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Abstract

I. Abstract

Many animals rely on motion cues in their field of view to control their behavior. Ze-

brafish for example show an optomotor and optokinetik reflex when presented with certain

optic flow stimuli. We reasoned that binocular whole field optic flow, originating from

egomotion in a natural environment, can be described by a small number of statistically

independent components. These sparse components could be involved when neurons in

the pretectum of the zebrafish, which are supposed to be responsible for the horizontal

optokinetik reflex, specify their receptive fields.

To test the hypothesis we created plausibly natural optic flow stimuli from the viewpoint

of a zebrafish in a virtual reality simulation and computed the sparse components of the

data with the local competitive algorithm. We then compared the resulting ”receptive

fields” and their response characteristics to responses to horizontal whole field optic flow

of neurons in real zebrafish, measured by Kubo et al. (2014). Though the model still has

room for improvements, we could indeed find sparse components, as we expected, which

seem to be specific for certain events in the surrounding of the fish. The majority of

these components appear to extract optic flow cues originating from either rotation or

translation of the fish, or from moving objects in the world. These findings qualitatively

accord to some of the measurements by Kubo et al. (2014) and invite to further research

in this direction.
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Introduction

Figure 1: Simulated binocular whole field optic flow from the viewpoint of a zebrafish.
Arrows point in the direction of motions and their length denotes the speed.

1. Introduction

Many animals rely on motion cues in their field of view as indicators for important events

in the world. A lot of them also show specialized responses when presented with certain

optic flow signals (Figure 1). A very common observation in different animals is the use of

such signals, originating from egomotion in a fixed environment, to orient and compensate

for displacements in their location. Water striders for instance are able to recover their

position after a period of combined translation and rotation with a single jumping motion.

It could be shown that this optomotor reflex, and therefore the discrimination between

translation and rotation, continues to be successful even if the stimuli are restricted to a

monocular field of view (Junger and Dahmen, 1991).

Newer studies are still concerned with the question what these optic flow cues, used in

animal behavior control, look like, especially for rotation and translation discrimination.

The perception of optic flow is implemented by direction sensitive cells which show ded-

icated responses to movements in a certain direction. Such cells can be found at many

levels of the visual system. Krapp et al. (1996) for example investigated local motion

tuning of cells in the third visual neuropile of the blowfly with intracellular recording.

Their study suggests that the fly develops cells that specifically extract very large optic
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Introduction

flow components of either rotation around a particular axis or translation.

With recent methods of calcium imaging the processing of these informations in a large

part of the neural system can be analyzed on a neural level and with a high temporal

resolution (Grienberger and Konnerth, 2012). Especially in translucent zebrafish embryos

it is possible to optically observe and manipulate the firing of genetically altered neurons

throughout the brain (Baier and Scott, 2009). In addition, zebrafish show an optomotor

reflex, by stabilizing their position in respect to a moving background (Neuhauss et al.,

1999), and an optokinetik reflex, i.e. the eyes of the fish move to keep the field of view

steady (Brockerhoff et al., 1995), making them a convenient research subject for this

matter. A range of lesion and electrical stimulation studies suggest that cells in the

pretectum and accessory optic system are direction sensitive and mainly responsible for the

horizontal optokinetik reflex (Masseck and Hoffmann, 2009). Kubo et al. (2014) managed

to measure functionally different response types to horizontal whole field motion of these

cells with calcium imaging. While the exact stimuli that elicit or inhibit the firing of these

cells still remain unclear, the study gives a detailed insight into how the information from

both eyes of the fish could be processed to compute the measured responses.

1.1. Sparse coding as a model for receptive fields

In another aspect of visual processing in animals, however, the response characteristics

of neurons at intermediate levels of processing are well known. Receptive fields of corti-

cal simple cells can be described extraordinarily well by two-dimensional gabor wavelets

(Marĉelja, 1980). With sparse coding there also exists a robust mathematical model

which describes the formation of very similar receptive fields from natural image data

(Olshausen and Field, 1996).

One basic assumption of the model is that an image I can be represented in terms of a

linear superposition of basis functions φi:

I(x, y) =
∑
i

aiφi(x, y) (1.1)

It turns out that these basis functions φi resemble the receptive fields of cortical neurons

if they are sparse, meaning the statistical dependencies between the functions are low or,

in other words, the number of nonzero coefficients ai for all images in a set of images is

as small as possible. Such functions φi can be found by minimizing the energy function

for all images:
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Introduction

E(ai, φi) = −[preserve information]− λ[sparseness of ai]

=
∑
x,y

[
I(x, y)−

∑
i

aiφi(x, y)

]2

+ λ
∑
i

S(ai)
(1.2)

The first part of the equation ensures that the images are captured well by the recon-

struction with the basis functions. For this the distance between the original and the

reconstructed image has to be minimized. The minimization of the second part forces

the representation to be sparse. S is a nonlinear, generally monotonic increasing ”spar-

sity” function. The sparsity term is multiplied with a positive sparsity factor λ which

determines the importance of the sparseness in comparison to the first term.

There are several biological reasons instanced for why sparse coding might be a principle

employed by the visual system, e.g. metabolic efficiency (Baddeley, 1996). Olshausen and

Field mention from a statistical perspective that natural images have sparse structure, as

they can be described in terms of a small number of primitives like lines and edges, so

there are statistical dependencies between parts of the image (Olshausen and Field, 1997).

This is also an important reason for why sparse coding can find statistically independent

basis functions. If the structure of the images were different (and not sparse) no such

components could possibly be found.

The basis functions generally are better at capturing such sparse components if the basis

is overcomplete. This means there are more functions in the basis than linearly inde-

pendent functions would be needed to perfectly reconstruct the input. For example, if a

black and white image is to be reconstructed by a linear combination of images of the

same size, a complete basis would need as many functions as the image has pixels. The

ratio between the size of the sparse coding basis and the complete basis is also termed

the overcompleteness of the basis and is an important parameter for the output of the

algorithm (see also Olshausen and Field, 1997).

1.2. Hypothesis and content

In the case of whole field optic flow there is good reason to assume that there are such

sparse components to be found. Originating from egomotion, highly statistically depen-

dent motions in the visual field can be expected. In addition, moving objects in the

world typically are spatially extended and sparse and thus optic flow from these motions

should carry localized sparse information. Therefore we reason that it is certainly possible
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for neurons, which are reacting to optic flow stimuli, to employ a similar mechanism to

determine their receptive fields.

We furthermore expect functionally different sparse components, similar to the responses

measured by Kubo et al. There should be basis functions that are monocular, spatially

localized and unidirectional, specific for optic flow elicited by moving objects. From

egomotion we expect basis functions that are specific for either translation or rotation.

These functions should be more complex and spatially more extended than the other

ones. Also they should not only be restricted to monocular stimuli, since in the case of

egomotion optic flow on both sides of the fish is correlated.

To test this hypothesis this thesis will be concerned with the computation of sparse

components in natural optic flow data. In addition, we will qualitatively compare the

results with the data measured by Kubo et al. (2014). Therefore, the whole part of the

model that produces the optic flow data will approximate the visual circumstances for

zebrafish. A big part of the thesis will cover how an appropriate dataset was constructed.

1.3. The locally competitive algorithm

In the thesis the locally competitive algorithm (LCA) will be used instead of the original

formulation by Olshausen et al. (Rozell et al., 2008). The LCA involves neural network

components and thus can be computed very efficiently on modern graphic cards. It solves

a family of sparse approximation problems and its neural elements ”could potentially be

mapped onto the neural circuitry of sensory cortical areas, such as V1”1. To emphasize

this resemblance we will refer to the layer of neurons which stand for the activations ai

of weights φi
2 as the V1-layer 3. In the same sense we will use the terms weights, basis

functions and receptive fields interchangeably. Activity um of neurons in this layer, when

presented with an input stimulus, evolves in accordance with the ordinary differential

equation:

τ u̇m(t) = −um(t) + bm(t)−
∑
n6=m

Gm,nan(t) (1.3)

Here τ is a universal time constant determining the speed of the development. bm describes

how well m fits the input and −um(t) takes the role of a leaky integrator. This whole first

1Rozell et al. (2008)
2The weights of the connections between the image layer and the V1-layer are equivalent to the basis

functions, hence we use the same symbol.
3Even though we model the neurons in the pretectum of the fish.
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part of the equation can be seen mostly analogue to the error minimization term of (1.2).

Neurons and their weights that do not fit well on the input will fire less in an equilibrium

state than neurons that do. The last part of the equation is analogue to the sparsity term

of (1.2). Gm,n denotes the similarity between the receptive fields of two neurons m and n,

and an(t) is the activation of neuron n after applying an activation function to its activity

um(t)4. This function ultimately determines the cost-function of the LCA and typically is

linear except for a threshold λ below which the neuron is inactive. λ then acts in a similar

fashion as the sparsity factor in equation (1.2). Similar active neurons inhibit each other,

forcing the representation to be sparse; the higher λ, the sparser the representation. The

exact architecture of the neural network will be described in the next section.

It has to be added, that the notion of a receptive field is to be used with a grain of salt

in this context. As there is inhibition between cells when the activations are calculated,

every cell can be thought to have an additional inhibitory part in its receptive field that

cannot be observed in the weights to this cell, but rather is a property of the whole set of

weights of cells. In other words, the weight φi of a cell does not determine the activation

during a stimulus completely by itself and therefore only gives an approximation of the

entire receptive field of the cell. This should be kept in mind when the resulting weights

are analyzed.

2. Methods

The model that was used to compute the receptive fields can be roughly divided into three

stages. In order to provide meaningful input for the sparse-coding network a realistic

virtual-reality simulation of the natural environment of zebrafish was created. In the first

stage this simulation generates binocular image-sequences from the viewpoint of a fish.

In the second stage these images are used to calculate the input for the sparse-coding

model. For this purpose an algorithm computes the optic flow in these sequences, which

in turn is mapped onto two virtual retinas to generate the input-data. The last stage of

the model is a neural-network implementation of the sparse-coding model.

As a remark, these stages have not been chosen arbitrarily, but rather can be seen to

approximately correspond to stages in the visual processing of real zebrafish. The 3D-

simulation is obviously analogue to the surrounding world. The second stage is a coun-

terpart to the eyes of the zebrafish. It is known that the firing of retinal ganglion cells

4We distinguish between the activity un(t) of a neuron n, denoting its general state, and its activation
an(t), equivalent to ai, which determines the contribution of the neuron to the reconstructed image.
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already contains information about perceived optic flow (Barlow and Hill, 1963; Lowe

et al., 2013), thus we assume a very basic representation of the optic flow here. In this

stage we will furthermore model the anatomy of the eye to a certain extent to create

meaningful data. The last stage, the neural network, can be seen as representing parts

of the pretectum of the fish. Within the diencephalon and the accessory optic system

direction sensitive cells are abundant and, as has been shown in a range of vertebrate

species, receive direct input from retinal ganglion cells (Scalia, 1972). These cells are the

ones of which reactions to optic flow stimuli have been measured by Kubo et al. (2014).

In section 3 we will test these virtual neurons in the same manner.

2.1. Simulating a moving fish in a realistic environment

We set several requirements for a dataset of realistic image sequences: 1. It should

reproduce most of the statistical properties of the (standard) motions of zebrafish. To

keep the model simple we refrained from modeling special movements like prey hunting.

We also chose to keep the eyes of the fish fixed to a certain orientation. 2. There should be

a separation between foreground and background, resulting in different optic flow speeds.

3. There should be motions in the images, independent from the motions of the zebrafish.

4. There should occasionally be spots without motion due to ambiguity of the stimulus

material.

The simulation was programmed entirely in blender 5, an open source 3D graphics and an-

imation software and game engine. Two cameras attached to a simple fish model capture

an image sequence of two binocular images in the course of a short physics simulation.

2.1.1. Camera parameters

The cameras are placed nasalward of the rotation (i.e. weight) center of the fish. Each

camera is also shifted outwards by a short distance. The ratios of these parameters have

been estimated in accordance with rough anatomical data (Westerfield, 1995; Kimmel

et al., 1995) where the center of rotation of real fish was estimated to lie slightly caudal

of the eyes. Zebrafish have a viewing angle of approximately 160◦. The cameras record

a square image, so the angle from the midpoints of the edges to one another was set

accordingly. As we did not model eye motions, the cameras were set to a relatively

neutral orientation. The cameras are rotated to the front in the horizontal plane, so that

5https://www.blender.org/
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there is an 45◦ overlap in the fields of view, which was also assumed by Kubo et al. for

their tests.

2.1.2. Modeling motion

There were few sources available that helped modeling motion trajectories for our case.

The majority of parameters for this very important part of the simulation have been

carefully estimated. We also decided to model the movement behavior of adult fish, even

though it is different from the behavior of the measured larval zebrafish.

During neutral behavior the distribution function of both translational and rotational

speeds of zebrafish is approximately exponentially decaying, e.g. there is a high probability

of a fish moving with low speed that drops significantly for faster motions6. The fish alone

almost exclusively generate forward translation and their rotations are mainly restricted

to the horizontal plane (Dunn et al., 2016; Li et al., 2013; Palmér et al., 2016). However

considering a natural habitat, there is a probability of the fish being driven by external

forces, which can result in anomalous motions in any direction.

All of these considerations were condensed into a simple physical simulation. The model

of the fish is placed randomly and accelerated by a random rotational and translational

impulse. The sizes of the impulses are uniformly distributed with their maxima adjusted

to the values found in the literature. Their directions follow the estimates of the preceding

paragraph and also have impact on the strength of the impulse7. After this initialization

of the simulation the fish’s motion is dampened for a short while before starting the

recording of the image sequence. This results in a higher probability of slower motions,

just as it is observed for real fish. The dampening is proportional to the velocity of motion,

thus the speed of motion decays exponentially.

2.1.3. Surrounding elements

Zebrafish can commonly be found in shallow, slow floating waters, often mentioned are

rice fields (Spence et al., 2008). To account for this natural habitat we used two different

boundaries in which the simulation takes place and which mostly define the optic flow

elicited by distant regions. In one case clear water permits the visibility of these distant

regions, whereas in the other case muddy water occludes them (Figure 2).

6It is to mention that the speed of motion is irrelevant for the sparse coding, as the algorithm itself is
scale-invariant. However, the ratios of translational and rotational speeds and of independent motions,
as well as the probability distribution of different kinds of motions is relevant.

7The calculation of these random vectors is noted down in appendix B.
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Figure 2
In one simulation setup the fish is surrounded by clear water and swims in a textured

sphere with flattened out floor (right), in the other case upper and lower boundaries are
flat and distant objects are occluded (left).

To generate independent motion and motion parallax in the simulation we introduced

three additional objects to the simulation. Stone-like and a seaweed-like objects allow

motion parallax to be perceived. Several simple fish are simulated similarly to the model

of the zebrafish in its vicinity. This provides optic flow features independent of the

zebrafish’s motions. All additional objects are scaled and distributed randomly in the

environment without overlapping with the cameras (Figure 2).

2.2. The virtual eye

After creating the images, the data needs to be prepared to be fed into the sparse-coding

model. This part of the model has proven to be troublesome for various reasons. To

understand why, it is useful to clearly state what we have and what we want.

The input for the sparse-coding model should ideally be a set of vectors corresponding

to the firing of direction sensitive ganglion cells in the retina of the fish. These virtual

ganglion cells should be plausibly distributed in the field of view of the fish. In order to

create these vectors we will use the images created earlier and some opportune algorithm

to calculate the optic flow on the image plane.

This raises two major problems: 1. The optic flow algorithms tested only compute the

flow reliably if the moving parts of the image sequence are approximately equally large. If

this is not the case very small and very large motions will generally be treated differently

by the algorithms, resulting in unstable behavior in our case of application. Unfortunately,
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the images which have been rendered by blender are heavily distorted due to the large

viewing angle. This is something we have to compensate for before calculating the optic

flow. 2. The ganglion cells in the fish are distributed on an approximately spherical

retina. The projection from a plane to a sphere is a nontrivial one in which compromises

have to be made.

These difficulties could have been avoided by calculating the optic flow directly on a

sphere, however, this approach is computationally expensive and would have taken too

much time to be calculated on a large dataset. The approach ultimately chosen is not

flawless, but the compromises made will be justified.

2.2.1. Compensating for distortion

The images are transformed in order to enhance the performance of optic flow algorithms.

This is not yet the mapping from the plane to the retinal sphere even though a sphere

projection provides the idea for the transformation. However this transformation will

be affecting the vectors, resulting from the optic flow algorithms, and therefore will be

important for the following parts of the model.

The images rendered in the simulation are calculated with a pinhole camera in respect

to a plane as the projection screen. This explains the distortion, increasing with the

distance to the center of the projection (Appendix E.2, figure 10). Consider a sphere

as the projection screen of the camera with the pinhole in the center of the sphere. In

this case no distortion occurs; all rays hit the surface orthogonally. This suggests a

sphere projection can be used to compensate for the distortion of the rendering. We first

project the image onto the sphere, then project it back onto the plane with another sphere

projection with less distortion in respect to the sphere.

Sphere projections can have one ore none of the two following properties which seemed to

be relevant in this case: conformal (angles are locally preserved) or equal-areal (sizes of

areas are preserved). To account for the way the pinhole camera operates, an azimuthal

projection was chosen. In this kind of projection the azimuth of the sphere coordinate in

respect to a central point is preserved. The projection used in the thesis is an azimuthal

conformal projection, the stereographic projection8. The advantage is that motion vectors,

mostly describing small motions, are locally orthogonal if the motions on the sphere are

orthogonal. However, vectors on the sphere that are the same length do not have to be

of the same length in the projection, which will be corrected later on.

8Against first intuitions the equal-area projection distorts too strong in areas distant to the center.
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Let (r1, φ1) be the polar coordinate on the rendered image, f the focal length of the

camera9. We obtain the coordinate on the sphere10 (f, θs, φs) with radius f by

(f, θs, φs) = (f, arctan(
r1

f
), φ1) (2.1)

To get the coordinate on the resulting image (r2, φ2) we apply the stereographic projection:

(r2, φ2) =

(
2f · tan

(
θs
2

)
, φs

)
(2.2)

2.1 and 2.2 together yield:

(r2, φ2) =

(
2f · tan

(
arctan(r1/f)

2

)
, φ1

)
(2.3)

This transformation is periodic, hence the images were cropped. While the corners of

the resulting images show parts of this periodic recurrence (e.g. appendix E.2, figure 11),

it makes no difference for the optic flow calculation. For the processing of the images

OpenCV 11 was used.

2.2.2. Optic flow calculation

We decided to use a dense optic flow algorithm, meaning the algorithm estimates the

motion vector for every pixel in the image. For the final results the deep flow algorithm

(Weinzaepfel et al., 2013) was used, as it provided the most stable and a very fast cal-

culation. Deep flow is based on a deep convolutional neural network architecture. It

is preceded by deep matching, a deep convolutional neural network as well, which finds

matching spots in images even if they are distant. The algorithm thus is able to handle

large displacements in image sequences.

2.2.3. Virtual ganglion cells

To simulate the location of receptive fields of ganglion cells in the field of view of the fish

we first find the coordinates of corresponding points on a simplified retina. We then find

the position of these points on the image, where the optic flow has been calculated.

9The distance between the pinhole and the image plane, a constant determined by the 3d-simulation.
10The point of intersection of the same ray of light coming through the pinhole.
11An open source image processing library: http://opencv.org/
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Figure 3
Left: 3D plot of the positions of the virtual retinal ganglion cells.

Right: Distribution of virtual ganglion cells on the projected sphere.

Zebrafish have a rather complex retina in terms of a 3d-simulation (Haug et al., 2010;

Schmitt and Dowling, 1999). We therefore made some simplifying assumptions: 1. The

retina is shaped like a perfect sphere with the pinhole in the center of the sphere – in

fact the shape of the zebrafish’s eye is close to a hemisphere. 2. All ganglion cells cover

about the same area. 3. The fish has 1024 groups of four ganglion cells, which we will

treat as one point for now12. 4. There is evidence that retinal ganglion cells in zebrafish

are specific for one of three directions of optic flow (Lowe et al., 2013). We simplified the

calculation by assuming four principal directions13.

For this purpose n points are placed on the unit sphere, repelling each other with forces

reciprocal to the square of the distance of the points. The force ~fp on point p from the

set of points P is thereby:

~fp =

q∈P\{p}∑
−

pq
‖pq‖

‖pq‖2 =

q∈P\{p}∑
− pq

‖pq‖3 (2.4)

The viewing angle of the simulated zebrafish is 160◦. We choose n in such a way that

there will be 1024 points in an area AR, a spherical cap which covers 160◦, resembling

the retina. As the cells are all assumed to cover the same area in the end, the expected

number of points in the retina is:

12This number is hard to estimate, especially as the number of direction sensitive ganglion cells seems
to be changing depending on the direction (see Lowe et al., 2013). However we don’t expect this to
have a big influence on the results, as long as the number of ganglion cells is not too small.

13We figured, the most important fact at this point is that there are no negative vectors, i.e. two nonzero
vectors in different directions cannot add up to zero. The vectors of the optic flow can admittedly be
reconstructed by addition in a different way in both cases.
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nR =
AR

A
· n (2.5)

with the surface area of the unit sphere A = 4π and

AR = 2π

(
1− cos

160◦

2

)
(2.6)

Rearranging 2.5 for n and substituting results in:

n =
1024

1/2 (1− cos 160◦/2)
≈ 2478.3 (2.7)

n is rounded to 2479 to reduce the probability of a point lying outside. After the simulation

settles down to an equilibrium we take the 1024 points with the lowest z-coordinate to

represent the cells on the retina PR (Figure 3, left). A quick test reveals that max
p∈PR

(α(p)) ≈
79.9◦ with α(p) the angle of p to the z-axis, thus there are no outliers.

2.2.4. Preparing the vectors for the network

The optic flow calculated in 2.2.2 is already smoothed out by deep flow. The vector for

every ganglion cell is taken from the center of the cell at the corresponding location on

the image (see figure 3). The vectors at these points are split up into 4 values: The up,

down, left and right component of the vector on the image.

With the projection these vectors are scaled and rotated differently compared to corre-

sponding vectors calculated on the sphere. Under rotation the sparse coding is invariant

(see appendix A), but the scaling has to be corrected since it would alter the results.

We normalize each vector ~vi at the point of the cell xi, before splitting it up, by the

directional derivative of the inverse projection F−1 in the direction of ~vi

~ui =
∥∥∇~viF

−1(xi)
∥∥ · ~vi ≈

∥∥∥∥∥F
−1(xi + ε ~vi

‖~vi‖)− F
−1(xi)

ε

∥∥∥∥∥ · ~vi (2.8)

with ε being very small. The split up vectors are then normalized altogether to values

between 0 and 255 and saved in 8 .png-files – 4 for each eye – as input for the sparse

coding.

12



Methods

Figure 4:
Graphical illustration of a part of the sparse
coding network. Rectangular and diamond
shaped boxes denote neural layers while ar-
rows represent connections between the lay-
ers. Numbers on the arrows indicate if the
same weights for different connections are
used.

2.3. Sparse-coding neural network

In the model we used Petavision, an open-source neural-network simulation toolbox con-

taining an implementation of the LCA. The architecture of the network is outlined in

figure 4. For each of the 8 input-files the same V1-layer (in other terms, the same coeffi-

cients ai) was used to calculate the sparse representation of the input, but with different

connection weights (φi) for each input. In the figure only one of these 8 symmetrical

inputs is depicted, while the others are only indicated by their connections to V1 in the

upper part of the picture.

The computation of the network on one input proceeds in 5 steps: 1. The input is copied

over from the input layer (RightImageAxis2 in figure 4) to the error layer (RightErro-

rAxis2 ). 2. The sparse representation of the activations in the error layer is calculated by

V1 in accordance with equation (1.3) until an equilibrium is reached. The weights (φi) for

this calculation are saved in a connection from V1 to the error layer (bold black arrow)

and only copied over to the connection in the other direction. 3. The sparse representa-

tion is projected out to the reconstruction layer (RightReconAxis2 ) using the weights φi.

4. The error between the reconstruction of the image and the original in the error layer

is calculated by subtracting (inhibiting) the layers (red arrow). 5. The error gives the

gradient which allows for an adaptation of the weights stored in the plastic connection

between V1 and the error layer via a hebbian learning rule.

The connection between the error layer and V1 is often chosen to be a convolution, so one

neuron in V1 is connected only to a small patch of neurons in the other layers and shares

its weights with neurons covering other patches. This has the advantage that less weights

are necessary to reach a certain overcompleteness factor. As we wanted one receptive field

for the whole binocular field of view, in our case one neuron in V1 is connected to all

neurons in the other layers.
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With the LCA it is possible to retain the activations of the neurons in V1 from one input

to the next. This can be used to speed up computations by using one image as the prior

for another image if they are related, e.g. images from a movie. As our inputs were

unrelated we chose to disable this feature.

3. Results

Before recreating the experiment of Kubo et al. the performance of the LCA was analyzed

and enhanced. The two main parameters that were adjusted to configure the performance

of the network are 1. the number of neurons in V1 and 2. the threshold of these neurons,

i.e. what activity they have to reach until they are considered in the reconstruction of the

input. In terms of sparse coding 1. is equivalent to the number of vectors in the sparse

coding base and 2. approximately to the sparsity factor λ (equation 1.2).

As of yet there is no literature to be found on whole field sparse coding specificities in

binocular optic flow data. The only evidence if the computations have been set up prop-

erly, was the general behavior of the network and the resemblance of the measurements

when recreating the experiment. As one can see in the work of Schultz et al. (2014) a

good predictor for the quality of the weights is the location of reconstructions of inputs

in a sparsity vs. error plot (Appendix E.1, figure 9).

In the following tests we considered weights computed by a network with an overcom-

pleteness of 2 (16384 neurons in V1) and a threshold of 0.04. Another network with an

overcompleteness of 1/2 (4096 neurons) and a threshold of 0.02 was also tested and it

showed that this second setup was better at reproducing the results of the experiment of

Kubo et al. Although it did not find the sparse components we expected as explicit as

the other setup, we still considered it as an alternative result (Appendix E.5), showing

that the model is capable of a fairly accurate reconstruction of the measurements, apart

from some details. The reason for the difference between the setups and what it implies

is not clear and could be part of further investigations.

3.1. Resulting sparse components

For the interpretation of the weights that have been computed we displayed them in the

same way as the optic flow of the image sequences, projected onto the plane with the

stereographic projection. The four vectors are combined to one vector by addition. It

is certainly possible, that there could be 2 nonzero vectors on the point of a weight in
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opposite directions. This however is very unlikely. As this case never occurs in the dataset

it would always increase the error. Since one cell covers the whole binocular field of view

we can see the location and direction of the optic flow vectors that increase the activation

of the neuron. In appendix E.6 a selection of these weights is displayed.

We could observe the formation of weights that are spatially localized and unidirectional,

both monocular and binocular, as we hypothesized. They are noisy at times, meaning

small vectors in different directions tend to occur randomly in the flow. The sizes of

the unidirectional flow components vary between only one vector (i.e. ganglion cell) and

a medium sized cluster of vectors. Very large unidirectional components, covering the

majority of the field of view as they have been observed by Krapp et al. (1996) in the

blowfly, haven’t been found. The reason for this should be that subtraction of vectors is

not possible, hence there is no use in such large components, because they almost never

occur in natural optic flow without spots of slower flow14.

A bit of displeasure is caused by the large number of weights, that showed combinations of

the components we hypothesized, but in a manner that made it very unlikely for these flow

fields to occur in a natural environment. Hence, they should not be sparse components

of natural optic flow. During the experiments it showed, that these weights become less

common if the network is set up properly and the dataset is made more diverse and, even

more important, larger. The 16384 neurons each have 8196 weights - 4 to each vector of

the input - resulting in a model with about 67 million dimensions. It is very likely that the

dataset we used was just too small to adjust these parameters to capture natural sparse

components. This should be taken into account when further investigations are planned.

3.2. Testing the receptive fields

To analyze the receptive fields the LCA generated we recreated a part of the experiment

of Kubo et al. in virtual reality. Two hemispheres were placed on each side of the model of

the fish (Figure 5). In a 45◦ angle in front of the fish, where the field of views of both eyes

are overlapping and no stimuli were presented in the original experiment, the hemispheres

were truncated. They were textured with dark vertical lines on a bright background and

animated in such a way that a uniform rotational motion either in nasal or temporal

direction could be perceived. Image sequences from this second virtual reality setup were

14It has to be added that the fly has much less cells available (Krapp et al. (1996) speak of 60 neurons
in the third visual neuropile) that compute the desired components. This could explain the need for
bigger, but less specific receptive fields.
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Figure 5: Outside view onto the virtual arena for creating the
test stimuli with the fish in the center.

processed in the same manner as the ones of section 2.115. From these simulations 4

different unilateral stimuli and 4 stimuli specific for horizontal rotational or translational

motion could be created (Figure 6; see appendix E.3 for an exemplary image sequence).

As the activations of neurons in the V1-layer were determined by the stimulus, the neurons

could be grouped based on the combination of reactions (firing or not firing) they showed

to the 8 test stimuli. This led to a total of 28 = 256 groups (Figure 7). Kubo et al.

determined the belonging of a neuron to a group by finding the highest correlation of

its calcium responses, i.e. its firing behavior, with idealized responses of neurons from

these groups. In contrast, as there was no time course to be correlated, we determined

a neuron to be firing if it crossed the threshold and contributed to the reconstruction of

the stimulus. The virtual neurons then were assigned to the according group.16

In the course of their paper Kubo et al. decided to categorize and name response types in

accordance to their functional implications (Figure 8), as well as describe them in terms

of computational complexity.

15It turns out that the optic flow resulting from these calculations is not exactly uniform (Appendix E.3,
Figure 14). The possible effects of this fact will be discussed later.

16As a side note, the major part of the virtual neurons did not respond to any of the stimuli. 12802
of the 16384 neurons have therefore been excluded from the analysis, reactions of only 3582 neurons
have been measured. Kubo et al. found about 500 neurons consistently reacting to at least one of the
stimuli per fish. In the areas they considered, these make up about 1/20 of the entire population of
cells (Appendix C). If the proportion of reacting and non-reacting direction selective cells would be
about the same, this would mean that approximately 1/6 of the cells in the considered areas of the fish
could be direction selective. Ultimately, this indicates that the proposed model would not need more
neurons to conduct the desired computations than the fish has available, if it was set up accordingly.
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Figure 6: Outline of the test setup.
A. Schematic diagram of the experimental setup that also was used by Kubo et al. In the 45◦ angle in front of the fish no
stimuli were presented.
B. Protocol of the stimuli that were tested. NL/- indicates nasalward motion to left eye; TL/- indicates temporalward
motion to left eye; -/TR indicates temporalward motion to right eye; -/NR indicates nasalward motion to right eye;
CCW indicates counter-clockwise; CW indicates clockwise; FW indicates forward; BW indicates backward (These are the
perceived motions, not the motions of the fish).

3.2.1. Combinational logical complexity of responses

Kubo et al. reasoned that simple logical operators might be involved when the output of

retinal ganglion cells is processed by cells in the pretectum. For the purpose of the exper-

iment they used the 4 basic motion stimuli (NL, TL, NR, TR; see Figure 6) and combined

them with 3 simple logical operators, AND (∧), OR (∨) and NOT (¬). The resulting

formulas are proposed to describe the neural circuitry and its complexity analogous to the

computations in digital electronics. The number of logical operators in them can be seen

as an estimate of the degree of complexity of the response types. In the LCA some kind

of logical reasoning can be assumed during the calculation of the activations of the V1-

neurons, though this admittedly ought to rest on different principles than computations

in the fish.

The response types of the neurons then can be described as the output of these formulas.

Kubo et al. give several examples for this (Appendix E.4, figure 16C). A neuron reacting

to a nasalward motion on the left side (NL) as well to clockwise motion (CW) and forward

motion (FW) can be described by a logical formula of the most basic kind, which is simply

equivalent to the NL input and involves zero logical operators. If a neuron only reacts to

the two stimuli NL and FW and not to CW the formula gets more complex as the firing

of the neuron is inhibited in the CW case, resulting in NL ∧ ¬TR (i.e. two operators).

To determine the simplest formula describing the reactions of the neurons the Quine and

McCluskey algorithm was used (Appendix D). The number of logical operators of the

response types in this case ranges from 0 to 19, where most of the responses need rather

few operators (Figure 7C).

Figure 6 taken and slightly modified from Kubo et al. (2014)
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Figure 7: Distribution of response types and computational complexity.
A. A histogram showing the number of virtual neurons classified according to the 256 possible response types. The white-
and-black plot below the histogram illustrates the response profile of each group/response type. Each vertical 1 x 8 line
represents one response profile, and the squares indicate whether the response type is active (black) or inactive (white)
during the stimulus phases indicated on the right. The copper-colored line shows the computational complexity of the
response type, as in C.
B. The histogram from A sorted by the number of neurons found with the particular response type.
C. Quantification of regressor complexity. The 256 possible response types are binned according to the number of logical
operations needed.
D. Histogram of the number of neurons versus the number of logical operations.
The color code (blue, green, and red) in (A–D) corresponds to the one used in figure 10.

It seems like for most of the neurons in the zebrafish pretectum only few logical opera-

tions are required to describe their response characteristics (Appendix E.4, figure 16E),

especially when comparing the distribution of the number of groups and their logical com-

plexity (Figure 7C) to the distribution of single neurons. The virtual neurons in our case

show a very similar tendency (Figure 7D). There is, however, in our case a large number

of neurons seemingly using four logical operations to calculate their responses. Mainly

neurons that are active for only one stimulus contribute to this number. We will discuss

these neurons later. Their response characteristics seem to have a different origin than

the responses of the other neurons.

Figure 7 and description taken and modified from Kubo et al. (2014)
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Figure 8: Functional classes of neuronal responses to the test stimuli introduced and
named by Kubo et al. A black square means the cell is reacting to a particular
stimulus if it is in the group indicated at the bottom.

3.2.2. Functional classes of neural responses

Kubo et al. divided the response types into three categories (Figure 8). ”Simple” cells

show responses whose formulas do not include any negations17: 1. monocular direction

sensitive cells, consisting of four response types that respond to either nasalward or tem-

poralward motion presented to either the left or right eye, 2. binocular direction sensitive

cells, receiving information from both eyes, but preferring one direction over the other

and 3. non-direction sensitive, motion sensitive cells.

They found a higher representation of monocular simple response types than binocular

types (Appendix E.4, figure 15). Most simple cells very likely only receive input from

one eye. A similar ratio can be observed for the receptive fields created in the simulation

(Figure 8), indicating that the vectors of the simple category tend to be specialized for the

optic flow on one side. Another observation, which deserves attention as it can explain a

range of findings, is that there are more neurons to be found which react to fewer stimuli.

This behavior is forced by the sparseness of the representation. While the receptive field

of a neuron could be appropriate for the input, it can be inhibited by the reactions of

other neurons (Equation 1.3).

The second category of translation and rotation selective responses contains cells that

Figure 8 taken and modified from Kubo et al. (2014)
17Their reactions can be thought of being calculated without the use of inhibition.
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show responses to only one of the four binocular stimuli (FW, BW, CW, and CCW).

In the case of the neuron responding also to a monocular stimulus, the response still

is specific for one rotational or translational stimulus. For example a neuron with FEL

characteristic responds to NL and FW but not to CW (Figure 8), even though the CW

stimulus contains the NL component (Figure 6). In this case the neuron is apparently

being inhibited by motion that doesn’t fit the rotation or translation it is specific for.

In the zebrafish Kubo et al. found a higher number of cells specific for translation than for

rotation (Appendix E.4, figure 15). Since the cells in the pretectum are responsible for the

optokinetic reflex, they reason that this reflex in the case of rotation is mainly triggered

by monocular cells, hence cells responding to rotation are thought to be monocular in the

fish. In contrast, in the case of translation they should respond to binocular stimulation.

In the model we couldn’t find such a distinction between rotation and translation (Figure

8). Though, it is apparent that neurons that respond to more stimuli (e.g. FELR) are

less likely than neurons that respond to fewer stimuli (e.g. FSP). This again seems to be

a characteristic of sparse coding.

In addition, Kubo et al. found about 156 neurons that responded to some of the stimuli,

but it was not clear what they were specific for, so they were marked as unclassified.

This number is very low, considering that these neurons express one of the 229 other

response types. In total about 1/3 of the measured cells have not been assigned to one

of the specific response types. This matches quite well with the model, where 1094 of

3590 neurons, which were active during the stimulations, were unspecific. In contrast,

the biggest part of these unspecific neurons in the model are in one of few response types

(Figure 7A; there are only few large unspecific ”red” groups). In the fish they are more

divers (Appendix E.4, figure 16A).

The entire distribution of neurons with their response characteristics is shown in figure

7. The corresponding figure from Kubo et al. can be found in Appendix E.4, figure 16.

Both distributions show similar properties. The functionally specialized response types,

indicated by blue and green in the colored bar below the distribution, are highly favored

over non-specialized responses. When arranging the response types by the number of

neurons with this type, this results in a similar distribution (i.e. there is a high probability

of a neuron to exhibit one of only few response types, that drops significantly for not so

common responses) with the specialized responses being among the most common ones. In

appendix E.5 this resemblance is even closer. Moreover, the preference for response types

with fewer logical operations is more clearly visible in these plots (The copper-colored

bar below the distribution, indicating this number, begins darker at the beginning of

the distribution and gets brighter towards the end). The biggest difference is the large
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number of neurons showing an unspecific response type with only one response to a single

monocular stimulus in the model, that can not be found in the fish.

3.3. Discussion

Based on these and further results, covering the location of functionally specialized cells,

Kubo et al. proposed a neural circuit model for the processing of binocular optic flow in

the pretectum of the zebrafish, mainly described by logical operations18. The output of

neurons with simpler receptive fields is thought to be be used later in the processing of

more complex neurons. It is apparent that this sort of architecture is not appropriate for

our model; the way the receptive fields are computed is known and it is not hierarchical.

What can be compared are the functional specifications of the involved receptive fields.

If the receptive fields, used to reconstruct (or analyze) the optic flow, are the same in

the model and the fish, this would implicate that their functional behavior, i.e. their

dedicated responses to certain optic flow circumstances, would be the same. Seeing that

this is the case, that in both of them receptive fields with similar functional implications

(specific for translation or monocular unidirectional motion) can be found, suggests that

the same optic flow components could account for the structure of these receptive fields.

There are several possible reasons for why the artificial neurons of the LCA don’t behave

exactly like the direction sensitive neurons in the pretectum of the zebrafish, given they

would indeed use the exact same mechanism to determine their receptive fields. First

of all, the technical components of the model have their flaws, especially the calculation

of optic flow is still considered an open problem (this becomes apparent when really the

test stimuli should be an uniform motion, but they are not; Appendix E.3, figure 14).

However, consistency of the results over a variety of setups (e.g. different optic flow

algorithms) suggests that they have no systematical impact.

More important are the properties of the dataset that was created with the 3D-simulation

and the virtual retina. It is hard to tell which of the simplifying assumptions is influencing

the resulting sparse components. For one thing, the simulation itself could be too simple

and more components with different properties and a more diverse behavior of the modeled

fish could be required. An indicator for this is the error-sparsity plot (Figure 9). The

difference in the error between a setup with 1/2 and 4 times overcompleteness is very small.

This could mean that many of the independent components of the data already can be

approximated with few basis functions. Also, the reasons for why the weights at times

don’t behave as we expected, instanced in section 3.1, could apply here. Even though we

18Somewhat like a neural net of McCulloch and Pitts-Neurons.
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could find the sparse components we expected, more effort could be necessary before the

optic flow in the dataset can be considered natural and sufficiently divers.

Secondly, another great effect could come from the immobility of the eyes. Zebrafish can

compensate for rotational egomotion through the optokinetic reflex, which also means

that there is less need for binocular receptive fields detecting rotation. As Kubo et al.

remark, the optokinetic reflex is likely to be driven by monocularly sensitive neurons since

each eye can be controlled individually. It is obvious that there is a discrepancy between

the model and the fish, as the model tries to detect optic flow components resulting

from rotation, while the fish rather minimizes their effect onto the entire optic flow. One

could hypothesize that the distribution of binocular translational and rotational specific

neurons become more alike, if the majority of rotational optic flow is compensated for in

the simulation by stabilizing the eyes. This however would lead to a lack of monocular

neurons specific for rotational motions that seem to exist in the fish. A more complex

model (e.g. one that actively compensates for rotational components), not sparse coding

alone, could be needed to find better approximations of the receptive fields.

The great number of unspecific neurons responding to only one monocular stimulus and

nothing else however are harder to interpret. On the one hand, they could point at a

principal difference between sparse coding and the neurons the fish exhibits, namely the

inhibition of a fitting receptive field in order to enhance the sparseness of the reconstruc-

tion. On the other hand, it could be that they are a mere artifact of the different methods

used to observe the activation of the neurons and assign them to a response type. This

could result in a higher number of observed neurons reacting randomly to a single stimulus

in the model. Answering this question could also be part of future investigations.

4. Conclusion

In the thesis a reasonably detailed model for the optic flow perception in zebrafish was

established. We managed to qualitatively reproduce measurements of neural responses in

larval zebrafish with the use of sparse coding. This includes the existence and approx-

imate ratios of functionally specialized direction selective cells in the pretectum. Some

of the sparse components also express some of the properties we hypothesized. They

are spatially localized and monocular if they are specific for motion of other objects and

spatially extended and often binocular if they are specific for optic flow originating from

egomotion. A major part of the resulting sparse components, however, is noisy and not

clearly specified. Though it is likely that this can be prevented by enriching the optic
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flow dataset and a better optimized sparse coding algorithm.

There still are some idiosyncrasies of the proposed model that do not fit the empirical data

well, like a great amount of binocular receptive fields specific for rotational stimuli that

haven’t been found in larval zebrafish, or a great number of unspecific cells responding to

only one monocular stimulus and nothing else. Nonetheless, the results show interesting

resemblances which are hard to explain if no sparse coding process is involved at all in the

formation of these direction sensitive cells. It seems plausible that, when the fish searches

for appropriate behavioral responses to visual stimuli, it is advantageous to make use

of their statistically independent components which are specific for certain events in the

world, in order to find meaning in a stimulus; this invites further research in this direction.
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Invariance of sparce coding under rotation

Appendix

A. Invariance of sparce coding under rotation

We can write the rotations Ri performed on the vectors ~vi of the optic flow as one rotation

matrix as they are not overlapping:


R1 0 0

0 R2 . . . 0
...

. . .
...

0 0 . . . Rn



~v1

~v2

...

~vn

 = R · ~v (A.1)

We rewrite the sparse coding cost function 1.2 with the rotated vectors and show that it

remains the same:

E(ai, Rφi) =
m∑
j=1

∣∣∣∣∣
∣∣∣∣∣Rx−

k∑
i=1

aiRφi

∣∣∣∣∣
∣∣∣∣∣
2

+ λ
k∑

i=1

S(ai) (A.2)

⇔ E(ai, Rφi) =
m∑
j=1

∣∣∣∣∣
∣∣∣∣∣R
(

x−
k∑

i=1

aiφi

)∣∣∣∣∣
∣∣∣∣∣
2

+ λ
k∑

i=1

S(ai) (A.3)

and as R is orthogonal:

⇔ E(ai, Rφi) =
m∑
j=1

∣∣∣∣∣
∣∣∣∣∣x−

k∑
i=1

aiφi

∣∣∣∣∣
∣∣∣∣∣
2

+ λ

k∑
i=1

S(ai) (A.4)

�

The sparse coding would result in the same vectors φi, though they would have to be

rotated back with RT .
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Random vectors for motion simulation

B. Random vectors for motion simulation

Let R be an independent random number following the discrete uniform distribution over

[0, 1]. The vector applied as translational impulse is calculated as

~v = ~v1 + ~v2 (B.1)

~v1 =

 R

(R− 0.5) · 0.01

(R− 0.5) · 0.01

 (B.2)

~v2 =

(R− 0.5) · 0.1
(R− 0.5) · 0.1
(R− 0.5) · 0.1

 (B.3)

where ~v1 is the motion generated by the fish and ~v2 a small random impulse. The applied

torque is calculated as

~u = ~u1 + ~u2 · 0.5 (B.4)

~u1 =

 0

0

R− 0.5

 (B.5)

~u2 =

R− 0.5

R− 0.5

R− 0.5

 (B.6)

Here a positive z-value denotes a force clockwise around the z-axis of the fish. The vectors

~v and ~u are ultimately scaled to the coordinate system used in the simulation.
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Estimation of the number of direction sensitive neurons

C. Estimation of the number of direction sensitive

neurons

Neurons measured by Kubo et al. were distributed in four mirror-symmetrical pairs

of clusters, which they termed anterior medial cluster (AMC), anterior lateral cluster

(ALC), anterior ventral cluster (AVC) and posterior dorsal cluster (PDC). They recorded

the coordinates of the cluster to be (in µm):

AMC (x=[-90, 90], y=[-140, -40], z=[-50, 50]), AVC (x=[-45, 45], y=[-120, -40],

z=[-80, -20]), ALC (x1=[-130, -90], x2=[90, 130], y=[-140, 0], z=[-50, 0]), PDC (x=[-60,

60], y=[-220, -150] z=[-40, 40]), where x, y and z represent the left-right, rostral-caudal

and dorsal-ventral axes, respectively.

We assume them to be approximately ellipsoid, thus we estimate

VAMC ≈ 0.6 · 180µm · 100µm · 100µm = 1.080.000µm3 (C.1)

VAV C ≈ 0.6 · 90µm · 80µm · 60µm = 259.200µm3 (C.2)

VALC ≈ 0.6 · 80µm · 140µm · 50µm = 336.000µm3 (C.3)

VPDC ≈ 0.6 · 120µm · 70µm · 80µm = 403.200µm3 (C.4)

Then

V ≈ 2 · 106µm3 (C.5)

We estimate the somata of the neurons to be 6µm wide and take up about 65% of the

volume in the clusters. We assume the rest is made up by neuropil. As a rough estimate,

the number of cells in the examined areas then is

n ≈ V
4/3π · (3µm)3

· 0.65 ≈ 11.500 (C.6)

from which about 500 have been measured to be sensitive to horizontally moving stimuli

by Kubo et al.
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Quine-McCluskey algorithm

D. Quine-McCluskey algorithm

Table 1: Truth table for a neuron specific for forward translational motion; a 1 in the
response column means the neuron is firing. On the right the corresponding
subterms of the canonical disjunctive normal form are noted.

NL TL TR NR Response

NL/- 1 0 0 0 1 NL ∧¬ TL ∧¬ TR ∧¬ NR

TL/- 0 1 0 0 0 ¬ NL ∧ TL ∧¬ TR ∧¬ NR

-/TR 0 0 1 0 0 ¬ NL ∧¬ TL ∧ TR ∧¬ NR

-/NR 0 0 0 1 0 ¬ NL ∧¬ TL ∧¬ TR ∧ NR

CCW 0 1 0 1 0 ¬ NL ∧ TL ∧¬ TR ∧ NR

CW 1 0 1 0 0 NL ∧¬ TL ∧ TR ∧¬ NR

FW 1 0 0 1 1 NL ∧¬ TL ∧¬ TR ∧ NR

BW 0 1 1 0 0 ¬ NL ∧ TL ∧ TR ∧¬ NR

The reactions of a neuron are seen as the outputs of a logic formula with the four ba-

sic monocular stimuli (NL,TL,NR,TR, see figure 6) as input. In table 1 an exemplary

response type (FEL, see figure 8), which is specific for forward translational motion, is

written down in the form of a truth table.

The response of the neuron RFEL(NL,TL,TR,NR) can therefore be described in its

canonical disjunctive normal form:

RFEL(NL,TL,TR,NR)⇔ (NL∧¬TL∧¬TR∧¬NR)∨ (NL∧¬TL∧¬TR∧NR) (D.1)

With the Quine-McCluskey algorithm this term can be reduced to its minimal form:

RFEL(NL,TL,TR,NR)⇔ NL ∧ ¬TR (D.2)

This expression can be calculated with the use of two logical operators. The number of

logical operators of the response types ranges from 0 to 19, where most of the responses

need rather few operators (Figure 7C).
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E. Supplementary figures

E.1. Sparse coding performance
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Figure 9: Error versus sparsity plot of the training data after learning. The sparsity quan-
tifies how many neurons were involved in the reconstruction of the image. The
error specifies the difference between original and reconstructed image. One
circle approximately encloses the results of one hyperparameter setup of the
algorithm on a smaller dataset with 6500 images. Dark red circles denote runs
with 1/2 times overcompleteness, magenta circles runs with 4 times overcom-
pleteness. The sparsity factor λ decreases from left to right with values of 0.8,
0.4, 0.2 and 0.1 in both cases. Compare with Schultz et al. (2014). The sparse
components seem to be over-fitting if they are not sparse enough. If they are
generalizing better, the error starts to rise.

E.2. Simulation

Figure 10: Image rendered in blender with two pinhole cameras and a field of view of 160◦.
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t

left eye right eye

Figure 11: Image sequence created in the virtual reality simulation. This is the trans-
formed image of figure 10. Time advances from top to bottom.

Figure 12: Optic flow elicited by the image sequence in figure 11. The fast moving floor
and fish overshadow the optic flow resulting from slower motions. According
to this optic flow field the motion of the fish is a forward translation close to
the ground.
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E.3. Testing

t

left eye right eye

Figure 13: Image sequence created in the test environment. Depicted here is the backward
translation (FW) condition.

Figure 14: Optic flow in the backward translation condition (FW). The different lengths
of the vectors are mainly an effect of the optic flow algorithm working better
in the center of the images with stripes.
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E.4. Results from Kubo et al.

Figure 15: Figure 5 from Kubo et al. Please see there for more information, compare with figure 8.

Figure 16: Figure 4 from Kubo et al. Please see there for more information, compare with figure 7.
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E.5. Alternative results
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Figure 17: Alternative to figure 8 with 1/2 overcompleteness and λ = 0.02.
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Figure 18: Alternative to figure 7 with 1/2 overcompleteness and λ = 0.02.
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E.6. Resulting weights

Depicted here are some of the weights that have been calculated by the LCA with an

overcompleteness of 2 and λ of 0.04. For more exemplary weights please refer to the

supplementary disk.

Figure 19: Examples showing monocular small localized optic flow components. These
components are thought to be specialized for objects in the world, moving in-
dependently from the fish, though some larger vectors randomly occur outside
the patches.

X



Supplementary figures

Figure 20: Optic flow component that could be specific for translational movement. The
eyes of the fish are rotated nasalward, so this would be a component of a
forward translation of the fish. We believe these components occur as a result
of the simulation condition where top and bottom boundaries are flat. In an
entirely natural habitat the components may be localized to only one side of
the fish as here the existence of structures above and below the fish should not
be correlated.

Figure 21: Component that could be specific for an upward pitch rotation of the fish.
Again there are some vectors that do not quite fit the idealized optic flow
(right).
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Figure 22: Combination of local, unidirectional patches of vectors with unknown
specificity.

Figure 23: Typical example of a component that seems to be ill-formed.
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