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Abstract

Zebrafish (Danio rero) adjust the movement of their eyes and their body
responding to motion. Kubo et al. (2014) described neurons in their area
pretectalis, that are sensitive for translation and rotation directions and thus
could implement the necessary detection of ego-motion from optic flow. Char-
acteristic properties of those cells were recreated by Ecke et al. (2018) using
a sparse coding network on optic flow input generated from a virtual reality
simulation.
To examine, whether such sparse coding could be the basis for the ego-motion
detection, we calculated likelihood functions for the activation of the model
neurons and applied a maximum likelihood estimation. In this way, we ob-
tained estimates of the translation axis containing high variation and a sys-
tematic bias, but fairly reliable estimates of the rotation axis.
These results indicate, that the present model does not suffice to recreate
the process of ego-motion approximation in zebrafish. Yet there are positive
aspects, that are suited to motivate further research on this application of
sparse networks. Therefore, we provide starting points to improve the model
and further examine the potential of sparse representations for modelling
specific tasks like ego-motion detection.
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1. Introduction

1.1. Sparse coding

One of the most promising approaches to modelling properties of neuronal

processing are sparse coding networks. The basic principle of sparse codes is

that data items are represented by the activation of only a few elements at

one time in a large neural network.

What makes this approach so relevant to simulating neural processes, is that

sparseness, that is low activity rates, seems to be enforced in animal brains:

Froudarakis et al. (2014) could show that, in the visual cortex (V1) of mice,

natural movies cause sparser activities than artificially generated ones. The

selectivities of the neurons appear to be optimized to exploit statistical prop-

erties of natural data such as higher-order correlations: Realistic inputs, that

fulfill these properties, are represented more efficiently. Also they found, that

the sparsity of the representation predicted a better discriminability of the

movie scenes and thus created a computational advantage.

The enforcement of sparsity in cortical areas was also indicated by Baddeley

et al. (2001), who examined neuronal firing in the V1 of cats and the infe-

rior temporal area (IT) of maquaque monkeys. They found sparse firing-rate

distributions in both areas for realistic visual inputs and concluded, that the

neural codes are designed to maximize the carried information and at the

same time minimize the firing rate.

Inspired by the biological occurance of sparseness, artificial neural networks

have been implemented in several models in order to bring deeper under-

standing of its functions. A groundbreaking application was presented by

Olshausen & Field (1996): They designed a network to enforce just the two
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1. Introduction

principles information preservation and sparsity of activities, very similar to

what Baddeley et al. (2001) suggested for neurons. This model sufficed to let

receptive fields, that fulfill all the important response properties of biological

neurons, emerge.

While these findings suggest the usage of sparse coding in classification sys-

tems, the higher computational costs do not necessarily pay off by enhancing

the performance. Rigamonti et al. (2011) found that the recognition rate of

their image classifying network was at least as good using a simple convo-

lutional layer as it was using a sparse layer. Yet sparse coding was useful in

learning the relevant features of an image and produced better filters than

handcrafting or randomization.

While sparse coding networks apparently do not guarantee an improved per-

formance, they provide other benefits that make them advantageous for neu-

ral representation and therefore relevant to models of neural processes. One

important aspect is their efficiency in terms of energy consumption. Baddeley

et al. (2001) proposed low firing rates as a restriction for the maximization of

carried information. The importance of this constraint is strongly supported

by Attwell & Laughlin (2001), who collected physiological data from the grey

matter in rodents, in order to size up the components of their energy demand.

Even for low firing rates of four spikes per second, action potentials cause 47%

of the overall consumption, accounting for a higher fraction than the rest-

ing potential and other maintenance costs. As this amount increases with

higher spike frequencies, firing rate broadly determines the overall demand.

Therefore distributed neural codes with low activity ratios (e.g. ≤ 15% of

the neurons active at the same time), are advantageous compared to codes

employing less neurons, but higher firing rates. As sparse coding matches this

description, it leads to less need for energy supply. Due to the high propor-

tion of overall energy consumption by the brain, reductions of this challenge

provide a vast benefit for animals in terms of survival.

A further advantage of sparse coding lies in their suitability for deriving sta-

tistical knowledge about the environment: for learning about probabilistic

dependencies, events have to be reliably counted. Gardner-Medwin & Bar-

low (2001) proved, that for this task high redundancy is needed. Precise
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1.2. Ego-motion detection from optic flow

counting requires much more neurons than just unambiguously representing

these events. Also the overlap between the elements active for different events

has to be small, which can be achieved by enforcing sparseness.

Based on these results, Barlow (2001) suggested sparse codes as the appropri-

ate form of representation to detect redundancy in natural sensory inputs and

to exploit its statistical implications. Furthermore, he argued that, in sparse

networks, the information carried by a single neuronal activity is more rele-

vant to related tasks and can be processed more efficiently.

Taking together these arguments and the advantage of sparseness in terms of

energy efficiency, the findings of sparse codes in animal brains appear com-

prehensible. Therefore, and because they have already been used successfully

for modelling neural properties, we decided to use a sparse coding approach

for the present model.

1.2. Ego-motion detection from optic flow

We will apply the sparse coding approach motivated above to the simulation

of ego-motion detection in zebrafish (Danio rerio) on the base of optic flow.

This task, that is knowing in which direction one moves at any time, is a

crucial skill for controlling position and posture while navigating a complex

environment. Animals have developed different ways to collect information

about their own motions, for example the vestibular system in most mam-

mals. In many of them, the direction of movement is inferred from the shifts

of the retinal image, called the optic flow (Nakayama, 1985).

For the computational solution of this task, several different models were

developed to approximate ego-motion using analytical solutions or numerical

optimization techniques (Raudies & Neumann, 2012). State-of-the-art mod-

els use unsupervised convolutional neural networks to estimate features such

as depth and camera motion (Zhou et al., 2017).

Still the question arises, how this task is carried out on a neuronal level in an-

imals nervous systems. In the case of bowflies, Krapp & Hengstenberg (1996)

examined receptive fields of tangential neurons and found that some of them
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1. Introduction

extract patterns caused by either translations in a particular direction or rota-

tions around a specific axis. Their receptive fields strongly resemble the optic

flow fields caused by those ego-motion components. It appears questionable,

whether a simple system like this could also be used in vertebrates.

1.3. Modelling ego-motion detection in zebrafish

To understand, and then model, the processes underlying ego-motion de-

tection in animals, the responses of the relevant neuronal populations have

to be examined in detail. This has been done for the larvae of zebrafish

(Danio rerio), that use the detection of ego-motion from optic flow to gener-

ate optokinetic and optomotor responses. i. e. reactions to motions by moving

eyes and body. The necessary processing seems to be performed in the area

pretectalis of the fish. Kubo et al. (2014) examined the activation patterns

of neurons in this area and found hierarchically organized, monocular and

binocular neurons that perform specific operations in order to discriminate

rotations and translations and to distinguish their direction. These neurons

were categorized into a number of response classes to give an overview of

their activation selectivities.

In order to model the response properties of the zebrafish pretectum, Ecke et

al. (2018) made use of a sparse coding network that developed several filters

extracting components of the optic flow. As the work treated in this paper is

a resumption of that study, their methods will be further discussed in section

II. Their results revealed that the features extracted by the networks kernels

strongly resemble the findings of Kubo et al. (2014). Thus they showed that

the ability of sparse coding to recreate neural properties also applies to the

processing of optic flow.

Since Ecke et al. (2018) found similar response types as Kubo et al. (2014), it

seems reasonable to assume their sparse coding network as a proper approach

to model zebrafishs ego-motion detection. As this method is designed to make

hidden correlations in the data explicit, it is likely to produce neurons that

extract optic flow components caused by specific translations and rotations.
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1.4. Overview of the approach

This kind of selectivities would provide a basis for the detection of the ego-

motion direction, i. e. of the current axes of translation and rotation. If we

could infer reliable estimates of these directions from the sparse representa-

tion, this would demonstrate that sparse coding is a promising approach not

only to recreate neuronal response properties, but also to solve specific tasks

using its representation of the input signal.

1.4. Overview of the approach

To answer the open question, whether sparse coding is the proper tool to

model ego-motion detection in zebrafish, we employed a modified version

of the sparse coding network used by Ecke et al. (2018) and evaluated the

response of the model neuron with respect to the ego-motion direction. To

obtain estimates of the direction, we then applied a maximum likelihood

method. This delivered the axes of translation and rotation that are most

likely to produce a given activity pattern.

This approach is biologically more plausible than others, as it reveals

parallels to the model proposed by Burge & Geisler (2014) for the estimation

of disparity in natural images. They created neurons representing Bayesian

likelihoods for different disparities and took the one with the highest

activation as an estimate. They could show, that this model only requires

operations that neurons can perform. They also proved its optimality, as it

increases selectivity to relevant and invariability to irrelevant aspects of the

stimuli.

The processing steps of our model are visualized in figure 1.1. Its basic steps

correspond to real-world counterparts: The virtual reality simulation is

designed to resemble a realistic surrounding of zebrafish and the images taken

during the simulated movements of the fish are projected on a schematic

model of its retina. The local optic flow vectors calculated from these images

parallel the retinal ganglion cells of zebrafish, which are selective for local

movement. According to Kubo et al. (2014), these cells are directly wired to

neurons of the area pretectalis (APT), which is modelled by the means of a
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1. Introduction

sparse coding network. However, we added a principal components analysis

as a preprocessing step to facilitate the sparse coding. The main steps we

added in the present study are, firstly, the computation likelihood functions

of the neural activities from the output of the sparse network, and, secondly,

the estimation of the translation and rotation axis of the ego-motion by

maximum likelihood estimation. By these means, we examine, whether

sparse coding can simulate the ego-motion detection from optic flow in

zebrafish in an effective way.

The details of the model and the results we obtained from our simulation

will be described in the following chapter.

6



1.4. Overview of the approach

Figure 1.1.: Overview of the model steps

For the steps coloured deep blue, we worked on data created by Ecke et al. (2018), as a recom-
putation would require high computational effort. For the sparse coding network, the data were
recomputed in a similar manner to their model, changing only details of the implementation. The
green steps were added by us to enhance performance and to generate the direction estimates.
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2. Methods and results

2.1. Experimental simulation and computation of optic

flow

Figure 2.1.: The fishs’ view on its virtual environment.

The two pictures show the images taken by the virtual cameras representing the left and the
right eye of the fish, after being projected onto the simulated retina and therefore distorted.

In order to generate realistic input data for their sparse coding model, Ecke et

al. (2018) simulated realistic images of the zebrafishs view on typical scenes.

For this purpose, they created a virtual reality simulation of a fish tank

containing objects like stones and plants as well as other fish and muddy

or clear water. The scenario was programmed using the 3D creation suite

Blender (release v2.76)1. The eyes of the fish were modelled by two cameras

that captured the scenes as shown in figure 2.1. The observer in the simulated

1https://www.blender.org/
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2. Methods and results

Figure 2.2.: Flowfield computed for a motion of the fish in the virtual reality.

The local motion computed from the input of the simulated retina is illustrated by vectors at
the locations of retinal ganglion cells. The colour corresponds to the orientation, the size to the
norm of the vectors. The images show the optic flow for the left and the right eye, with a dashed
red line indicating the overlap of the fields of view.

scene was placed randomly and moved by a random force composed of six

values for the three dimensions of rotation and translation, that were drawn

independently from a uniform distribution with zero mean. After the impulse

driven by the resulting force, the movement abates exponentially, while two

sequent camera shots of the scene are captured.

The zebrafish retina was modelled by a half-sphere covering 160 degrees of

view on which 256 points are equally distributed by a simple repellance algo-

rithm. The image was projected onto the points by stereographic projection

and sampling, resulting in inputs as displayed in figure 2.1.

Corresponding to the direction-tuned retinal ganglion cells of zebrafish, the

local optic flow between the two images was computed using the software

FlowNet 2.02 created by Ilg et al. (2017). It was represented by two signed

variables, one for up and down and one for left and right. The values resulting

from a movement can be depicted in a flow field as in figure 2.2 by combining

the two variables in one vector for every retinal ganglion cell.

2https://github.com/lmb-freiburg/flownet2
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2.2. Whitening

2.2. Whitening

In order to make the sparse coding algorithm more efficient, we preprocessed

the optic flow output before feeding it into the sparse coding network. One

up-down and one left-right value for each of the 256 simulated optic flow de-

tectors of each eye lead to data vectors of 2 · 2 · 256 elements. These raw data

contained correlated variables with differences in individual variance and a

high amount of noise. As this makes their proper representation a complex

task, we whitened them using a principal components analysis (PCA).

Like our further computations, unless specified differently, the whitening was

carried out in the statistics software MATLAB (release 2018a)3. The build-in

function pca contains a centering of the data, i. e. subtracting the means of

each variable from the values and thus bringing them to zero mean. Subse-

quently, the PCA is implemented by the means of a single value decomposi-

tion (SVD). Hyvärinen & Oja (2000) used the same method as preprocessing

for their independent component analysis algorithm, which has some paral-

lels to sparse coding approaches. The description of the SVD is inspired by

their publication.

As first step of the SVD whitening, the covariance matrix E(xxT ) for the in-

put data set x is computed and then decomposed into the orthogonal matrix

E containing the eigenvectors and the diagonal matrix D of the eigenvalues,

giving E(xxT ) = EDET . Finally, the data vectors are whitened by the linear

transformation

x̃ = ED−1/2ETx. (2.1)

It can be shown that then one has E(x̃x̃T ) = I, i.e. the variance of each vari-

able is 1 and the covariance between different variables is always 0. Hyvärinen

& Oja (2000) demonstrated that the further analysis of correlations by their

algorithm, or analogously by a sparse coding network, is substantially sim-

plified, as the number of parameters is reduced.

The complexity was further diminished by discarding components with low

eigenvalues, that is those that explain only a small amount of the overall

3https://de.mathworks.com/products/matlab.html
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2. Methods and results

Figure 2.3.: Amount of variance explained by the highest-ranked components.

variance. We found that a small subset of the components could account for

most of the variance, as signified by figure 2.3. As the 64 components ex-

plaining the highest amount of variance together accounted for 99.8% of the

overall variance, the remaining components were considered noise and dis-

carded from the representation. This did not only provide a more compact

representation, but also removed noise from the optic flow data.

In order to illustrate the components resulting from the PCA, we computed

the coefficients of the original flow variables for the calculation of each com-

ponent. These weights can be depicted in a similar way as the original flow

fields resulting from each movement. The illustrations for the six components

explaining the highest amount of variance are supplied in figure A.1. They

match very well with flow fields resulting from specific translations and ro-

tations and thus appear suited for efficiently describing our flow field data.

After the whitening had removed covariance between the variables, brought

the individual variances to the same level, removed noise factors and reduced

the number of variables, the data constituted proper input to be efficiently

processed by the sparse coding network.

12



2.3. Sparse coding network

2.3. Sparse coding network

2.3.1. Locally competitive algorithm

For the purpose of simulating the activities of pretectal neurons in zebrafish,

Ecke et al. (2018) compared the results of two theoretical approaches: a

sparse coding network for unsupervised learning and a backpropagation net-

work with three hidden layers for supervised learning. The second approach

thus contained estimates for ego-motion, while the sparse one did not. As

the distribution of response types in the sparse coding network fitted much

better with the ones found by Kubo et al. (2014), we decided to generate

estimates based on the activites of that network.

The sparse coding network is based on the locally competitive algorithm

(LCA) as proposed by Rozell et al. (2008), who modified the approach of Ol-

shausen & Field (1996). The original authors used it to model receptive field

properties of simple-cells in image processing and therefore assumed images,

i. e. patterns of pixels, as input for their formulation of the algorithm. How-

ever, the implementation in this model processes input patterns consisting of

the coefficients of the PCA components presented above.

The starting point for the LCA is the assumption, that any input pattern

I(x, y) can be represented by a linear superposition of basis functions φi(x, y):

I(x, y) =
∑
i

aiφi(x, y) (2.2)

The goal of the algorithm is to find such basis functions that lead to minimal

entropies of the coefficients ai for sets of natural input patterns, making the

statistical dependencies in the input explicit. The LCA enforces two princi-

ples: For one thing, maximizing the quality of reconstruction of the original

pattern, and for another thing maximizing the sparseness of its representa-

tion. The second principle implies minimizing the number of non-zero coeffi-

cients ai used for the reconstruction of the input by the basic functions.

13



2. Methods and results

To combine those goals, both of them are captured in the error function

E = −1

2
[preserve information ]− λ [sparseness of ai], (2.3)

that has to be minimized during the learning process. The factor λ, some-

times called sparsity, determines the balance between the two parts. The

reconstruction part is evaluated by the mean squared error between recon-

structed pattern and the input I(x, y):

[preserve information ] = −
∑
xy

[I(x, y)−
∑
i

aiφi(x, y)]2. (2.4)

The sparsity part of the error function is the sum of the coefficients after

modifying them through a cost function C(x):

[sparseness of ai] = −
∑
i

C(ai) (2.5)

Olshausen & Field (1996) choose the cost function with the aim to minimize

the `1-norm, i. e. the sum of the coefficient values. However, we deploy

Cλ(x) =
λ

2
H(x− λ) =

λ
2

for x > λ

0 else.
(2.6)

This is taken from the hard-thresholding LCA from Rozell et al. (2008) and

simplified under the assumption of positive ai. This cost function leads to

minimizing the `0-norm, i.e. the number of coefficients greater than zero.

Eventually we obtain the error function

E =
1

2

∑
xy

[I(x, y)−
∑
i

aiφi(x, y)]2 +
λ2

2

∑
i

H(ai − λ). (2.7)

In the network implementation of the algorithm, each basis function φi is

associated with a computational unit, called neuron. Each neuron has an

internal state ui, which is changed continuously until the network reaches an

14



2.3. Sparse coding network

equilibrium solving the differential equation

u̇i =
1

τ
[bi −

∑
j 6=i

Cijaj − ui], (2.8)

where τ controls, how fast the ui are adapted. This equation also contains the

principles mentioned above: the positive summand bi =
∑

x,y φi(x, y)I(x, y)

represents the fitting of the original pattern I and the basis function φi. In

order to maximize the quality of reconstruction, the contribution of those ba-

sis functions fitting the original pattern have to be raised. The first negative

summand −
∑

j Cijaj = −
∑

j[
∑

x,y φi(x, y)φj(x, y)]aj expresses in network

terms a lateral inhibition that guarantees for not employing several basis func-

tions for the same properties of the original pattern. The last summand −ui
gives the neuron the properties of a leaky integrator, i. e. it looses a certain

amount of its activation over time. By the interaction of these summands,

the adjustment of the inner states minimizes the error function: u̇i ∝ − δE
δai

The coefficients ai are derived from the inner state ui of the model neuron

similarly to the action potential in biological neurons: as soon as the inner

excitation exceeds a certain threshold, the coefficient is raised to a non-zero

value. This behaviour is defined by the thresholding function Tλ(x), which

is connected to the cost function C(x). In the case of the hard-thresholding

LCA, it is

ai = Tλ(ui) =
ui

1 + e−γ(ui−λ).
(2.9)

As this function is monotonically increasing, the ai are changed to minimize

the error function, because they follow the ui. For γ →∞, the chosen thresh-

olding function results in ai = 0 for ui < λ and ai = ui for ui > λ. Thus,

when an input pattern is presented, the rise of the ui is faster for those φi

that match better with the input. Therefore, they are the first to reach the

threshold and cause non-zero coefficients ai and subsequently start to inhibit

units with similar basis functions. This mechanism is what Rozell et al. (2008)

call local competition.

Once the activations have reached the equilibrium state, the reconstruction

Î(x, y) =
∑

i aiφi(x, y) build by them is used to adjust the basis functions φi.

15



2. Methods and results

This is implemented by the learning rule

∆φi(x, y) = η · ai[I(x, y)− Î(x, y)]. (2.10)

This means that every basis function φi is changed by the difference between

reconstruction and original pattern, and in proportion to the learning rate η

and to its contribution to the reconstruction manifested in the coefficient ai.

Thus, those basis functions that are most similar to the input, adapt to it

and thereby reduce aspects that are represented incomplete by the φi.

By means of this procedure, basis functions are learned that enable a sound,

but sparse representation of the original optic flow component patterns.

2.3.2. Network implementation

The locally competitive algorithm, with the goal to build a sparse represen-

tation of the optic flow stimuli, was carried out by a modification of the

artificial neural network build by Ecke et al. (2018) in the neural simulation

toolbox Petavision4, that was developed by Schultz et al. (2014).

In order to represent the input, the basis functions, their coefficients and the

equations of the algorithm, the network is constructed of several layers and

their connections, as depicted in figure 2.4. The inner states ui are repre-

sented as the activations of the elements of the simulated pretectum, which

in petavision is called the V1 layer. The basis functions φi are represented as

weights between the V1 layer and the error layer. There is a separate weight

stored for the connection between each V1 neuron and each neuron of the

error layer in order to obtain receptive fields capturing the whole binocular

field of view.

The input data were the 64 optic flow components delivered by the principal

components analysis for each of the 77076 motion fields. We tested networks

with different numbers of simulated pretectal neurons: One dataset was cre-

ated using 512 elements, giving an overcompleteness level of 0.5, i.e. the

number of neurons is 0.5 times the number of explained variables, here the

4http://petavision.github.io
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2.3. Sparse coding network

Figure 2.4.: Components and processes of the sparse coding layer

Illustration of the components of the sparse coding network and the processes carried out on
each input. When an input pattern is given to the network, first it is copied into the error layer
(step 1). In step 2 the activations of V1 are calculated using the basis functions stored in the
weight matrix, until they reach the equilibrium from equation (2.8). After the V1 activations
are stable, the coefficients derived form them are used together with the stored basis functions
to build a reconstruction Î of the original pattern (step 3). This reconstruction is afterwards
subtracted from the activations of the error layer, with the remaining values representing the
difference between original and reconstructed pattern (step 4). In a last step (step 5) this error
pattern is used to modify the stored basis functions according to learning rule of the locally
competitive algorithm (2.10).

2 · 2 · 256 up-down and left-right components of the optic flow data points of

both eyes. The other run was carried out with 4096 neurons, resulting in an

overcompleteness of 4.0 and thus enabling more redundant representations.

In the further steps of evaluation we will compare the results of these different

settings and thereby analyze, whether additional redundancy offers a benefit

to the representation.

By the computational steps depicted in figure 2.4 that are carried out for

several presentations of the principal component representations of all the

motion fields in the dataset, the basis functions adapt to the structures of

the input and form a sparse code for it. Their properties and their use for com-

puting an estimate of translation direction and rotation axis will be treated

in the following chapters.
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2. Methods and results

(a) The averagely most active neuron shows a typical receptive field: it is
binocular, almost global, for each eye quasi unidirectional and there
is no obvious coherence between the directions for the two eyes.

(b) The neuron in sixth rank of the most active kernels reveals an monoc-
ular, almost global, unidirectional pattern. These kind of flowfields
appear about once in ten neurons.

(c) Neuron number eight exhibits a binocular, global, and across both
eyes monodirectional flow field. This kind of patterns also makes
roughly one-tenth of the dataset.
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2.3. Sparse coding network

(d) A binocular flow field, with a mostly unidirectional pattern for the
left eye and a spiral one for the right eye. Patterns like this one from
the neuron ranked twelfth appear occasionally in the dataset.

(e) Some of the flowfields show smaller areas of high sensitivity, like these
fields from the neuron in rank 60 according to mean activity.

Figure 2.5.: Typical optimal flowfields of model neurons

Flowfields of five of the most active model neurons for overcompleteness level 4.0, demonstrating
properties generally common across the whole population. The amount, to which the retinal
ganglion cells contribute to the activation of the particular neuron, is illustrated by the size
of the vector in the respective location, while its orientation and colour represent the locally
preferred direction. The fields are drawn for the left and the right eye, with dotched red lines
indicating the overlap of the fields of view.
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2. Methods and results

2.4. Receptive fields

The response characteristics of biological neurons are usually described by

specifying their receptive fields, i.e. the subset of the sensory space, for which

the neuron shows a response by firing stronger. We can also examine this

for the simulated APT neurons of our model, where the stimulus, that would

cause a maximum activation in the neuron, is defined by values of the 2·2·256

optic flow variables corresponding to the simulated retinal ganglion cells of

both eyes.

They can be represented by a field of flow vectors, taking together the up-

down and left-right component and placing a two-dimensional vector at the

position of the respective motion detector, resulting in a motion field as de-

picted in figure 2.5.

The basis for computing these motion fields are the weights from the pre-

tectum layer to the error layer, which form the representation of the basis

functions of the locally competitive algorithm. Rozell et al. (2008) showed

that these weights can be interpreted as receptive fields of the sparse layer

neurons.

As we did not perform the sparse coding algorithm directly on the optic flow

data, but performed a principal component analysis before, we only obtained

the influencing principal components from the weight matrix. We therefore

reversed the scaling and converted them back into the original variables,

which can be done easily as all the operations performed on the data were

linear transformations.

Among the receptive fields obtained by this procedure there are quite differ-

ent forms, but some tendencies are noticeable. Five typical examples for the

flowfields generated with overcompleteness ratio 4.0 are shown in figure 2.5.

Some of the neurons only react to signals derived from one eye, but most

of them are binocular, sometimes showing similar patterns on both eyes, yet

largely without any obvious relation between the patterns of left and right

eye. The flow fields were mostly unidirectional, while a few contained circu-

lar or helical patterns around a center. They usually spanned broad parts

of the visual field, more local ones formed exceptions. The observations for
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2.5. Ego-motion estimation

overcompleteness 0.5 are generally similar, but contain more monocular pat-

terns, yet not as many as binocular ones.

The flow fields of the artificial neurons broadly resemble the actual flow fields

derived from the simulation. This fact demonstrates that the basis functions

adapt to the input data. To examine, if this adaptation leads to a code suited

for inferring the direction of translation and rotation from the activation of

the neurons, we applied the maximum likelihood method discussed in the

chapters below.

2.5. Ego-motion estimation

2.5.1. Likelihood functions for kernel activities

After our network implementation of the locally competitive algorithm re-

sulted in a sparse activity code for the optic flow, the directions of transla-

tion and rotation were estimated just from the activity pattern of the sparse

layer. This was done by a maximum likelihood method, with the probabili-

ties calculated by the naive Bayesian rule. As described below, the respective

direction of translation and rotation, that is most likely to account for the

given activity pattern, is derived from the likelihood of every kernel to be

active if the fish is moved in a particular direction.

Thus the estimation requires a likelihood function for every neurons activity,

i. e. the likelihood of neuron xi to be active given the direction ωk. This is

derived from the relative frequency of the activation of the neuron for the

movements in each direction:

p(xi|ωk) =
h(xi ∧ ωk)
h(ωk)

(2.11)

Under this approach, the magnitude of activation, that is the value of ai

in the locally competitive algorithm, is ignored. The only matter is, if ai is

zero or greater than that. The goal is to simplify the computation of the

probabilities.
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2. Methods and results

Figure 2.6.: Points selected as centres for binning

The centres of the 75 bins on the unit sphere, plotted in the 3D space (top) and in a Robinson
projection on a 2D plain. While the origin of the projection represents axes pointing forward,
positive x indicates axes going to the left, the horizontal borders show those going backwards,
and positive y specify upwards axes pointing. This projection, usually applied to global maps,
was used to illustrate several properties of the spherical data.
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2.5. Ego-motion estimation

In order to obtain the relative frequencies, the data had to be split in dis-

tinct directions xi, for which the neural activities could be counted. As the

dimensions of translation and rotation had been drawn from continuous dis-

tributions, there were no such discrete categories. Therefore, the data were

binned in groups of similar direction.

A simple repellence algorithm generated 75 points evenly spread on the sur-

face of the unit ball, which was necessary in order to form groups occupying

equal amounts of all possible directions. The result was the set of points

shown in figure 2.6, that constituted the centres of the bins.

Afterwards, we computed the axes of translation and rotation from the po-

sition data of each motion in our Blender simulation. We then assigned the

translational and rotational component of the motion independently to the

group of that centre point, which was located closest to the unit vector of

the respective axis.

Since in the simulation of the motion sequences the values for the six dimen-

sions of translation and rotation were drawn independently from uniform

distributions, the overall distribution of translation and rotation was a cube,

not a sphere. This lead to a higher amount of translations and rotations with

axes in the direction of the edges of the unit cubes. As a result, the bins that

were located there contained more data, as shown in figure 2.7.

With the translations and rotations assigned to 75 distinct groups, one trans-

lation and one rotation likelihood function for each neuron were computed

according to equation (2.11). These functions can be visualized as spherical

heatmaps, like in figure 2.8.

For the run with overcompleteness level 4.0, the heatmaps for the likelihood

function of rotations usually possess one clear local region of high activity,

but rarely two or more, including about one to five of the 75 bins for which

the neuron is active clearly more often than for the rest. By contrast, the

translation fields rather contain two to five such regions that stand out less

clearly, and only infrequently a more clear pattern with just one.

This difference also became visible, when we took the value of the most likely

direction for each kernel and calculated the mean across all directions: For
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2. Methods and results

Figure 2.7.: Distribution of the directions of translation (top) and rotation axes (bottom)
within the input data.

The plots were created by interpolating between the centres of the bins on the unit sphere and
projecting onto a plain as mentioned in figure 2.6. The colour represents the absolute number of
input data per bin.
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2.5. Ego-motion estimation

Figure 2.8.: Typical selectivity heatmap of a model neuron for translation (up) and
rotation plus flowfield for left and right eye for comparison

From the results of overcompleteness 4.0. The colour represents the interpolated relative fre-
quency of activation for the inputs assigned to each bin. Being ranked eighth in average activity,
this neuron is selective for rotations around axes pointing forward and shows weaker translations
going forward, slightly to the right and upwards. The directions of high selectivity broadly match
the patterns in the flowfields: the right eye field is a cyclic pattern as from a rotation forward
and to the right, which would also match the downward pattern for the left eye. This also fits to
downwards translations, while the stronger part of the right eye pattern is directed to the left,
matching with translations to the right.
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2. Methods and results

Figure 2.9.: Typical selectivity heatmap of a model neuron from the network with over-
comleteness 0.5 plus flowfield for left and right eye for comparison

The selectivity is illustrated in the same way as in 2.8. This neuron (rank 6 in overall activity) is
selective for rotations around axes pointing forward, downwards ans slightly to the right. There
is also quite weak selectivity for translations to the left. The motion vectors for the right eye go
down and to the left, those for the right one up and to the left. This matches a rotation axis
pointing forward and downwards. However, translations to the left, as indicated in the tuning
map, do do not fit this pattern.
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2.5. Ego-motion estimation

translation, the result was .0100, for rotation .0176, while the overall mean

for all directions and kernels was .0028 for both categories.

For overcompleteness 0.5, similar data were obtained. One difference was

found in the generally larger regions of high activation frequencies, as visible

in the example in figure 2.8. Looking at the numbers, the general average

frequency is higher (.0116 for both translation and rotation), while the peaks

differ somewhat less from the rest: The average of the maximum relative

frequency per kernel is .0292 for translation and 0.0557 for rotation.

2.5.2. Maximum likelihood estimates

The likelihoods for a kernel to be active given an axis of translation, re-

spectively rotation, that we had derived from relative frequencies, formed

the basis for the estimation of the direction from an activity pattern of the

sparse layer. We used maximum likelihood estimates based on the naive Bayes

rule, which is according to Duda et al. (2001):

p(ωk|x) ∝
d∏
i=1

p(xi|ωk) (2.12)

This is derived from Bayes’ theorem by taking the ’naive’ assumptions that

there are no statistical dependencies between different xi and that there are

no unequal prior probabilities p(ωk). Despite its simplifying assumptions, that

may not hold for many applications, naive Bayes classifiers have been proven

to be a suitable instrument for classification tasks.

Applying the naive Bayes rule to the likelihood functions of the kernels means

that the activities of different kernels are assumed as independent, which

seemed reasonable as in a sparse coding the network elements are chosen to

have minimal covariance. Due to the implementation of the choice of motion

direction, there technically are different prior probabilities for different direc-

tions, which are ignored here to simplify the model.

Under those assumptions, for obtaining maximum likelihood estimates, it was

enough to determine the direction ωk giving the maximal likelihood p(ωk|x)
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2. Methods and results

for an activity pattern x by comparing the proportional value
∏d

i=1 p(xi|ωk),
that was easily obtained from the likelihood functions of the kernel. More

precise, we calculated the estimator

ω̂ = argmaxωk
p̂(ωk|x)

= argmaxωk
[
∏

Xiactive

p(xi|ωk) ·
∏

Xiinactive

(1− p(xi|ωk))] (2.13)

taking in account both the likelihoods of active and inactive kernels. This

was done separately for the translational and rotational component of a given

activity pattern x, independently obtaining estimates of translation and ro-

tation axis.

2.6. Estimate evaluation

In order to analyze the estimation model, we needed a large test set to ob-

serve the activity of the kernels for all directions and compute the likelihoods

needed for the naive Bayesian classifier, but also a large validation set for

applying the maximum likelihood method and thus examining the precision

and accuracy of the resulting estimates. Since the creation of the dataset

of flow fields used by Ecke et al. (2018) took a waste computational effort,

we decided to apply the common method of leave-one-out cross-validation

to efficiently exploit the existing data. Under this approach, the likelihoods

were recalculated for the estimation of each motion event from the relative

frequencies in the remaining set of all events except for the one being esti-

mated.

The estimates we obtained after those computational steps were the direc-

tions of the translation axes, respectively rotation axes of the fish’s ego-

motion. As these axes could point in any direction in the three-dimensional

space, while their length was neglected, we represented them as unit vectors

or equivalently as points on the unit sphere. Thus, for the evaluation of the

estimates, we made use of spherical statistics.

To examine the precision of the estimates, we computed the mean vector of
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2.6. Estimate evaluation

the estimate vectors ω̂ relative to the respective axis of actual rotation or

translation ω. For this, we first rotated each estimate ω̂ around the cross

product ω ×
(

1
0
0

)
by the angle between ω and the x-axis. That is the sphere

rotation aligning ω with the x axis with the minimal angle. This step enables

us to evaluate all estimates across the different original axes of translation

and rotation, by comparing their direction with respect to the x-axis as an

equivalent of the direction of the estimates ω̂ with respect to the particular

original direction ω.

In the next step, we took the sample mean vector x̄ of all rotated estimate

vectors xi = ω̂i
∗ for the whole dataset:

x̄ =
1

n

n∑
i=1

xi = R · x̄0 (2.14)

The polar representation of x̄ consists of the mean direction of the sample x̄0

and the mean resultant length R ∈[0,1], a measure of precision, where zero

indicates a uniform distribution spanning the sphere, whereas one indicates

that all vectors are equal. According to Mardia & Jupp (2000), the total

variation 1 − R2
is an appropriate analogue of the sample variance. Due to

the rotations performed on the estimate vectors, the mean direction here is

no appropriate measure of accuracy. Therefore, we will rather discuss the

biases separately for the estimation of motions out of each bin.

As additional measures we determined the mean of the angles between the

estimates and the actual directions to demonstrate the average discrepancy.

It was computed by

ᾱ =

∑n
i=1 αi
n

=

∑n
i=1 atan2(||ωi × ω̂i||, ωi · ω̂i)

n
, (2.15)

where n denotes the number of estimates. Further we calculated the amount

of correct classifications with respect to the bins, hits. Table 2.1 shows the

mentioned values for different configurations of the model. Additionally, the

distributions of the angles αi are supplied in A.2.

For the contextualization of the obtained measures, we should not neglect,
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2. Methods and results

Translation Rotation

Overcompl. hits ᾱ R 1−R2
hits ᾱ R 1−R2

0.5 .057 66.0◦ .290 .916 .219 30.5◦ .804 .354
4.0 .047 69.7◦ .340 .884 .221 30.4◦ .804 .354

Table 2.1.: Measures for the precision of the estimates depending on the models over-
completeness. For translation and rotation estimates, the table includes the
amount of correct classifications, the mean angle of discrepancy, the mean
resultant length and the total variation relative to the axes of the original
motions.

that the model could impossibly deliver perfect estimations, as it could only

choose one of the 75 bins and not the exact direction of the motion. Under

this constraint, an optimal performance would be achieved, if the model al-

ways chose the centre point of that bin, to which that motion is assigned

when it is part of the test set. This would lead to Ropt = 0.986, for both

rotation and translation.

All the measures of estimate precision provided in 2.1 show a notable dif-

ference between translation and rotation: they indicate a higher precision of

the rotation estimates compared to the translation estimates. As a result,

the total variance is higher for rotation. For translation, the mean resultant

length is closer to the value for the uniform distribution than to the value for

translation. Examples for the distributions of the estimates are illustrated in

figure 2.10.

In the measures from table 2.1, the difference between the runs with over-

completeness ratio 0.5 and 4.0 is small for translation estimates and almost

non-existent for rotation. Since the conditions do also not show notable dif-

ferences in the further examinations, we only describe the results for over-

completeness 4.0, as the precision is slightly higher for translation estimates.

Therefore, figures 2.10 to 2.14 display values for that condition.
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2.6. Estimate evaluation

Figure 2.10.: Example for displacement of translation (top) and rotation estimates

Blue circles represent the relative direction 100 randomly chosen estimates, after being rotated
so as to align the input motion axes with the origin. They are projected to 2d like the points in
figure 2.6.
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One correlation, that we investigated, was a possible link between the pre-

cision of the estimates and the intensity of translation and rotation. The

relation between R̄ and both translation distance and rotation angle is illus-

trated in figure 2.11. For rotation, a clear pattern can be seen: The larger

the rotation angle and the smaller the translation distance, the higher the

precision of estimates. For translation it is the opposite, although the pattern

is more noisy.

Further we examined, whether there was a connection between the precision

and the direction of the motion. Thus we grouped the motions again by the

bin they were assigned to when the test set was formed, and computed the

mean resultant length separately for each bin. The result is illustrated by

the heatmaps in figure 2.12. It shows, that the differences between the direc-

tion are higher for translation than for rotation, and that they occur more

systematically: Estimates for forward and backward translations are very

noisy, while they are more precise for the other directions, but still not as

precise as the rotation estimates. For the latter, the differences are not as

striking and resemble the distribution of rotation axes shown in figure 2.7.

While the previous results described the precision of our estimates, we also

tested our model for systematic biases. For this purpose, the estimates, again,

were grouped with respect to the bin they were assigned. Then the angle be-

tween the mean direction x̄0 of that sample and the center of the bin was

calculated. This resulted in the heatmap depicted in figure 2.13, indicating

the absolute size of the systematic bias. To also illustrate the direction of the

bias, arrows from the bin center towards the mean direction were added.

It turns out that, in general, the bias for translation is vastly higher, and

also more systematic, than for rotation: estimates of translations forward

and somewhat to the right are biased downwards, just like those backwards

and somewhat to the left. For motions forwards and slightly to the left or

backwards and slightly to the right, it is the opposite effect.

This leads to an overall higher amount of estimates pointing to the right and

up, to the left and up, to the right down and to the left and down, whereas

less estimates point directly forward or backward. The distribution of all es-

timates is depicted in figure 2.14.
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2.6. Estimate evaluation

While the density pattern for translation estimates can be related to the bias,

the rotation pattern broadly resembles the distribution of input directions as

seen in figure 2.7. However, there is one bin, directed forward and downwards,

that contains a vastly higher amount of estimates.
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2. Methods and results

(a) Translation estimates

(b) Rotation estimates

Figure 2.11.: Mean resultant length depending on both translation distance (in m) and
rotation angle (given in rad)
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2.6. Estimate evaluation

Figure 2.12.: Mean resultant length per bin of translation (top) and rotation

Colour represents the mean resultant length R̄ for the motions assigned to each bin. The data
are interpolated and projected as described in 2.6.
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Figure 2.13.: Bias angle and direction per bin for translation (up) and rotation

The color represents the angle (in degree) between the mean direction and the bin center. The
arrows start at the center and are directed towards the mean direction. However, the arrowhead
is not located at the mean direction, since the arrows were resized in proportion to the size of
the bias, in order to make them more discernible and comparable across the map.
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Figure 2.14.: Density of estimates for translation (up) and rotation

The colour represents the amount (in percent) of estimates assigned to each bin.
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3. Discussion

3.1. Summary of the procedure

Perceiving the position and motion of their own body is a crucial skill for

animals, as it enables them to navigate their surroundings and to react prop-

erly to positional changes. For example, zebrafish adjust the movements of

their eyes and their body when they detect that they are moved. Kubo et

al. (2014) found neurons selective for specific translations and rotations in

the pretectum of the fish. Ecke et al. (2018) could reproduce response prop-

erties of these neurons by building a sparse coding model of these neurons

and training it in an unsupervised fashion, with input from a virtual real-

ity simulation of a realistic environment. Their findings suggest that sparse

coding models can be a proper tool to simulate the ego-motion detection in

zebrafish.

As the model did not provide estimates of the ego-motion direction, it re-

mained open, whether the sparse coding representation is suitable for this

specific task. Therefore, we decided to extend the model by a maximum likeli-

hood estimation based on activity patterns of the sparse layer. The likelihoods

were computed by evaluating the response characteristics of the individual

neurons and applying the naive Bayesian classifier. Afterwards, we examined

the accuracy and precision of the outcomes as well as possible relations to

the amount of the translation and rotation component and to the direction

of motion. In the following sections, we will provide interpretations of the ob-

tained results, take them as a basis for discussing the approach and, finally,

illustrate possible impovements of our model.
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3.2. Interpretation of the results

In reflection of the results of the analysis, the model delivers fairly reliable

estimates of the rotation direction, and hardly reliable estimates of the trans-

lation direction. This indicates, that the sparse coding brings out hidden

statistical structure of the input, i. e. components of the optic flow caused

by specific translations and rotations. Yet, especially for translations, these

properties are not clear enough. The tuning maps of almost all the model

neurons show selectivity for certain motion directions, but it appears as if

the patterns have to be more clear to provide a basis for reliable estimates.

Possible reasons and implications of this performance will be discussed in the

following sections, after we provided interpretations for our further findings.

A salient aspect of the results is, that there is much less variance in the ro-

tation estimates than for translation. This matches with the observation of

more concentrated regions of high activity in the selectivity heatmaps of the

neurons for rotation. A possible explanation for this difference can be found in

the properties of flowfields resulting from combined rotation and translation,

like all flowfields of our dataset: the rotational component tends to over-

shadow the translational component, as rotations cause large flow vectors in

the whole field of view, while for translations, it depends on the surrounding,

since distant objects cause amost no flow vectors. Thus the rotation fields are

constant for constant axis and angle, while the translation fields also depend

on the position of other objects, making it more difficult for the neurons to

adapt to patterns caused by specific translation axes and thus causing more

noise in the estimation.

The overall precision and accuracy of the estimates depended scarcely on the

number of neurons in the sparse layer. This also applied to the difference be-

tween translation and rotation and the dependence on direction or intensity

of translation and rotation. Apparently, the redundancy of representation,

that was added by the increased population, was not exploited in a way, that

would lead to a more suited representation of the data.
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Looking closer at the estimates, we found an effect of the ratio of translation

and rotation: The higher the amount of the rotation compared to the trans-

lation, the more precise were the rotation estimates, and the more scattered

the translation estimates. This is not surprising, as the influence of the rota-

tional pattern on the representation is higher and, thus, it can be recognized

easier.

Looking at the relation between motion direction and estimate precision, we

found a clear pattern: more variance in estimates of forward and backward

translations, as well as more precision for the remaining directions. This is a

rather odd result, as one might expect forward and backward motion to be

recognized better, since they cause large flow vectors on both the left and the

right side of the field of view, presumably facilitating their discrimination.

By contrast, for movements e. g. to the left, only the large flow vectors in

the middle of the field of view can be seen, while the other large vectors are

behind the head of the fish.

The root of this unexpected effect seems to be, that estimates of forward and

backward translations are biased up or down, leading to certain regions of

high density of estimates. The exact reason for this phenomenon is uncer-

tain, as well as the cause for the bias towards one specific bin for the rotation

estimates.

3.3. Pros and cons of the approach

On the basis of these findings and their explanations, the success of the

present approach can be evaluated with respect to its goal: with the present

model, we aimed to provide an explanation for the neural processing behind

the ability of zebrafish to discern specific translations and rotations. The

mentioned results give an ambivalent answer to the question, whether the

approach is suited for the task of estimating ego-motion direction.

One point, that clearly speaks against the approach, are the unsatisfactory

outcomes: especially the translation axis estimates produced by our model

contained a systematic bias and too much variation to allow reliable reactions
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to positional changes. This implies, that under our approach either the model

neurons do not develop selectivities clear enough for generating precise trans-

lation estimates, or that these selectivities have to be statistically evaluated

by more suitable methods. The model definitely has to be improved to give

outcomes suited for the challenges of the environment of the fish. If coming

efforts to address this problem will not succeed, a different approach may be

needed to understand the coding used by the fish to detect ego-motion and

to react properly.

Another point, that argues against sparse coding as a proper description of

the representations in the zebrafish pretectum is the difference in the num-

ber of neurons: While we employed respectively 1024 and 4096 kernels in

the sparse coding layer, Kubo et al. (2014) only found approximately 600

cells per fish with selective activity for ego-motion. Thus, at least the more

typical, highly overcomplete network has to be considered unrealistic. The

contrast in neuron numbers may be due to filtering of relevant information

in earlier visual processing steps in the zebrafish brain, while in our model a

complete representation of the optic flow input is established by the sparse

coding layer. The non-overcomplete network produced estimates that were

not much worse, but to examine the performance of a sparse network with a

more realistic number of kernels can be a starting point for coming studies.

However, with the larger amount of neurons, our model is unlikely to exactly

recreate response characteristics of the zebrafish pretectal neurons.

But there are also good reasons to believe, that the sparse coding approach is

suited for simulating the ego-motion detection in zebrafish. Our model pro-

duced quite reliable estimates for the axis of rotation, being even close to the

optimum for large rotation angles and small translations. This shows, that

the sparse coding network extracts statistical properties of the input data in

a way that is suited for solving specific tasks. This positive part of the results

is in a row with various successful approaches of modelling properties of bi-

ological neurons under the use of sparsity, like the outcomes of the original

algorithm presented by Olshausen & Field (1996).

There is another aspect of the sparse representations that suggests that they

are a proper simulation of the neural processes of the fish: The properties
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of the receptive fields seem realistic for neurons concerned with ego-motion

detection: They partly resemble the fields Krapp & Hengstenberg (1996)

found for interneurons in the bowfly, which also are global and which are be-

lieved to extract rotatory and translatory flow components. This similarity

suggests, that the mechanisms underlying the creation of receptive fields in

animals are related to the principles our model is based on. This conjecture

is supported by several findings of sparse coding in the optical tracts of the

brains of different animals (Baddeley et al., 2001; Froudarakis et al., 2014).

Furthermore, the reason for the occurence of sparse representations in ani-

mal brains appears not necessarily to be an advantage in classification per-

formance. They appear to have more benefits, as they are suited for deriving

probabilities of events (Gardner-Medwin & Barlow, 2001), therefore support

knowledge about statistical properties of the environment (Barlow, 2001),

and also are efficient in terms of energy (Attwell & Laughlin, 2001). These

advantages suggest, that sparse coding could be the best form of represen-

tation in the animal brain even for tasks, where it does not lead to optimal

performance.

3.4. Flaws and starting points

The positive aspects in the results and the general suitability of sparsity for

neural representations encourage us to think about changes to our model,

that could lead to more useful estimates of the motion direction. That is why

in this section, we will reconsider so some questionable aspects of the model

and suggest possible improvements for future approaches.

One of these aspects is, that for training the network, the input is always re-

sulting from a combination of rotation and translation. A downside of these

joint motion inputs, that became apparent in the effect of the translation-

rotation ratio on estimate precision, is the overshadowing of translation com-

ponents by the rotation fields. This could be fixed by the introduction of such

a threshold, that leads to filtering of those input data for the computation of

the rotational likelihood functions, for which the rotational component pre-
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dominates, and analogously for translation. This constraint could enhance

the accuracy of the likelihood functions and, thus, lead to more reliable es-

timates. As an alternative solution, one might consider the presentation of

purely translative motion fields to facilitate the development of translation

selectivities.

Yet in the case of training joint motion fields, the likelihoods, rotation and

translation are evaluated separately, and later also estimated separately. It

is conceivable, that a model trained only on combined motions might also

be better suited to detect such a combination. Implementing this in the ap-

proach as it is presented here, however, would require separate likelihoods

for each combination of rotation and translation bin and, therefore, need a

larger dataset.

Flowfield data for a greater set of motions would anyway be useful as it would

enable the employment of separate records for network training and estima-

tion. The cross-validation guaranteed, that an activity pattern is not used to

generate the estimate for the same movement, but all of this data was also

used before for training the sparse coding layer, which prevents an optimal

independence of the different steps. As generating the input data from the

virtual reality simulation requires vast efforts, we decided to work with the

existing dataset, created by Ecke et al. (2018), for the present project. How-

ever, it would be sensible to create a new set in order to improve the validity

of future research.

Calculating a new set of flowfields would also bring the opportunity to re-

move one flaw in the existing dataset, that is the non-uniform distribution of

the movement axes across the unit sphere that is displayed in figure 2.7. By

applying an appropriate algorithm such as the ones described by Marsaglia

(1972), random samples of a uniform distribution across the unit sphere are

easily obtained.

But instead of using a uniform distribution of ego-motion directions, coming

approaches could also consider modelling a distribution that fits better the

actual stimuli in the environment of zebrafish. It is plausible to assume, for

example, that fish turn their bodies more often around vertical axes than

around horizontal ones. As sparse coding highly adapts to the properties of

44



3.4. Flaws and starting points

the input, implementation of such constraints would very likely lead to more

realistic response characteristics of the kernels.

Another parameter, that was restricted by the limited dataset, was the num-

ber of bins. The binning itself brings difficulties for the statistical evaluation

of the estimates, but is necessary for the maximum likelihood method we

applied here. With smaller bins, we would expect the estimates to be more

precise, as the selectivities of the kernels could be captured in greater detail

and also the estimation model could choose between more possible directions.

We did not run the model with more than 75 bins due to the tradeoff against

the number of data for each bin, which is also important for the reliability

of the calculated likelihood functions: In our study, at least 537 activity pat-

terns were assigned to one bin. Due to the low activation ratio of the sparse

layer, it would be hard to infer informative probabilities from distinctly less

data. If future projects work with larger databases, this would be a simple

way to enhance the precision of the estimates.

One of the simplifications we used in our model was that, for the computation

of the likelihood functions, we only considered, whether a neuron was active

or not for a particular motion event, but not the magnitude of its activity.

Yet, there might be more information in the differences in magnitude, which

could be exploited by a proper statistical model. One approach would be to

discriminate different events for a particular neuron, depending on the mag-

nitude of activation, and computing different likelihood functions for these.

Implementing the necessary modifications to our model was out of the scope

of the present work, but might be another promising possibility for enhancing

the results of this approach.
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3.5. Conclusion

Considering the analysis of the estimates of ego-motion direction provided

by our sparse coding approach, the current model is not capable of reliably

detecting translation and rotation axis at the same time. Still, we conclude

that the presented approach constitutes a promising attempt to simulate the

neural processes underlying ego-motion detection in zebrafish. It did not only,

as shown by Ecke et al. (2018), reproduce the response properties of pretectal

neurons, found by Kubo et al. (2014), but also led to the emergence of model

neurons showing selectivities for particular motion directions. Moreover, the

rotation estimates inferred from the resulting representation were fairly accu-

rate. These positive outcomes might encourage further research on the use of

sparse coding in this context. There are several aspects of the present model

that might be improved in future studies with the aim to show, whether

sparse coding can provide the basis for ego-motion detection in zebrafish.
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(a)

(b)

(c)
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(d)

(e)

(f)

Figure A.1.: Flowfields of the six components explaining the highest amount of variance,
ordered by that amount

The coefficients, that define the contribution of each retinal ganglion cell to the component, are
illustrated by a vector in the respective location, with orientation and colour representing the
locally preferred direction, and the size showing the amount of contribution. The fields are drawn
for the left and the right eye, with dotched red lines indicating the overlap of the fields of view.
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Figure A.2.: Distributions of the angles between estimates and original motions

The distributions for the translation (upper left) and rotation estimates (upper right) and, to
compare, for a random distribution (down), angles in degrees.
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