distribution of data around

96 Chapter 4: Experiments and Results

(a) Plot of I2C values to RPM, with quadratic fit. (b) Boxplot analysis.

Figure 4.3: Results of rotor speed to I2C values experiment with quadratic fit.
A clear trend of the RPM measurements in relation to the I2C values can be seen. The
median is zero, but the whiskers show a larger spread of the samples. The kurtosis
nevertheless reinforces the compactness of the samples around the expectations.

the model, suggesting that the fitted function reflects the actual relation well. Few outliers
are discovered, but they remain equally distributed above and below the whiskers. The
RMSE is εRMSE = 61.42RPM , which represents a small error of about 2.5%, considering
the spectrum of rotor speeds spans up to 2400RPM.

Conclusion

In this section, the proportionality relationship between an AR-100 specific I2C
unit and the rotor speed are investigated. A common proportionality model of an electric
motor mapping voltage to motor speed is tested. The results of this experiment do not
contradict the suggested model for the relationship between the I2C values and rotor speeds.
They solidify the results of the preliminary test further, offering a relationship of satisfying
quality for use in the conversion from I2C values to rotor speeds. In consequence, the
calculated values for the three required conversion parameters a, b and c are used for the

Chapter 4: Experiments and Results 97

conversion of I2C values to RPM in equation (4.1). These values are given as

a = −0.018783505902714,
b = 13.586956245146235,
c = 19.417077590370596.

For future work, more accurate parameters for the conversion could be obtained by control-
ling the I2C values directly. Removing or deactivating the onboard attitude stabilization
program could improve experiment results further. The wireless transmission of the I2C
signals introduced a certain delay to the displayed values in comparison with the measured
rotor speeds on the oscilloscope. Though the measurements were taken during intervals
of apparent constant velocity, a direct cable connection would help minimize the latency
between I2C values and measured rotor speeds. Thereby this also minimizes the effect of
sudden rotor speed adjustments by the attitude stabilization program, whose I2C values
arrive later than the effect is observable through the phototransistor and oscilloscope.

4.2.2 Rotor Coefficient

In order to calculate the force generated by a spinning rotor, the relationship
between rotation speed and generated thrust can be modeled as

f = bw2, (4.2)

as discussed in section 3.4.2. To test this model and to determine a value for the propor-
tionality constant b, the induced thrust with respect to the rotor speed was investigated.

Experimentation Setup

In the interest of measuring the thrust force generated by the spinning rotor, the
AR-100 was attached rigidly to a real time scale. The scale was tared for the mass of
the vehicle and the immobilizing materials combined at zero rotor speed. The fixing had
the dual purpose of immobilizing the UAV and connecting it to the measuring scale. A
monitor showing the current rotor speeds was positioned beneath the scale display. For
synchronization, analogously to the first experiments, a camera was setup to capture the
weight and rotor speed readings (Figure 4.4). The generated force was calculated applying
Newton’s second law of motion, multiplying the measured weight with the acceleration by
gravity.

Since the rotors cannot be switched off separately, only the collectively generated thrust
can be measured. In order to calculate the thrust of a single rotor accurately, the rotor
speeds are incremented concurrently. To increase the sample resolution, rotor speeds are
also incremented separately. The separate incrementation introduces the problem that now
the rotor speed corresponding to a fourth of the measured collective thrust is not known
directly. Nevertheless, that speed can be calculated from the sum of the squares of the
individual rotor speeds as follows: Because the measured collective force, fr = fres, could

98 Chapter 4: Experiments and Results

Figure 4.4: Rotor Coefficient Experiment Setup.
The UAV is immobilized and attached to a scale. A camera captures the weight and
rotor speed readings.

be generated by 4 individual rotors2 running at equal speeds, wr, it follows from Equations
(3.51) and (4.2) that

fr = fres (4.3)

4bw2
r = b

(
w2

1 + w2
2 + w2

3 + w2
4

)
(4.4)

w2
r =

(
w2

1 + w2
2 + w2

3 + w2
4

)
4

(4.5)

wr =
1
2

√
w2

1 + w2
2 + w2

3 + w2
4. (4.6)

In other words, from the real and possibly distinct speeds of the rotors a virtual rotor speed
wr is calculated, with which the same collective thrust could be generated, if all rotors
were running at that speed, wr. This calculation is independent from the sought-after
proportionality constant, b. The rotor speeds given in the results are always computed
using Equation (4.6). The plotted thrust forces represent the force component generated
by a single such rotor, which is the measured thrust divided by 4.

Results and Discussion

Figure 4.5 presents the results of this experiment. The thrust measurements show
an obvious trend supporting the suggested proportionality model of Equation (4.2). The
measurements stay close to the expected values, even for high rotor speeds. Overall the
model seems to predict the generated thrust a little higher than the actual observations.
Considering the residuals, this overshoot is reflected more clearly. The majority of the

2The rotors must be of the same type, i.e. with the same rotor coefficient as the actual rotors.

Chapter 4: Experiments and Results 99

(a) Thrust to rotor speed plot, with f = bw2 fit. (b) Boxplot analysis.

Figure 4.5: Results of rotor coefficient experiment.
The suggested model captures the proportionality between rotor speed and induced
thrust, but is skewed to above the actual relationship.

residuals seems to be negative. This skewness of the model to overestimate the thrust
magnitudes is especially notable at low rotor speeds.

On closer inspection of the residuals (Figure 4.5(b)), the skewness of the distribution is
evident in the median. The distribution is skewed by about 0.025N to the negative of the
expectation, which is less than 1% of the approximate maximum generated thrust of the
rotor for maximum rotor speeds. The skewness of the distribution can also be noticed by the
lowered location of the box between the whiskers. On the other hand, while the skewness is
relatively small, the box size is compact. This, an indicator for the kurtosis of the plotted
distribution, signifies a high number of samples lie in a small band around the expectation
function.

Additionally the box position is located closely around zero for the residuals. This signifies
that the samples are spread densely around or just below the expected values. In other
words, the model describes the relationship between thrust and rotor speed slightly skewed,
but captures the proportionality insofar correct, as that the real measurements are still

100 Chapter 4: Experiments and Results

focused closely around the expectation. More outliers are detected above than below the
whiskers. These could be caused by sudden interferences of the onboard stabilization control
software in the motor speed regulation.

The root mean squared error, is εRMSE = 0.06602N . This represents about 2% of the
maximum thrust, which signifies a good fit of the model to the actual proportionality
relationship. At the highest rotor speeds, the residuals are mostly positive. This means
that the measurements are higher than the expectations. The robot was observed to be
shaking at these high rotor speeds, notwithstanding the immobilizing fixtures. This might
have affected the weight readings of the scale, but should result in equally distributed errors.
The almust purely positive errors of the measurements can be an effect of the low resolution
of the I2C values, treated in the previous experiment. The 192 I2C values from [64,256]
map a rotor speed interval of about 800RPM to more than 2400. The maximum I2C value
could represent a power value at the motor that is less than the factual maximum power
value for the motor. Thus, while the AR-100 tachometer reports one rotor speed, the actual
rotor speed could be higher.

Conclusion

This section examines the thrust characteristics of one rotor in relation to its
rotation speed. It could be shown that the proposed model for induced thrust with respect
to rotor speed reflects the characteristics of the relationship to a satisfying degree. The
rotor coefficient, b, is then given as the parameter calculated for Equation (4.2),

b = 6.273 · 10−7Ns.

For a more accurate determination of the rotor coefficient, a separate experimentation bench
can be built. That setup should be for a single rotor using a motor with accurate speed
control settings. The motor and rotor can be mounted horizontally on a vertical movable
pole so that it lifts upwards. The movable pole is the force meter to measure the generated
thrust. At the same time, the pole should be able to rotate. By the force of the rotational
motion, it can measure the generated torque by the rotor. Thus the second rotor coefficient
for induced torques, k, can be investigated as well.

4.2.3 Air Drag Coefficient

To be able to implement the effect of air drag on the flying robot into the model
formulations, the UAV’s air drag proportionality constant must be determined. That con-
stant, ρ, is a fusion of multiple arguments of the drag equation. Thus, we obtain the
proportionality relation from the one-dimensional drag equation as follows

fd = −1
2
%CdAv

2
rel

= −1
2
ρv2
rel,

(4.7)

Chapter 4: Experiments and Results 101

where ρ combines the drag coefficient, Cd, the air density, %, and the reference area, A,
orthogonal to the relative velocity of the object with respect to the air, vrel. This combina-
tion is useful, because no statement about the drag coefficient or the reference area of the
AR-100 is available. The three-dimensional model for air drag characteristics of the UAV
is then obtained from the one-dimensional in equation (4.7). The 3-D formulation is given
as

fd = −1
2
ρ ‖vrel‖vrel, (4.8)

where ρ is the vector of the proportionality constants for each dimension. If the constants
of the different dimensions do not differ much, to a certain degree, then ρ can become a
scalar constant to simplify the calculation.

Since the robot can be exposed to wind from all directions, its air drag characteristics are
investigated by having the wind come from different angles of attack.

Experimentation Setup

Figure 4.6: Side view of the drag coefficient experimentation setup.
Rigid pendulum can swing only along indicated direction, parallel to the page plane.
In the pictured setup the x-y-plane is examined.

The experiment to examine the air drag properties of the AR-100 was based on the
same principle as before. The scale from the previous experiments was reused to measure

102 Chapter 4: Experiments and Results

weight from which to calculate the force causing that change of weight, applying Newton’s
second law of motion using gravitational acceleration. The distinct difference this time was
that the UAV was attached to a vertical, one-dimensional pendulum. The pendulum, when
displaced, pulls via a direct 1:1 pulley system vertically on a weight attached to the scale
(Figure 4.6). From that change of weight the drag force is calculated as explained above. It
is important to note that the drag force acting on the robot is located further down on the
pendulum than the pulley line affecting the scale. The pendulum acts as a lever, specifically
of the second class. The relation between the two forces can be calculated with the help of
the leverage principle. The principle says that the effort force, fE , times its distance from
the fulcrum, lE , is equal to the load force, fL, multiplied with its distance from the fulcrum,
lL, in other words

fElE = fLlL. (4.9)

Here, the effort force is the drag force, fd, at length L from the pendulum axis, and the
load force is the force to lift the weight on the scale, denoted as fs, situated at distance h
from the fulcrum (Figure 4.6). For given fs, the drag force can be obtained by

fd =
h

L
fs. (4.10)

Regarding the pendulum from the perspective of the wind it acts like a wheelbarrow, with
the weight that’s on the scale placed inside the wheelbarrow: The pendulum lever makes
it easier for the drag force to lift the weight on the scale. The distances for L and h were
measured to be

h = 1.222m,
L = 2.057m.

The wind source was a 30“ wood propeller for model airplanes mounted on a power
drill. The diameter of the rotor spans the diameter of the quadrocopter, producing a
wind affecting the whole reference area of the UAV, similar to real wind. The power drill
was finely adjustable, allowing a wind velocity spectrum of high resolution. The air drag
characteristics were also examined for wind speeds so high that the drone would not be
flown in them under normal circumstances. For the experiment with stopped rotors, the
wind source was different to the experiments with running rotors. In that case, the wind
source was a ventilator with a smaller diameter. The wind velocity was measured with a
mobile, calibrated anemometer.

To investigate the components of the air drag properties separately along the x-y-plane
and the z-axis, the quadrocopter is mounted as shown in Figure 4.7 for the x-y-plane, and
turned 90◦ for the z-axis. Furthermore, the wind source was placed at different angles for
the experiments concerning both the x-y-plane and the z-axis. The wind source angles for
the x-y-plane experiments are 0◦, 10◦, 20◦, 30◦, −10◦, −20◦, −30◦ and −40◦. The z-axis
characteristics were investigated for wind coming from angles 0◦, 120◦, 110◦, 100◦ and 180◦.
Figure 4.7 shows the coordinate system for the angles.

Chapter 4: Experiments and Results 103

Figure 4.7: Top view of drag coefficient experimentation setup.
The wind source is placed equidistant at different angles around the UAV for different
angles of attack. The copter is mounted either for investigation concerning the x-y-
plane or the z-axis (dotted UAV outline) characteristics.

Results and Discussion

For a preliminary test, the z-axis air drag properties of the UAV at rest were
examined. Since the air drag characteristics differ immensely between stopped and running
rotors[36], and the effect of air on the robot is for us only interesting during an active mission,
the results for passive rotors are discussed only in brief. Afterward, the characteristics of
the active UAV, i.e. with running motors, are investigated in more detail.

Stopped Rotors The measurements of this experiment seem at first glance wildly scat-
tered and not too supporting of the suggested model (Figure 4.8). But a look at the scale
of the vertical axis (Force) shows that these measurements are plotted at a very high res-
olution. The boxplot analysis shows the behavior of the measurements in relation to the
proposed proportionality model more clearly. The median and the box position indicate a
definite skewness of the residuals to above the expectations. In other words, this signifies
that the suggested relationship underestimates the actual air drag coefficient. The kurtosis
of the residual distribution is nevertheless rather compact, implying a dense distribution of
measurement samples around the model function.

One reason the fitted model could be too low is the use of the different wind source. The
ventilator employed in this experiment with stopped motors was a little smaller than the
diameter of the quadrocopter. This could lead to a smaller effect of the wind on the robot,
if the more prominent reference area elements are not affected. This results again in the
induction of a smaller drag force than would normally be observed at the measured wind

104 Chapter 4: Experiments and Results

(a) 180 Degrees along z-axis. Stopped motors. (b) Residuals

Figure 4.8: Results of air drag experiment, no motors are running.
Forces are plotted at a very high resolution. Slight skewness of residuals is evident
from median and box position. A dense peakedness of the residuals’ distribution can
be seen from the box size.

speed. Thus, the measured drag forces are sometimes lower than the correctly measured
ones, affecting the fit of the model to the negative. The RMSE for this fit is given as
εRMSE = 0.01137N , which still signifies a mediocre fit at 13% of the median of measured
drag forces. The air drag coefficient for Equation (4.8) calculated for this experiment is

ρz,180◦,stopped = 0.02236
kg

m
.

Running Rotors The air drag characteristics of the AR-100 with running rotors were
investigated in more detail. Results of specific experiments are chosen as representatives for
experiment results of several angles. Nevertheless, the results of the remaining experiments
are presented and discussed in Appendix B.

The measurements for wind coming from 0◦ (Figure 4.9) show a clear tendency to behave
like the suggested relationship. The fitted function for the most part underestimates the
actual drag forces. Only for maximum wind velocities do the actual force measurements fall
below the expectations. In the boxplot analysis of the fit residuals, these three measurements
are classified as outliers. The readings of these outlying measurements might have been
contaminated from the very turbulent flight of the UAV at these high wind speeds. The
velocity with which the wind was coming at the UAV was very high, > 10ms . This sometimes

Chapter 4: Experiments and Results 105

(a) 0◦ x-y-plane (b) Residuals

Figure 4.9: Drag coefficient experiment results for 0◦ x-y-plane.

caused the onboard stabilization program to react to conceived changes and steer against
the fixing mechanism, leading to some shaking. This shaking was transferred to the scale
and could have disturbed the readings somewhat.

From the boxplot analysis (Figure 4.9(b)), it is even clearer that the distribution of
residuals is skewed to the positive, but in a very narrow segment above the expectation,
thanks to the small kurtosis. Together with an RMSE of εRMSE = 0.1164N , this signifies
that the fitted function approximates the actual proportionality relationship well. The
calculated coefficient for this angle is

ρxy,0◦ = 0.044506
kg

m
.

The experiment results for 30◦ (Figure 4.10) are chosen as representative for the remaining
angles of the x-y-plane. They follow the trend of the first experiment. The fitted model
captures the proportionality of the force measurements to the wind velocities, but a slight
positive skewness of the samples is evident. The boxplot analysis shows a very compact
peakedness for 30◦. This results from the fact that at 30◦ several outliers were classified,
being too far from the expectation value.

For the results of the other experiments, not enough measurements were taken to exclude
possible outliers, therefore their specific kurtosis are larger, signifying a widely spread dis-
tribution of samples around the expectations. This problem could be addressed and the fit

106 Chapter 4: Experiments and Results

(a) 30◦ x-y-plane (b) Residuals

Figure 4.10: Drag coefficient experiment results for 30◦ x-y-plane.

improved by taking more measurements. The mentioned outliers could be caused by mea-
surement errors, possibly resulting from interferences by the stabilization software. Thus
the model captures the proportionality relationship reasonably well, reflected in an RSME
of εRMSE,30◦ = 0.1421N . The calculated coefficient for Equation (4.8) is given as

ρxy,30◦ = 0.03588
kg

m
.

Another trend to notice from this experiment is the decrease of the average and maximum
induced drag force. This is an effect of the angle at which the wind blows at the UAV. We
keep this in mind and postpone its detailed discussion until all experiments have been
presented.

Figure 4.11 summarizes all fits of experiments concerning the x-y-plane.

For the investigation of the air drag properties of the AR-100 along its z-axis, five different
angles for the wind to hit the UAV were examined. The angles were 180◦, 100◦,110◦, 120◦

and 0◦, as illustrated in Figure 4.7.

Figure 4.12 presents the results of the first experiment for the z-axis, at 180◦. It is chosen
as a representative for the angles 100◦, 110◦ and 120◦. Here the wind blows directly from
the top of the AR-100, as seen from the UAV, in direction of the z-axis. The samples
appear well distributed around the expected values. The fitted model seems to capture the

Chapter 4: Experiments and Results 107

Figure 4.11: All fits of x-y-plane drag experiments.

(a) 180◦ z-axis (b) Residuals

Figure 4.12: Drag coefficient exp. results for 180◦ z-axis.

relationship between wind velocity and induced drag force accurately. The boxplot analysis
of the residuals (Figure 4.12(b)) shows a skewless distribution, since both the median and

108 Chapter 4: Experiments and Results

the box are positioned at zero. Additionally, the small box size reflects that the samples are
densely distributed around the fitted model, validating the suggested relationship model.
This band spreads to ±0.1N around the proportionality function. The RMSE is given as
εRMSE,z180◦ = 0.1576N . This denotes a good accuracy, considering the induced forces range
higher than in the previous experiments. The air drag coefficient was calculated as

ρz,180◦ = 0.084666
kg

m
.

It should be noted, that the air drag coefficients for the represented z-axis experiments
in the appendix are smaller. This effect is proposed to result from the angle at which the
wind hits the UAV, but its discussion is postponed again.

(a) 0◦ z-axis (b) bw2 (c) ax4+bx3+cx+
d

Figure 4.13: Drag coefficient experiment at 0◦ along the z-axis.
Wind comes from below the AR-100, pushing against the wind created by the drone.
Complex turbulences are created. The air drag behavior reflects this complexity,
appearing more like a polynomial of fourth order than the suggested parabola.

In the last experiment concerning the air drag of the AR-100, the wind came from a
0◦ angle, i.e. directly below the drone, as seen from the drone. The wind pushes against
the wind generated by the rotors. In Figure 4.13 we can see that this results in complex
behavior. The drag forces rise slightly at first, then drop below the zero mark after which
they rise again to magnitudes closer to the previous experiments for the specific wind ve-
locities. The model from Equation (4.8) does not suffice anymore to describe the prevailing

Chapter 4: Experiments and Results 109

characteristics. The same figure shows a polynomial of fourth order approximating the
generated drag forces. Comparing the boxplot analyses, the insufficient fit of the original
model is more obvious. It shows a strong skewness to the negative and a large spread of
the distribution. The different scales are important to note. On the other hand, the fourth
order polynomial residuals display no skewness at all. And the kurtosis shows a very peaked
sample distribution around the expected values. Furthermore, the RMSEs for both models
are

εRMSE,z0◦ = 0.9268N,
εRMSE,z0◦,4th = 0.1711N.

The error of the 4th order polynomial is more in line with the errors seen in the previous
experiments, suggesting that this model approximates the actual relationship more accu-
rately. To compare with the results of the previous experiments, the calculated air drag
coefficient of the second order model is given as

ρz,0◦ = 0.072244
kg

m
.

To summarize all z-axis fits, they are presented together in Figure 4.14.

Figure 4.14: All fits of z-axis drag coefficient experiment.
The coefficients differ substantially. This depends on the angle at which the wind
hits the UAV.

110 Chapter 4: Experiments and Results

Figure 4.15: Effect of wind angle on drag force.
fw is the wind force, a is the angle of attack, 30◦ in this example. The horizontal
component is parallel to the swing direction.

Effect of Angle of Attack on induced drag force Comparing the results of the
experiments, it becomes clear that the angle of the wind affects the induced drag force.
This is because we measure only one dimension of the drag force. This dimension is the
one parallel to the swing direction of the pendulum. This means that only the component
of the force generated by the wind parallel to the swing direction, f‖, is measured. The
parallel component of the wind generated force depends on the angle, α, in the following
way, as illustrated by Figure 4.15,

f‖ = fw cos (α)

= cos (α)ρ ‖vw‖vw,
(4.11)

where vw is the velocity of the wind. Consequently, we have measured the force component
f‖ but have assumed the model of equation (4.8), given as

f = ρd ‖vw‖vw.

From this follows that the air drag coefficients obtained through the fitted models, ρd, are
distorted, if the wind was coming from a different direction than exactly head on at 0◦. The
distorsion can be given as

ρd = cos (α) ρ.

Therefore the correct air drag coefficients can be calculated with

ρ =
ρd

cos (α)
.

Table 4.1 lists the distorted and adjusted or corrected air drag coefficients side by side. The
calculated coefficients for the x-y-plane are now very close to each other. The coefficients
for the z-axis are also somewhat similar. Figure 4.16 shows the air drag expectations with
corrected coefficients.

Chapter 4: Experiments and Results 111

Experiment Coeff. ρd in
[
kg
m

]
Adj. Coeff. ρ = ρd

cosα in
[
kg
m

]
x-y 0◦ 0.044506 0.044506
x-y 10◦ 0.048652 0.0494025355215
x-y 20◦ 0.047708 0.0507697931693
x-y 30◦ 0.03588 0.041430655317
x-y −10◦ 0.042146 0.0427961699845
x-y −20◦ 0.047036 0.0500546657062
x-y −30◦ 0.044074 0.0508922715285
x-y −40◦ 0.036842 0.0480938153536

z-axis 180◦, no motors 0.02236 0.02236
z-axis 180◦ 0.084666 0.084666
z-axis 120◦ 0.040562 0.081124
z-axis 110◦ 0.02001 0.0585053260473
z-axis 100◦ 0.01683 0.0969201072313
z-axis 0◦ 0.072244 0.072244

Table 4.1: The air drag proportionality coefficients.
The adjusted values are corrected with respect to the angle of the wind.

Figure 4.16: All adjusted drag coefficient models.

Conclusion

The results of the conducted experiments can be combined to calculate a final
air drag coefficient necessary for the process model. A sensible choice for the coefficient

112 Chapter 4: Experiments and Results

can be based on the information in Table 4.1 and Figure 4.16. It is clear to see that the
drag coefficients for the x-y plane are significantly smaller than the drag coefficients for the
z-axis.

The coefficient of the 180◦ experiment without motors is not included in the calculation
of the final drag coefficient, because the experiments confirmed that the air drag charac-
teristics differ significantly between stopped and running rotors. Furthermore, the drag
coefficient of the 0◦ experiment is not included, because the results showed that the pro-
posed model does not describe the complex characteristics sufficiently well. Consequently, a
three-dimensional vector containing the arithmetic means of the corresponding coefficients
represents an acceptable compromise to describe the air drag characteristics of the AR-100.
That vector is given as

ρ =

0.0472432383226
0.0472432383226
0.0803038583196

 kg

m
. (4.12)

Future research can improve on the determined air drag coefficients by conducting the
experiments within a wind channel specific to such purposes. A more sophisticated measur-
ing platform can deliver more accurate results than the pendulum and scale combination.
The used pendulum can introduce errors based on how well its axis rotates. Furthermore,
its own weight and air drag can affect the measurements.

4.3 State Estimation

The performance of the developed algorithm in combination with the chosen sen-
sors is investigated in this section. The continuous-discrete square root unscented Kalman
filter (Algorithm C.6) with Sequential Updates was implemented in C++. For the QR-
decomposition and Cholesky update, Octave 3.2.3 3 is employed. For the inversion of matri-
ces the numerically stable and efficient backward-substitution method is used. The square
roots of the initial covariance matrix and the model noise covariance matrices are calculated
via Cholesky decomposition.

4.3.1 Simulation

For a test of the model and of the estimator algorithm, simulated measurements
are generated and delivered to the estimator.

Experimentation Setup

The initial system state is zeroed, only the quaternion’s real value is one. The
supplied measurements are IMU readings of a linear acceleration of 8.81m

s2
in z-axis direc-

tion. This is an upward acceleration of 1m
s2

. The second type of supplied measurements
are tachometer measurements of 1872.772RPM for each motor. And the last measurement

3www.octave.org in conjunction with its qrupdate library version 1.0.1.

www.octave.org

Chapter 4: Experiments and Results 113

type is the quaternion pseudo measurement. The measurements are delivered at a rate of
20Hz for 60 seconds.

Results and Discussion

Figure 4.17 shows the results of the simulation experiment. The quaternion re-

(a) Quaternion Values (b) Position and Linear Velocity

Figure 4.17: State Estimation upward simulation experiment results.

mains at its initial values, correctly since all angular velocities are zero. All the parameters
not shown are zero throughout the whole simulation. The linear velocity in z-axis grows at
the intended 1m

s2
, to reach 60ms after 60 seconds. The estimated position is -1800m at 60

seconds in NED-frame, which corresponds to the calculated true position,

p =
1
2
a · t2 = −1

2
· 1 · 602m = −1800m.

The model and the estimation algorithm function correctly.

A second simulation (Figure 4.18) for a rotation around the z-axis at an angular velocity
of 1

◦

s . The linear acceleration the IMU reports is 9.81m
s2

in z-axis direction, i.e. gravity.
The quaternion values can be converted to Euler angles. The final yaw angle is obtained
as 59.9996◦, compared to an actual 60◦. This error of 4 · 10−4◦ is reasonably small to say
that the model represents the actual dynamics correctly. The error could also come from
precision errors in the conversion calculation from the small quaternion values to degrees.

Conclusion

In this section, the performance of the state estimation and the model were ex-
amined. From the results of these simulation experiments, it can be deduced that the

114 Chapter 4: Experiments and Results

Figure 4.18: Yaw rotation simulation experiment results.
Quaternion values are displayed.

model and the state estimation algorithm function correctly. With this knowledge, real
world experiments can be run. More in-depth simulation experiments can include whole
flight courses within a simulation environment. This environment can then also imple-
ment random noise characteristics and support more sensor types, simulating the real world
circumstances concerning quadrocopter flight.

4.3.2 Yaw Rotation

The first real world experiment is a yaw rotation to investigate the estimator’s
performance. The AR-100 is flown in a pure full rotation around the z-axis in 4 steps of
about 90◦. All available sensors are employed and integrated in the correction step.

Experimentation Setup

The system state is initialized by the initialization procedure (Section 3.4.4). In
order to assist the egomotion estimator, the UAV is positioned above and surrounded by
a contrast-rich area, i.e. the floor is white with equidistant black dots with a diameter of
about 2cm. The kanatani egomotion estimator delivers its measurements at about 1Hz.

Results and Discussion

The results of the rotation in four steps experiment are presented in Figure 4.19.
Looking at the quaternion values and their converted Euler angle counterparts, (Figures
4.19(a) & (b)), the four steps of the rotation are clearly visible. As can be seen from the
initial attitude, the UAV was positioned almost aligned with the world NED axes. The
x-axis was slightly off North, visible in the small positive yaw value of the third complex

Chapter 4: Experiments and Results 115

(a) Quaternion Values (b) Euler Angles

(c) Angular Velocity Roll (d) Angular Velocity Pitch

(e) Angular Velocity Yaw (f) Linear Velocity

Figure 4.19: State Estimation rotation in 4 steps experiment results.

quaternion component. The UAV is rotating in positive direction around the z-axis when-
ever the lines have a slope different from zero. From the quaternion values, it would seem
that around 22 seconds, another rotation step was executed. Looking at the Euler angles
at the same time instant, no rotation is visible. This also rules out a correction by a mag-

116 Chapter 4: Experiments and Results

netometer measurement, since in this case a rotation would also be visible in the Euler
angle representation. Thus this bump in the quaternion values is the effect of the pseudo
quaternion measurement to keep the quaternion’s unity requirement in check.

The Euler angles show slight offsets from the actual 90◦ steps after each step. While this
could be an estimation error, another possible explanation exists. During in-flight rotations,
the rotation angle is difficult to hit exactly, since the UAV is controlled manually. Thus,
small over- or undershoots are possible and visible in the angles. Upon landing, the total
excess rotation angle can be measured at 30◦. This corresponds within measuring precision
to the final estimated yaw angle of 29.74◦. The final roll and pitch angle estimations are
-8◦ and -2.6◦, respectively. This represents an error at the final time instant of 4.4% for roll
and 1.4% for pitch angle estimation, considering that an error of 100% would represent the
opposite direction.

Figures 4.19(c) to (e) display the angular velocities, which are the IMU driven mea-
surements. The sudden high peaks are measurement errors, but the estimation algorithm
retains a stable system state estimate. During yaw rotation, a certain noisyness in the roll
and pitch velocities is captured in these measurements.

Finally, the estimated linear velocities are presented (Figure 4.19(f)). While they should
be close to zero, the estimates for the x- and y-directions show large errors with a tendency
to grow larger. The z-axis velocity estimate catches itself after a large error. The inability
of this Kalman filter to estimate correct linear velocities is a consequence of the fact, that
no measurements of the absolute velocity or an indirect effect thereof are employed in
the correction process. The only measurement used to correct the linear velocity and the
IMU acceleration biases is the egomotion estimation received from the optical sensor. It is
important to note that the linear component of that estimate is a normalized vector, since
only relative translative velocity can be calculated by the egomotion estimation algorithm.
This unit vector is obviously not sufficient for a satisfactory correction of the linear velocity
estimates. Consequently, the location estimates are erroneous as well.

4.3.3 Pitch Rotation

The second experiment investigates a forced and controlled rotation about the
y-axis.

Experimentation Setup

The experiment setup is almost identical to the previous, with the exception that
the UAV is rotated around its y-axis manually, not by its rotors. The experimentator
secures the AR-100 and turns it one full rotation. This motion would lead to a crash of the
quadrocopter, but the desired data to observe is only the performance of the state estimator,
not the viability of the motion during actual flight missions.

Chapter 4: Experiments and Results 117

Results and Discussion

The results of the pitch rotation experiment are presented in Figure 4.20. The

(a) Quaternion Values (b) Euler Angles

(c) Angular Velocity (d) Linear Velocity

Figure 4.20: State Estimation pitch rotation experiment results.

quaternion values during the rotation seem rather wild, but less smooth results were to be
expected, since the pitch rotation by hand is not very pure and introduces noise rotations
about the other axes. Another noise factor of the hand-fixed rotation of the UAV is that the
motion is not very constant or steady, as at one point the experimentator needs to change
his hold on the UAV. Nevertheless, after the rotation, the quaternion values reflect a good
approximation of the result of a 360◦ rotation: the initial configuration. The final q0 value
is a little higher than the initial value, but looking at the Euler angles in Figure 4.20(b),
it can be seen that they are almost at their initial values. Thus the quaternion could be
slightly out of unity, which would be corrected in the near future after the rotation.

The angular velocities reflect the moment of the switching of the hand-hold clearly. The
pitch angular velocity drops during the rotation, even turns a bit backward, before continu-
ing the begun pitch rotation until one full rotation is finished. The linear velocity in Figure

118 Chapter 4: Experiments and Results

4.20(d) shows again the inability of this combination of sensors to contain the bias of the
linear acceleration sensors of the IMU. The linear velocity grows, but stops and stays at its
value once the robot stops moving.

4.3.4 Translation

The last experiment examines the state estimation for a translational motion.

Experimentation Setup

In this experiment, the drone starts again within the contrast-rich environment.
Instead of flying a rotation as in the precious experiments, the UAV flies straight forward
along the x-axis direction without rotating. It flies a straight distance of 2m, where it lands.
All available sensors, as defined in Section 3.4.3, are employed in the correction process.

Results and Discussion

Figure 4.21 summarizes the results of the translation experiment. Similar to the

(a) Quaternion Values (b) Position

(c) Angular Velocity (d) Linear Velocity

Figure 4.21: State Estimation translation experiment results.

Chapter 4: Experiments and Results 119

previous experiments, the results show a good preformance of the state estimation for the
attitude of the AR-100. The quaternion values stay close to constant during the rotation-
less forward-motion. The angular velocities are also kept at zero, with measurement error
spikes at the start and end of the translation.

The linear values fare worse than the angular. The linear velocities grow in a linear
way, indicating the IMU bias to be responsible, since that is integrated to obtain the linear
velocity. From the too high linear velocity follows the fast increase in the position vector.
But if the optical sensor measurement would have absolutely no effect on the linear accel-
eration during the correction step, then, if the biases are all about the same magnitude,
the velocities would grow at the same rates. That is not the case, here, where the x-axis
component grows far more rapidly. The reason for this can lie in two explanations. Either
the bias of the x-axis acceleration component is bigger than the y- and z-axis counterparts,
or the optical sensor measurement, reporting a definitive translational direction, affects the
linear velocity in such a way that it supports its main direction and suppresses the other
directions in accordance with their relative magnitudes. Unfortunately, a definitive answer
to that question cannot be deduced from the compiled data.

4.3.5 Conclusion

This section presents and discusses the results of the state estimation experiments.
Different motions were examined, to investigate the performance of the state estimator on
angular and linear components separately. The results show successful estimation of the
angular components. The linear components are not estimated correctly, as the combination
of sensor cooperating in the correction process do not offer absolute values for effeects of
the linear state components. The barometer altitude sensor of the AR-100 seems too noisy
to be of satisfying use in the correction.

From these results, the conclusion can be drawn that the anguler velocity meaasurements
from the optical egomotion estimation combined with magnetometer measurements suffice
for a reasonable estimation of the angular velocity and attitude of the UAV. However,
the linear direction information of the optical flow egomotion analysis is not sufficient for
absolute estimation of the linear velocity and position of the UAV. The effect on the direction
of the velocity estimate begs further investigation.

Recommended future work addressing this issue could fly in one direction yet have the
camera grab pictures of motion into a different direction, either by mounting teh camera
differently on the drone or by flying infront of a large screen. A large projection on the
screen could then be the optical input to the drone’s camera sensor. In this way, the effect
of different directed optical measurements on the state estimate can be examined.

Chapter 5

Conclusions and Future Work

This thesis discusses the development of a dead reckoning navigation system ap-
plying a recursive Bayesian estimation framework. The specific state estimation algorithm
developed for this system is the continuous-discrete square root Unscented Kalman filter
with sequential updates. This algorithm is derived from multiple modifications of the origi-
nal Kalman filter that have already proven themselves separately. This fusion of algorithms
was implemented for analysis of the estimation performance. The results show a good
estimation of the angular navigational components, but the linear components could not
be estimated to a satisfactory degree. The cause for that inability is the absence of good
absolute measurements of indirect effects of the linear components. An effect of the linear
directional information contained within the visual egomotion estimation is possible, but
the obtained results do not allow a definitive answer. Further research is required, focus-
ing on the effect of different direction measurements relative to the actual motion. Future
work can either add new sensors delivering the required measurements or incorporate the
implemented GPS sensor on the AR-100. This addition is easily accomplished due to the
sequential updates modification of the estimation algorithm.

Mathematical models describing the physical characteristics of the unmanned aerial ve-
hicle AR-100 and the mappings to its sensor measurements are developed and discussed in
detail. The parameters of these dynamic nonlinear models are determined in experiments
and shown to support the expected relationship models with good accuracy. In the context
of the air drag experiments, complex behavior was detected when wind was blowing at the
drone from below, in opposite direction to the wind pushed by the rotors. Though a fourth
order polynomial could describe the characteristics with the same accuracy as quadratic
equations describe the air drag characteristics of other directions, this relationship warrants
further investigation, optimally employing a wind channel for researching the quadrocopter
flight dynamics.

Future work can address the shortcomings of the conducted experiments. Because of lack
of the proper equipment, no ground truth could be obtained during flight. For having a
ground truth to compare the estimated state information to in order to evaluate the quality
of the models and estimation algorithms more accurately, experiments can be conducted

120

Chapter 5: Conclusions and Future Work 121

with the help of tracking devices. Infrared cameras can track the location and orientation
of the drone in six degrees of freedom, providing the necessary base truth.

With the base truth established, the performance of the filter framework can be investi-
gated for more complex flight maneuvers. The effect of flight in more difficult terrain for
the sensors to measure can be examined as well, to determine the limits of the system.

Furthermore, the effects of the different sensor measurements on state estimation through
the correction step can be investigated. Different combinations of sensor fusions can be eval-
uated and a conclusion can be drawn, as to which sensors work better in which combination.

Bibliography

[1] Forlizzi, Jodi ; DiSalvo, Carl F.: Service robots in the domestic environment:
a study of the roomba vacuum in the home. In: Goodrich, Michael A. (Hrsg.) ;
Schultz, Alan C. (Hrsg.) ; Bruemmer, David J. (Hrsg.): HRI, ACM, 2006. – ISBN
1–59593–294–1, 258-265 1

[2] Cardoso, Jorge ; Ferreira, Manuel ; Santos, Cristina: LegOSC: Mindstorms NXT
robotics programming for artists. In: Filipe, Joaquim (Hrsg.) ; Cetto, Juan A.
(Hrsg.) ; Ferrier, Jean-Louis (Hrsg.): Proceedings of the Fifth International Con-
ference on Informatics Bd. RA-1. Funchal, Madeira, Portugal, Mai 2008, 177-182
1

[3] Singer, P. W.: Wired for War. Penguin Press HC, The, 2009 1

[4] Bodner, J. ; Wykypiel, H. ; Wetscher, G. ; Schmid, T.: First experiences with the
da Vinci operating robot in thoracic surgery. In: European Journal of Cardio-Thoracic
Surgery 25 (2004), Nr. 5, S. 844 1

[5] Hagn, Ulrich ; Nickl, Matthias ; Jörg, Stephan ; Tobergte, Andreas ; Kübler,
Bernhard ; Passig, Georg ; Grüger, Martin ; Fröhlich, Florian ; Seibold, Ulrich
; Konietschke, Rainer ; Le-Tien, Luc ; Albu-Schäffer, Alin ; Grebenstein,
Markus ; Ortmaier, Tobias ; Hirzinger, Gerd: DLR MiroSurge – towards versatility
in surgical robotics. In: 7. Jahrestagung der Deutschen Gesellschaft für Computer- und
Roboterassistierte Chirurgie e.V., 2008. – ISBN 978–3–00–025798–8, 143 - 146 1

[6] Kang, Sang-Wook ; Jeong, Jong J. ; Nam, Kee-Hyun ; Chang, Hang S. ; Chung,
Woong Y. ; Park, Cheong S.: Robot-Assisted Endoscopic Thyroidectomy for Thy-
roid Malignancies Using a Gasless Transaxillary Approach. In: Journal of the Amer-
ican College of Surgeons 209 (2009), August, Nr. 2, e1–e7. http://dx.doi.org/10.
1016/j.jamcollsurg.2009.05.003. – DOI 10.1016/j.jamcollsurg.2009.05.003. – ISSN
10727515 1

[7] Withrow, Thomas J. ; Shen, Xiangrong ; Mitchell, Jason E. ; Goldfarb, Michael:
A forearm actuation unit for an upper extremity prosthesis. In: ICRA, IEEE, 2008,
2459-2464 1

[8] Hill, Ciaran ; Amodeo, Antonio ; Joseph, Jean V. ; Patel, Hitendra R.: Nano-
and microrobotics: how far is the reality? In: Expert Review of Anticancer Therapy 8
(2008), Nr. 12, S. 1891–1897 1

122

http://dx.doi.org/10.1016/j.jamcollsurg.2009.05.003
http://dx.doi.org/10.1016/j.jamcollsurg.2009.05.003

Bibliography 123

[9] Estlin, Tara A. ; Gaines, Daniel M. ; Chouinard, Caroline ; CastaÃśo, Rebecca ;
Bornstein, Benjamin ; Judd, Michele ; Nesnas, Issa A. D. ; Anderson, Robert C.:
Increased Mars Rover Autonomy using AI Planning, Scheduling and Execution. In:
ICRA, IEEE, 2007, 4911-4918 1

[10] Squyres, Steve: Roving Mars: Spirit, Opportunity, and the Exploration of the Red
Planet. New York, NY, USA : Hyperion, 2005 1

[11] Upcroft, Ben ; Moser, Michael ; Makarenko, Alex ; Johnson, David ; Donikian,
Ashod ; Alempijevic, Alen ; Fitch, Robert ; Uther, Will ; GrÃÿtli, Esten I. ;
Biermeyer, Jan ; Gonzalez, Humberto ; Templeton, Todd ; srini, Vason P. ;
Sprinkle, Jonathan: DARPA Urban Challenge Technical Paper: Sydney-Berkeley
Driving Team / University of Sydney; University of Technology, Sydney; University of
California, Berkeley. Version: June 2007. http://chess.eecs.berkeley.edu/pubs/
379.html. 2007. – Forschungsbericht 1

[12] Van Der Merwe, Rudolph: Sigma-Point Kalman Filters for Probabilistic Inference
in Dynamic State-Space Models, Diss., 2004. http://portal.acm.org/citation.cfm?
id=1037398 10, 16, 19, 22, 28, 29, 40, 79, 84, 126, 128

[13] Welch, Greg ; Bishop, Gary: An Introduction to the Kalman Filter. Version: 1995.
http://portal.acm.org/citation.cfm?id=897831. Chapel Hill, NC, USA : Univer-
sity of North Carolina at Chapel Hill, 1995. – Forschungsbericht 11, 16

[14] Weisstein, Eric W.: Delta Function. http://mathworld.wolfram.com/
DeltaFunction.html 14

[15] Kalman, R. E.: A New Approach to Linear Filtering and Prediction Problems. In:
Transactions of the ASME - Journal of Basic Engineering (1960), Nr. 82 (Series D),
35–45. http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf 15, 17,
19

[16] Maybeck, P. S. ; Press, Academic (Hrsg.): Stochastic models, estimation and control.
Volume I. 1979 http://www.cs.unc.edu/~welch/media/pdf/maybeck_ch1.pdf 18

[17] Raymond, Xavier S.: Elementary Introduction To The Theory Of Pseudodifferential
Operators. CRC Press, 1991. – ISBN 0849371589 21

[18] Julier, S. ; Uhlmann, J.: A General Method for Approximating Nonlin-
ear Transformations of Probability Distributions. http://citeseer.ist.psu.edu/
julier96general.html. Version: 1996 23, 24

[19] Julier, Simon J. ; Uhlmann, Jeffrey K.: New extension of the Kalman filter to
nonlinear systems. In: Kadar, Ivan (Hrsg.): Signal Processing, Sensor Fusion, and
Target Recognition VI Bd. 3068, SPIE, 1997, 182–193 24

[20] Julier, Simon J.: The Scaled Unscented Transformation. In: Proceedings of the 2002
American Control Conference Bd. 6, 2002, 4555–4559 27, 28

http://chess.eecs.berkeley.edu/pubs/379.html
http://chess.eecs.berkeley.edu/pubs/379.html
http://portal.acm.org/citation.cfm?id=1037398
http://portal.acm.org/citation.cfm?id=1037398
http://portal.acm.org/citation.cfm?id=897831
http://mathworld.wolfram.com/DeltaFunction.html
http://mathworld.wolfram.com/DeltaFunction.html
http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
http://www.cs.unc.edu/~welch/media/pdf/maybeck_ch1.pdf
http://citeseer.ist.psu.edu/julier96general.html
http://citeseer.ist.psu.edu/julier96general.html

124 Bibliography

[21] Bucy, Peter D. Richard S. ; Joseph J. Richard S. ; Joseph: Filtering for stochastic
processes with applications to guidance. 2. ed., repr. Providence, RI : AMS Chelsea
Publ., 2005. – ISBN 0–8218–3782–6 ; 978–0–8218–3782–5. – Includes bibliographical
references and index. - Originally published: 2nd ed. New York, N.Y. : Chelsea Pub.,
c1987 30

[22] Jazwinski, Andrew H.: Stochastic Processes and Filtering Theory. Academic Press,
1970 http://books.google.com/books?vid=ISBN0123815509. – ISBN 0123815509
30, 83

[23] Särkkä, Simo: On Unscented Kalman Filtering for State Estimation of Continuous-
Time Nonlinear Systems. In: Automatic Control, IEEE Transactions on 52
(2007), Nr. 9, 1631–1641. http://dx.doi.org/10.1109/TAC.2007.904453. – DOI
10.1109/TAC.2007.904453 30, 31, 32

[24] Kailath, T.: An innovations approach to least-squares estimation–Part I: Lin-
ear filtering in additive white noise. In: Automatic Control, IEEE Transactions
on 13 (1968), Nr. 6, 646–655. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=1099025 31

[25] Grewal, Mohinder S. ; Andrews, Angus P.: Kalman Filtering: Theory and Practice
Using MATLAB. 3. Wiley-IEEE Press, 2008 http://books.google.com/books?vid=
ISBN0470173661. – ISBN 0470173661 32

[26] Särkkä, Simo: Recursive Bayesian Estimation on Stochastic Differential Equations,
Helsinki University of Technology, Diss., April 2006 33, 82

[27] Merwe, Rudolph van d. ; Wan, Eric A.: The square-root unscented Kalman filter
for state and parameter-estimation. In: Proceedings of the 2001 IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP ’01) Bd. 6, 2001,
3461–3464 34

[28] Anderson, Brian D. O. ; Moore, John B.: Optimal Filtering. Englewood Cliffs, NJ :
Prentice-Hall, 2005 http://books.google.com/books?vid=ISBN0486439380. – ISBN
0486439380 36

[29] Haykin, Simon: Adaptive Filter Theory (4th Edition). 4. Prentice Hall, 2001 http:
//books.google.com/books?vid=ISBN0130901261. – ISBN 0130901261 41

[30] Featherstone, Roy: Rigid Body Dynamics Algorithms. Secaucus, NJ, USA :
Springer-Verlag New York, Inc., 2007. – ISBN 0387743146 47, 54, 62, 63, 78

[31] Siciliano, Bruno (Hrsg.) ; Khatib, Oussama (Hrsg.): Springer Handbook
of Robotics. Berlin, Heidelberg : Springer, 2008 http://dx.doi.org/10.1007/
978-3-540-30301-5. – ISBN 978–3–540–23957–4 52, 58

[32] Hoag, David: Apollo Guidance and Navigation: Considerations of Apollo IMU Gimbal
Lock:E 1344. In: Apollo Lunar Surface Journal (1963), April. http://www.hq.nasa.
gov/alsj/e-1344.htm 59

http://books.google.com/books?vid=ISBN0123815509
http://dx.doi.org/10.1109/TAC.2007.904453
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1099025
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1099025
http://books.google.com/books?vid=ISBN0470173661
http://books.google.com/books?vid=ISBN0470173661
http://books.google.com/books?vid=ISBN0486439380
http://books.google.com/books?vid=ISBN0130901261
http://books.google.com/books?vid=ISBN0130901261
http://dx.doi.org/10.1007/978-3-540-30301-5
http://dx.doi.org/10.1007/978-3-540-30301-5
http://www.hq.nasa.gov/alsj/e-1344.htm
http://www.hq.nasa.gov/alsj/e-1344.htm

Bibliography 125

[33] Bahadir, Deniz: Verbesserte Eigenbewegungsschätzung für Flugroboter. 2009 65

[34] Guenard, Nicolas: Optimisation et implémentation de lois de commande embarquées
pour la téléopération de micro drones aériens X4-̈ıňĆyer, Laboratoire Télérobotique et
Cobotique - CEA, Diss., octobre 2007 74

[35] Hamel, Tarek ; Mahony, Robert ; Lozano, Rogelio ; Ostrowski, James: Dynamic
modelling and configuration stabilization for an X4-flyer. In: 15th Triennial World
Congress, Barcelona, Spain (2002) 74, 75

[36] Prouty, Raymond W.: Helicopter Performance, Stability, and Control. Krieger
Pub Co, 2001 http://books.google.com/books?vid=ISBN1575242095. – ISBN
1575242095 75, 103

[37] Oh, Seung-Min: Nonlinear Estimation for Vision-Based Air-to-Air Tracking, Georgia
Institute of Technology, Diss., Dezember 2007 81, 82, 84

[38] Gelb, Arthur: Applied Optimal Estimation. The MIT Press, 1974 http://books.
google.de/books?id=KlFrn8lpPP0C 81, 82

[39] Peebles, Peyton: Probability, Random Variables, and Random Signal Princi-
ples. McGraw Hill Higher Education, 2000 http://books.google.com/books?vid=
ISBN0071181814. – ISBN 0071181814 127

http://books.google.com/books?vid=ISBN1575242095
http://books.google.de/books?id=KlFrn8lpPP0C
http://books.google.de/books?id=KlFrn8lpPP0C
http://books.google.com/books?vid=ISBN0071181814
http://books.google.com/books?vid=ISBN0071181814

Appendix A

EKF Inaccuracies

Let’s examine the EKF’s shortcomings in an example (from [12]): A scalar random vari-
able x is propagated through a simple nonlinear function g,

y = g (x) = x2,

with x ∼ N
(
x̄, σ2

x

)
taken from a Gaussian distribution with mean x̄ and covariance σ2

x.
First, the mean ȳ and covariance σ2

y of y are calculated analytically, before calculating them
in the way of the EKF as comparison. The mean is given as

ȳ = g (x̄) + E

[
(x− x̄)

dg (x̄)
dx

+
1
2

(x− x̄)2
d2g (x̄)
d2x

+ · · ·
]

(A.1)

= x̄2 + E
[
2 (x− x̄) x̄+ (x− x̄)2

]
(A.2)

= x̄2 + E
[
2x̄x− 2x̄2 + (x− x̄)2

]
= x̄2 + 2x̄2 − 2x̄2 + E

[
(x− x̄)2

]
= x̄2 + σ2

x,

(A.3)

where the fact that the derivatives greater than two of g (x) = x2 are zero was applied in
Equation (A.2).

126

Appendix A: EKF Inaccuracies 127

The covariance is given by

σ2
y = E

[
(y − ȳ)2

]
(A.4)

=
(
dg (x̄)
dx

)
σ2
x

(
dg (x̄)
dx

)
− 1

4
E

[
(x− x̄)2

d2g (x̄)
dx2

]2

+ E

[
1
2

(x− x̄)
dg (x̄)
dx

(x− x̄)2
d2g (x̄)
dx2

+
1
2

(x− x̄)2
d2g (x̄)
dx2

(x− x̄)
dg (x̄)
dx

+
1
4

(x− x̄)2
dg (x̄)
dx

(x− x̄)2
d2g (x̄)
dx2

]
= (2x̄)2 σ2

x −
1
4
E
[
2 (x− x̄)2

]2
+ E

[
4x̄ (x− x̄)3 + (x− x̄)4

]
(A.5)

= 4x̄2σ2
x −

(
σ2
x

)2 + 4x̄E
[
(x− x̄)3

]
+ E

[
(x− x̄)4

]
. (A.6)

Equation (A.6) for the covariance σ2
y can be reduced further given general knowledge

about Gaussian random variables. The second part of the third term in Equation (A.6) ,
i.e. E

[
(x− x̄)3

]
, is called the skewness of x and for Gaussian random variables this moment

is zero [39]. Thereby, the whole third term is zero, resulting in

σ2
y = 4x̄2σ2

x −
(
σ2
x

)2 + E
[
(x− x̄)4

]
. (A.7)

The last term in Equation (A.7) is known as the kurtosis of x. For a Gaussian random
variable, this can be described using the covariance as follows:

E
[
(x− x̄)4

]
= 3

(
σ2
x

)2
, (A.8)

allowing a final reduction of the covariance of y, given as

σ2
y = 4x̄2σ2

x −
(
σ2
x

)2 + 3
(
σ2
x

)2
= 4x̄2σ2

x + 2
(
σ2
x

)2
.

(A.9)

To see what the EKF computes for the posterior mean, ȳ, and covariance, σ2
x, they are

calculated using the EKF linearization technique, the first order Taylor Expansion, giving

ȳlin = g (x̄) = x̄2 (A.10)(
σ2
y

)lin =
(
dg (x̄)
dx

)
σ2
x

(
dg (x̄)
dx

)
= 4x̄2σ2

x.

(A.11)

The approximation cut away the higher order terms, leaving only the first components.
Comparing Equation (A.3) to Equation (A.10) (mean) and Equation (A.9) to Equation

128 Appendix A: EKF Inaccuracies

(A.11) (covariance), the errors of the EKF approximations can be calculated as

eŷ = ȳ − ȳlin =
(
x̄2 + σ2

x

)
− x̄2 = σ2

x,

eσ2
y

= σ2
y −

(
σ2
y

)lin =
[
4x̄2σ2

x + 2
(
σ2
x

)2]− 4x̄2σ2
x = 2

(
σ2
x

)2
.

It is obvious that the errors of the mean and the covariance are proportional to the covariance
of the prior random variable x. In other words, the more the prior random variable x
is focused at its mean, the higher the accuracy of the EKF linearization. Consequently,
for any probability distribution of x significantly different from a Gaussian probability
distribution, the posterior mean ȳlin is biased and the actual posterior covariance σ2

y will
be underestimated.
Further detailed mathematical and experimental discussion of the flaws of the extended
Kalman filter can be found in [12].

Appendix B

Air Drag Experiments

The additional air drag experiments concerning the coefficients for the x-y-plane
as well as the z-axis that were cut from section 4.2.3, are presented here in more detail. The
angles discussed here for the x-y-plane are 10◦, 20◦, −10◦, −20◦, −30◦ and −40◦. With
respect to the z-axis the experiments presented in this chapter are for angles of 100◦, 110◦

and 120◦.

B.1 X-Y-plane

B.1.1 10 Degrees

(a) 10◦ x-y-plane (b) Residuals

Figure B.1: Drag coefficient experiment results for 10◦ x-y-plane.

129

130 Appendix B: Air Drag Experiments

The results of the 10◦ experiment (Figure B.1) mirror the findings of the first
experiment. While most samples fall above the fitted expectation, the drag forces at max-
imum wind velocities lie underneath their expectations. The samples follow the suggested
model, which can be seen in the boxplot analysis of the residuals. There the positions of
the median and the box reflect the skewness to above the expectation.

The skew is only 0.05N , and the RMSE is εRMSE = 0.09179N , which are small in
comparison to the actual generated forces. Thus the proposed model approximates the
behavior well for this angle of attack. The calculated air drag coefficient is

ρxy,10◦ = 0.048652
kg

m
.

B.1.2 20 Degrees

(a) 20◦ x-y-plane (b) Residuals

Figure B.2: Drag coefficient experiment results for 20◦ x-y-plane.

The experiment results for 20◦ (Figure B.2) follow the trend of the first experiments
for the x-y-plane. The fitted model captures the proportionality of the force measurements
to the wind velocities, but a positive skewness of the samples is evident in the positions of
the median and the box. For the results of the 20◦ experiment, not enough measurements
were taken to exclude possible outliers. This is reflected by a large kurtosis, signifying a
widely spread distribution of samples around the expectations. A simple way to address
this issue and improve the fit is to take more measurements.

Appendix B: Air Drag Experiments 131

The large residuals could be caused by measurement errors, possibly resulting from in-
terferences by the stabilization software. Thus the model captures the proportionality re-
lationship not as well as before, resulting in an RSME of εRMSE,20◦ = 0.1356N , which is
still a small error considering the magnitudes of induced forces. The calculated coefficient
for equation (4.8) is given as

ρxy,20◦ = 0.047708
kg

m

B.1.3 -10 Degrees to -40 Degrees

(a) −10◦ x-y-plane (b) Residuals

Figure B.3: Drag coefficient experiment results for −10◦ x-y-plane.

Figures B.3, B.4, B.5 and B.6 present the results of the experiments for the re-
maining angles concerning the air drag properties of the x-y-plane of the UAV. These four
experiments, angles −10◦ to −40◦, can be discussed jointly, as they all reflect very similar
characteristics. The proposed relationship stays close to the actual samples. This is a good
indication that the fitted model shows the same properties as the underlying system. While
the samples seem larger in majority than the expectation function, analysis via boxplot of
the residuals enlightens the distribution of the samples with respect to the expectations.
The positions of the median and the box in the boxplots of all four experiments are slightly
skewed to the positive. This is a common theme of the proposed model for all the exper-
iments concerning air drag presented here. The box sizes are all comparatively large. As
before, this can be an effect of the low number of samples, where large measurement errors

132 Appendix B: Air Drag Experiments

(a) −20◦ x-y-plane (b) Residuals

Figure B.4: Drag coefficient experiment results for −20◦ x-y-plane.

(a) −30◦ x-y-plane (b) Residuals

Figure B.5: Drag coefficient exp. results for −30◦ x-y-plane.

Appendix B: Air Drag Experiments 133

(a) −40◦ x-y-plane (b) Residuals

Figure B.6: Drag coefficient exp. results for −40◦ x-y-plane.

are not detected as outliers but count as correct and distort the image. Nevertheless, the
box sizes indicate spread out distributions of samples around the fitted model equations.
From the box size can be seen that the majority of samples lie within a band of about
0.15N around and mainly above the expectations. The root mean square errors for these
experiments are given as

εRMSE,−10◦ = 0.1451N,
εRMSE,−20◦ = 0.1431N,
εRMSE,−30◦ = 0.1096N,
εRMSE,−40◦ = 0.1481N.

It is clear to see, that the proposed model approximates the actual relationship equally well
in all four experiments. The air drag coefficients were calculated as

ρxy,−10◦ = 0.042146
kg

m
,

ρxy,−20◦ = 0.047036
kg

m
,

ρxy,−30◦ = 0.044074
kg

m
,

ρxy,−40◦ = 0.036842
kg

m
.

Again, the similarity between the values is evident. Only the coefficient for the furthest
displaced wind source is too low. The cause for this is supposedly the large angle of the

134 Appendix B: Air Drag Experiments

wind. This is covered in the detailed discussion on the effect of the angles on the computed
air drag coefficients in section 4.2.3.

B.2 Z-axis

B.2.1 100 Degrees

(a) 100◦ z-axis (b) Residuals

Figure B.7: Drag coefficient exp. results for 100◦ z-axis.
Samples are skewed above the expectations. Kurtosis is large in relation to the scale
of induced forces.

The experiment results for 100◦ direction, which is almost orthogonal to the z-axis,
are shown in Figure B.7. The first noticeable difference to the former 180◦ experiment is
the scale of the induced drag force. It is only about a tenth of the scale of Figure 4.12. This
is an effect of the attack angle of the wind, but the discussion thereof is postponed until all
experiments are presented. Considering the distribution of the samples, it is obvious that
the majority is above the fitted expectation function. The boxplot clarifies the assumed
skewness by the dislocated positions of the median and box. They are positioned in the
positive, but indicate a skew of only 0.05N . The skew represents about 10% of the measured
maximum force value, meaning a strong skew of the residuals. The large box in the boxplot
also reflects the mediocre fit of the expectation function. The peakedness is not too high,
denoting a distribution of samples spread further away around the suggested model. In
comparison to the other experiment results, this peakedness is still good, but taking only
the measurements from this experiment into account, the model does not fit too great. The

Appendix B: Air Drag Experiments 135

RMSE is εRMSE,z100◦ = 0.08146N , which is about 16% of the maximum induced drag force
in the plot, reflecting the poor accuracy of the fitted model at this resolution. Compared to
the RMSE of the 180◦ experiment, this fit is far better. The calculated air drag coefficient
is

ρz,100◦ = 0.01683
kg

m
.

B.2.2 110 Degrees

(a) 110◦ z-axis (b) Residuals

Figure B.8: Drag coefficient exp. results for 110◦ z-axis.

The results for the 110◦ experiment (Figure B.8) show that the samples fall all
above the expectations, analogous to the previous experiment. Only the drag forces gener-
ated at the highest wind speeds are measured to be far below the expected model. But as
discussed before, at those wind speeds the measurement readings could have been especially
noisy because of the turbulent flight properties. Accordingly, in the boxplot analysis we see
that those measurements draw the lower whisker far down, possibly almost classifying as
an outlier. The median and the box position both reflect the strong skew of the samples
to stay above the fitted model. A larger number of samples could assist in detecting mea-
surement errors and disqualifying them as outliers. The box size is also relatively large.
This indicates a distribution with a large kurtosis, i.e. the samples are spread further away
from the expectations. How bad this affects the accuracy can be seen in the RMSE. It is
εRMSE,z110◦ = 0.1523N , in the same range of accuracy as the 180◦ experiment. The air

136 Appendix B: Air Drag Experiments

drag coefficient was calculated as

ρz,110◦ = 0.02001
kg

m
.

B.2.3 120 Degrees

Figure B.9 show the results for an angle of 120◦. Those results show a better fit of
the measurements to the fitted model. The samples are located both below and above the
expectation function, indicating a distribution with little skewness. The boxplot analysis
shows, that the skewness is in fact a little to below the expectation. The box size shows a
not too dense distribution of the samples around the expectation. This could be a result of
having too few samples, therefore the noisy measurements lying far above the expectations
affect the statistics relative to the remaining measurements too strongly. The RMSE is
εRMSE,z120◦ = 0.1794N , so the error is a little bigger than for the other z-axis experiments.
The air drag coefficient was computed as

ρz,120◦ = 0.040562
kg

m
,

which follows the trend observed at the experiments concerning the x-y-plane. The bigger
the angle between the wind direction and the measured induced force direction, the smaller
the induced force. More is discussed in the paragraph on the effect of these angles.

(a) 120◦ z-axis (b) Residuals

Figure B.9: Drag Coefficient Exp. Results for 120◦ z-axis.

Appendix C

Algorithms

Algorithm C.1: The Kalman Filter

Input: x̂0 = E [x0], P0 = E
[
(x0 − x̂0) (x0 − x̂0)T

]
Result: x̂k is optimal estimate of xk, Pk its error covariance.

Loop as desired.
begin

Time Update
1) Forward xk−1 in time

x̂−k = Fx̂k−1 + Buk

2) Update a priori estimate error covariance

P−k = FPk−1FT + Q

Measurement Update
1) Calculate Kalman Gain

Kk = P−k HT
(
HP−k HT + R

)−1

2) Correct x̂−k with measurement zk

x̂k = x̂−k + Kk

(
zk −Hx̂−k

)
3) Update a posteriori estimate error covariance

Pk = (1−KkH) P−k

end

137

138 Appendix C: Algorithms

Algorithm C.2: The Extended Kalman Filter

Input: x̂0 = E [x0], P0 = E
[
(x0 − x̂0) (x0 − x̂0)T

]
Result: x̂k is stimate of xk, Pk its error covariance.

Loop as desired.
begin

Time Update
1) Forward xk−1 in time

x̂−k = f (x̂k−1,uk, 0)

2) Calculate Jacobians Fk and Vk at point x̂−k
3) Update a priori estimate error covariance

P−k = FkPk−1FT
k + VkQkVT

k

Measurement Update
1) Calculate Jacobians Hk and Lk at point x̂−k
2) Calculate Kalman Gain

Kk = P−k HT
k

(
HkP−k HT

k + LkRkLTk
)−1

3) Correct x̂−k with measurement zk

x̂k = x̂−k + Kk

(
zk − h

(
x̂−k , 0

))
4) Update a posteriori estimate error covariance

Pk = (1−KkHk) P−k

end

Appendix C: Algorithms 139

Algorithm C.3: The Scaled Unscented Transformation
Input: Initial mean x̄ ∈ RN , covariance Px, parameters α, β, κ;
Result: Accurate estimates of posterior mean, covariance and

cross-covariance.
Set λ = α2 (N + κ)−N , γ =

√
N + λ.

begin
1) Selection of Sigma Points:

X0 = x̄ , wm0 =
λ

N + λ
(i = 0)

Xi = x̄ +
(√

(N + λ) Px

)
i

(0 < i ≤ N), wc0 =
λ

N + λ
+
(
1− α2 + β

)
(i = 0)

Xi = x̄−
(√

(N + λ) Px

)
i−N

(N < i ≤ 2N), wmi = wci =
1

2 (N + λ)
(0 < i ≤ 2N)

// auxiliary operator (·)j returns the j-th column of the

argument matrix
2) Propagate each Sigma Point through the nonlinear transformation g:

yi = g (Xi) ∀ i ∈ {0, . . . , 2n}

3) Compute posterior mean, covariance and cross-covariance:

ȳ ≈
2N∑
i=0

wiyi

Py ≈
2N∑
i=0

wi (yi − ȳ) (yi − ȳ)T

Pxy ≈
2N∑
i=0

wi (Xi − x̄) (yi − ȳ)T

end

140 Appendix C: Algorithms

Algorithm C.4: The Unscented Kalman Filter
Input: Initial mean x̄0 ∈ RN , covariance Px,0, parameters α, β, κ;
Output: mk is optimal estimate of xk with covariance Px,k

Set λ = α2 (N + κ)−N , γ =
√
N + λ. Calculate Weights:

w
(m)
0 =

λ

N + λ
, w

(c)
0 =

λ

N + λ
+
(
1− α2 + β

)
w

(m)
i = w

(c)
i =

1
2 (N + λ)

(0 < i ≤ 2N)

W = (1− [wm wm · · · wm]) diag (wc) (1− [wm wm · · · wm])T

begin
Time Update
1) Calculate Sigma Points

X̂k−1 = [mk−1 mk−1 · · · mk−1] + γ
[
0
√

Pk−1 −
√

Pk−1

]
2) Propagate X̂k−1 through nonlinear state transition function, then
update a priori mean and covariance:

X̂′k = f
(
X̂k−1, tk

)
m−k = X̂′kwm

P−k = X̂′kW
(
X̂′k
)T

+ Qk

Measurement Update
1) Calculate Sigma Points

X̂−k =
[
m−k m−k · · · m−k

]
+ γ

[
0
√

P−k −
√

P−k

]
2) Propagate X̂−k through nonlinear observation model function, then
calculate observation mean, covariance and cross-covariance:

Z̄k = h
(
X̂−k , k

)
wm = Z−k wm

Py,k = Z−kW
(
Z−k
)T + Rk

Pxy,k = X−kW
(
Z−k
)T

3) Calculate Kalman Gain

Kk = Pxy,k (Py,k)
−1

4) Correct m−k with measurement Zk and update a posteriori estimate
error covariance

mk = m−k + Kk

(
Zk − Z̄k

)
Pk = P−k −KkPy,k (Kk)

T

end

Appendix C: Algorithms 141

Algorithm C.5: The Square Root Unscented Kalman Bucy Filter
Input: Initial mean x̄ (t0) = m (t0) ∈ RN , cov. Px (t0), params. α, β, κ;
Output: m (tk) is estimate of x (tk)

Set λ = α2 (N + κ)−N , γ =
√
N + λ. Calculate wm, wc and W as in C.4.

begin
Time & Measurement Update
1) Calculate Sigma Points

X̂ (t) = [m (t) m (t) · · · m (t)] + γ [0 A (t) −A (t)]

2) Differential equations corresponding to predict and correct processes of
discrete time UKF:

K (t) = X̂ (t)W
(
h
(
X̂ (t) , t

))T [
V (t) R (t) (V (t))T

]−1

M (t) = (A (t))−1

[
X̂ (t)W

(
f
(
X̂ (t) , t

))T
+ f

(
X̂ (t) , t

)
W
(
X̂ (t)

)T
+ L (t) Q (t) (L (t))T

− K (t) V (t) R (t) (V (t))T (K (t))T
] (

(A (t))−1
)T

d

dt

[
X̂ (t)

]
i

=
[
g
(
X̂ (t) ,A (t) , t

)]
i

= f
(
X̂ (t) , t

)
wm + K (t)

[
z− h

(
X̂ (t) , t

)
wm

]
+ γ [0 A (t) Φ (M (t)) −A (t) Φ (M (t))]i

2) Solve the differential equations, integrate over time interval to update
Sigma Points:[
X̂ (tk)

]
i

=
[
X̂ (tk−1)

]
i
+
∫ tk

tk−1

[
g
(
X̂ (tk−1) ,A (tk−1) , tk

)]
i
dt ∀i ∈ {0, . . . , 2N}

end

142 Appendix C: Algorithms

Algorithm C.6: The Square Root continuous-discrete UKF
Input: Initial mean x̄ (t0) = m (t0) ∈ RN , cov. Px (t0), params. α, β, κ;
Output: m (tk) is optimal estimate of x (tk)

Set λ = α2 (N + κ)−N , γ =
√
N + λ. Calculate wm, wc and W as in C.4.

begin
Time Update
1) Calculate Sigma Points

X̂ (tk−1) = [m (tk−1) · · · m (tk−1)] + γ [0 A (tk−1) −A (tk−1)]

2) Propagate X̂ (tk−1)

M (tk) = (A (tk−1))−1

[
X̂ (tk−1)W

(
f
(
X̂ (tk−1) , tk

))T
+ f

(
X̂ (tk−1) , tk

)
W
(
X̂ (tk−1)

)T
+ L (tk) Q (tk) (L (tk))

T
] (

(A (tk−1))−1
)T

d

dt

[
X̂− (tk)

]
i

=
[
g
(
X̂ (tk−1) ,A (tk−1) , tk

)]
i

= f
(
X̂ (tk−1) , tk

)
wm

+ γ [0 A (tk−1) Φ (M (tk)) −A (tk−1) Φ (M (tk))]i[
X̂− (tk)

]
i

=
[
X̂ (tk−1)

]
i
+
∫ tk

tk−1

[
g
(
X̂ (tk−1) ,A (tk−1) , tk

)]
i
dt 0 ≤ i ≤ 2N

Measurement Update
2) Calculate predicted measurement from X̂− (tk)

z̄k = Ẑkwm = h
(
X̂−k , tk

)
wm

A′z,k = qr
{√

wc1

(
Ẑk − z̄k

)
1:2N,k

√
R
}

Az,k = cholupdate
{

A′z,k,
(
Ẑk − z̄k

)
0,k
, wc0

}
Pxz,k = X−kW

(
Ẑk
)T

3) Calculate Kalman Gain

Kk =
(

Pxz,k

(
(Az,k)

−1
)T)

(Az,k)
−1

4) Correct m−k with measurement zk and update Ak

mk = m−k + Kk (zk − z̄k)
U = KkAz,k

Ak = cholupdate
{
A−k , U,−1

}
end

Appendix C: Algorithms 143

Algorithm C.7: The Square Root UKF with Latency Compensation
Input: Initial mean x̄0 ∈ RN , covariance Px,0, parameters α, β, κ;
Output: mk is optimal estimate of xk with covariance Px,k

Set λ = α2 (N + κ)−N , γ =
√
N + λ. Calculate wm, wc and W as in C.4.

begin
Time Update
1) Calculate Sigma Points

Xk−1 = [x̄k−1 x̄k−1 + γAk−1 x̄k−1 − γAk−1]

2) Propagate X̂k−1 through state transition function, update x̄−k and A−k

X′k = f̆ (Xk−1, tk,vk)

x̄−k = X̂′kwm

A′k = qr
{√

wc1

(
X̂k − x̄−k

)
1:2N,k

√
Q
}

A−k = cholupdate
{

A′k,
(
X̂k − x̄−k

)
0,k
, wc0

}
Measurement Update
1) Recalculate sigma points using predicted mean and covariance square
root

X−k =
[
x̄−k x̄−k + γA−k x̄−k − γA−k

]
2) Calculate predicted measurement from X̂− (tk)

z̄k = Ẑkwm = h̆
(
X−k , tk,nk

)
wm

A′y,k = qr
{√

wc1

(
Ẑk − z̄k

)
1:2N,k

√
R
}

Ay,k = cholupdate
{

A′y,k,
(
Ẑk − z̄k

)
0,k
, wc0

}
Pxy,k = X−kW

(
Ẑk
)T

3) Calculate Kalman Gain and Correct m−k with measurement zk and
update Ak

Kk = Pxy,k

(
(Ay,k)

−1
)T

(Ay,k)
−1

x̂k = x̄−k + Kk (zk − z̄k)
U = KkAy,k

Ak = cholupdate
{
A−k , U,−1

}
4) Crop posterior m−k and Ak if necessary (if zk = zlag)

x̂ak =
(

x̂k
x̂lag

)
⇒ x̂k

Aa
xa

k
=
[

Axk
Axkxlag

Axlagxk
Axlag

]
⇒ Axk

end

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Algorithms
	Introduction
	Overview
	Notation Conventions
	Unmanned Aerial Vehicles
	Egomotion
	Perception
	State Estimation
	Physical Model

	Problem Statement
	Thesis Outline
	Main thesis chapters
	Appendices

	Bayesian Estimation
	Introduction
	Chapter Outline
	Recursive Bayesian Estimation

	The Kalman Filter
	Linear Estimation
	Nonlinear Estimation

	The Unscented Kalman Filter
	Unscented Transformation
	Scaled Unscented Transformation
	Continuous Time Estimation
	Sequential Updates
	Latency Compensation

	Process and Observation Models
	Introduction
	Chapter Outline

	Prerequisites
	Spatial Algebra
	Reference Frames
	Quaternions
	Quadrocopter Control

	UAV Hardware
	Quadrocopter
	Base Station
	Sensors
	Inertia

	Derivation
	System State
	Process Model
	Observation Model
	Initialization Phase

	Experiments and Results
	Chapter Outline
	Physical Model
	IIC to RPM
	Rotor Coefficient
	Air Drag Coefficient

	State Estimation
	Simulation
	Yaw Rotation
	Pitch Rotation
	Translation
	Conclusion

	Conclusions and Future Work
	Bibliography
	EKF Inaccuracies
	Air Drag Experiments
	X-Y-plane
	10 Degrees
	20 Degrees
	-10 Degrees to -40 Degrees

	Z-axis
	100 Degrees
	110 Degrees
	120 Degrees

	Algorithms

