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Summary

Process-based biogeochemical models consider increasingly the control of microorgan-
isms on biogeochemical processes. These models are used for a number of important
purposes, from small-scale (mm-cm) controls on pollutant turnover to impacts of global
climate change. A major challenge is to validate mechanistic descriptions of microbial
processes and predicted emergent system responses against experimental observations.
The validity of model assumptions for microbial activity in soil is often difficult to as-
sess due to the scarcity of experimental data. Therefore, most complex biogeochemical
models suffer from equifinality, i.e. many different model realizations lead to the same
system behavior. In order to minimize parameter equifinality and prediction uncertainty
in biogeochemical modeling, a key question is to determine what can and cannot be
inferred from available data. My thesis aimed at solving the problem of equifinality in
biogeochemical modeling. Thereby, I opted to test a novel mathematical framework that
allows to systematically tailor the complexity of biogeochemical models to the informa-
tion content of available data.

The conceptual part of this thesis investigates the problem of parameter inference by
nonlinear least squares regression analysis for five selected biogeochemical models of
different complexity from the literature. The inverse problem proved to be ill-posed for
all considered models, even if the calibration data was continuous and essentially noise-
less. I found that all models show sloppiness, i.e. model sensitivities against parameter
changes are evenly distributed over several orders of magnitude. Sloppiness has been
identified as a characteristic feature of multi-parameter models and effective theories
in systems biology and physics. Here, I discussed practical consequences of sloppiness
for biogeochemical modeling. Based on a geometric interpretation of nonlinear least
squares regression analysis, I demonstrated the impact of sloppiness on parameter esti-
mation, model simplification and model predictions for a minimal biogeochemical model.

As an alternative to complete model calibration, short-term substrate-induced heterotro-
phic respiration analysis is widely used to independently estimate selected biophysiologi-
cal parameters of biogeochemical models. I analyzed a typical model of microbial activity
in soil and found that the exponentially-increasing phase of heterotrophic respiration can
only be used to estimate the maximum specific growth rate and an effective parameter
which was defined by a non-linear combination of the initial total and active microbial
fraction as well as the true growth yield. The non-identifiability of parameters could be
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attributed to sloppiness. I showed that a geodesic-following algorithm that exploits the
sloppy structure of parameter space can be systematically used to better constrain param-
eters in heterotrophic respiration analysis.

The most complex biogeochemical model analyzed in this thesis describes pesticide degra-
dation coupled to carbon turnover in soil on the millimeter scale. Using methods from in-
formation geometry, I derived a less complex model formulation with effective inferable
parameters that reflects essential physicochemical and microbial controls on pesticide
degradation. The effective model represents a characteristic realization out of a set of
equifinal models that show system behavior consistent with the experimental data used
for calibration. The effective inferable parameters remain expressed in terms of non-
linear parameter combinations of the original equifinal model. I demonstrated that the
information theoretic framework for model reduction can be used to reveal structural
limitations of biogeochemical process formulations. Both the full and reduced models
were not able to fully predict a validation data set with different boundary conditions,
indicating that the original process formulation for bacterial pesticide degradation has
to be revised. I showed that model complexity systematically decreases with decreasing
information content in the experimental data. It is mostly sufficient to describe the sys-
tem by linear effective degradation rates and equilibrium assumptions for the activity of
a subset of microbial functional types and carbon pools.

In contrast to the many parameters that define the underlying biogeochemical models,
the system response can often be described by a few phenomenological parameters. In-
stead of relying on a top-down modeling approach, I demonstrated that the complex
model for pesticide degradation coupled to carbon turnover can be renormalized into a
minimal model with only a few effective parameters that span the degrees of freedom
of a typical system response to a chemical press disturbance. The effective parameters
remain expressed in terms of their mechanistic origins and can be conceptually linked to
the dynamic stability and resistance of soils.

Overall, the results of my thesis have shown that (i) sloppiness hampers the estimation of
individual parameters of biogeochemical models, (ii) uncertainty in parameter estimates
and mechanistic process descriptions can be reduced by systematic model simplifications,
(iii) despite equifinality, it is possible to analyze the inherent small-scale complexity of
microbial processes and identify important regulation mechanisms in biogeochemical
systems.



Zusammenfassung

Prozessbasierte Modelle des Kohlenstoffumsatzes im Boden berücksichtigen zunehmend
direkt die Dynamik von mikrobiellen Gruppen und deren Auswirkung auf biogeochemi-
sche Prozesse. Der Einsatzbereich dieser Modelle reicht von kleinskaliger Modellierung
(mm-cm) von
Schadstoffumsätzen im Boden bis hin zu globalen Simulationen der Folgen des Klima-
wandels. Eine große Herausforderung ist es, mechanistische Beschreibungen mikrobiel-
ler Prozesse und das beobachtbare emergente Systemverhalten zu validieren. Besonders
schwierig ist die Validierung von Modellannahmen zur Aktivität einzelner mikrobieller
Gruppen im Boden, weil direkte Messungen fehlen. Die meisten komplexen biogeochemi-
schen Modelle zeigen Äquifinalität, d.h. viele unterschiedliche Parameterkombinationen
führen zu identischen Simulationen. Um die Parameter-Äquifinalität und die Vorhersa-
geunsicherheit biogeochemischer Modelle zu minimieren, ist es wichtig, den Informati-
onsgehalt verfügbarer Messdaten für die Modellparametrisierung zu quantifizieren. Ziel
meiner Dissertation war es, das Problem der Äquifinalität zu lösen und einen allgemein-
gültigen mathematischen Formalismus zu finden, in dessen Rahmen die Komplexität bio-
geochemischer Modelle systematisch an den Informationsgehalt verfügbarer Daten an-
gepasst werden kann.

Der konzeptionelle Teil dieser Dissertation behandelt das Problem der Parameterschät-
zung in der nichtlinearen Regressionsanalyse am Beispiel von fünf biogeochemischen
Modellen unterschiedlicher Komplexität. Das inverse Problem ist für diese Modelle so-
gar dann extrem schlecht gestellt, wenn Daten kontinuierlich und fast ohne Rauschen
gemessen werden. Alle untersuchten Modelle zeigen Sloppiness, d.h. sie weisen eine an-
nährend gleichmäßige Verteilung der Modelsensitivitäten gegenüber Parameteränderun-
gen über mehrere Größenordnungen auf. In der Systembiologie und der Physik wurde
Sloppiness als typisches Phänomen hoch parametrisierter Modelle und effektiver Theo-
rien identifiziert. Hier diskutiere ich die praktischen Auswirkungen von Sloppiness für
die Anwendung bei biogeochemischen Modellen. Anhand eines minimalen biogeoche-
mischen Modells stelle ich die Auswirkungen von Sloppiness auf Parameterschätzungen,
Modellvereinfachungen und -vorhersagen auf Basis einer geometrischen Interpretation
der Regressionsanalyse dar.

Als Alternative zur Kalibrierung vollständiger Modelle wird die sogenannte kurzzeitige
Substrat-induzierte heterotrophe Respirationsanalyse eingesetzt, um einzelne biophysio-
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logische Parameter biogeochemischer Modelle zu schätzen. Die Analyse eines typischen
Modells der mikrobiellen Aktivität im Boden zeigte: Messungen der Bodenatmung wäh-
rend der exponentiell-ansteigenden Phase nach Substrat-Zugabe erlauben ausschließlich
die inverse Bestimmung der maximalen spezifischen Wachstumsrate sowie eines effekti-
ven Parameters, der sich aus einer nichtlinearen Kombination aus anfänglicher gesamter
und aktiver Biomasse und dem wahren Wachstumsertrag von Mikroorganismen ergibt.
Sloppiness liegt auch hier der fehlenden Identifizierbarkeit einzelner Parameter zugrunde.
Ich zeige, dass ein Algorithmus, der den geodätischen Weg in sloppy Parameterräumen
ausnutzt, systematisch benutzt werden kann, um die Parameterwerte aus der Respirati-
onsanalyse besser einzugrenzen.

Das komplexeste biogeochemische Modell, das in dieser Arbeit analysiert wird, beschreibt
den an den Kohlenstoffumsatz gekoppelten Pestizidabbau auf der Millimeterskala im Bo-
den. Mithilfe von Methoden aus der Informationsgeometrie wurden einfachere, effektive
Modellformulierungen hergeleitet, die essentielle physikalisch-chemische und mikrobiel-
le Regulationsmechanismen des Pestizidabbaus verdeutlichen. Die Parametrisierung des
effektiven Modells bildet das experimentell beobachtbare Systemverhalten genauso gut
ab wie komplexere Modellparametrisierungen. Die effektiven Parameter ergeben sich
dabei als nichtlineare Parameterkombinationen des komplexen äquifinalen Ausgangsmo-
dells und sind sicher durch Kalibrierung mit den verfügbaren Daten bestimmbar. Ich zei-
ge, dass das neue Verfahren der Modellreduktion benutzt werden kann, um strukturelle
Schwächen biogeochemischer Prozessformulierungen aufzudecken. Sowohl das vollstän-
dige als auch das reduzierte Modell waren nicht in der Lage, einen Validierungsdatensatz
mit unterschiedlichen Randbedingungen vorherzusagen. Dies zeigt, dass die ursprüngli-
che Prozessbeschreibung des direkten Pestizidabbaus durch spezifische Bakterien überar-
beitet werden muss. Die Komplexität der identifizierten effektiven Modelle war abhängig
von den verfügbaren Daten. Mit abnehmendem Informationsgehalt der Daten wurden
systematisch weniger komplexe effektive Modelle identifiziert. Es ist größtenteils hinrei-
chend, das System mit linearen Abbauraten sowie Gleichgewichtsannahmen für Teilmen-
gen der funktionellen mikrobiellen Gruppen und Kohlenstoffpools zu beschreiben.

Das beobachtbare emergente Systemverhalten kann oftmals mit wenigen phänomenolo-
gischen Parametern beschrieben werden. Im Gegensatz zu empirischen Top-Down Ansät-
zen ermöglicht mechanistische Modellreduktion als Bottom-Up Ansatz die systematische
Herleitung eines minimalen Pestizidabbau-Modells mit effektiven Parametern auf Basis
eines komplexen prozessbasierten Modells. Die effektiven Parameter sind Kombinationen
der Originalparameter und behalten so ihre mechanistische Bedeutung. Die ermittelten
effektiven Parameter entsprechen den Freiheitsgraden einer typischen Systemreaktion
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auf kontinuierlichen Pestizideintrag und können konzeptionell der dynamischen Stabili-
tät und der Resistenz von Böden zugeordnet werden.

Die Ergebnisse der Arbeit zeigen: (i) Sloppiness verhindert die zuverlässige Schätzung
einzelner Parameter in biogeochemischen Modellen. (ii) Unsicherheiten in Parameter-
schätzungen und mechanistischen Prozessformulierungen können durch systematische
Modellreduktion minimiert werden. (iii) Trotz Äquifinalität erlaubt mechanistische Mo-
dellreduktion, die systemimmanente Komplexität kleinskaliger, mikrobieller Prozesse zu
analysieren und die entscheidenden Regulationsmechanismen von Stoffumsätzen im Bo-
den zu identifizieren.
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Chapter 1

General Introduction

“The world in all its detail is overwhelmingly complex, yet also much simpler than it
looks.” (Buchanan 2015). This statement, manifested in the three related concepts
of equifinality, sloppiness and emergence, has encouraged and enabled the modeling of
complex systems across different areas of science (Savenije 2001; Machta et al. 2013;
Baveye et al. 2018). The interplay of the three concepts and their practical implications
for biogeochemical modeling are the central theme of this thesis.

1.1 Equifinality, Sloppiness and Emergence

Modelers of complex systems have to excel at simplifying a problem in order to make
it amenable to mathematical analysis whilst preserving the inherently complicated fea-
tures. If the model captures the investigated behavior of the complex system, and it is
able to predict other system behavior of interest, then it can be viewed as a successful
representation of reality. Many such representations will likely exist, because they emerge
from nonlinear interactions between many constituents that comprise the complex sys-
tem. Since reality is too complicated to be compressed into a model, the challenges in
mechanism-oriented modeling approaches (Hunt et al. 2018) are to determine which
part of a system can be safely neglected and to find a way to lump many details of the
system into effective higher-order process descriptions.

From a philosophical point of view, the equifinality thesis rejects the notion that “sci-
ence [...] is supposed to be an attempt to work towards a single correct description of
reality.” (Beven 2006). Equifinality arises when many different model realizations lead
to identical system behavior (Von Bertalanffy 1969). The uniqueness of a physical re-
ality has also been dismissed by Anderson et al. (1972) who conversely introduced the
concept of universality classes, i.e. equivalence classes of physical systems with the same
phenomenological behavior that can in fact be described by the same model. Effective
models in physics, which show weak dependence of system observables on microscopic
details, inherit these properties. The prime example is the diffusion equation which is
valid in the solid, liquid and gas states of every material (Gauss 1877) and which projects
many possible molecular configurations of particles onto an effective control parameter
(the diffusion constant; Fick 1855). Both concepts justify the use of simpler theories
and effective models that capture the essence of a complex system, but either average

1



1.1 Equifinality, Sloppiness and Emergence 2

over equifinal or ignore many irrelevant system details (Savenije 2001). However, while
(universal) effective models in physics result from the application or development of a
mathematical theory (e.g., continuum limits that are valid at large length and/or time
scales or formal renormalization group arguments; Wilson 1971), equifinality is known
to the biogeochemical community mostly from predictive hydrological modeling (Beven
2006). Here, it is attributed to the lack of data in the process of model calibration.
Beven 2006 notes that “it should, indeed, be expected because of the overparameterisa-
tion of [models] relative to the information content of observational data available for
calibration of parameter values”. In biogeochemical modeling (Section 1.2) equifinality
is generally viewed as a nuisance that hampers system understanding and leads to uncer-
tainty in model predictions (Tang and Zhuang 2008; Manzoni et al. 2016). Nonetheless,
there is a desire to apply similar theoretically well-grounded averaging techniques as in
physics to biogeochemical models (Wieder et al. 2015; Getz et al. 2018). Likewise, the
principle of emergence in complex systems refers to “a reality that is less than the sum of
its parts” (Rastetter and Vallino 2015). Here, nonlinear interactions and feedbacks give
rise to observed behavior that is always simpler than what it could have been, given the
many constituents that comprise the system. Contrary to equifinality, emergence is viewed
a desirable property as it might lead to unifying principles and effective biogeochemical
laws (Baveye et al. 2018).

Sloppiness underlies both predictive models from various scientific areas and effective
theories in physics (Machta et al. 2013). Sloppiness has a precise definition in terms of
the correlation matrix of parameter uncertainties in parameter identification problems
by nonlinear least squares regression (Brown and Sethna 2003). Not only is the ma-
trix extremely ill-conditioned for sloppy models, but its eigenvalue spectrum also has
a distinct structure. The matrix eigenvalues of sloppy models are locally nearly evenly
spaced on a log-scale (Waterfall et al. 2006; Gutenkunst et al. 2007). This implies that
only a few nonlinear parameter combinations (corresponding to large eigenvalues) can
be inferred from data, with each combination being progressively more unconstrained
by a roughly constant factor (Transtrum et al. 2010). What is more important, Machta
et al. 2013 showed that statistical inference connects to formal scaling tools and emer-
gent theories in physics. For example in the continuum limit of particle random walks
the model eigenvalues are log-linearly spaced. Relevant parameters (the diffusion and
drift constant of the continuum description, Risken 1996) are precisely the ones that
can be inferred from the coarse-grained data. Furthermore, the emergent parameters are
those that remain equally distinguishable at coarser scales (Raju et al. 2017). Sloppy
parameter combinations in turn are neither constrained by data nor useful for model
predictions (Mattingly et al. 2018). Sloppiness thus explains why it is possible to ex-
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tract falsifiable predictions from complex models, despite getting many system details
wrong (Gutenkunst et al. 2007). Sloppy models appear to be complicated, but a hid-
den simpler model with emergent model structures that describe system behavior can
be systematically extracted from an underlying complex representation (Transtrum and
Qiu 2014). By analyzing geometric properties of sloppy models (Transtrum et al. 2010,
2011), it is possible to formally connect “bottom-up descriptions of complex processes
with top-down inferences drawn from data, paving the way for emergent theories in
physics, biology, and beyond” (Transtrum et al. 2015). The strategy of model build-
ing to start from a complex modeling ansatz followed by successive simplifications has
been applied in research areas across many disciplines (classical physics: Machta et al.
2013, nuclear physics: Nikšić and Vretenar 2016, engineering: Transtrum et al. 2018 and
systems biology: Transtrum and Qiu 2016; Bohner and Venkataraman 2017; Lombardo
and Rappel 2017). Derived effective parameters of reduced models have been shown
to reveal physically or biologically relevant mechanistic information about the system
under study. Application in systems biology has led, e.g., to the identification of impor-
tant controls of adaption in allosteric macromolecules (Bohner and Venkataraman 2017),
mechanisms of cardiac arrhythmias (Lombardo and Rappel 2017) or minimal topologies
in biochemical enzyme networks (Transtrum and Qiu 2016). Its conceptional usefulness
for biogeochemical modeling will be established below.

1.2 Biogeochemical Modeling

Microbes in soil control key functions related to carbon cycling (Paul 2014), including
carbon sequestration through the decomposition of soil organic matter (Schimel and
Schaeffer 2012) or physicochemical stabilization of soil organic matter (Dungait et al.
2012; Miltner et al. 2012) which are important to predict the impacts of global climate
change (Todd-Brown et al. 2012, 2013; Wieder et al. 2015; Luo et al. 2017). They are
involved in biodegradation and persistence of pollutants in soil (Nowak et al. 2010; Dit-
terich et al. 2013; Banitz et al. 2013; Pagel et al. 2016; Babey et al. 2017) and enable
the soil system’s ability to withstand external disturbances (Standish et al. 2014; Hawkes
and Keitt 2015; Schaeffer et al. 2016). However, “Reliable predictions require more than
just recognition that microbes are important for a process. Fundamental, mechanistic
understanding must be established from empirical studies. The mechanisms must be
unified into a theoretical framework that provides a basis for quantitative mathematical
models.” (Allison 2017).

Soil biogeochemical models describe the flow of nutrients, e.g., carbon or nitrogen,
through a system typically composed of microbial biomass, extracellular enzymes, soluble
nutrients and soil organic matter (Manzoni and Porporato 2009; Wieder et al. 2015). In
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a systems approach, experimental measurements of biogeochemical processes are com-
bined with advanced mathematical tools to yield predictive biogeochemical models. The
field can often build on insights from computational systems biology where a similar
framework has been established (Engl et al. 2009; Villaverde and Banga 2014). Con-
ceptually the modeling process proceeds in five steps (Engl et al. 2009). First, data are
collected from experiments or data bases (see, e.g., the references in Wieder et al. 2015,
Table 3 or Google’s new search engine for scientific datasets1). Second, the components
and interactions that should be included in the mathematical representation, i.e. the
model structure, are defined. Third, a statistical model (McCullagh 2002; Transtrum
et al. 2014) is identified which has to be consistent with the data. This is equivalent
to the estimation of parameter values (Bates and Watts 1988) and sensitivities (Pianosi
et al. 2016). Fourth, the model predictions are tested with data that has not been used
for calibration. Lastly, if confidence in the model has been established, the model can be
analyzed with respect to steady states, stability and bifurcations (Kuznetsov 2013; Stro-
gatz 2018) and new experiments and hypotheses can be designed. The corresponding
biogeochemical models represent numerous specific microbial and physicochemical reg-
ulation mechanisms of nutrient cycling and environmental dependencies at small spatial
(µm - cm) and temporal (hourly to daily) scales (Wieder et al. 2015, Table 1). Ulti-
mately however, biogeochemical models aim at predicting system responses at the scale
of ecosystems (or field scale, in the case of pollutant turnover). Bridging these scales
requires the identification of key mechanisms at the scale at which the empirical studies
are conducted and the subsequent development of simpler up-scaled expressions that can
be used in ecosystem (or reactive transport, in the case of pollutant turnover) models.
These effective descriptions can be used with great confidence, because they emerge from
mechanistic descriptions of small-scale processes that have been validated in specific ex-
periments. The challenge explored in this thesis is to find a framework in which the
relevant mechanistic small-scale descriptions in complex biogeochemical models can be
systematically identified and simplified, together with a comprehensible account of the
assumptions used and a report on the resulting uncertainties.

Due to the complexity of systems, models are necessarily incomplete representations
of reality. The modeling error introduced into process-based models results on the one
hand from conceptual uncertainty of how to adequately represent biogeochemical pro-
cesses and on the other hand from parameter uncertainty, i.e. the difficulty of assigning
values to parameters that describe the process formulations. Orthogonal to questions of
experimental design (Keenan et al. 2013) and the associated measurement uncertainty,
models have to be refined or elaborated over and over again until the modeling process

1https://toolbox.google.com/datasetsearch
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is complete (Getz et al. 2018). Soil biogeochemical modeling has experienced a surge of
interest regarding the microbial modeling part of the system over the last few years (In-
gwersen et al. 2008; German et al. 2012; Pagel et al. 2014; Wang et al. 2015; Manzoni
et al. 2016; Allison 2017). Associated structural and process complexities (Getz et al.
2018) that have been introduced as a result have a large impact on predicted model
behavior in response to external environmental drivers, e.g., changes in temperature or
carbon input into the system (Allison et al. 2010a; Hararuk et al. 2015; Georgiou et al.
2017; Ballantyne IV and Billings 2018). Model structure also has a strong impact on
the relevance of parameters that influence the system (Sierra et al. 2015b; Vogel et al.
2018). Yet, structural model uncertainty prevails in the microbial component of the sys-
tem as “the appropriateness of model assumptions cannot be readily assessed because
of the scarcity of relevant experimental data” (Baveye et al. 2018). Due to the diversity
of the microbial component (Hug et al. 2016) and nonlinear feedback structures in soil
systems (Paul 2014), it is tempting to “model bulldozers with quarks” (Goldenfeld and
Kadanoff 1999), i.e. it is difficult to choose the right level of model complexity to catch
the phenomena of interest. Nonetheless, a fixed model structure is often imposed in
biogeochemical modeling. This turns soil biogeochemical models into “gray-box” models
(Verghese 2009) with a semi-empirical and highly nonlinear model structure, but many
unknown parameters.

A related big challenge in microbially-explicit soil biogeochemical modeling is that “mi-
crobial trait parameters are often uncertain, especially when specifying many functional
types” (Allison 2017). Most parameter values cannot be measured directly (Fierer et al.
2014). They have to be inferred from data by inverse modeling (Engl et al. 2009;
Villaverde and Banga 2014). At a minimum, microbial parameter values related to re-
source acquisition functions that saturate with increasing carbon concentrations in soil
(Tang 2015) have to be evaluated from experimental data. Separate from complex
soil biogeochemical models, Strigul et al. 2009 showed that the estimation of micro-
bial parameters from batch experiments in the lab is already a nontrivial problem that
requires careful experimental design. Problems associated with kinetic fitting of short-
term heterotrophic soil respiration experiments were likewise reported (Wutzler et al.
2012; Weihermüller et al. 2018). In complex models this problem is aggravated as ad-
ditional microbial trait parameters related to metabolic losses, physiology and substrate
preferences combine to determine emergent microbial growth rates. Unfortunately, obser-
vations are rarely rich enough to allow reliable estimation of model parameters despite
the application of sophisticated parameter optimization algorithms (Sierra et al. 2015a;
Wang et al. 2015; Pagel et al. 2016; Luo et al. 2017). The ill-posed nature of the inverse
problem appears to permeate biogeochemical models of multiple complexities. In terms
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of parameter equifinality, “the whole [might not be] more than the sum of its parts” (Ad-
discott 2011).

Do natural limits exist in biogeochemical modeling? Soil biogeochemical models are
often constructed by combining many independently derived empirical functional rela-
tionships. These empirical laws have natural limiting cases: reaction rates can be de-
scribed by saturating or linear functions of carbon concentrations (Sierra et al. 2012),
whole enzyme-substrate networks can be lumped into one rate expression (Tang and
Riley 2013), time scales of different system components separate (Manzoni et al. 2016;
Kuehn 2016; Kügler 2016; Kügler et al. 2017), etc. Running a biogeochemical model with
all possible parametric formulations consistent with a general relationship (Adamson and
Morozov 2012) is likely not feasible. Simply deciding on a lower-level description is un-
satisfactory due to the high level of structural uncertainty in biogeochemical modeling.
Instead of deciding on a lower level of process complexity a priori, “applying [effective
modeling] approaches to deriving equations for microbial dynamics in soils could be a
promising research direction.” (Wieder et al. 2015).

1.3 Modeling of Pollutant Turnover in Soil

Biogeochemical models are complex, but they are powerful tools to model the turnover
of pesticides in heterogeneous soil micro-environments by integrating experiments and
small-scale mechanistic process descriptions (e.g., Gharasoo et al. 2012; Aslam et al.
2014; Rosenbom et al. 2014; Pagel et al. 2016; Babey et al. 2017). In order to shed light
on the processes controlling pesticide degradation in soil at a biogeochemical interface
(Totsche et al. 2010), Pagel et al. 2016 integrated genetic information and mechanistic
modeling in the development of the PECCAD (Pesticide Degradation Coupled to Carbon
Turnover in the Detritusphere) model. PECCAD abstracts specific regulation mechanisms
of the degradation of the xenobiotic 4-chloro-2-methylphenoxyacetic acid (MCPA). Mi-
crocosm experiments showed that the degradation of MCPA is accelerated in the presence
of additional organic substrates (e.g., by litter input; Poll et al. 2010; Saleh et al. 2016).
Possible microbial regulation mechanisms were attributed to direct stimulation of a com-
munity of specific herbicide degraders or co-metabolic activities of fungi (Ditterich et al.
2013). Thereby, PECCAD explicitly simulates the dynamics of specific microbial degrader
populations and accounts for interactions between microbial dynamics and physicochem-
ical processes (sorption and one-dimensional transport of solutes). It captures the com-
plexity of a system response (accelerated MCPA degradation due to litter input) emerging
from small-scale nonlinear soil processes. MCPA was used as a model compound, be-
cause it is predominantly degraded by microorganisms under aerobic conditions and a
wealth of untapped biological information on microbial degradation pathways and func-
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tional genes involved in MCPA degradation is available (e.g., Bælum et al. 2010; Liu
et al. 2013; Nielsen et al. 2013). In a novel modeling approach, the microbial pools
in the PECCAD model were set up in correspondence with quantifiable genetic proxies
for abundances of total bacteria, fungi and specific pesticide degraders (López-Gutiérrez
et al. 2004; Manerkar et al. 2008; Bælum et al. 2008). While integrating soil genomics
and mathematical modeling gave detailed insight into MCPA degradation processes and
microbial dynamics, the study by Pagel et al. 2016 has pointed to challenges in the cal-
ibration and parameterization of the PECCAD model. In particular, the combination of
physicochemical, genetic and isotopic data was not able to constrain all model param-
eters. Parameter uncertainties derived from multi-objective calibration across different
experimental treatments were largely attributed to structural deficits in the model. As
the most complex biogeochemical model with equifinality issues analyzed in this thesis,
the PECCAD model serves as an ideal test case to reveal parsimonious, yet mechanis-
tic process formulations that reflect essential physicochemical and microbial regulation
mechanisms of pollutant turnover.

1.4 Research Target and Structure of the Thesis

This research starts from the hypothesis that the reported universality of sloppiness of
predictive multiparameter models (Machta et al. 2013) extends to biogeochemical mod-
eling. If that assumption proved to be true, a unifying framework for model-data in-
tegration could be provided that allows to systematically tailor biogeochemical model
complexity to the information content of available data and derive effective descriptions
of relevant biogeochemical processes. In this thesis, applicability and usefulness of the
sloppy approach for biogeochemical modeling is assessed for different case studies with
focus on parameter identification, structural model limitations and minimal emergent
model mechanisms that give rise to a predefined system behavior. The insights from four
case studies should in the end converge into a set of lessons for how to approach the
equifinality problem in complex biogeochemical systems.

This thesis opens in Chapter 2 with materials and methods that are necessary to un-
derstand implementation details and reproduce the results in the subsequent chapters.
In Section 2.1 five soil biogeochemical models of varying complexity from the literature
are reviewed (Ingwersen et al. 2008; German et al. 2012; Pagel et al. 2014; Wang et al.
2015; Manzoni et al. 2016). Emphasis is placed on differences in model structures (struc-
tural complexity) and functional relationships (process complexity) (Getz et al. 2018).
Associated difficulties in obtaining precise parameter estimates from available data by
nonlinear least squares regression (Bates and Watts 1988), which partially motivated
this thesis, are described. A sensitivity analysis is inevitably tied to the process of, and
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problems associated with, model calibration. In Section 2.2 the necessary mathematical
tools in order to study the impact of small perturbations on the model performance metric
are introduced. Section 2.3 introduces methods of global sensitivity analysis that allow
to study how model output is affected by large variations of model parameters. Bayesian
ensembles (Stone 2013; Geris et al. 2016) and the Morris method (Pianosi et al. 2016)
are outlined that rely on Monte Carlo sampling of the model parameter space. In con-
trast to these, a recently developed technique from information geometry (the Manifold
Boundary Approximation Method (MBAM); Transtrum et al. 2011) is described that only
relies on the integration of local sensitivity information (Section 2.2). The final section
(Section 2.4) shows how these methods can be used to construct simplified effective
models from complex models.

In Chapter 3 the equifinality problem associated with the five biogeochemical models
described in Section 2.1 is investigated. Locally, all models have sloppy sensitivity spectra
at their respective published optimal parameter values. In Section 3.3.2 the parameter
space of the PECCAD ODE model (Pagel et al. 2014) is analyzed semi-globally in order to
determine whether sloppiness extends beyond a local phenomenon. In Section 3.3.3 the
Monod model for microbial growth (Monod 1949) is used as a simple example to clarify
the connection between global sensitivity and information geometry (Section 2.3.3). The
chapter ends with a discussion of the implications of sloppiness for parameter estimation,
parameter space sampling, model selection and model predictions in biogeochemical
modeling.

In Chapter 4 problems associated with short-term substrate-induced heterotrophic res-
piration analysis are investigated. Whether synthetic respiration data provide enough
constraining power to identify unique biophysiological parameters of the MEND micro-
bial physiology model (Wang et al. 2014a) is analyzed in Section 4.3.1. Problems associ-
ated with unique parameter identification are analyzed in Section 4.3.2. Here, sloppiness
is identified as the underlying cause of non-identifiability in heterotrophic respiration as-
says.
The issue of parameter non-identifiability is addressed in Section 4.3.3 by constructing
reduced models for the respiration assay, using the MBAM. The reduced models from
iterative application of the MBAM admit emergent parameter combinations that are in-
creasingly more constrained by available data. Section 4.4 then discusses whether the
emergent parameters still confer biophysically meaningful information about the growth
and activity of microorganisms in soil and whether model reduction can and should be
used as an additional step in the analysis of heterotrophic respiration data.
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In Chapter 5 the over-parameterized PECCAD model (Pagel et al. 2016) is systematically
tailored to the information content of data from microcosm experiments by the MBAM.
Section 5.3.1 gives details on nontrivial identified limits of the PECCAD model. Different
experimental treatments are used as validation data sets to assess the performance of
the full and reduced effective models and highlight structural model deficiencies (Sec-
tion 5.3.1). How model structure changes with the resolution of observations ((i) using
information on all data including the dynamics of functional genes; (ii) or bulk biomass
along with measurements of dissolved organic carbon, insoluble soil organic matter, to-
tal pesticide and heterotrophic respiration; (iii) only with input-output information on
total pesticide and CO2.) is investigated in Section 5.3.1. In Section 5.3.2 the relevant
parameters identified by the MBAM are compared with global sensitivity metrics derived
from methods that rely on Monte Carlo sampling of the parameter space. In Section 5.4
the regulation mechanisms of MCPA turnover derived by model reduction are compared
to conclusions drawn from multi-objective calibration in the original study (Pagel et al.
2016). The predictive power of the PECCAD model is assessed for the first time. The
effective parameter combinations that emerge from the model reduction steps are com-
pared to reported biogeochemical parameter values from the literature. Limits of the
PECCAD model are compared to other commonly used biogeochemical model assump-
tions.

In Chapter 6 a toy problem is designed that illustrates how to link a specific emergent
system response function to the underlying biogeochemical mechanisms. Instead of rely-
ing on a top-down approach to model pesticide stabilization in soil, the MBAM is used in
Section 6.3 to derive a minimal phenomenological model from the complicated, mech-
anistic PECCAD ODE model. The effective parameters span the degrees of freedom of
the system response curve and are linked to resilience theory (Schaeffer et al. 2016).
The usefulness and extensions of the approach for up-scaling efforts in biogeochemical
modeling are discussed in Section 6.4.

This thesis ends in Chapter 7 with the synthesis of four case studies into fundamental
insights on biogeochemical modeling.



Chapter 2

Materials and Methods

2.1 Biogeochemical Model Description

Soil biogeochemical models considered in this thesis can be written as ordinary differen-
tial equations (ODE)

dy

dt
= f(y,#, t) (2.1)

where y 2 RM is a vector of state variables, # 2 RN is a vector of unknown parameters
and t 2 R denotes the independent time variable. Given initial conditions, y(t0) = y0,
Eq. 2.1 can be numerically integrated in order to obtain the values of model state vari-
ables at discrete time points. Soil biogeochemical systems are typically only partially
observed, i.e. observations only exist for subsets or combinations of the total number of
model variables M . Moreover, initial conditions y0 for some model variables have to be
estimated from data. For ease of notation, they were included in the parameter vector #.

The prevalent way of fitting biogeochemical models to data is by nonlinear least squares
regression (Bates and Watts 1988). Throughout the thesis, this point of view has been
adopted and it is assumed that data yDm measured at time points tm are Gaussian dis-
tributed with standard deviation �m around model predictions y(#, tm) of the ODE model
(Eq. 2.1). Minimizing the weighted sum of squared errors over all data points M ,

K(#) =
1

2

MX

m=1

✓
yDm � y(#, tm)

�m

◆2

, (2.2)

corresponds to a maximum likelihood estimate (# = #⇤) of model parameters,

�2logP (yD|#) = K(#) + const , (2.3)

where the probability density of observing data yD given parameters # is given by P (yD|#).

In synthetic data scenarios, continuous time series data for all model variables that the
model fits perfectly at published optimal parameter values #⇤ were assumed. The associ-

10
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ated cost function is analogously given by

Kcont(#) =
1

2M

MX

m=1

1

T

Z T

0

✓
ym(#, t)� ym(#⇤, t)

!m

◆2

, (2.4)

where M is the number of state variables, T is the total simulation time of Eq. 2.1 and
the normalization constant !m is given by the maximum value of variable ym across the
time interval [0,T] (Gutenkunst et al. 2007).

Five biogeochemical models (Ingwersen et al. 2008; German et al. 2012; Pagel et al.
2014; Wang et al. 2015; Manzoni et al. 2016) were selected from the literature, because
they share many features with the majority of soil biogeochemical models (Wieder et al.
2015), but represent different levels of structural and process complexities (Getz et al.
2018). The investigated biogeochemical models promote a mechanistic understanding
of soil processes. However, for three out of the five models parameter equifinality issues
for the fit to data by nonlinear least squares were reported (Sierra et al. 2015a; Wang
et al. 2015; Pagel et al. 2016). In contrast to the original publications, spatial variations
of state variables and transport processes for the models by Ingwersen et al. 2008 and
Pagel et al. 2014 were neglected in this study.

2.1.1 A Minimal Microbial Soil Carbon Model

The simplest nonlinear model available from the literature (M=2, N=4; Manzoni and
Porporato 2007; German et al. 2012) can be expressed as a system that describes the
turnover of soil carbon CS and microbial biomass CB

dCS

dt
= I(t)�

VmaxCS

KS + CS
CB + kBCB (2.5)

dCB

dt
= Y

VmaxCS

KS + CS
CB � kBCB . (2.6)

The model was developed with the intent to succeed traditional first-order linear soil
carbon models (e.g., Jenkinson 1990; Parton et al. 1987) in an earth system model-
ing context (Wieder et al. 2015; Luo et al. 2016). The assumption that the soil carbon
pool decay rate depends on both substrate CS and catalyst CB pool sizes leads to sig-
nificant differences in long term carbon cycle projections in climate change scenarios
(Todd-Brown et al. 2013). However, there is no consent as to the correct functional form
of nonlinear substrate uptake kinetics in the model (Tang 2015). The regular Michaelis-
Menten function used in Eqs. 2.5 and 2.6 assumes that the carbon decay rate saturates
at high substrate concentrations. In the regular Michaelis-Menten model, Vmax is the
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maximum growth rate, KS is the substrate affinity and Y is the microbial carbon use
efficiency. Depending on substrate concentration as the rate limiting factor, the rate nat-
urally interpolates between two limiting cases. The rate becomes first-order when sub-
strate concentrations are much smaller than the affinity constant (CS ⌧ KS). It becomes
constant when soil carbon is in excess (CS � KS). Expressed in terms of parameter lim-
its, the rate becomes linear when maximum growth rate and substrate affinity are both
large (Vmax, KS ! 1). It becomes constant when the substrate affinity approximates
zero (KS ⇡ 0). Carbon turnover additionally depends on carbon input into the soil I(t),
which is time-dependent and often independently estimated from direct measurements,
and the first-order cycling rate of microbial biomass kB.

Sierra et al. 2015a discuss the parameter identification problem for Eqs. 2.5 and 2.6
in the context of nonlinear least squares regression (Eq. 2.2). Based on a collinearity
index (Soetaert et al. 2010) which summarizes local parameter sensitivity information
(Section 2.2), Sierra et al. 2015a find that parameters for Eqs. 2.5 and 2.6 cannot be
simultaneously identified from commonly available data on respiration fluxes from soil
incubation experiments and mass loss data from litter decomposition. Since Eqs. 2.5
and 2.6 are the building blocks of more complex soil carbon turnover models, the identi-
fication problem is aggravated in more complex models throughout the biogeochemical
modeling literature (Ingwersen et al. 2008; Manzoni et al. 2014; Pagel et al. 2014; Wang
et al. 2015). More complex soil biogeochemical models are refined by adding state vari-
ables beyond a bulk description of soil carbon and biomass. They are refined with the aim
to better capture soil carbon responses with respect to environmental perturbations and
to obtain a mechanistic understanding of important biogeochemical regulation mecha-
nisms of carbon cycling. These models operate at smaller temporal (hours to days) and
spatial (micrometer to millimeter) scales, but they mostly have to be calibrated on bulk
data for soil carbon and microbial biomass.

2.1.2 The Extended NICA Model

Ingwersen et al. 2008, M=10, N=15 (Tables A2 and A3) model small-scale carbon
turnover in the detritusphere. The detritusphere is the top millimeter of soil that includes
the litter layer and the adjacent soil layer influenced by litter input (Stahr et al. 2016). It
is a microbial hotspot in soil with high process rates and nonlinear interactions between
constituents (Kuzyakov and Blagodatskaya 2015). Understanding processes in hotspots
is relevant for an overall understanding of carbon cycling in soil at larger scales (Totsche
et al. 2010; Blagodatsky and Smith 2012). In order to simulate the effects of litter de-
composition on carbon turnover in the detritusphere, Ingwersen et al. 2008 partition the
soil carbon pool into fractions of different quality. The microbial biomass pool is split
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into different functional groups of microorganisms that are thought to reflect bacterial
and fungal physiologies. Readily decomposable “initial-stage” dissolved organic carbon
(e.g., cellulose and glucose) is exclusively taken up by “initial-stage” microorganisms,
whereas more recalcitrant “late-stage” dissolved organic carbon (e.g., interwoven holo-
cellulose and lignin) is solely utilized by “late-stage” decomposers. Microbial physiology
is incorporated through empirical functional relationships that describe how microbial
growth, maintenance, death and activity depend on carbon concentrations. Ingwersen
et al. 2008 assume Monod or regular Michaelis-Menten type kinetics (Strigul et al. 2009;
Tang 2015) for growth, maintenance and death terms. The activity of microorganisms is
explicitly modeled as a dynamic variable based on the work of Blagodatsky and Richter
1998.

Data on total organic carbon (TOC), dissolved organic carbon (DOC), microbial biomass
and ergosterol content, as well as heterotrophic respiration data from a 13C-microcosm
experiment (Poll et al. 2008) were used to calibrate the model. Parameter estimation was
performed with the Levenberg-Marquardt algorithm for nonlinear least squares problems
as implemented in the software UCODE_2005 (Poeter et al. 2006). Uncertainties on the
optimized parameter values were not reported (Ingwersen et al. 2008, Table 2).

2.1.3 The PECCAD Model

The carbon model by Pagel et al. 2014, M=12, N=59 (Tables A11 and A12) can be con-
sidered as a more refined and elaborate version of the model by Ingwersen et al. 2008.
Pagel et al. 2014 model priming effects of litter carbon input on degradation of the her-
bicide 4-chloro-2-methylphenoxyacetic acid (MCPA) in the detritusphere. The PECCAD
(PEsticide degradation Coupled to CArbon turnover in the Detritusphere) model was
formulated with the aim to identify important regulation mechanisms of accelerated pes-
ticide degradation in the detritusphere. The hypothesis was that additional supply of
resources and energy from litter carbon input into the system can stimulate growth of
a community of specific MCPA degraders through improved cosubstrate generation and
enzyme production. At the same time, it can enhance production of unspecific enzymes
involved in MCPA degradation that are produced by fungi.

In comparison to the model by Ingwersen et al. 2008, the classification of soil microbial
populations is refined through the incorporation of a third functional type. Additionally,
physicochemical characteristics of soil which control sorption processes for dissolved or-
ganic carbon and MCPA are taken into account. Phase concentrations of DOC are related
by linear sorption isotherms. Dissolved and sorbed phases of MCPA carbon are related
by the Freundlich isotherm. Biokinetic functions used in the PECCAD model are more
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(a) Multi-substrate Monod kinetics (b) Limiting behavior

Figure 2.1 Multi-substrate Monod kinetics. (a) Synergistic effects of both high-quality
(Chiq) and low-quality (Cloq) carbon concentrations on the specific growth rate of bacte-
ria. (b) Model hierarchy for the multi-substrate Monod model (MS). Monod (M), linear
(L) and saturating (S) kinetics correspond to distinct parameter limits as described in the
main text. No reaction (empty square) is a special case of all sub-types.

elaborate, because they simulate the dependence of microbial growth, maintenance and
death rates in terms of multi-substrate Monod kinetics (Lendenmann and Egli 1998). In
contrast to single substrate Monod kinetics, the specific growth rate of, e.g., bacteria (µB)
is a function of both high-quality (Chiq) and low quality (Cloq) carbon:

µB,i =
µmax�BkB,iCi

µmax�B + kB,hiqChiq + kB,loqCloq
, i 2 {hiq, loq} . (2.7)

Multi-substrate Monod kinetics simulate the synergistic effect of different carbon sources
on the specific growth rate (Fig. 2.1a). The hierarchical structure of the growth model is
depicted in Fig. 2.1b. Different parameter limits interpolate between Monod-type (M),
linear (L) and saturating (S) kinetics. E.g., for i = loq, Monod kinetics are recovered
when the substrate affinity of bacteria to Chiq approximates zero (kB,Hiq ⇡ 0). Linear
kinetics correspond to the parameter limit in which the maximum specific growth rate
approaches infinity (µmax�B ! 1). Saturating kinetics are retrieved when the magni-
tude of the low-quality substrate affinity coefficient is much larger than carbon concen-
trations in the system (kB,loq ! 1). The price to pay for increased realism or flexibility
of the multi-substrate Monod formulation compared to single Monod kinetics is certainly
that an additional substrate affinity coefficient kBP,i per biokinetic function has to be es-
timated from data. Although the PECCAD model is structurally similar to the model by
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Ingwersen et al. 2008, the number of parameters almost quadrupled as a result of the
more complex process formulations.

The model was calibrated on multi-modal, genomic soil carbon data from a series of
microcosm experiments (Pagel et al. 2016). The experimental design is described in
detail in Pagel et al. 2016. A brief account of the experimental treatments is given
in Section 5.2. Data included MCPA concentrations, extractable DOC, TOC, microbial
biomass, genetic abundances of bacteria (16S rRNA genes), fungi (ITS fragments) and
specific MCPA degraders (tfdA genes) as well as isotopically labeled compounds. A multi-
objective Pareto analysis (the AMALGAM method; A Multi-ALgorithm, Genetically Adap-
tive Multiobjective method; Vrugt and Robinson 2007) was used to find pareto-optimal
parameter sets for the different experimental treatments. However, Pagel et al. 2016 con-
cluded that “the available data might not have been sufficient to simultaneously identify
the large number of parameters associated with the high complexity of the PECCAD
model”. Indeed, the range of Pareto optima for 26 out of 59 estimated biokinetic param-
eters approximated their respective prior ranges after optimization (Pagel et al. 2016,
Table 2).

2.1.4 The MEND Model

The microbial-enzyme-mediated decomposition (MEND, Tables A5 and A6) model (Wang
et al. 2013, 2015, M=10, N=19) adds structural complexity to carbon cycling in com-
parison to the previously described soil biogeochemical models (German et al. 2012;
Ingwersen et al. 2008; Pagel et al. 2014). It was developed in order to better predict cli-
mate feedbacks from microbially-mediated carbon cycling on an ecosystem scale. Carbon
decomposition in the MEND model is controlled by different extracellular enzymes. A
particulate organic carbon pool including lignocellulose-like compounds is broken down
by ligninases and cellulases. A second particulate organic carbon pool containing starch-
like compounds is degraded by amylases. Extracellular enzymes are solely produced by
active biomass and shifts in maintenance requirements of the total biomass allocated to
enzyme production are accounted for. A contemporary model for the physiological activ-
ity state of microorganisms (Wang et al. 2014a) was incorporated. The dormancy model
is coupled to microbial maintenance requirements, instead of carbon saturation levels.
It remedies short-comings of the original formulation by Blagodatsky and Richter 1998
at low substrate concentrations in soil that was used by Ingwersen et al. 2008 and Pagel
et al. 2014. Otherwise, the MEND model shares structural elements of carbon cycling
with these two models. The complexity of functional relations is similar to the model
by Ingwersen et al. 2008, because biokinetic functions are expressed in terms of single
Monod kinetics.
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The MEND model was calibrated on long-term carbon decomposition data from labo-
ratory incubations of four soils across different climatic regions. Data included total
heterotrophic soil respiration, microbial biomass, DOC and isotopically labeled carbon
fractions for two different experimental treatments (glucose and starch amendments).
The SCEUA (Shuffled Complex Evolution at University of Arizona, Duan et al. 1992)
algorithm in unison with a Critical Objective Function Index (COFI, Wang et al. 2015)
was used to estimate 19 biogeochemical model parameters and report parameter uncer-
tainties. The authors conclusion echoes the sentiment of Pagel et al. 2016: “We hope
that these parameter values could provide documented references, although with large
uncertainty, for relating parameters to soil properties and/or climatic conditions. Nev-
ertheless, more laboratory- and field-scale data sets are needed to constrain model pa-
rameterization and associated uncertainty.”. The intrinsic microbial carbon use efficiency
(true growth yield) is a fundamental parameter for ecological models that is difficult to
measure in situ (Sinsabaugh et al. 2013). Its temperature sensitivity was in particular
not well constrained by the available soil incubation data (Wang et al. 2015, Figure 4).

2.1.5 A Trait-Based Microbial Soil Carbon Model

The model by Manzoni et al. 2016, M=7, N=24 (Tables A8 and A9) differs conceptually
from the other four soil biogeochemical models described in this thesis ((Ingwersen et al.
2008; German et al. 2012; Pagel et al. 2014; Wang et al. 2015)). It is purely a theoret-
ical study aimed at understanding how microbial physiological traits, ecological strate-
gies and transport processes influence biogeochemical processes in varying soil moisture
regimes across different scales. The soil moisture balance that describes variations of the
environmental control variable is formulated at the operating scale of the model (carbon
pools are expressed in units of g C/m3, varying at a daily time scale). The focal level of
model observations (Getz et al. 2018) is to be interpreted as a cubic meter of soil from
which respiration fluxes are measured. The heterotrophic respiration flux represents an
emergent large scale pattern that results from small-scale soil processes that are explicitly
modeled. Small-scale processes include different microbial response strategies to water
stress (the regulation of osmolyte production, drought avoidance by dormancy and in-
creased extracellular enzyme production) and diffusion. Mass transfer coefficients for the
diffusion of enzymes and soluble carbon compounds were derived for characteristic dis-
tances of 10�5

� 10�3 m. Empirical laws that are based on lab experiments describe how
solute diffusivity (Hamamoto et al. 2010) or osmolyte production (Dötsch et al. 2008)
depend on volumetric soil moisture. These process descriptions represent model refine-
ments below the focal level of typical soil carbon models. Model structure deviates from
other soil carbon models accordingly, because pools for intracellullar osmolyte produc-
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tion were added. Moreover, biokinetic functions for carbon uptake by microorganisms
are linear (/ VmaxCSCB), rather than saturating functions of substrate concentrations.

The model was not fit to data. Instead, it is part of a pattern-oriented (Grimm and
Railsback 2012) modeling effort to derive microbial response patterns to environmental
control factors directly from the underlying micron-scale processes (Allison 2017). The
model is used as a mechanistic basis for the on-going development of a hierarchy of pro-
cess models of different complexity that try to capture “Type 1” and “Type 2” microbial
responses to rewetting of soil (Brangari et al. 2018).

2.2 Local Sensitivity Analysis

Local sensitivity analysis studies the effect of small perturbations of model parameters
on the model output. When model calibration is considered, the model output metric is
given by the fit of the model to given data. Local sensitivity of the model fit to variations
in parameter values in the vicinity of the best-fit point #⇤ is given by the quadratic term
in the Taylor expansion of the cost function K(#) (Eq. 2.2):

K(#) = K(#⇤) +rK(#⇤)T�#+
1

2
�#T H�#+O(|�#|3) . (2.8)

The best fit #⇤ corresponds to the local minimum of the cost function at which the gra-
dient rK(#⇤) is zero. Here, �# = (# � #⇤) and T denotes the transpose of a matrix,
MT

ij = Mji, for which the i-th row, j-th column element of the transpose is the j-th row,
i-th column element of the original matrix M . The Hessian H is an N ⇥ N matrix of
second-order partial derivatives of the scalar, multi-variate cost function evaluated at the
best-fit point. It describes the local curvature of the cost function away from the best fit:

Hij =
@2K

@#i@#j

��
#=#⇤

. (2.9)

Since H is symmetric, it can be factorized in terms of its eigendecomposition as H =

Q⇤QT , where Q is an orthogonal matrix, QTQ = 1, the N columns of which are nor-
malized eigenvectors of H and ⇤ is a matrix with the corresponding positive eigenvalues
along the diagonal. The deviation of the cost from its minimum value can then be written
as

�K(#) = K(#)�K(#⇤) ⇡
1

2
�#T Q⇤QT �# =

1

2
⇠T⇤ ⇠ =

1

2

NX

n=1

�n⇠
2
n , (2.10)

which shows that there is a change of basis ⇠ = QT�# such that the matrix of the
quadratic form is diagonal. The transformed vectors ⇠ and hence the normalized Hessian
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eigenvectors define the principal axes of an N-dimensional ellipsoid that is generally
rotated with respect to the bare parameter axes. For example in two dimensions, N=2, a
cost function isocurve (Eq. 2.10) is given by

2�K(#) = �1⇠
2
1 + �2⇠

2
2 =

⇠21
( 1p

�1
)2

+
⇠22

( 1p
�2
)2

, (2.11)

where the shape parameters that define the major and minor axis of this ellipse are scaled
by the inverse of the square root of the Hessian eigenvalues �1, �2. Projections of the el-
lipse onto the i-th bare parameter axis are proportional to

p
H�1

ii . Intersections with the
i-th axis are given by

p
1/Hii.

In terms of the model residuals,

rm(#) =
yDm � y(#, tm)

�m
, (2.12)

second derivatives of the cost function can be expressed as

Hij =
@2K

@#i@#j

��
#=#⇤

=
X

m

@rm
@#i

@rm
@#j

��
#=#⇤

+
X

m

rm
@2rm
@#i@#j

��
#=#⇤

. (2.13)

A valid assumption close to the best-fit point is that residuals are small (rm ⇡ 0) and the
second term in Eq. 2.13 can be neglected. An approximation of the Hessian is then given
in terms of the scaled Jacobian matrix J�:

Hij ⇡

X

m

@rm
@#i

@rm
@#j

=
X

m

1

�2
m

@ym
@#i

@ym
@#j

⌘ JT
� J� . (2.14)

Entries of the M ⇥ N Jacobian matrix J are partial derivatives of M model outputs at
selected measurement time points with respect to N model parameters, Jmi = @ym/@#i.
In practice, local sensitivity coefficients Sij ⌘ @yi/@#j can, e.g., be obtained via finite
differences or the direct differential method. A finite difference approximation is given
by

Sij =
@yi
@#j

⇡
yi(#+�#j)� yi(#)

�#j
, (2.15)

but the solution is typically not well-behaved numerically due to the strong dependence
on the chosen step size �#j. For an ODE model (Eq. 2.1), the sensitivity coefficients also
satisfy the equation for the total differential

@Sij

@t
=

@

@t

@yi

@#j
=

@

@#j

@yi

@t
=

@fi(y,#, t)

@#j
=

@fi

@#j
+
X

j

@fi

@yj
Sij , Sij(0) = 0 , (2.16)
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which is linear, but has to be solved simultaneously with Eq. 2.1 for every parameter.
More advanced techniques use automatic differentiation (e.g., Revels et al. 2016) or ad-
joint methods (in a biological context described in Zi 2011). In order to compute an
approximation of the Hessian (Eq. 2.14), the m-th row of the Jacobian matrix must be
multiplied by one over the corresponding measurement error �m.

When the Hessian matrix H is invertible, the covariance matrix is given by

Cov(#) = 2H�1 (2.17)

and can be used to derive asymptotic confidence intervals for model parameters

⌃±
i = #⇤

±

p
�2(↵, df) · Covii , (2.18)

where �2(↵, df) is the ↵-quantile of the �2-probability distribution with df degrees of
freedom and Covii is the corresponding diagonal entry of the covariance matrix. For
df = 1, Eq. 2.18 gives pointwise confidence intervals known as the standard errors.
Simultaneous confidence intervals that correspond to the projection of the N-dimensional
ellipsoid onto the i-th bare parameter axis are obtained when df = N , i.e. the degrees
of freedom are equal to the number of parameters (Tönsing et al. 2014). Asymptotic
confidence intervals are only an approximation of the true parameter uncertainty when
the observables depend nonlinearly on model parameters. Implied is a limit of infinite
data which is approached if the number of data points is large compared to the number
of parameters (or the measurement error is small). The Cramer-Rao inequality places a
lower bound on the covariance matrix

Cov(#) �
H�1

n
(2.19)

stating that if the Hessian is nearly singular, it will take a large number of experimental
repetitions n in order to obtain precise parameter estimates.

2.3 Global Sensitivity Analysis

2.3.1 Method of Morris

The Morris method (Morris 1991), also called the Elementary Effect Test (EET, Saltelli
et al. 2008; Pianosi et al. 2016) for global sensitivity analysis is a derivative-based OAT
(One-step-At-a-Time) method that generates two sensitivity measures for each model pa-
rameter: µ⇤, the Morris mean and �⇤, the standard deviation.
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In an OAT design, each parameter is locally varied for a point in parameter space, while
the other parameters are fixed to a nominal value, and the change in model output is
recorded. If K denotes the cost function, the finite difference

EEi =
K(#1, ..., #i�1, #i +�#i, #i+1, ... ,#n)�K(#1, ... ,#n)

�#i
(2.20)

is called the Elementary Effect (EE) for parameter i, i 2 {1, ... , N}. The EE is the ratio
between the variation in the cost metric due to local variation of the parameter and the
variation in the parameter itself. In order to obtain a global sensitivity measure, the
absolute values of r different EEs for each parameter are computed and averaged to the
Morris mean

µ⇤
i =

1

r

rX

j=1

|EEi|
j , (2.21)

with standard deviation

�⇤
i =

vuut 1

r � 1

rX

j=1

�
EEj

i � µ⇤
i

�2
. (2.22)

State-of-the-art versions of the Morris method mainly differ in the sampling strategies
used to select initial and consecutive points in parameter space for variation (Pianosi
et al. 2016). Examples of elementary LH-OAT sampling strategies for two-dimensional
parameter space are shown in Fig. 2.2.

The Morris method (Morris 1991) builds r trajectories in parameter space. Along a tra-
jectory each parameter #i is consecutively increased or decreased by a fixed step size �#i.
One EE per parameter can be estimated per trajectory. The starting points (also called
support points or stars) for the r trajectories are selected randomly over a uniform grid.
Van Griensven et al. 2006 improved part of the sampling strategy by generating starting
points of the trajectories from a Latin Hypercube Sample (LHS, McKay et al. 1979). Their
LH-OAT approach was used by Pagel et al. 2014 in order to assess global sensitivity of
parameters in the PECCAD model (Section 2.1). A superior OAT-design for estimation
of EEs is the radial-based design (Campolongo et al. 2011). In a radial-based design,
parameters along a trajectory are not varied consecutively. Instead, #i is systematically
varied starting from the same support point in parameter space. Parameter variations
�#i are generally not taken to be the same for each #i. However, the radial-design im-
plemented in the MATLAB SAFE toolbox (Pianosi et al. 2015) that is used in this study
(Fig. 2.2b) differs from the one benchmarked in Campolongo et al. 2011. The design is
not necessarily best practice. Samples for the �#i are not based on Sobol sequences, but
are also generated from a random LHS and the trajectories are not selected as to maxi-
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(a) LH-OAT trajectory design (b) LH-OAT radial design

Figure 2.2 Examples of elementary parameter space sampling designs. Colored circles
denote support and end points of different samples.

mize their dispersion in parameter space (Campolongo et al. 2007; Link et al. 2018).

Due to the comparatively low computational cost of r ·(N+1) model evaluations, variants
of the Morris method are often used for screening purposes of model input variability.
Typically, parameters are grouped into three categories depending on their Morris mean
and standard deviation {µ⇤

i , �
⇤
i } (Iooss and Lemaître 2015). The larger µ⇤

i , the larger
the effect of the i-th parameter on the cost metric. �⇤

i is a measure for nonlinearity or
interaction effects for the i-th parameter. If �⇤

i is small, the EEs for the i-th parameter
do not vary significantly over support points in parameter space. If the effect of a small
perturbation of a parameter is the same everywhere, a linear relationship between pa-
rameter and model performance metric is likely. A parameter with large �⇤

i will have
non-linear or interaction effects. Different sets of Morris mean and standard deviation
hence correspond to parameters that have negligible effect on the cost metric (both µ⇤

i , �
⇤
i

small), those that have a linear effect (µ⇤
i > �⇤

i , with �⇤
i small) and those with significant

interaction effects (µ⇤
i < �⇤

i , with both µ⇤
i , �

⇤
i large).

2.3.2 Bayesian Ensembles

Bayesian inference consists of conditioning a prior probability distribution of model pa-
rameters on the data (Stone 2013; Geris et al. 2016). Samples from the posterior distri-
bution of parameters resulting from this inference process can be analyzed by descriptive
statistics and used to report uncertainties on model parameters and predictions beyond
a linearized description (Eq. 2.18). Mathematically, Bayes theorem for conditional prob-
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abilities is stated as:

P (#|yD) =
P (yD|#)P (#)

P (yD)
/ P (yD|#)P (#) . (2.23)

P (yD|#) is the likelihood that the model will produce the data yD given parameters #

(Eq. 2.3). P (#) is the prior probability distribution of model parameters. Together, likeli-
hood and prior encode the belief of the modeler about observations of the biogeochemical
system. P (yD) is the evidence for the data. The evidence is an unimportant normaliza-
tion constant in global sensitivity applications.

For a global exploration of parameter space, the objective of a Bayesian Markov Chain
Monte Carlo (MCMC) approach is to explore the full nonlinear cost surface of the model.
(Bayesian) MCMC algorithms comprise a class of numerical routines that sample from
the (posterior) probability distribution P (yD|#). The underlying idea is to maximize in-
formation about the posterior distribution by sampling densely in areas of parameter
space corresponding to good fits to the data and sparsely elsewhere (Mannakee et al.
2016). Ideally, the Markov chain has the posterior as its unique stationary distribution
(Tierney 1994), i.e. it eventually converges to the true posterior distribution.

For the Metropolis-Hastings algorithm (Chib and Greenberg 1995), a single Markov chain
is started from the presumed best fit #0 = #⇤. A candidate for the next parameter sam-
ple #c is randomly chosen and accepted according to the following criterion that only
depends on the current sample value #i:

#i+1 =

8
<

:
#c, with probability ↵

#i, with probability 1� ↵
(2.24)

The acceptance ratio ↵ is based on a comparison of the posterior probability for the
candidate and current parameter vector:

↵ = min

✓
P (#c|yD)

P (#i|yD)
, 1

◆
. (2.25)

Moves to new points in parameter space #i+1 are accepted when the posterior probability
of the candidate is higher. If the posterior probability is lower, the move is sometimes
rejected. Since the probability of rejection depends on the relative drop in posterior prob-
ability, the Markov chain tends to sample in high likelihood regions.
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For sloppy models, Gutenkunst 2007 suggests to sample the candidate parameter vec-
tor from a multivariate Gaussian distribution, the inverse covariance matrix of which is
the Hessian matrix (Eq. 2.17). The acceptance probability that satisfies detailed balance
then reads:

↵ = min

 
P (#c|yD)

P (#i|yD)
·
|Hc| exp

�
�

1
2(#c � #i)THc (#c � #i)

�

|Hi| exp
�
�

1
2(#c � #i)THi (#c � #i)

� , 1

!
. (2.26)

Here, Hc and Hi are the Hessian matrices calculated at the candidate and current sample
points. |H| ⌘ detH is the determinant of H. The idea behind the importance sampling
scheme is to avoid steps in stiff directions in parameter space that would yield low ac-
ceptance probabilities.

A comparison of the marginal posterior distributions of model parameters with the
marginal prior parameter distributions can be used to assess the learning effect of the
Bayesian inference process. Narrower marginal posterior distributions compared to the
priors indicate good identifiability of model parameters. Large shifts in the maximum a
posteriori probability estimate (MAP), i.e. the mode of the marginal posterior distribu-
tion, compared to the MAP of the priors, should lead to a check of prior information.
The highest posterior density region is the set of most probable parameter values that
constitute 100 · (1� ↵)% of the posterior mass. For a given ↵, the integral

1� ↵ =

Z

#: p(#|yD)>p⇤⇤
p(#|yD)d# (2.27)

defines the set of highest posterior densities C↵(D) ⌘ {# : p(#|yD) � p⇤⇤} .

2.3.3 Information Geometry

The field of information geometry combines methods of differential geometry and in-
formation theory (Amari and Nagaoka 2007; Ay et al. 2017). The central approach of
information geometry is to introduce a notion of distance between probability distribu-
tions (Caticha 2015). Many measures of statistical distances between probability distri-
butions have been defined (Burbea and Rao 1982). Some important examples include
special cases of f-divergences (Kullback-Leibler (KL) divergence, Hellinger distance, total
variation distance), the closely related Bhattacharyya distance, the Kolmogorov-Smirnov
statistic for univariate probability distributions or the Kantorovich metric. The Fisher-
Information Metric (FIM) is a special case. Endowed with the FIM, a statistical manifold1

1Loosely speaking, an N -dimensional statistical manifold is “a collection of points that are connected
to each other in a smooth fashion such that the neighborhood of each point looks like the neighborhood
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corresponds to a Riemannian manifold2, thus allowing the use of differential geometry
(Do Carmo 2016; Abbena et al. 2017).

Geometry is an intrinsic property of statistical manifolds. To see this, consider the ex-
pected value of the infinitesimal distance between two probability distributions P (yD|#)

and P (yD|# +�#), also called the expected value of the score in information theory - a
statistical measure of the sensitivity of the log-likelihood function (Eq. 2.3) with respect
to infinitesimal parameter variations3:

h�i =

Z
dyDP (yD|#)

@ logP (yD|#)

@#↵
d#↵ = d#↵

@

@#↵

Z
dyDP (yD|#)

| {z }
=1

= 0 . (2.28)

Since the expected value vanishes, the correct measure of distinguishability is the second
moment of the score - also called the infinitesimal KL divergence:

h�2
i =

Z
dyDP (yD|#)

@ logP (yD|#)

@#↵
@ logP (yD|#)

@#�
d#↵d#� . (2.29)

Equation 2.29 suggests to define the FIM as

g↵� ⌘

Z
dyDP (yD|#)

@ logP (yD|#)

@#↵
@ logP (yD|#)

@#�
, (2.30)

so that
dl2 ⌘ h�2

i = g↵�d#
↵d#� (2.31)

can be identified as the first fundamental form of differential geometry (the generalized
Phythagorean formula). A small infinitesimal line element dl means that the relative
distance between nearby probability distributions is small and model predictions from #

and # + �# will be difficult to distinguish. The FIM thus measures how distinguishable
two nearby probability distributions are from given data yD. The FIM is symmetric,
positive definite and transforms like a covariant rank-2 tensor. Its natural interpretation

of an N -dimensional Cartesian space” (Hassani 2013). For statistical manifolds, each point, labeled by
coordinates #, represents a probability distribution P (yD|#).

2A Riemannian manifold is a manifold equipped with a Riemannian metric. A Riemannian metric
defines an inner product on the tangent space of each point on the manifold. It allows to locally calculate
geometric notions such as angles or areas. However, comparing vectors in nearby tangent spaces in order
to do calculus, e.g to compute gradients of functions and divergences of vector fields, requires a metric
connection. Concepts inherent to curved surfaces such as the Riemann curvature tensor, parallel transport
and geodesics can be expressed in terms of Christoffel symbols that are related to the metric connections.

3In differential geometry it is custom to adopt Einstein’s summation convention: repeated indices (in
this case ↵) are summed over when they appear as super- and subscripts in an expression, each index can
appear at most twice in any term and each term must contain identical non-repeated indices.
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as a Riemannian metric is the cornerstone of the field of information geometry4. Under
coordinate transformations, d#0 = @#0

@# d#, the FIM transforms as

g↵0�0 =
@#↵

0

@#↵
@#�

0

@#�
g↵� , (2.32)

leading to
dl02 = g↵0�0 d#↵

0
d#�

0
, (2.33)

which shows that the distance dl2 is an invariant scalar under the coordinate transfor-
mation. Coordinates do not have an immediate metrical meaning (Ricci and Levi-Civita
1900). As a result, the statistical manifold and its geometrical properties are the same,
regardless of how the model is parameterized.

The FIM is intrinsic to statistical manifolds, but it depends on the underlying statisti-
cal data model P (yD|#). For nonlinear least squares problems (Eq. 2.3) it follows from
Eq. 2.30 that the metric is simply given by (Transtrum et al. 2011)

g↵�(#) = (JT
� J )↵� =

X

m

1

�2
m

@ym
@#↵

@ym
@#�

. (2.34)

The FIM in this case is just the approximate Hessian matrix of the inference problem
(Eq. 2.14). With an appropriate reparameterization (Eq. 2.32), it would be possible
to transform eigenvalues of the Hessian and alter the shape of the local cost surface
in parameter space (Section 2.2). In the geometric interpretation however, the scaled
Jacobian matrix

(J�)m↵ =
1

�m

@ym
@#↵

(2.35)

defines a mapping between N-dimensional parameter space with axes labeled by param-
eters #i, i 2 N and M-dimensional (scaled) data space with axes labeled by ym/�m, m 2

M . The FIM acts as a Riemannian metric for the model prediction manifold (the set of
all possible model predictions ym labeled by parameters #) which is embedded in the
Euclidean data space (for an illustration, see Fig. 2.3). In general, for a model with N

structurally identifiable parameters (Villaverde et al. 2016) that is fit to M data points,
the model manifold is the N -dimensional surface embedded in RM formed by varying
model parameters over predefined ranges (Mannakee et al. 2016). The model manifold
is a global representation of the model and its properties are invariant under reparame-
terizations.

4In fact it can be shown that the FIM is, up to a constant scale factor, the unique Riemannian metric of
a statistical manifold (Cencov 2000). Other derivations of the metric, e.g., from the relative entropy are
available in Caticha 2015.
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Figure 2.3 Model manifolds of the exponential model y(#, t) = e�#1t + e�#2t. The Eu-
clidean embedding space is spanned by model output recorded at three time points ts.
The best fit is given by the point on the manifold with closest Euclidean distance to the
data point (black star). The parameters #1,#2 define curvilinear coordinates on the model
manifold that correspond to a rectangular grid in parameter space. Simpler models can
be identified at the boundaries of the manifold (#1 = 0, #2 = 1 or #1 = #2). Practical
identifiability of model parameters changes with sampling times (yellow: ts = {1/3, 1, 3},
red: ts = {1/3, 1.5/3, 2/3}). The column vectors of the Jacobian J locally span the tan-
gent plane on the manifold. The Christoffel symbol � determines how basis vectors
change along a path on the manifold.
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The data is a single point in RM that lies off of the manifold in the case that the model
cannot fit the data perfectly. Under the coordinate transformation # ! #0 = y, the FIM is
proportional to the ordinary Euclidean metric

g↵�(y) =
1

�2
�↵� , (2.36)

where �↵� is the Kronecker delta5. Distance from any point on the manifold through the
embedding space to the data point is hence proportional to the nonlinear least squares
cost function (Eq. 2.2). Given a realization of the model parameter vector #↵, this dis-
tance determines the goodness-of-fit to data.

Distances on the model manifold between close-by statistical models, on the other hand,
are given by Eq. 2.35. Through the definition of the metric, distances are expressed in
units of standard deviations �m of the data. The measurement error is the “yardstick” of
nonlinear least squares models. If any dimension of the model manifold is thinner than a
standard deviation, model predictions will quantifiably not be distinguishable from data
(White et al. 2016). Conversely, the corresponding nonlinear parameter combinations
cannot be inferred from available data.

The Jacobian (Eq. 2.35) locally maps an N-dimensional unit cube from parameter space
onto an n-parallelotope on the model manifold with volume proportional to

p
|g|. Eigen-

values of the metric tensor determine the degree of anisotropy of the mapping. Globally,
Transtrum et al. 2010 empirically showed that model manifold widths approximately
correspond to the square root of FIM eigenvalues. Boundaries of the model manifold cor-
respond to points where the FIM becomes singular. This occurs when the column vectors
of the Jacobian are linearly dependent and at least one row/column of the metric tensor
can be written as a linear combination of the other rows/columns. In its interpretation of
the Hessian matrix (Eq. 2.13), a singular metric implies that the model residuals become
insensitive to changes in the corresponding (nonlinear) combination of model parame-
ters that define the manifold boundary.

Information geometry enables a global analysis of model parameter sensitivities by ex-
ploring geometric features (widths and boundaries) of the model manifold by geodesics.
Locally, the column vectors of the Jacobian mapping (Eq. 2.35) define a tangent plane at

5The Kronecker delta symbol �↵� that determines the entries of the metric tensor equals 1 if ↵ = �, and
0 otherwise.
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each point on the model manifold spanned by the basis vectors

em↵ =
@rm
@#↵

. (2.37)

A geodesic describes parallel transport, i.e. it is the special curve on the model manifold
whose tangent vectors remain parallel if transported along it:

@em↵
@#⌫

= �⇢µ⌫e
m
⇢ 6= 0 , (2.38)

where the Christoffel symbols �, that connect different tangent spaces, can be directly
expressed by the metric coefficients:
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1

2
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◆
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Equation 2.38 can be rewritten as a second order ODE for the parameters corresponding
to the geodesic path by inserting the definition of the Jacobian. However, the calculation
is lengthy and not very illuminating (Do Carmo 2016). The geodesic ODE is central to
the model reduction algorithm described in the next section.

2.4 Model Reduction

Model simplification through parameter reduction can be achieved for any of the global
sensitivity methods described in Section 2.3.

For scanning methods such as the method of Morris (Section 2.3.1), the purpose of identi-
fying the model parameters which have a negligible influence on the model performance
metric is called “screening” or “factor fixing”. Parameters that are deemed insensitive
based on the respective metric of the method can be fixed to any values of the parameter
distributions used in the sensitivity analysis. For the Morris method, an arbitrary cutoff
for the `2-norm of normalized Morris pairs (`2 =

p
µ⇤2 + �⇤2) is often used to distinguish

relevant from irrelevant model parameters (Link et al. 2018). Otherwise, parameters can
only be “ranked” according to their relative contribution based on the Morris mean (e.g.,
Pagel et al. 2014). Factor fixing will reduce the number of model parameters that have
to be considered, e.g., in refined calibrations (e.g., Van Werkhoven et al. 2009), but it
only makes the model conceptually simpler if the zero value is in the range of parameter
variations that do not affect model output. If many parameters show interaction effects
it is difficult to identify possible model reduction steps.
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For Bayesian methods (Section 2.3.2) the analysis of the covariance structure of the
posterior parameter distribution usually has to be complemented by an additional com-
putational step, e.g., a representation of the likelihood-ratio test (Maiwald et al. 2016).
The computation of parameter profile likelihoods in order to assess identifiability is rou-
tinely implemented in parameter estimation toolboxes, e.g., MATLAB PESTO (Stapor
et al. 2017). The information on parameter limits resulting from the computation of pa-
rameter profiles has to be manually translated into algebraic model simplifications.

In contrast to the previously described methods which rely on parameter space sampling,
the Manifold Boundary Approximation Method (MBAM) (Transtrum and Qiu 2014) uses
a geometrical approach to model simplification involving the model manifold (Fig. 2.3).
The MBAM proceeds in four computational steps:

1. At an initial parameter point on the model manifold #0, calculate the Jacobian
matrix (Eq. 2.35) and construct the FIM (Eq. 2.34). The initial point is usually
taken to be the best-fit parameter value, #0 = #⇤.

2. Compute the singular value decomposition of the Jacobian, J� = U⌃V T , where
U 2 RM⇥N , V 2 RN⇥N and ⌃ 2 RN⇥N is a diagonal matrix of singular values. The
rows of V T are the eigenvectors of JT

� J . Denote the eigenvector that corresponds
to the smallest singular value by v0.

3. Numerically solve the following initial value problem for the geodesic equation

@
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#
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@⌧2
=
X

j,k

�i
jk ·
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2
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@#j@#k
, (2.40)

using the parameter value # = #⇤ and eigendirection v = @#/@⌧ = v0 as initial
conditions. Identify the parameter limit (lim⌧!⌧b #(⌧) = ±1) as solution to the
geodesic equation (Eq. 2.40) at the manifold boundary where the FIM becomes
singular.

4. Analytically evaluate the parameter limit in the model. Recalibrate the parameters
of the reduced model #1 to match observations and repeat the process from step 1
with #0 = #1.

The optimal fit can usually only be inferred with large uncertainty, because parameter
equifinality implies that many different model realizations lead to identical model be-
havior. This means that large regions in parameter space, which might correspond to
different local minima, all map to a small confined region on the model manifold. Due to
this parameter space compression (Machta et al. 2013), geodesics started from different
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initial points will find the same manifold boundary. Transtrum and Qiu 2014 demon-
strated that repeating the MBAM with perturbed initial parameter values but similar
statistical behavior (goodness-of-fit) leads to the same reduced model, i.e. the MBAM is
robust to the starting point #⇤.

A numerical solution to the geodesic equation (Eq. 2.40) requires the calculation of local
sensitivity information (Section 2.2) and inversion of the FIM (Eq. 2.14) at every iter-
ation step. Calculation of the Christoffel symbols � requires second order sensitivities.
For large models it is computationally advantageous to approximate the contraction of
the second derivatives of the residual vector with the geodesic velocities by a finite dif-
ference approximation of the resulting second directional derivative (Transtrum et al.
2018). Equation 2.40 then reads (Transtrum and Qiu 2016)

@#i

@⌧
= vi (2.41)

@vi
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l,m

�
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where Am(v) is the second directional derivative

Am(v) =
X
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, (2.43)

with finite difference approximation

Am(v) = lim
h!0

rm(#+ hv) + rm(#� hv)� 2rm(#)

h2
. (2.44)

The geodesic ODE (Eqs. 2.41, 2.42 and 2.44) has to be integrated until a manifold bound-
ary is identified. Since manifold widths correspond to the square root of FIM eigenvalues
(Transtrum et al. 2010), the algorithm scales favorably with system size, i.e. geodesic
paths to the closest boundary on the manifold are shorter for larger models. However,
the eigendirection on the manifold that causes an almost imperceptible change to the
model performance metric (corresponding to the smallest eigenvector v0) can only be
determined up to a constant sign from the singular value decomposition of the Jacobian
matrix (either v0 or �v0). In practice, the direction is chosen in which the parameter
velocity initially increases.

Four criteria can be used to discern whether a boundary has been reached (Fig. 2.4).
A boundary is defined by the FIM becoming singular. As can be seen from the initial
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(a) Hessian eigenvalues (b) Hessian eigenvector components

(c) Parameter limits (d) Velocity limits

Figure 2.4 Identifying manifold boundaries. In the semilogarithmic plots (bottom) the
geodesic paths on the model manifold are parameterized by ⌧ . For the logarithm of model
parameters # (c) and parameter velocities v (d), one curve is plotted per parameter (in
this case 28). As the geodesic approaches a boundary (approximately at ⌧ = ⌧b ⇡ 5.8),
six parameter values and the corresponding velocities diverge. Other model parameters
slightly compensate for the limit at the boundary. The eigendirection vector (b) and FIM
eigenvalues � (a) at the start and end of the geodesic path are shown (initial/final). Once
a boundary is reached, the smallest eigenvalue separates and approaches numerical zero.
The final parameter space velocity vector contains only components corresponding to the
parameters that take on extreme values. In this case, the geodesic ODE was integrated
until the norm of the velocity vector increased by a constant factor: |vb| = k · |v0|, k = 25.
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and final plots of FIM eigenvalues, the smallest eigenvalue separates from the others and
approaches numerical zero (Fig. 2.4a). The eigenvector corresponding to the smallest
eigenvalue initially contains a mixture of factors, but is rotated from its initial direction
to reveal the important linear combination of parameters at the boundary (Fig. 2.4b).
As the geodesic approaches a boundary, model parameters asymptotically approach the
limit that is defined by the boundary (in this case six parameters approach infinity,
lim⌧!⌧b #(⌧) = 1; Fig. 2.4c). Accordingly, the corresponding parameter velocities (the
rates of parameter change along the manifold path) diverge (Fig. 2.4d). The increase in
parameter velocity compared to the initial velocity is the most robust indicator of limiting
behavior. The geodesic equation is integrated until the norm of the velocity vector has
grown by a constant factor k specific to the model that is analyzed: |vb| = k · |v0|.

By analytically evaluating parameter limits at the boundary, linear information is sub-
sequently manually translated into nonlinear approximations of model behavior. Since
one parameter is removed at a time, a limit involving N parameters requires the introduc-
tion of N � 1 new effective parameters that are expressed in terms of finite combinations
of the original parameters. If parameters approach a boundary at the same rate, finite
combinations correspond to cases such as “1/1, 0/0, 1 · 0, 1�1” and might involve
multiple model equations. Once the limit has been identified and analytically evaluated
in the model, it is necessary to slightly recalibrate parameters in the approximate model.
Denoting the reduced parameter vector by #̂, Eq. 2.2 with K(#̂) is used to recalibrate the
approximate model with N�1 parameters to the data and reiterate the reduction process
until all irrelevant parameters are removed from the model.



Chapter 3

Sloppiness in Soil Biogeochemical Modeling

3.1 Introduction

Soil biogeochemical modeling has progressed towards detailed, explicit representations
of biophysical processes (Wieder et al. 2015), but has yet to address the associated chal-
lenges of parameter estimation (Sierra et al. 2015a; Wang et al. 2015; Pagel et al. 2016).
The situation is not unlike in soil biology, where a universal sloppy structure in the pa-
rameter space of models has been reported as the underlying cause of the parameter
identification problem (Waterfall et al. 2006; Gutenkunst et al. 2007; Mannakee et al.
2016). The behavior of sloppy models depends only on a few stiffly constrained nonlin-
ear combinations of parameters. Conversely, the model behavior is insensitive to many
parameter combinations that correspond to sloppy directions. Sloppiness is locally man-
ifested in the eigenvalue spectrum of the measurement Hessian (Eq. 2.9) and globally
in the effective dimensionality of the model prediction manifold (Section 2.3.3). Since
soil biogeochemical models share structural elements with multiparameter models from
systems biology, this chapter explores whether the reported universality of sloppiness
(Machta et al. 2013) also extends to soil biogeochemical modeling.

3.2 Implementation

All models analyzed in this chapter were implemented in the SloppyCell software (My-
ers et al. 2007) in order to make use of its parameter estimation and sampling routines.
Soil biogeochemical models were tested in MATLAB R2017a (MATLAB 2017) and sub-
sequently automatically translated into SBML format for compatibility with SloppyCell
(Gómez et al. 2016). For analysis of the models by Ingwersen et al. 2008; German et al.
2012; Manzoni et al. 2014; Pagel et al. 2014; Wang et al. 2015, synthetic continuous
time series data for all model variables were generated that the models fit perfectly at
respective published optimal parameter values #⇤ (Tables A1, A4, A7, A10 and A13). The
associated cost function is given by Eq. 2.4. Local sensitivity equations for calculating the
Hessian (Eq. 2.9) and right hand side of the geodesic ODE (Eq. 2.40) were solved by the
direct differential method (Section 2.2). For numerical integration of Eq. 2.1, SloppyCell
uses a Python 2.7 interface to the implicit ODE solver DASKR written in Fortran (Brown
et al. 1994).

33
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For the Monod model for microbial growth (Section 3.3.3), synthetic data at four time
points was generated from the “true” base parameter values #⇤ = {Y ⇤, V ⇤

max, K
⇤
S} =

{0.5, 0.25 1/d, 0.5mgC/g}. Normally-distributed noise with standard deviation equal
to 10% of the respective maximum carbon concentration was added to the model out-
put. The initial conditions were assumed to be known (CB(0) = 0.03mgC/g, CS(0) =

1.0mgC/g). For visualization purposes, only the maximum growth rate Vmax and the
saturation constant KS were allowed to vary in the analysis. Log-normal priors1 were
added to the nonlinear least-squares cost function (Eq. 2.2) for the remaining two pa-
rameters in order to penalize values that stray too far from the base values #⇤. The
Python 2.7 code of the “Robertson example” (Mannakee et al. 2016) that is distributed
with the SloppyCell software (Myers et al. 2007) was modified to generate most of the
results and figures in Section 3.3.3. The minimization of the nonlinear least squares cost
function was performed numerically with an implementation of the standard Levenberg-
Marquardt routine (Press et al. 2007). A global sensitivity analysis that relies on param-
eter space sampling was conducted with the SloppyCell MCMC algorithm, either with or
without importance sampling (Section 2.3.2). In order to explore the model manifold
(Section 2.3.3) of the Monod model, an available Python 2.7 script (Transtrum 2016)
was utilized to solve the geodesic equation (Eq. 2.40). To ensure positive values and
improve numerical performance, all calculations were performed on a logarithmic scale
for #.

3.3 Results

3.3.1 Sloppy Local Sensitivity Spectra of Soil Biogeochemical Models

The local eigenvalue spectra of five biogeochemical models evaluated at their respective
published optimal parameter values are shown in Fig. 3.1a. All normalized spectra are
characterized by an approximately uniform spacing of eigenvalues of the Hessian matrix
over many orders of magnitude in log-space. This pattern in the local eigenvalue spec-
trum is the signature of a sloppy model (Brown and Sethna 2003).

Each eigenvalue corresponds to an eigenvector, i.e. a linear combination of parameters
that determines model behavior. A few eigenvectors are oriented along stiff directions in
parameter space in which the model is sensitive to parameter perturbations. Each suc-
cessive direction in parameter space is less important for explaining model behavior by
a roughly constant factor. A clear cutoff for parameter importance cannot be defined via
the magnitude of the eigenvalues. Locally, the cost contours of soil biogeochemical mod-

1The 95% confidence interval of the normal distribution of log # with expectation value ⌫ = #
⇤ and

standard deviation � = 1000 is the interval [⌫/�, ⌫ · �].
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els have aspect ratios larger than one thousand. These directions in parameter space are
termed sloppy, because associated combinations of parameters can be changed over large
ranges without affecting model behavior. As a result, most individual parameter values
will be difficult to infer from data. According to the Cramer-Rao bound (Eq. 2.19), in-
ferring parameters from the sloppiest direction in parameter space corresponding to the
smallest eigenvalue in Fig. 3.1a would require approximately 1022 more data than for
the stiffest combination. This would be three times as difficult as inferring microscopic
details from the diffusion equation (Machta et al. 2013).

The principal axes of the respective Hessian ellipsoids are generally not aligned with
the bare parameter axes (Fig. 3.1b). This indicates that nonlinear parameter combina-
tions compensate for each other to produce the same model output. The model behavior
is not predominantly sensitive to changes in individual parameter values.

A factor analysis of the four stiffest eigenvectors is shown in Fig. 3.2. Except for the
model by German et al. 2012, the parameters with largest factor loadings are consis-
tent across different eigenvectors. Model reduction by the MBAM (Section 2.4) would
likely identify the same limit from the first four directions in parameter space. The eigen-
vectors however can contain arbitrary mixtures of components from sloppy parameters
(Gutenkunst 2007). Due to strong nonlinearities in parameter space, the factor analysis
by itself is not very useful in guiding model simplification.

3.3.2 Semi-Global Analysis of the PECCAD ODE Model

Figure 3.3 paints a semi-global picture of the sensitivity of the PECCAD ODE model (Pagel
et al. 2014). Column (a) depicts the Hessian eigenvalues at the best fit point (correspond-
ing to Fig. 3.1e). Column (b) shows eigenvalue spectra generated from 10 different pa-
rameter sets drawn from an MCMC parameter ensemble. The eigenvalue spectrum is
locally sloppy at each investigated point. Column (c) shows the average of the eigenval-
ues �b of the columns in (b). However, eigenvalues of distinct Hessian matrices are only
additive when the corresponding eigenvectors are the same. That this is not the case can
be deduced from column (d). The left spectrum in column (d) shows the eigenvalues of
Hb, the eigenvalues of the average of the Hessian matrices in the ensemble. The right
spectrum in column (d) shows the eigenvalues of (H�1

b )�1, the inverse of the average of
the inverse Hessian matrices in the ensemble. The former average conserves eigenvalues
that are large in any of the individual Hessians in the ensemble. The latter conserves
eigenvalues that are small. The left spectrum is condensed compared to the individual
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(a) Normalized eigenvalue spectra of five biogeochemical models

(b) Alignment of eigenvectors with parameter axes

Figure 3.1 Local sensitivity analysis of soil biogeochemical models. (a) Eigenvalue spec-
tra derived from the measurement Hessian are plotted from left to right in increasing
order of apparent model complexity (the number of unknown parameters). The eigen-
values are normalized by the maximum eigenvalue. All models show a characteristic
sloppy eigenvalue distribution at published optimal parameter values. (b) If the align-
ment has a value of unity it means that one principal direction in parameter space lies
along a bare parameter direction, i.e. that the projection of the Hessian ellipsoid onto
the corresponding axis is equal to the intersection. The spectra indicate that principal di-
rections in parameter space are generally skewed from the bare parameter axes. Models:
(a) German et al. 2012; (b) Ingwersen et al. 2008; (c) Wang et al. 2015; (d) Manzoni
et al. 2014; (e) Pagel et al. 2014.
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(a) (b)

(c) (d)

(e)

Figure 3.2 Factor analysis of the four stiffest eigenvalues. ((a) German et al. 2012; (b)
Ingwersen et al. 2008; (c) Wang et al. 2015; (d) Manzoni et al. 2014; (e) Pagel et al.
2014). The five parameters with the largest contributions to each eigenvector are labeled.
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Figure 3.3 A semi-global perspective on the Hessian eigenvalues: (a) evaluated locally
at the best fit point; (b) evaluated locally at ten different points close to the best fit point;
(c) average �b of the eigenvalues in column (b); (d) left: eigenvalues of the average of
the Hessian matrices Hb in column (b), right: eigenvalues of the inverse of the average
of the inverse Hessian matrices (H�1

b )�1 in column (b); (e) eigenvalues derived from a
Principal Component Analysis of the ten-point parameter ensemble in column (b).

spectra in column (b) and the right spectrum contains more small eigenvalues. Conse-
quently, stiff and sloppy directions must change depending on the point in parameter
space at which the eigenvalue spectrum is evaluated. Descriptive statistics for the eigen-
values cannot readily be computed from a set of spectra.

The eigenvalues in column (e) derive from an eigendecomposition of the sample covari-
ance matrix of the MCMC parameter ensemble (Principal Component Analysis, PCA). By
PCA, the variance of the position of points in parameter space is analyzed. In order to fa-
cilitate comparison with the eigenvalues of the Hessian, column (d) contains the inverse
eigenvalues of the principal components (Eq. 2.17). When parameter nonlinearities are
taken into account, the sloppy local picture of the cost landscape topography is confirmed
by the spectrum of PCA eigenvalues.

3.3.3 Global Analysis of the Monod Model for Microbial Growth

The Monod model for microbial growth is one of the most frequently used and best stud-
ied models in microbiology (Monod 1949; Kovárová-Kovar and Egli 1998; Strigul et al.
2009). While originally developed for the growth of bacterial cultures in homogeneous
batch experiments, it has become common practice to incorporate the Monod model as
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a basic biokinetic component into soil biogeochemical models (Section 2.1). The Monod
model describes microbial growth as a nonlinear system of ODEs with three parameters
- the maximum growth rate Vmax, the substrate saturation constant KS and the yield
coefficient Y :

dCB

dt
= µ(t)CB =

VmaxCS

KS + CS
CB (3.1)

dCS

dt
= Y µ(t)CB = Y

VmaxCS

KS + CS
CB . (3.2)

The Monod model assumes that the microbial growth rate µ(t) depends nonlinearly on
the carbon concentration CS at time t in the system and that a constant fraction Y of the
consumed carbon is transformed into microbial biomass CB. It is equivalent to the mini-
mal soil carbon model by German et al. 2012 described in Section 2.1, when carbon input
and the first-order cycling rate of microbial biomass are neglected. In the context of soil
carbon modeling, the Monod model represents a minimal sloppy model (Section 3.3.1).

Figure 3.4a shows the model trajectory for microbial biomass CB generated from the
inferred optimal parameter values
(#⇤⇤ = {0.5, 0.23 1/d, 0.42mgC/g}, K(#⇤⇤) = 2.67). Due to the noise that was added to
the synthetic data, the best fit trajectory (red line) does not pass through the fourth data
point, although the fit is within the error bars of the other data points. This is because
model behavior is constrained by the sigmoidal form of the growth curve.

A cost surface in parameter space was generated by varying model parameters within
their respective physical ranges and recording the value of the cost function (Fig. 3.4b).
The topology of the cost landscape is dominated by a narrow canyon of equal goodness-
of-fit. The likelihood-based confidence region appears to be infinitely extended. This
indicates that parameters in the Monod model with fixed growth yield are structurally
non-identifiable (compare, e.g., with Raue et al. 2009, Fig. 1A).

Local sensitivity is given by the eigenvalues of the measurement Hessian (Eq. 2.14) at
the best fit point in parameter space (�1 = 182.7, �2 = 0.4). The ellipse of constant
cost (Fig. 3.4b) illustrates two key features of sloppiness. First, the ellipse has a large
aspect ratio, i.e. one direction in parameter space constrains model behavior much more
than the other direction. Second, the ellipse is tilted from the bare parameter axes and
hence constrains combinations of model parameters. The major axis of the ellipse is
oriented along the eigenvector corresponding to �2 and shows a direction in which com-
binations of log Vmax and logKS can be changed substantially without changing the fit
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(a) Time domain (b) Parameter space

(c) Data space

Figure 3.4 Visualization of the nonlinear least squares problem for microbial growth.
Varying maximum growth rate Vmax and substrate affinity KS generates (a) different
model trajectories, (b) a cost surface in parameter space and (c) a manifold in data
space. (a) Time domain: the first three data points (black stars) and analyticity of the
model constrain the predictions of the best fit trajectory (red line) at the fourth mea-
surement point. (b) Parameter space: shown is the local approximation of the Hessian
(turquoise ellipse) around the best fit point (red dot) and 120 parameter samples from
an MCMC ensemble (white dots). Geodesics (purple, blue) align with the curved cost
canyon in parameter space. (c) Data space: three-dimensional projection of all possible
model predictions for substrate and biomass at time points for which experimental data
is available. The first three principal components (PCA) explain 99.8% of the variance
in the trajectory data. The geodesics connect local information at the best-fit point (red
dot) with the global boundaries of the model (outlined in black). Large regions in param-
eter space (black) map to small regions (corners) on the model manifold. The canyon of
equal cost in parameter space is mapped to a confined region on the manifold. Globally
the model manifold and the local ellipse have similar aspect ratios.
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(a) Marginal posterior distributions (b) Autocorrelations

Figure 3.5 Performance of the MCMC algorithm. Shown are results from 10,000 MCMC
steps with (purple) and without (black) importance sampling run over the cost landscape
shown in Fig. 3.4b. (a) Histograms of the marginal posterior distributions generated
from the ensemble are compared with 95% confidence regions inferred from the Hessian
approximation (turquoise line). For comparison, the prior log-normal parameter distri-
butions are plotted in orange. (b) Autocorrelation of the cost as a function of MCMC
steps. The autocorrelation time for the importance sampled ensemble is shorter by a
factor of 10. Parameter samples 100 MCMC steps apart are statistically independent.

(this corresponds to a sloppy direction in parameter space). Conversely, the direction of
the minor axis constrains optimal parameter values to lie within a small area around the
best fit point (a stiff direction). The Monod model is sloppy with a highly anisotropic cost
landscape, as locally indicated by the difference in magnitude of the Hessian eigenvalues.

The nonlinear relationship between model parameters is globally captured by an MCMC
ensemble (Fig. 3.4b, white dots). Compared to the true posterior distribution resulting
from the ensemble, the 95% confidence region derived from the quadratic approxima-
tion of the Hessian close to the best fit underestimates the variability of the values of the
maximum specific growth rate Vmax (Fig. 3.5a, left). The distribution of the substrate
affinity KS is truncated from below (Fig. 3.5a, right). The narrower marginal posterior
distribution for KS as compared to the prior distribution indicates good identifiability. A
similar reduction in highest posterior density for Vmax could not be achieved.

The curved cost canyon of the model poses computational challenges for the MCMC algo-
rithm. The number of independent samples in a single ensemble is approximately given
by the number of MCMC steps divided by the longest correlation time between members
of the ensemble (Gutenkunst 2007). The correlation time of the cost was reduced by a
factor of 10 by importance sampling of the MCMC sampling matrix (Fig. 3.5b).
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Figure 3.6 Parameter samples and associated prediction uncertainties (95% confidence
intervals) for microbial growth. The figure is to be read top to bottom, left to right. Left
panel: the substrate affinity KS can only be guessed with low precision. Middle panel:
maximum specific growth rate Vmax and substrate affinity KS can be estimated to high
precision. Right panel: predictions evaluated from an MCMC parameter ensemble are
informative.

The model manifold of the Monod model is embedded in an eight-dimensional data
space (M=8). In order to generate a low-dimensional projection (Fig. 3.4c), model
predictions over a uniform grid in parameter space (Fig. 3.4b) were evaluated. These
correspond to a grid of vectors y(#) in the eight-dimensional embedding space. An iso-
metric embedding between Riemannian manifolds which preserves the metric is given by
a Principal Component Analysis (PCA). The model prediction vectors were arranged in a
matrix Y = [ỹ1ỹ2 ... ỹM ], with mean shifted column vectors given by ỹm = ym �

1
M

P
j yj.

Given a PCA, Y = U⌃V T , the first three principal components, U⌃ = Y V , explain 99.8%
of the variance in the trajectory data and can be used to visualize the model prediction
manifold (Fig. 3.4c). The geodesic paths and four distinct model realizations were like-
wise projected onto the manifold. The surface color of the manifold corresponds to the
value of the nonlinear least squares cost function.

The manifold is bounded, because the cost remains finite while parameters can take
on extreme values (0 or 1). This is apparent in the cost plateaus visible in parameter
space (Fig. 3.4b). As can be seen in comparison of Fig. 3.4bc, the geodesic paths can
be used to explore global properties of the Monod model. The extent of the manifold
in each direction coincides with the aspect ratio of the ellipse from the local quadratic
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approximation. The manifold has one long axis along which model predictions change
substantially and one much narrower direction. The observed empirical connection be-
tween global manifold widths and Hessian eigenvalues in sloppy models was formalized
by Transtrum et al. 2010.

The local and Bayesian analysis demonstrate that estimating precise parameter values
for KS is difficult. How does parameter uncertainty affect model predictions? Figure 3.6
(left column) shows the impact of measurement uncertainty for KS on model predictions
for biomass when the initial substrate concentration CS(0) is reduced by 25%. If KS

can only be experimentally measured or guessed to low precision (with its 95% confi-
dence interval spanning two orders of magnitude), large predictive uncertainty for the
time course of biomass results. In order to accurately predict biomass concentrations,
experimental measurements of both parameters Vmax and KS have to be very precise
(with the 95% confidence intervals spanning only ± 50% of the true values). The re-
quired experimental precision is determined by the stiffest direction in parameter space
(Fig. 3.6, middle column). When sampling from the MCMC ensemble (Fig. 3.6, right
column), almost the same prediction uncertainty on biomass as from precise parameter
measurements was recovered.

3.4 Discussion

The analysis of the simple Monod model for microbial growth illustrates many properties
that are shared by more complex, sloppy multi-parameter soil biogeochemical models.
The Monod model is sloppy with a highly anisotropic cost landscape and mapping be-
tween parameter and data spaces (Fig. 3.4). As reviewed below, this anisotropy has a
number of important implications for soil biogeochemical modeling.

Parameter Estimation

For sloppy models, the inverse problem of extracting individual parameter values from fits
to data by nonlinear least squares is extremely ill-posed (Gutenkunst et al. 2007). Slop-
piness thus offers an explanation for the reported parameter identification problems in
soil biogeochemical modeling (see the model descriptions in Section 2.1). The problem
persists even for continuous synthetic data with very little noise that the model can fit per-
fectly (Fig. 3.1a). As noted by Tönsing et al. 2014, continuous time series data represent
measurements that are highly correlated. As a result, densely sampled time-course data
as investigated for the models in Fig. 3.1 might over-estimate real world sloppiness. Nev-
ertheless, working to estimate individual parameter values in soil biogeochemical models
proves difficult, as the models mostly appear to be sensitive to coordinated changes in
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combinations of parameters (Fig. 3.1b).

Elaborate optimal experimental designs that allow to accurately estimate parameters of
models with similar eigenvalue spectra exist in the systems biology literature, but have so
far not been carried out in the lab (Apgar et al. 2010; Transtrum and Qiu 2012; Tönsing
et al. 2014; White et al. 2016). The theoretical optimal experimental setups require the
application of more controlled external stimuli and perturbations to the system (gene
knockouts, down regulations etc.) than likely possible in the here investigated bulk soil
systems. The statement with regard to model (c) in Fig. 3.1 that “more observed data
points [...] would reduce parametric uncertainty” (Wang et al. 2015) is a popular mis-
conception, since simply recording more measurements does not alleviate, but rather
increase sloppiness (Transtrum et al. 2010).

Models with a sloppy eigenvalue spectrum have a low effective dimensionality (Fig. 3.4b).
In higher dimensions, their model manifold is described as a hyper-ribbon (i.e. a geo-
metric object that is longer than wide, wider than thick, thicker than ... by a roughly
constant factor; Transtrum et al. 2011). The MBAM (Section 2.4) can be used to extract
the lower dimensional effective model (i.e. reduce the model to the few long axes of
the hyper-ribbon along which model predictions change significantly) and increase the
identifiability of the remaining (effective) parameters (Transtrum and Qiu 2014; Bohner
and Venkataraman 2017).

Parameter Sampling

Together, the eigenvalue spectra of different Hessian-type matrices in Fig. 3.3 indicate
that sloppiness is a global property of the PECCAD ODE model and that the cost landscape
is substantially curved. As a result, the relationship between parameters close to the best
fit is nonlinear and, with increasing model complexity, likely poorly approximated by the
local analysis (Fig. 3.5a). The curvature of the cost landscape poses challenges for pa-
rameter scanning algorithms.

Correlation analysis (Pianosi et al. 2016) typically relies on undirected sampling of the
parameter space. Here, Latin-Hypercube Sampling (McKay et al. 1979) is the preferred
method, because it avoids sampling along the bare parameter axes. For directed scan-
ning algorithms, dealing with the “curse of dimensionality” in high-dimensional param-
eter spaces with complex geometries in order to study global model properties is an
active problem (e.g., Zamora-Sillero et al. 2011; Leon et al. 2016). For Bayesian MCMC
methods (Chib and Greenberg 1995), the Hessian matrix has to be recalculated for every
member of the parameter ensemble in an importance sampling scheme (Section 2.3.2),
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because stiff and sloppy directions differ between parameter samples (Fig. 3.3). Accord-
ingly, the autocorrelation time for the cost function of the Monod model was reduced by
a factor of 10 by importance sampling (Fig. 3.5b). Generating statistically independent
samples in the high-dimensional, curved parameter spaces of sloppy soil biogeochemical
models proves to be computationally expensive (Calderhead and Girolami 2011). It can
be avoided by exploring global topological features of the model manifold by geodesics
(Fig. 3.4c).

Model Selection

The model manifold is a global representation of a model. By exploring the model man-
ifold with geodesics, Transtrum et al. 2010 empirically found that manifolds of sloppy
models are bounded and exhibit a hierarchy of widths approximately given by one over
the square root of the local Hessian eigenvalues. The behavior of sloppy models is gov-
erned by a few principal axes of the prediction manifold (Fig. 3.4c). These axes corre-
spond to a small number n of stiff directions in parameter space that describe an effective
model which approximates the behavior of the original model (Transtrum and Qiu 2014).
The N �n biogeochemical model parameters that are unconstrained by data do not con-
tribute to model ouput variance, since the anisotropic mapping compresses large regions
of parameter space into indistinguishable model predictions (small dimensions of the
model manifold). The model is insensitive to coordinated changes of parameters that
correspond to manifold widths smaller than one standard deviation (White et al. 2016).

In biogeochemical model selection, typically Akaike or Bayesian information criteria (IC,
for an overview from a hydrological perspective, see Höge et al. 2018) are used to quan-
tify an optimal trade-off between goodness-of-fit to data and model complexity. By con-
struction IC(x) = C(x,#⇤) + , where C(x,#⇤) is the cost function (Eq. 2.2) evaluated
at the maximum likelihood estimate #⇤ and , the predictive complexity, is a penalty
term which can be understood intuitively as the flexibility of the model in fitting data x

(Choe 2017). The value of the cost function typically decreases with model dimension.
In the large-sample-size limit of a structurally identifiable model, the complexity term
for the AIC (BIC) is simply approximated by the number of model parameters,  = N

(⇡ 2 logN), i.e. the dimensionality of the model manifold. Since the model manifold of
sloppy models has an effective dimensionality, often much less than the number of model
parameters, the AIC (and BIC) approximations for model complexity systematically over-
estimate the true predictive complexity at finite sample size (LaMont and Wiggins 2015,
Section 5.3). The N � n model parameters that are unconstrained by data do not con-
tribute to model flexibility.
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Likewise, Jeffrey’s prior is not an uninformative Bayesian prior choice for sloppy mod-
els (Mattingly et al. 2018). Since Jeffreys prior is proportional to the volume element of
the model manifold as measured by the FIM,

p
|g| (Section 2.3.3), its weight along the

relevant directions always depends marginally on its remaining support on the irrelevant
sloppy dimensions of the manifold. Hence it depends on parameters to which the model
is almost imperceptibly sensitive and which could be introduced arbitrarily. Instead, the
prior for which the data brings the maximal amount of information is discrete, with sup-
port only on the boundaries of the model manifold (Mattingly et al. 2018, Fig. 4). It thus
selects precisely the effective model that can systematically be constructed by the MBAM.

Model Prediction

Predictions from ensemble fits in sloppy models can be tightly constrained, despite large
uncertainties in individual parameter values
(Fig. 3.6, right column). The reverse statement is that tight parameter estimates con-
strain predictions just as well as ensemble fits (Fig. 3.6, middle column). For model
uncertainty analysis, it is hence not necessary to insist upon tight prior estimates for
all model parameters, which are difficult to obtain in soil biogeochemical systems (e.g.,
Wang et al. 2012, 2013, 2015). The information provided by constraining n relevant
parameters in sloppy models is enough to make informative predictions.

In the context of systems biology, it was shown that it is easier to design optimal experi-
ments that constrain model predictions than individual parameters (Casey et al. 2007).
Similar arguments have recently shifted the focus from the identification of model param-
eters to model predictions in the hydrological modeling community (Hermans 2017). As
pointed out by Hermans 2017, it is imperative that the data is informative regarding the
predictions of interest, i.e. that data and model predictions are driven by the same model
parameters. For sloppy models, this is the case if the effective model constructed by the
MBAM contains the relevant mechanisms that drive the forecast. If the relevant mecha-
nisms are contained in the (N � n) - dimensional sloppy subset, the model structure has
to be revised. In this way, systematic errors in model structure were discovered, e.g.,
in density functional theory (Mortensen et al. 2005; Nikšić and Vretenar 2016; Nikšić
et al. 2017). In Chapter 5, the MBAM is used to assess the representation of microbial
processes associated with pesticide degradation in the PECCAD ODE model.

Most of the implications of sloppiness related to parameter estimation, parameter sam-
pling, model selection and model prediction exist in some form or another in the sys-
tems biology or hydrology literature (e.g., Engl et al. 2009; Zamora-Sillero et al. 2011;
Schöniger et al. 2014; Hermans 2017). Soil biogeochemical model development, how-
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ever, has been struggling to implement theoretical insights from these fields (Wieder et al.
2015). The sloppy systems approach provides a novel perspective on problems associated
with biogeochemical modeling.



Chapter 4

Problems with Parameter Inference from Heterotrophic Respiration
Data

4.1 Introduction

Kinetic respiration analysis is widely used to independently determine estimates for sub-
sets of biophysiological parameters of soil biogeochemical models (Anderson and Dom-
sch 1978; Colores et al. 1996; Blagodatsky et al. 2000; Wutzler et al. 2012; Blagodatskaya
and Kuzyakov 2013; Wang et al. 2014a). In a kinetic respiration assay, a soil sample is
amended with carbon growth substrates (e.g., glucose and mineral nutrients) and the
increase in soil heterotrophic respiration rate is monitored over time. When carbon sub-
strates are initially in excess, microbial growth is unlimited and an exponential increase
of the respiration rate is observed. The question addressed in this chapter is whether bio-
physiological parameters related to growth and activity of microorganisms can be reliably
inferred from the exponential respiration curve by nonlinear least squares regression.

The minimal set of parameters to be inferred from respiration assays found in the lit-
erature consists of the initial microbial biomass, its active fraction and the maximum
specific growth rate. The results of parameter estimation from existing studies are not
directly comparable, because the approach depends on the underlying microbial physiol-
ogy model. In this chapter, parameter inference from heterotrophic respiration data for
the microbial physiology compartment of the MEND model (Wang et al. 2014a, 2015;
Section 2.1) is analyzed.

The MEND microbial physiology model (Wang et al. 2014a) is expressed as a system
of three ODEs that describe the rate of change of carbon substrate S, microbial biomass
B and active microbial biomass fraction r = BA/B, where BA denotes active microbial
biomass:

dS

dt
= �

1

YG
·
�(S)

↵
·mR · r · B (4.1)

dB

dt
=

✓
�(S)

↵
� 1

◆
·mR · r · B � (�mR) · (1� r) · B (4.2)

dr

dt
= mr ·


(�(S)� r) +

✓
�(S)

↵
+ � � 1

◆
· r · (1� r)

�
. (4.3)
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Substrate uptake by microbial biomass depends on the substrate saturation level �(S) =
S/(KS + S), where the parameter KS is interpreted as the half-saturation constant of
Monod kinetics (Section 3.3.3) and YG is the true growth yield. The growth and main-
tenance functions of active biomass are characterized by mR, the specific maintenance
rate, and ↵ = mR/(µG+mR), the ratio of mR to the sum of maximum specific growth rate
µG and maintenance rate mR. The transition from active to dormant state of microbial
biomass in the MEND model is determined by maintenance requirements. The fraction of
dormant biomass (1�r) ·B is not capable of growth on carbon substrate concentration S,
but maintains cellular function in a dormant state at a lower maintenance cost of � ·mR,
where � < 1.

The fraction of carbon substrates not incorporated into active microbial biomass is respired
as CO2 and constitutes the heterotrophic respiration flux rate:

⌫(t) =
dCO2

dt
=

1� YG

YG
·
�(S)

↵
·mR · r · B . (4.4)

When substrate is in excess, S � KS, the substrate saturation level plateaus,�(S) ! 1,
and ⌫(t) can be expressed as an explicit function of time (Wang et al. 2014a, Eq. 14d):

⌫(t) =
B0(1� YG)

YG
·
�
[µG · r0 +mR] · e

µG·t
� [mR · (1� r0)] · e

�mR·t� . (4.5)

The heterotrophic respiration rate is determined by the difference of two exponential
functions, eµG·t = e(1/↵�1)·mR·t and e�mR·t. The
exponentially-increasing initial phase of heterotrophic respiration rate data from substrate-
induced respiration assays (Fig. 4.1) can in principle be used to estimate five biophys-
iological parameters from the model: the initial total microbial biomass B0, the initial
fraction of active biomass r0, the true growth yield YG, the specific maintenance rate mR

and the maximum specific growth rate µG via its dependence on ↵.

4.2 Implementation

The code used to generate the synthetic data, fit the model and perform the MBAM model
reduction for the respiration assay was adapted from https://github.com/gbohner/
MBAM (Bohner and Venkataraman 2017) and updated to be compatible with the Julia
v0.6.4 release (Bezanson et al. 2017). The automated code to reproduce all figures in
this chapter is available from https://github.com/giannamars/MBAM-RESP.

The model defined as y = f(#, t), explicitly given by (Eq. 4.5), with single output y 2 R
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(a) (b)

Parameter Unit Base value Fit value

B0 [mgC/g] 0.504 0.477
r0 [�] 0.394 0.052
YG [�] 0.50 0.09
µG [�] 0.027 0.027
mR [1/h] 0.00613 0.00038

(c)

Figure 4.1 Synthetic heterotrophic respiration data generated from the MEND microbial
physiology model. (a) Exponentially-increasing and non-exponentially-increasing respi-
ration rate phases simulated over 100 hours. Simulations were generated from the full
model (Eq. 4.4) with base parameter values as in (c). (b) Exponentially-increasing respi-
ration data sampled every hour over the first 40 hours from simulations of the full model
in (a). The error bars represent 10% deviation from the noiseless synthetic data. The data
is extremely well fit by the exponential model (Eq. 4.5, green solid line), but optimal pa-
rameter values from a randomly chosen optimization run deviate substantially from the
“true” base values for three out of the five biophysiological parameters (fit values in (c)).
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and model parameters # = {B0, r0, YG, µG,mR} 2 RN , N = 5, was simulated using the
base parameter values #⇤ given in Fig. 4.1c. The parameter values were chosen to match
the original study of the MEND physiology model by Wang et al. 2014a, Table 1. Noisy
data was generated by multiplying the base parameter simulation with a stochastic term.
The stochastic values were drawn from the distribution Uniform([1 � �, 1 + �]), � = 0.1.
The Levenberg-Marquardt solver (Press et al. 2007) was used to minimize the nonlinear
least squares cost function (Eq. 2.2). A local multi-start optimization method was chosen
in this study, because it performs well in terms of finding the global parameter minimum
in biological systems as compared to particle swarm (or hybrid) optimization algorithms
used in the original analysis of the respiration assay (Raue et al. 2013; Stapor et al. 2017,
Supplementary Fig. S2). Each minimization was performed from 24 perturbed initial pa-
rameter vectors from which the global best-fit parameters were selected. Bounds on the
relative size of the 95% confidence intervals of individual model parameters #i (Eq. 2.18,
Gutenkunst et al. 2007; Apgar et al. 2010) were calculated from the trace of the inverse
Hessian matrix H as

⌃i = exp

 
4 ·

✓
�2

T
H�1

ii

◆ 1
2

!
� 1 , (4.6)

with time grid size T = 40. ⌃i gives the ratio of values for parameter i at the upper
and lower bound of the 95% confidence interval. The coefficient of variation (CV) of a
parameter distribution, defined as the ratio of the standard deviation to the mean, was
likewise reported as an uncertainty measure.

Conceptual details of the model reduction by the MBAM can be found in Section 2.4.
Numerical details are made available through inspection of the online simulation code.
Full algebraic details of the model reduction steps are presented in Section 4.3.

4.3 Results

4.3.1 An Illustration of Parameter Non-Identifiability

Noisy synthetic data generated from the MEND physiology model
(Eq. 4.5) are well fit (within the 10% error bars) by one instance of parameter values that
deviate from the base values used to generate the data (Fig. 4.1bc). In order to determine
the variation in inferred parameter values, the model was fit with a multi-start gradient-
descent algorithm to 100 noisy synthetic data sets (Fig. 4.2). Except for the maximum
specific growth rate, the inferred best-fit parameters span many orders of magnitude
(Fig. 4.2a-e). Parameter identifiability was quantified by computing bounds on the 95%
confidence interval (relative error) and by determining the ratio of the biased standard
deviation to the mean of each distribution (coefficient of variation, CV). Except for the
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(a) (b)

(c) (d)

(e)

Parameter Relative error [%] CV [%]

B0 Inf 3.1
r0 Inf 1.2
YG Inf 1.0
µG 1.31e48 0.06
mR Inf 0.64

(f)

Figure 4.2 An illustration of non-identifiability. (a)-(e) Logarithm of fitted parameter
values to 100 noisy synthetic data sets generated from the “true” base parameter values
(green line). The values span many orders of magnitude. (f) The lower bounds on
the 95% confidence intervals (relative parameter errors) are infinite. The coefficient of
variation (CV) is smallest for the maximum specific growth rate µG.
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maximum specific growth rate, the confidence intervals of parameters are infinite. Their
values can only be determined with high uncertainty as confirmed by the computed CVs
(Fig. 4.2f). Relative to the base parameters, the values for the true growth yield and the
initial fraction of active biomass were systematically overestimated (Fig. 4.2bd). Overall,
the full MEND physiology model suffers from non-identifiability.

4.3.2 Model Parameters are Non-Identifiable Because of Sloppiness

The bias in the inferred values for the true growth yield and the initial fraction of active
biomass suggests that non-identifiability arises because parameter values compensate for
each other to produce similar output, rather than because model output is insensitive to
variations of individual model parameters. The same characteristic has been observed
for sloppy models that locally exhibit an exponential range of parameter sensitivities
(Gutenkunst et al. 2007; Machta et al. 2013; Chapter 3) and models that suffer from
(more loosely-defined) parameter equifinality issues (Beven 2006). Sloppiness is defined
via the eigenvalues of the Hessian matrix. Figure 4.3a shows that the square root of
eigenvalues of the MEND physiology model are exponentially spaced, corresponding to
a linear spacing in the logarithm. Inferring parameter combinations corresponding to
successive eigenvalues in the spectrum is more difficult by a constant factor. The same
trend in the spectrum is observed when the respiration data generated from Eq. 4.5 is
log-transformed. Linear regression can then be used to infer parameter values. However,
the log-transformed model exhibits the same degree of sloppiness. It hence possesses the
same number of identifiable parameters and there is no information gain in the transfor-
mation.

4.3.3 Model Reduction Results in Identifiable Parameters

The MBAM was used to construct a reduced MEND physiology model the parameters of
which are all identifiable and still confer mechanistic information about the system. The
algorithm proceeds by removing the smallest eigenvalue of the sloppy spectrum in each
iteration (Fig. 4.3b), whilst keeping the goodness-of-fit of the reduced models to respira-
tion data constant (Fig. 4.5a). The output of MBAM iterations 1-3 are shown in Fig. 4.4
(left column). MBAM calculates a trajectory through parameter space, parameterized by
⌧ , for which the model fit remains constant. Conversely, each “time point” ⌧ corresponds
to a set of parameter values that give rise to equivalent model behavior. In the extreme
case, parameter values in log-space diverge, i.e. parameters take on values close to 0 or
1. Once divergent parameters are identified, the algorithm is terminated and the model
is reparameterized in terms of the emergent finite parameter combinations. Through
reparameterization of the model, one original model parameter is removed per iteration.
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(a) (b)

Figure 4.3 The MEND physiology model is sloppy. (a) Calculated logarithm of the square
root of Hessian eigenvalues for the original (stars) and log-transformed (diamond) data.
The linear trend in log-space between Hessian eigenvalues and the number of ellipsoid
axes is the signature of a sloppy model. (b) The MBAM iterations remove the parameter
combination corresponding to the smallest eigenvalue from the model.

For the MEND physiology model, this procedure was repeated four times.

While the MBAM algorithm is deterministic and fully automated for the example in this
chapter, the 0th model reduction step was easily guessed. Recall that the full model is
given by

⌫(t) =
B0(1� YG)

YG
·
�
[µG · r0 +mR] · e

µG·t
� [mR · (1� r0)] · e

�mR·t� . (4.7)

The prefactor of the difference of exponentials is composed entirely of parameters. When
B0 and YG are of the same order of magnitude, they can be varied without changing
the effective value of the prefactor. In fact, the 0th limit corresponds to B0, YG ! 0 as
⌧ ! 1 (not shown). Reparameterizing the model by introducing the effective parameter
�1 = B0/YG removes the smallest Hessian eigenvector from the spectrum (Fig. 4.3b)
without changing the fit to data (Fig. 4.5a). After the 0th iteration, the model reads

⌫1(t) = �1 ·
�
[µG · r0 +mR] · e

µG·t
� [mR · (1� r0)] · e

�mR·t� . (4.8)

The first MBAM iteration subsequently sends �1 ! 1 and r0,mR ! 0 as ⌧ ! ⌧b = 1.4

(Fig. 4.4, first row). After the first reduction the model is given by

⌫2(t) = [�2µG + �3] · e
µG·t

� �3 . (4.9)
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Parameter Relative error [%]

�1 Inf

YG Inf

µG 1.31e48

mR Inf

Parameter Relative error [%]

�2 2.47e7

�3 2.44e43

µG 3.26e8

Parame-
ter

Relative
error [%]

CV [%]

�2 6111.8 0.03

µG 786.4 0.008

Figure 4.4 Intermediate MBAM steps 1-3 (left column) and relative parameter errors
(right column). The left column shows parameter limits in each MBAM step that are
identified at the end of the geodesic path parameterized by ⌧ . The corresponding table
in the same row shows the relative parameter errors derived from the inverse Hessian
approximation at the start of the reduction. The MBAM removes the least-identifiable
parameter combination.
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Finite emergent parameter combinations correspond to �2 = �1 · r0 and �3 = �1 ·mR, i.e.
parameter combinations that can be combined to the product “0 ·1”.

The second limit sends �3 ! 0 (Fig. 4.4, second row) and completely removes the de-
caying exponential term from the MEND physiology model:

⌫3(t) = [�2µG] · e
µG·t . (4.10)

Notice that in the second iteration the other two parameters �2 and µG have to slightly
compensate for the removal of �3, while the first reduction took place without significant
compensation by µG.

The last iteration sends �2 ! 1 and µG ! 0 (Fig. 4.4, third row), but results in a
constant heterotrophic respiration rate, ⌫4 = �5 = �2µG = const, which is clearly not
capable of matching the data.

All intermediate reduced models, ⌫i(t), i 2 {1, 2, 3}, fit the data extremely well (Fig. 4.5).
Lower bounds on the relative parameter errors calculated at the start of MBAM consis-
tently decrease with each iteration (Fig. 4.4, right column). Each model reduction leads
to a smaller number of non-identifiable parameter values, while the identifiability of
single parameters (e.g., �2 and µG) increases. Accordingly, the value of the maximum
specific growth rate base parameter µG as inferred by the reduced model ⌫3(t) from 100
noisy data sets varied one order of magnitude less than when inferred from the full model

(a) (b)

Figure 4.5 Goodness-of-fit to heterotrophic respiration data (a) and visualization of the
fitted respiration curve (b) for each reduced model ⌫i(t), i 2 [0, 3] (Eqs. 4.7 to 4.10). The
increase in the cost function value for the third reduction is negligible. All models fit the
data extremely well.
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(a) (b)

Figure 4.6 An illustration of identifiability. Logarithm of fitted parameter values of the
reduced model ⌫3 (Eq. 4.10) to 100 noisy synthetic data sets generated from the “true”
base parameter values (green line). The coefficient of variation for each parameter is
smaller as compared to the full model (Fig. 4.2).

(compare Fig. 4.2e and Fig. 4.6a, as well as the coefficients of variation in Fig. 4.2f and
Fig. 4.4 (bottom row)). Differences in base and inferred parameters of the full model
that give rise to the same model output keep the emergent parameter �2 = B0r0/YG con-
stant. This is the explanation for the observed bias in the estimation of the base values
of parameters r0 and YG from the full model (Fig. 4.2bd). Conversely, only the emergent
parameter combination �2 can be reliably inferred from the data.

4.4 Discussion

Models of the form y(t) = Ae#1t and y(t) = A(e#1t + e�#2t) are structurally identifiable
for generic positive parameter values (except for a pathology at A = 0). Structural non-
identifiability means that model parameters cannot be identified from an infinite amount
of noiseless data, i.e. parameters can never be estimated (Villaverde et al. 2016). Struc-
tural identifiability is a prerequisite for practical identifiability studied in this chapter.
Practical identifiability refers to quantifying the uncertainty in parameter values when
estimated from noisy data. The nonlinear least squares problem of fitting sums of expo-
nentials to data has been studied extensively at least since Bates and Watts 1988; van den
Bos and Swarte 1993. The problem is notoriously ill-posed. In fact, it is the prototype of
a sloppy model (Transtrum et al. 2010, 2011). E.g., Mattingly et al. 2018, Fig. 4 show
that the difference between one or two decay rate parameters #i being identifiable from
the sum of two exponentials can be the difference between a week’s data and a year’s
data as determined by the ratio of the data noise to the number of measurement repeti-
tions.
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In the context of classical soil carbon modeling, the problem has recently been associ-
ated with kinetic fitting of incubation data (Weihermüller et al. 2018). Similar to the
heterotrophic respiration assay analyzed in this study, soil properties from classical in-
cubation experiments have to be inferred from exponentially increasing cumulated CO2

fluxes. E.g., for a double-pool model, the total organic carbon pool is separated into
two different compartments (a labile pool with short turnover time and a recalcitrant
pool with longer turnover time). The two exponential decay constants #i correspond
to kinetic parameters of carbon turnover pools that can directly be incorporated into
complex, predictive, multiple timescale carbon models (Jenkinson 1990; Parton et al.
1987; Wutzler and Reichstein 2013). While the authors proposed statistical guidelines
for the estimation of kinetic parameters, they concluded that “all these recommendations
will not overcome the ill-posed problem, which is inherent to the experimental data and
the nature of the simple carbon decay (double-pool) model” (Weihermüller et al. 2018,
p.269). Similarly, Wutzler et al. 2012 focused on how the uncertainty of biophysiologi-
cal parameter estimation from kinetic respiration analysis is influenced by measurement
uncertainty and data selection. Due to the degree of difficulty of the inverse problem
however, the uninformed investigation of available respiration data is unlikely to lead to
universal guidelines for parameter identification in the nonlinear least squares problem.

In contrast to questions of data selection, this study focused on overcoming the ill-posed
nature of the inference problem by constructing reduced models with identifiable pa-
rameters. In line with the original study (Wang et al. 2014a), the MBAM identifies the
maximum specific growth rate µG as a model parameter that can reliably be estimated
from the heterotrophic respiration assay. Model reduction decreases the uncertainty of
the inferred parameter value as evidenced by a significant decrease in the coefficient of
variation for the maximum specific growth rate in each reduction step.

In contrast to the original study, the MBAM iteration shows that the exponentially-
increasing respiration curve cannot be used to reliably determine the initial active mi-
crobial biomass. Instead, the second identifiable parameter �2 = B0r0/YG is a nonlinear
combination of the initial total biomass B0, the initial active microbial fraction r0 and
the true growth yield YG. Hence, only the ratio of the initial active biomass to the true
growth yield can be inferred with high certainty. This result is non-trivial and cannot be
discerned from the individual relative parameter errors or reported coefficients of varia-
tions of the full MEND physiology model (Fig. 4.2f).

Since the emergent parameter combination contains an initial condition of the MEND
model, it does not convey mechanistic information about the system under study, as, e.g.,
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observed in the context of other biological systems (Transtrum and Qiu 2016; Bohner and
Venkataraman 2017). In particular, a trade-off between initial active biomass and true
growth yield is neither biophysically possible, nor biophysiologically reported (Martiny
et al. 2015; Litchman et al. 2015). In this case, the emergence is spurious, rather than a
meaningful result of the nonlinear least squares problem. The emergent parameter can-
not be directly integrated into more complex soil carbon models.

Reporting the uncertainties of estimated parameters is as important as reporting the best
estimates for predictive soil carbon modeling (Raupach et al. 2005; Wieder et al. 2015;
Luo et al. 2016). In order to increase confidence in selective parameter estimates and as-
sociated uncertainties, the MBAM could easily be used as an add-on to the model fitting
process in kinetic respiration assays. A holistic way forward in the analysis of heterotro-
phic respiration data could be to revert back to the noisy respiration data sets used in
the original studies (Wutzler et al. 2012; Weihermüller et al. 2018) and contrast results
of regularization methods for nonlinear least squares problems (Engl et al. 1996, 2009;
Gábor and Banga 2015) on the identifiability of biophysiological parameters with results
of the MBAM model reduction.



Chapter 5

Emergent Controls of Pesticide Degradation

5.1 Introduction

As the most complex representative among the biogeochemical models, the PECCAD
model (PEsticide degradation Coupled to CArbon turnover in the Detritusphere; Pagel
et al. 2014) that simulates degradation of the herbicide 4-chloro-2-methylphenoxyacetic
acid (MCPA) coupled to carbon (C) turnover in soil is analyzed in this chapter. The model
was originally formulated with the aim to identify regulation mechanisms of accelerated
pesticide degradation in soil in response to supply of fresh C from decomposing plant
litter. As shown in Fig. 5.1 the model can be observed at different data resolutions.

PECCAD couples the dynamics of two pesticide pools (dissolved CP and sorbed phase
CP�s) to that of several C pools (readily available high quality C Chiq, and sorbed phase
Chiq�s, recalcitrant low quality C Cloq and sorbed phase Cloq�s, insoluble soil organic
matter CI) and microbial populations (bacteria CB, fungi CF , specific pesticide degraders
CBP ). The model simulates the physiological state of microorganisms (ri, i 2 {B,F,BP})
to account for active and dormant biomass. Input of litter-derived dissolved organic C
(DOC) and partitioning into high and low quality fractions is simulated with a time-
dependent empirical litter decomposition function (Pagel et al. 2014, Online Resource 3).
Model parameters of PECCAD that have to be inferred from data can be loosely grouped
into biokinetic parameters (maximum growth and decomposition rates, substrate affinity
coefficients, substrate uptake efficiencies), physicochemical parameters (sorption coeffi-
cients, partitioning coefficients of C pools) and unknown initial conditions (physiological
state index variables).

5.2 Implementation and Data

In contrast to the original PECCAD model, spatial variations of state variables and trans-
port processes were neglected in this study. That is, the original system of 12 coupled
partial and ordinary differential equations (Pagel et al. 2014, Table 1-2) was transformed
to an ODE system (PECCAD ODE). This was needed to stay within the computational
framework of the other analyzed biogeochemical models.

PECCAD ODE was implemented in the SloppyCell software (Myers et al. 2007). Equa-

60
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Figure 5.1 Diagram of the PECCAD ODE model (Pagel et al. 2014). Boxes symbolize C
pools and arrows indicate C fluxes. The system can be observed at different resolutions:
(i) using information on all available data including the dynamics of functional genes
(dark gray), or (ii) bulk biomass (gray) along with measurements of dissolved organic
C (DOC), insoluble soil organic matter (CI), total pesticide (CP + CP�s) and heterotro-
phic respiration (CO2); (iii) only with input-output information on total pesticide and
CO2 (light gray). Fluxes directly related to pesticide degradation are colored in orange.
Individual C pools in white boxes correspond to unobserved system components.

tion 2.2 (relabeling K(#) ⌘ J(p) in this chapter) was minimized using the standard
Levenberg-Marquardt algorithm (Press et al. 2007) with logarithmically transformed pa-
rameter values. Local sensitivity equations for calculating the Hessian (Eq. 2.9) and right
hand side of the geodesic ODE (Eq. 2.40) were solved numerically by the direct differ-
ential method (Eq. 2.16) Ensembles of parameter sets were generated by Markov Chain
Monte Carlo (MCMC) importance sampling (Gutenkunst 2007; Section 2.3.2) from the
posterior distribution (Eq. 2.3) with log-normal priors that restricted parameters to lie
with 95% confidence within two orders of magnitude of the locally-inferred best fit val-
ues. An available python script (Transtrum 2016) was used to implement the geodesic
equation (Eq. 2.40) for the MBAM (Section 2.4). Algebraic details of selected MBAM
model reduction steps are presented in the results section. For the Morris Method (Sec-
tion 2.3.1) as implemented in the MATLAB SAFE toolbox for global sensitivity analysis
(Pianosi et al. 2015), lower and upper bounds for uniform Latin Hypercube sampling of
model parameters were set to 50% and 200% of the best fit parameter values. 25,000
trajectories were evaluated, corresponding to 2.64 million model evaluations. The ro-
bustness of Morris pairs was checked by bootstrapping and convergence analysis. Fol-
lowing the GSA approach by Link et al. 2018, Morris mean µ⇤

i and standard deviation �⇤
i
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were restricted to the unit square by normalizing with the largest value observed:

µ̂⇤
i =

µ⇤
i

max
i

µ⇤
i

, �̂⇤
i =

�⇤
i

max
i

�⇤
i

. (5.1)

The `2-norm of normalized Morris pairs was subsequently used to screen for model pa-
rameters that have a negligible effect on the cost metric.

The original PECCAD model was validated with a series of microcosm experiments on
the degradation of the herbicide MCPA in soil (see Pagel et al. 2016 for details). Briefly,
homogenized soil was filled to a height of 30 mm into stainless steel cylinders (diameter
56 mm, height 40 mm) and compacted to a bulk density of 1.2 g/cm3. In one experimen-
tal treatment (MCPA), an MCPA solution was homogeneously added to the soil to obtain
an average concentration of 53µg/g. In a second treatment (MCPA + Litter), the same
MCPA amendment was used, but a layer consisting of 0.5 g maize litter was added on
top of the microcosms. Four replicated microcosms of each treatment were then destruc-
tively sampled after 4.9, 7.8, 10.0, 13.9 and 22.8 days in 0-1,1-2, 2-3, 3-4, 4-6, 6-10 and
10-20 mm layers. To obtain sufficient material for analyses, soil from associated layers
of two soil cores was combined resulting finally in two experimental replicates. In this
study, data on MCPA, extractable DOC, total organic C (TOC), microbial biomass (CB),
genetic abundances of bacteria (16S rRNA genes), fungi (ITS fragments) and specific
MCPA degraders (tfdA genes) was averaged over the first five soil layers (0-6 mm) of the
microcosms. Thus, for each experimental treatment 67 data points were used to calibrate
the PECCAD ODE model and estimate 59 parameters.

5.3 Results

5.3.1 Sloppiness and Systematic Reduction of PECCAD ODE

Figure 5.2 shows the Hessian eigenvalues of PECCAD ODE at each stage of the reduction
by the MBAM. The initial 59 parameter model is sloppy when fit to the full data set of
the MCPA + Litter experiment. The eigenvalues are uniformly spaced over 22 orders of
magnitude. Thirty-two unidentifiable parameters correspond to eigenvalues smaller than
one, i.e. manifold widths smaller than the scale set by the experimental measurement
uncertainty. In each model reduction step, the smallest eigenvalue is removed from the
spectrum by the MBAM without affecting the cost function value.

Tailoring model complexity to the full observational data set reduces the dimension
of the PECCAD ODE system as well as the number of parameters (Tables 5.1 and 5.2,
M=10, N=27). ODEs for physiological state indices of bacteria and specific pesticide de-
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Figure 5.2 Tailoring model complexity of PECCAD ODE to functional gene data from
the Litter + MCPA experiment. The MBAM removes one parameter at a time until the
remaining parameters are identifiable to a given tolerance of 1/e (orange dashed line).
Shown on top of the reduction spectra is the value of the cost function J(p) during the
iteration. The full observational data set identifies a 27 parameter model that fits the
data equally well.

graders are transformed into algebraic equations that can be substituted into the original
equation system. Nine effective parameters, fungal kinetic parameters, substrate uptake
efficiencies and sorption coefficients govern the time evolution of the remaining C pools.
The effective parameters are expressed in terms of nonlinear combinations of the original
biokinetic parameters. Except for substrate uptake coefficients, only fungal parameters
can be uniquely identified from the given data set. Fungal parameters related to the
specific death rate are not constrained by data, but marginally important for model per-
formance, i.e. they cannot be removed from the model without changing the value of the
cost function (MBAM step 32 in Fig. 5.2). Except for the specific death rates of bacteria
and fungi, all biokinetic functions originally formulated as multi-substrate Monod kinet-
ics (Fig. 2.1) are sufficiently described by linear, rather than saturating functions of the
substrate concentration.
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Table 5.2 Model parameter symbols, descriptions, values of optimal parameters of the
reduced PECCAD ODE model (M=10, N=27) calibrated on the data of two experimental
treatments (MCPA + Litter, MCPA), 95% highest posterior density intervals (HDI) and
units.

Symbol Description MCPA
+ Litter

HDI MCPA HDI Unit

amax�F Maximal specific death
rate of fungi

43.03 [6.80, 125.8] 1.76 [0.90, 5.06]
⇥ 1
d

⇤

Ka�F,hiq Inhibition coefficient of
fungal death rate in
response to hiq DOC

3772.04 [382.79, 4.03e3] 78.39 [17.82, 189.75]
h

g

mg C

i

Ka�F,loq Inhibition coefficient of
fungal death rate in
response to loq DOC

133.80 [21.55, 970.46] 26.25 [3.07, 132.17]
h

g

mg C

i

Kd�hiq Linear sorption
coefficient of hiq DOC

1.80 [0.046, 3.63] 1e�3 [0.1, 3]e�3
h
mm

3

mg

i

Kd�loq Linear sorption
coefficient of loq DOC

36.84 [7.46, 70.29] 280.18 [86.94, 3.6e5] [�]

kF,loq loq DOC growth
substrate affinity
coefficient of fungi

32.74 [11.09, 38.30] 14.40 [8.98, 19.61]
h

g

mg Cd

i

kr�F,hiq Inhibition coefficient of
fungal activity in
response to hiq DOC

3.5e�5 [0.03, 1.4]e�4 5.2e�3 [3, 10]e�3
h
mgC

g

i

#11 =
kB,loq

kr�B,hiq
Effective activity
response of bacterial
pesticide degraders in
response to hiq DOC

156.97 [0.012, 365.98] 0.09 [1e�4, 0.20]
h

g
2

(mgC)2d

i

#12 =
kBP,loq

kr�BP,loq
Effective activity
response of bacterial
pesticide degraders to
hiq DOC

6.01 [5.045, 9.25] 0.03 [1e�4, 0.12]
h

g
2

(mgC)2d

i

#21 =
amax�B
kr�B,loq

Effective activity
response of bacteria to
loq DOC

2.60 [0.27, 4.91] 1.83 [1.50, 11.65]
h

g

mg C

i

#22 =
kB,hiq

amax�B
Effective hiq DOC
uptake kinetic constant
of bacteria

396.93 [63.32, 2.11e3] 96.78 [25.04, 80.83]
h

g

mg C

i

#23 =
kB,loq

amax�B
Renormalized loq DOC
growth substrate affinity
coefficient of bacteria

10.24 [8.39, 17.36] 0.06 [1e�4, 83.134]
h

g

mg C

i

#24 =
kB,hiq

µmax�B
Effective inhibition
coefficient of growth
rate of bacteria in
response to hiq DOC

1000.20 [0.92, 2.08]e3 0.54 [3e�3, 2.4e3]
h

g

mg C

i
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#25 =
kF,loq

Ty�FKs�F,P
Effective pesticide
decomposition rate

2.9e6 [2.41, 6.93]e6 4.8e6 [3.7, 8.5]e6
h

g
2

(mgC)2d

i

YL,hiq Fraction of the
decomposed hiq litter
transferred to soil

0.36 [0.10, 0.89] 0.35 [0.09, 0.49] [�]

YL,loq Fraction of the
decomposed loq litter
transferred to soil

0.89 [0.80, 1.00] 0.88 [0.83, 0.98] [�]

Yr�B Efficiency of insoluble
organic matter
decomposition by
bacteria and bacterial
pesticide degraders

0.75 [0.56, 0.98] 0.75 [0.60, 0.86] [�]

Yr�F Efficiency of insoluble
organic matter
decomposition by fungi
0.99

0.99 [0.98, 1.0] 0.99 [0.993, 0.998] [�]

YR�F,P Efficiency of
co-metabolic pesticide
transformation by fungi

0.45 [0.20, 0.86] 0.83 [0.81, 1.0] [�]

Ys�B,hiq Substrate uptake
efficiency of hiq DOC by
bacteria

0.34 [0.14, 0.44] 0.28 [0.35, 0.83] [�]

Ys�B,loq Substrate uptake
efficiency of loq DOC by
bacteria

0.54 [0.25, 0.62] 0.63 [0.62, 0.99] [�]

Ys�BP,loq Substrate uptake
efficiency of loq DOC by
bacterial pesticide
degraders

0.21 [0.03, 0.75] 0.21 [0.05, 0.39] [�]

Ys�F,loq Substrate uptake
efficiency of loq DOC by
fungi

0.92 [0.85, 0.98] 1.0 [0.93, 1.0] [�]

rF0 Initial physiological
state index of fungi

0.46 [0.15, 0.81] 3.4e�3 [0.1, 7]e�3 [�]

Model Simplification and Parameter Limits

In the following, parameter limits as defined by the geodesic equation (lim⌧!⌧b p(⌧) =

0(1), where ⌧ denotes the affine parameterization of the geodesic (Eq. 2.40) and ⌧b de-
notes a manifold boundary) are simply referred to as p ! 0(1).

Biokinetic functions of PECCAD ODE can be removed if the numerator of a rational rate
expression in the original model (Table A12) approaches zero at a manifold boundary. As
a result of discarding limits of this type, 12 out of 22 processes describing substrate de-
pendent maintenance, growth, death and decomposition rates of specific functional mi-
crobial pools can be removed from the model without affecting the model performance.
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Limits are less obvious when multiple parameters approach extreme values at the same
rate. In these cases, emergent finite parameter combinations correspond to expressions
such as 1/1, 0/0, 0 ·1 or 1�1.

As an illustration of different types of limiting processes, consider, e.g., the following
ODE of specific pesticide degrader C:

dCBP

dt
= rBPCBP (µBP,P + µBP,hiq + µBP,loq � aBP ) . (5.2)

The microbial pool changes through growth (µBP,P , µBP,hiq, µBP,loq) and death (aBP )
and depends on the physiological state index of specific pesticide degraders which is
a dynamic variable (rBP , Blagodatsky and Richter 1998). Growth is possible on CP ,
Chiq and Cloq. Simultaneous utilization of growth substrates is accordingly modeled in
terms of multi-substrate Monod kinetics (Fig. 2.1), where µmax�BP is a maximum specific
growth rate and kBP,i, i 2 {P, hiq, loq} denote substrate specific affinity constants of
bacterial pesticide degraders:

µBP,i =
µmax�BPkBP,iCi

µmax�BP + kBP,loqCloq + kBP,hiqChiq + kBP,PCP
. (5.3)

The death rate (aBP ) is mediated by substrate availability in order to simulate increased
microbial decay at low substrate concentrations, where amax�BP likewise denotes a max-
imum specific death rate and Ka�BP,i, i 2 {P, hiq, loq} are substrate specific inhibition
coefficients of microbial death:

aBP =
amax�BP

1 +Ka�BP,loqCloq +Ka�BP,hiqChiq +Ka�BP,PCP
. (5.4)

Here, discarding limits correspond to kBP,P ! 0, kBP,hiq ! 0 and Ka�BP,P ! 0. That
is, the time evolution of the specific degrader pool does not explicitly depend on the
pesticide concentration CP in the system:

dCBP

dt
= rBPCBP (µBP,loq � ãBP ) , (5.5)

ãBP =
amax�BP

1 +Ka�BP,loqCloq +Ka�BP,hiqChiq
. (5.6)

Additionally, rescaling limits, amax�BP , Ka�BP,hiq, Ka�BP,loq ! 1 allow to derive two
effective finite parameter expressions
#1 = amax�BP/Ka�BP,loq, #2 = Ka�BP,hiq/Ka�BP,loq, which control the effective specific
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death rate ãBP . The rescaled expression becomes:

ãBP =
amax�BP

Ka�BP,loq
·

1
1

Ka�BP,loq

+ Cloq +
Ka�BP,hiq

Ka�BP,loq

Chiq

!
#1

Cloq + #2Chiq
. (5.7)

Singular limits leading to steady-state approximations usually require evaluation of more
than a single biokinetic term on the right hand side of the equation system. The following
identified singular limit involves five ordinary differential equations of the system and six
parameter limits, #1, µmax�BP , kBP,loq, kr�BP,hiq, kr�BP,loq,mmax�BP ! 1:

dCBP

dt
= rBPCBP (µBP,loq � ãBP ) (5.8)

drBP

dt
= µBP,loq (�BP � rBP ) , (5.9)

�BP =
Chiq/kr�BP,hiq + Cloq/kr�BP,loq

1 + Chiq/kr�BP,hiq + Cloq/kr�BP,loq
(5.10)

dCI

dt
/ rBPCBP ãBP (5.11)

dChiq

dt
/ rBPCBPmmax�BP (5.12)

dCloq

dt
/ rBPCBPmmax�BP (5.13)

Here, �BP is a limiting factor of activity increase and mmax�BP is the maximum spe-
cific maintenance rate of bacterial pesticide degraders. First, if µmax�BP , kBP,loq, kr�BP,hiq,

kr�BP,loq ! 1, then rBP ! 0. Since #1,mmax�BP ! 1 at the same time, it follows that
CI , Chiq and Cloq become infinitely sensitive to changes in rBP and the combination rBP#1

or rBPmmax�BP remains finite. The equations then read

dCBP

dt
= r̃BPCBP

✓
µ̃BP,loq �

1

Cloq + #2Chiq

◆
, (5.14)

µ̃BP,loq =
#4Cloq

#5 + Cloq
(5.15)

1

µmax�BP

dr̃BP

dt
=

µ̃BP,loq

#4
(�BP#1 � r̃BP ) (5.16)

dCI

dt
/ r̃BPCBP

1

Cloq + #2Chiq
(5.17)

dChiq

dt
/ r̃BPCBP#8 (5.18)

dCloq

dt
/ r̃BPCBP#8 , (5.19)



5.3 Results 70

where #4 =
µmax�BP

#1
, #5 =

µmax�BP

kBP,loq

, #8 =
mmax�BP

#1
. I chose to define a renormalized vari-

able r̃BP = rBP#1, thereby removing information about the absolute scale of the activity
level of bacterial pesticide degraders. From Eq. 5.16 it is obvious that " = 1/µmax�BP is
a small parameter that separates the timescale of the renormalized variable r̃BP . Evalu-
ating this limit has the biological interpretation as a natural steady-state limit in which
the physiological state of bacterial pesticide degraders is determined by the scaled sub-
strate response function �BP (Eq. 5.10; Blagodatsky and Richter 1998). The ODE for the
physiological state index of specific pesticide degraders (Eq. 5.16) is transformed into an
algebraic equation that can be substituted into the original ODE system:

r̃BP = �BP#1 . (5.20)

As a result, singular limits identified via manifold boundaries decrease the dimension of
the ODE system.

Finally, interpolating limits dictate the order of a reaction rate. The limit in which both
Monod constants become infinite together (#4,#5 ! 1 in Eq. 5.15) identifies a linear
rate with emergent rate constant #9 = #4/#5:

µ̃BP,loq =
#4Cloq

#5 + Cloq
=

#4

#5

Cloq

1 + Cloq

#5

! #9Cloq . (5.21)

The alternative limit #5 ! 0 would have corresponded to a saturating approximation of
Monod kinetics (cf. Fig. 2.1).

Model Performance

By design, the full and reduced models give a reasonable fit within the expected variance
of experimental uncertainties to data from the MCPA + Litter treatment (Fig. 5.3, black
dots) with cost function value Jfull = 7.6 for the full model and Jreduced = 6.7 for the
reduced model. The first MBAM iteration resulted in a better (local) optimum. Time se-
ries generated from the reduced model (Fig. 5.3, red dashed lines) for fungal C, specific
degrader C, DOC and CO2 � C are almost an exact match with the corresponding time
series of the full model (Fig. 5.3, dark gray solid lines). For MCPA, the lag phase of MCPA
degradation is reflected slightly better than by the reduced model. In contrast to the full
model, steady-state conditions for the TOC pool are not yet reached after 25 days in the
reduced model. Furthermore, bacterial C dynamics notably differ between the full and
the reduced models.

The fit of the reduced model to MCPA treatment data (Fig. 5.3, green dotted line and
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Figure 5.3 Model calibration and prediction. Full (dark gray solid lines) and reduced
(red dashed lines) models give a reasonable fit to data from the MCPA + Litter treat-
ment (circles, Jfull = 7.6, Jreduced = 6.7). The fit to MCPA treatment data (squares) of
the reduced model (green dotted lines) is worse (Jreduced = 83.5), because microbial dy-
namics are not fully captured. 95% confidence intervals for MCPA predictions between
experimental treatments are shown in the bottom right panel. Predictions between ex-
perimental treatments of the full and reduced models (predicted data set in round brack-
ets) derived from an MCMC parameter ensemble are well-constrained given the observed
MCPA-C range, but do not match experimental observations.

black squares) is worse (Jreduced,MCPA = 83.5). The reduced model neither captures the
dynamics of specific MCPA degrading bacteria nor the decelerated degradation of MCPA
in the initial phase of the experiment without litter addition. When fit to MCPA treatment
data, the eigenvalue spectrum of the reduced 27 parameter model broadens again and
information on seven model parameters is lost (Fig. 5.4).

Model predictions of MCPA dynamics for shifted boundary conditions according to dif-
ferent experimental treatments are shown in the bottom right panel of Fig. 5.3. Full
and reduced models were both calibrated on MCPA + Litter data and used for predic-
tion of the observed MCPA dynamics in the experiment without litter addition (MCPA)
and the other way around. The 95% confidence intervals for model predictions derived
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Figure 5.4 Quantifying information in MCPA data. Upon fitting the reduced 27 pa-
rameter model to the MCPA experimental treatment the Hessian eigenvalue spectrum
broadens again and information on 7 model parameters is lost.

from a Bayesian ensemble of the full and reduced models for both data sets are infor-
mative (the limits span less than 15% of the total MCPA-C concentration range), but
do not match experimental observations. When calibrated on MCPA + Litter data, re-
duced and full models predict MCPA persistence in soil after four days when no litter is
added to the system in contrast to the observed complete dissipation in the experiment.
Conversely, when calibrated on MCPA data, both models over-predict the acceleration of
MCPA degradation in the presence of additional litter C input into the system.

Impact of Data Availability on Model Reduction

Using the reduced 27 parameter model (Table 5.1 and Fig. 5.2) as a starting point,
the effect of coarsening the observations from functional gene measurements to bulk
microbial biomass and further to MCPA concentration and heterotrophic respiration is
depicted in Fig. 5.5ab. After coarsening to bulk biomass (Fig. 5.5a), six eigenvalues be-
come significantly smaller than unity. The parameter limits correspond to #24,#11,#12,
amax�F , Ka�F,hiq, Ka�F,loq ! 0. The resulting discarding limits render the microbial death
rate linear and remove the fungal death rate as well as the dependence of C cycling on
the dynamics of specific pesticide degraders (Table 5.3, M=7, N=21).

Coarsening the observations further to system input-output relations (only MCPA and
CO2 � C) identifies an 18 parameter model that describes the dynamics of MCPA degra-
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(a) Bulk data

(b) Input-Output data

Figure 5.5 Tailoring model complexity of PECCAD ODE to coarse-grained data sets from
the Litter + MCPA experiment. The MBAM removes one parameter at a time until the
remaining parameters are identifiable to a given tolerance of 1/e (orange dashed line).
Shown on top of the reduction spectra is the value of the cost function J(p) during the
iteration. (a) Coarsening observations from functional gene measurements (Fig. 5.2)
to bulk microbial biomass identifies a 21 parameter model governed by 7 ODEs. (b)
Observing only MCPA and heterotrophic soil respiration identifies an 18 parameter ODE
of dimension 6.
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Figure 5.6 Comparison of MBAM results to sampling-based sensitivity metrics. Axis
labels highlighted in red are PECCAD ODE kinetic model parameters that were identified
as relevant by the MBAM. The normalized `2-norm of 25,000 Morris pairs (blue, sorted in
ascending order) identifies a 20 parameter subset that influences the model performance
metric. The 95% highest posterior density of 20 parameters spans more than 20% of
their prior range after Bayesian model calibration. Overall, the screening results agree
with the MBAM. Surprisingly, the most influential parameter qmax�F identified by the
Morris method and with significant reduction in highest posterior density is not part of
the reduced model.

dation and heterotrophic respiration (Fig. 5.5b). Here, another discarding limit (#21 ! 0)
corresponds to a steady-state limit that fixes the insoluble organic matter pool (CI) to its
initial value (Table 5.4, M=6, N=18).

5.3.2 Global Sensitivity Analysis

The Morris procedure was applied to the parameters of the full PECCAD ODE model in or-
der to compare sampling-based criteria for factor fixing and screening in global sensitivity
applications to the results of the MBAM. Fig. 5.6 shows the `2-norm of the normalized
Morris mean µ̂⇤ and standard deviation �̂⇤ (`2 =

p
µ̂⇤2 + �̂⇤2) and the relative reduction

in highest posterior density of parameter values derived from the Bayesian model cali-
bration (Table A13). Out of 20 model parameters with non-trivial `2-norm > 0.01 , 15 pa-
rameters agree with the MBAM results. In contrast to MBAM, qmax�F , kr�F,loq, KIF , kr�B,loq

and km�B,hiq have significant effects on the goodness-of-fit metric. Two parameters that
are essential to the reduced model (µmax�B and kBP,loq) were not identified by the Morris
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Method. The results of the Bayesian model analysis shows that the 95% highest posterior
density of 20 parameters still span more than 20% of their prior range after optimization.
A clear cutoff that defines identifiability does not exist.
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5.4 Discussion

Possible regulation mechanisms of MCPA degradation have been extensively discussed in
Poll et al. 2010; Pagel et al. 2016. Based on inverse modeling with PECCAD, Pagel et al.
2016 concluded that fungal dynamics probably play a crucial role for matter cycling in
the detritusphere (i.e. the soil influenced by litter). They found that MCPA degradation in
soil was likely predominantly regulated by co-metabolic degradation via litter-stimulated
fungal growth. Uncertainty in this statement stems from the fact that their results were
based on the interpretation of single parameter values with high uncertainty (Pareto
ranges for 26 out of 59 biokinetic parameters were equal to their respective prior range
after optimization). Systematic model reduction of PECCAD ODE by the MBAM (Ta-
ble 5.1) reflects the reported dominance of co-metabolic over direct MCPA degradation
in the original study by Pagel et al. 2016.

In the reduced PECCAD ODE model, it is obvious that MCPA degradation is controlled by
litter C input. The fraction of Cloq transported into the system stimulates fungal growth.
The fungal specific growth rate is simply a linear function of substrate concentration. The
emergent microbial “control knob” of MCPA degradation is an effective “renormalized”
rate (#25 = kF,loq

Ty�FKs�F,P

) that depends on the substrate affinity of fungi to low quality C
(kF,loq) and co-metabolic pesticide transformation kinetics (Ks�F,P ), as well as the capac-
ity of fungi to transform MCPA into high quality C substrates for growth (Ty�F ). Growth
of bacteria is the only microbial process that contributes to degradation of high quality C,
while specific pesticide degraders exclusively grow on low quality C. Their dynamics are
otherwise detached from C cycling and MCPA turnover. On the contrary, it has repeat-
edly been empirically observed that activity and abundance of the population of specific
MCPA degraders increase in the presence of their preferred growth substrate (Poll et al.
2010; Saleh et al. 2016). However, the experimental data of the Litter + MCPA treat-
ment (total abundance of functional genes of specific MCPA degraders) probably does not
contain enough information on the dynamics of specific pesticide degraders to accord-
ingly constrain the model structure of the reduced PECCAD ODE model. Most biokinetic
parameters related to direct MCPA degradation are irrelevant for model behavior. As
a result, the simulated specific degrader dynamics by the reduced model do not match
experimental observations across different treatments and the model fails in forecasting
MCPA dynamics. Similar conclusions on the representation of microbial dynamics based
on computationally expensive multiobjective calibration of multimodal data (Wöhling
et al. 2013) were drawn in the original study (Pagel et al. 2016). Data-driven model
reduction highlights the need to increase the structural complexity of the PECCAD ODE
model or to refine the process description of direct pesticide degradation.
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Optimized parameter values of the reduced model (Table 5.2) categorize fungi as co-
piotrophic organisms (Fierer et al. 2007) in both experimental treatments. The value of
the activity inhibition coefficient kr�F,hiq at the lower bound of its physiological range
shows that fungi respond extremely fast to supply of high quality C. This finding is in
line with Ingwersen et al. 2008; Pagel et al. 2016 who also reported a high sensitivity of
fungal activity to low concentrations of easily degradable substrates. Early onset of ac-
tivity was interpreted as being stimulated by intermediate degradation products of high
quality C-derived extracellular enzymes that induce enzyme production (Allison et al.
2010b). Concurrently, optimized values for substrate efficiencies (Ys) of fungi are much
higher than for bacteria and specific pesticide degraders. Mortality rates could only be
estimated from MCPA treatment data (Table 5.2). The value of the maximum specific
death rate of fungi (amax�F = 1.76 1/d) is close to the values reported for copiotrophic
organisms in other studies (Zelenev et al. 2005; Monga et al. 2014).

Overall, the results of the PECCAD ODE reduction show that the mathematical specifica-
tion of biokinetic functions in terms of multi-substrate Monod kinetics is an unnecessarily
strong assumption. It is mostly sufficient to model C cycling rates as linear functions of
substrate concentration. Steady-state modeling of bacterial and specific pesticide de-
grader activity is a nontrivial result of the reduction process. The feedback structure
between microbial populations and C sources of different quality is preserved under the
full observational data set. As model reduction is capable of directly altering model struc-
ture, this emphasizes the notion of soil as a complex dynamical system.

Model structure is deemphasized later in the reduction process, upon coarse-graining
of observations. The assumption of consistency for the SOM pool prevalent in the early
soil C modeling literature (Jenkinson 1990; Parton et al. 1987; Carvalhais et al. 2008) is
only supported for input-output observations (Table 5.4).

The results of the MBAM are in good agreement with global sensitivity measures derived
from the Morris method and Bayesian model calibration (Fig. 5.6). In contrast to global
sensitivity methods, the MBAM is deterministic and does not rely on sampling of the pa-
rameter space. The sensitivity results are easier to translate into model simplifications,
because parameters that do not affect model output are identified iteratively. In contrast,
factor fixing will reduce the number of model parameters that have to be considered, e.g.,
in refined calibrations (e.g., Van Werkhoven et al. 2009), but it only makes the model
conceptually simpler if the zero value is in the range of parameter variations that do
not affect model output. Furthermore, Latin-Hypercube sampling of the parameter space
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of the PECCAD ODE model proved difficult, because the rate of failure of numerical
integration was 76% on average. Three times as many function evaluations as expected
from the theoretical limit (Section 2.3.1) were hence required to achieve the stated num-
ber of sensitivity evaluations. The MBAM on the other hand is not fully automatic and
still requires manual intervention in its current implementation.



Chapter 6

Emergent Minimal Models of Biogeochemical System Behavior

6.1 Introduction

The fate of pesticides in soil is regulated by the complex interplay between microbial
dynamics and physicochemical processes (Pagel et al. 2016). The complexity of individ-
ual soil processes stands, however, in stark contrast to the surprisingly simple emergent
behavior exhibited by the associated systems. In contrast to the many parameters that de-
fine the underlying biogeochemical models (Section 2.1), the system response can often
be described by a few phenomenological parameters. In order to illustrate this discrep-
ancy, the dynamic stability of a soil system after a chemical press disturbance (Schaeffer
et al. 2016) is analyzed in this chapter1.

Fig. 6.1a shows the soil system response to continuous pesticide input (a step-function
input) at time zero. The system is resilient, i.e. it shows the ability to return to its
initial state after a disturbance. The system response function is characterized by five
degrees of freedom that can be linked more generally to ecological notions of ecosys-
tem resilience and stability (Hastings et al. 2018). According to the terminology in the
conceptual framework for soils (Schaeffer et al. 2016, Table 1), the dynamic stability
is defined as the time that a polluted soil needs to respond and in this case recover to
a stable state after stress impact. The faster the recovery time, the higher the dynamic
stability. Phenomenologically, the recovery time is determined by the time to achieve
maximal response (⌧) and the width of the response peak (!). The resistance of soils in
turn is defined as the reciprocal of the response to a given stress intensity. It is given by
the height of the response peak at time ⌧ . Finally, the system behavior is characterized
by the difference between final (end point) and initial (base) states and the vertical posi-
tion of the base line value. A minimal phenomenological model of pesticide stabilization
would have to contain parameters that span these degrees of freedom.

1This is not to be confused with a stability analysis from a dynamical systems point of view in which sta-
bility properties of dynamical systems to small perturbations of initial conditions are analyzed (Kuznetsov
2013; Strogatz 2018). For applied stability analysis in soil systems, see, e.g., Manzoni and Porporato 2007;
Wang et al. 2014b.

83
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(a) Phenomenology

(b) Model reduction

Figure 6.1 Degrees of freedom that characterize pesticide stabilization. (a) One real-
ization of full PECCAD ODE (M=12, N=59; black line) was used as a basis for model
reduction. The gray uncertainty band sets the tolerance for allowed deviations from
the simulated MCPA-C time course. The system response can be described by five phe-
nomenological parameters: (1) the time to achieve maximal response (⌧), (2) the width
of the response peak (!), (3) the height of the peak, (4) the difference between the base
and end points, and (5) the vertical position of the base line value. The reduced PECCAD
ODE model (M=5, N=5; red line) achieves stabilization within the given tolerance. (b)
PECCAD ODE eigenvalues during MBAM iterations (truncated). The five parameters of
reduced PECCAD ODE that correspond to the five degrees of freedom of the pesticide
stabilization curve are identifiable at each stage of the reduction (to a given tolerance,
the five eigenvalues above the red dashed line). The MBAM removes the parameter
corresponding to the smallest eigenvalue in each iteration.
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6.2 Implementation

One realization of PECCAD ODE (Table A14) that exhibits pesticide stabilization was
used as a starting point for model reduction by the MBAM. The initial conditions for
all carbon pools except for soluble MCPA were set to zero. The model output curve for
pesticide was sampled at 100 time points in order to simulate almost continuous data.
Normally-distributed noise with standard deviation equal to 5% of the maximum pesti-
cide concentration was added to the model output in order to set the allowed tolerance
for deviations from the desired stabilizing behavior.

The technical implementation of PECCAD ODE and the MBAM was identical to Chap-
ter 5.

6.3 Results

Minimal Mechanisms of Pesticide Stabilization

Figure 6.1b shows the Hessian eigenvalues before the first and during the last 18 MBAM
iterations. The full PECCAD ODE model with 59 parameters is sloppy even for densely-
sampled data with minimal measurement error. At each stage of the reduction the MBAM
would identify a five parameter model with parameters that correspond to eigenvalues
larger than unity. The number of parameters in the reduced model (Table 6.1) is in agree-
ment with the number of degrees of freedom that phenomenologically describe the pesti-
cide stabilization curve (Fig. 6.1a). The dimension of the ODE system is reduced to five.
The system response still depends on the dynamics of specific pesticide degraders CBP ,
their physiological state index rBP , total pesticide CP + CP�s and low quality dissolved
organic carbon Cloq (the insoluble soil organic matter pool CI is only needed in order
to close the mass balance). The five parameters that govern model behavior are given
by the substrate uptake efficiency of bacterial pesticide degraders for pesticide, Ys�BP,P ,
and low quality carbon, Ys�BP,loq, the ratio of the maximum specific growth rate to the
maximum specific death rate of bacterial pesticide degraders, #28 = µmax�BP/amax�BP ,
the ratio of their respective growth substrate affinities to pesticide and low quality car-
bon, #6 = kBP,P/kBP,loq and the scaled Freundlich coefficient of the pesticide sorption
isotherm, K̃F�P = KF�PCP (t = 0).

The five parameters of the reduced model can be connected to the degrees of freedom of
the stabilization curve through a local sensitivity analysis (Fig. 6.2). To this end, param-
eter values were increased by 150% of their respective baseline values. Perturbing #6 or
Ys�BP,loq (Fig. 6.2a and b) increases or decreases the final equilibrium value, whilst keep-
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Table 6.1 Carbon stocks and governing differential equations of the minimal PECCAD
ODE model (M=5, N=5) for pesticide stabilization.

C stock Differential equation

Specific pesticide degraders [mgC
g ] dCBP

dt = rBPCBP

⇣
#28CP

#6Cloq+CP

+ #28Cloq

Cloq+CP /#6
� 1
⌘

Physiological state index of specific
pesticide degraders [�]

rBP

dt =
⇣

#28CP

#6Cloq+CP

+ #28Cloq

Cloq+CP /#6

⌘
· (1� rBP )

loq dissolved organic C [mgC
g ] dCloq

dt = Iloq � rBPCBP

⇣
1

Ys�BP,loq

#28Cloq

Cloq+CP /#6

⌘

Insoluble soil organic matter C [mgC
g ] dCI

dt = rBPCBP

Pesticide C [mgC
g ] d(CP+CP�s)

dt = IP � rBPCBP

⇣
1

Ys�BP,P

#28CP

#6Cloq+CP

⌘

Sorbed phase CP�s = KF�PCP (0) ·
1000⇢BMP

9✓Mc

ing the response constant. Varying #28 (Fig. 6.2c) has the most dramatic effect on the
degrees of freedom. It changes the response and dynamic stability of the system through
⌧ and !, whilst lowering the final steady state value. Changing Ys�BP,P affects the width
of the response peak and raises the final steady state value. Varying a combination of
#6 and Ys�BP,loq leads to full system recovery. Increasing #28 and Ys�BP,P simultaneously
is the “microbial control knob” for the resistance of the soil system to a chemical press
disturbance. Increasing the renormalized Freundlich coefficient moves the system into a
state with historically higher pollution (Fig. 6.2e).

6.4 Discussion

PECCAD ODE captures key small-scale biogeochemical mechanisms of pesticide degrada-
tion. Through model reduction with the MBAM, the mechanisms can be explicitly linked
to high-level governing principles of pesticide stabilization.

The toy example demonstrates that it is possible to construct minimal effective process
descriptions that remain expressed in terms of mechanistic parameters from complicated
models. By design, the effective five parameter model can fit artificial data generated
from the full model. Structural errors introduced by the simplification are indistinguish-
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(a) (b)

(c) (d)

(e)

Figure 6.2 Parameter sensitivities in the minimal model for pesticide stabilization (Ta-
ble 6.1). An effective five parameter model can capture the response of the full model to
a step input of MCPA-C. Increasing the five parameters by 150% from their base values
(#6 = 3.81, #28 = 1.53, Ys�BP,loq = 0.08, Ys�BP,P = 0.10, KF�P = 0.72mm3/mg) moves
the model response outside of the experimental uncertainty band (gray). Combinations
of parameters span the five phenomenological degrees of freedom of the system response
curve (Fig. 6.1a).
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able from noise. If the remaining few microbial parameters (maximum specific growth
and death rates, substrate affinities and uptake efficiencies) as well as the Freundlich
sorption coefficient of pesticide could be soil-specifically measured, it would be possible
to test the predictive power of the minimal model without the need for a model calibra-
tion step.

Since the effective process description emerges from the underlying biogeochemical mech-
anisms, the resulting minimal model could be used in larger-scale models with greater
confidence than a priori imposed top-down expressions for pesticide stabilization. How-
ever, for the approach to be valid at all for up-scaling the universality of the emergent
minimal model structure has to be assessed2. Theoretically, universality for pesticide
stabilization could be assessed by characterizing the viable space for which the PECCAD
ODE model exhibits experimentally observed behavior. This is best done by a global,
followed by a local exploration of parameter space as described in Zamora-Sillero et al.
2011. Statistical models in the viable parameter space volume then correspond to models
that have “stabilization behavior” as a point somewhere on their model manifold. The
question would be whether MBAM applications for the different models converge to the
same emergent minimal model structures.
Alternatively, the uncertainty band around the full model output could be increased. The
resulting minimal model will likely have fewer effective parameters and still exhibit sta-
bilization. However, the reduced model will be unable to exactly mirror the curvature
of the full model output. Applicability would depend on the actual measurement uncer-
tainty and the variance in observed pesticide concentrations.

Microbial response functions that capture the macro-scale sensitivity of heterotrophic
respiration or enzymatic decomposition to changes in soil moisture or temperature are
bound to replace empirical response functions (Sierra et al. 2015b) in biogeochemical
models. However, mechanistic descriptions that exist in the literature are still too com-
plex to be embedded into ecosystem models (Manzoni et al. 2016). Renormalizing com-
plex biogeochemical models into simpler models with only a few effective parameters is
a promising way to construct microbial response functions in a mechanistically informed
manner. The approach could supersede ad-hoc methods for constructing minimal process
models, e.g., in the context of modeling microbal responses to the rewetting of dry soils
(Manzoni et al. 2014; Hawkes et al. 2017; Brangari et al. 2018).

2For example for chemical diffusion, the effective diffusion constant depends on the underlying stochas-
tic particle model and the observed data (Machta et al. 2013; Transtrum et al. 2015), but the same func-
tional form for the diffusion equation is always recovered in the continuum limit.



Chapter 7

Synthesis

As outlined in the introduction of this thesis, a tension between small-scale complexity
and emergent simplicity of observables in biogeochemical systems exists that needs to be
resolved in order for the associated models to be predictive. I used a novel information
theoretic framework developed in the Sethna lab at Cornell University to address obsta-
cles to an efficient and meaningful use of mechanistic biogeochemical modeling. In this
final chapter, the insights of four different case studies (Chapters 3 to 6) are synthesized.

The Origin of Equifinality in Biogeochemical Modeling

For five biogeochemical models of different complexity from the biogeochemical liter-
ature, the ubiquity of equifinality has been traced down to global sloppiness and the
associated hyper-ribbon structure of the model prediction manifolds (Chapter 3).

The problems with parameter inference from experimental data are not merely a con-
sequence of how the biogeochemical models have been parameterized, suggesting that
modelers are simply consistently unfortunate in choosing, for example, the correct units
or rates versus time constants to describe system behavior. Instead the equifinality prob-
lem originates in the conceptual uncertainty in the model itself, given the information
content of the data. Combining many empirical laws, e.g., variants of Monod-type equa-
tions (Section 3.3.3), into complex biogeochemical models leads to sloppiness. Sloppiness
can be removed, because the boundary complex of the model manifold corresponds to
natural, mechanistically-meaningful limits of biogeochemical models: interpolating limits
dictate the order of a biogeochemical reaction rate, singular limits lead to a separation of
timescales in the system and discarding limits remove irrelevant pathways in the model
(Sections 4.3.3 and 5.3.1). Moreover, sloppiness appears to be independent of the mea-
surement uncertainty in the data. The degree of sloppiness of the PECCAD ODE model
was the same for synthetic continuous versus real data (Figs. 3.1, 5.5 and 6.1).

Sloppiness might be avoided by imposing tighter prior constraints on the parameter val-
ues. However, in situ estimates of microbial parameters are still highly uncertain and
their values can potentially span many orders of magnitude (Pagel et al. 2014, Online
Resource 1, Allison 2017, Table 1). For the analyzed biogeochemical models it would
seem artificial to make strong assumptions about parameter values and model structures
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in order to avoid sloppiness. Furthermore, any experimental protocol designed to remove
sloppiness would be intimately tied to the uncertain model structure that is to be falsi-
fied. As a result, there will likely always be potential for equifinality in biogeochemical
modeling.

The results of this thesis show that the appropriateness of biogeochemical model assump-
tions can be assessed despite equifinality, given any information content of the data.
Sloppiness as the origin of equifinality can be systematically eliminated by a geodesic-
following algorithm that exploits the sloppy structure of parameter space (Transtrum and
Qiu 2014).

Appropriate Biogeochemical Model Complexity

One important criterion to improve mechanistic modeling frameworks for complex sys-
tems is the ability to adequately encode model complexity (e.g., Schöniger et al. 2014;
Getz et al. 2018; Höge et al. 2018). For sloppy biogeochemical models the complexity
is simply given by the effective dimensionality of the model manifold. Information cri-
teria that score against metric properties of the full sloppy model would overestimate
model complexity in biogeochemical model selection scenarios (LaMont and Wiggins
2015; Mattingly et al. 2018).

Model complexity is an integral part of the principle of parsimony (Occam’s razor) pop-
ularized in the statement that “the simplest solution is usually the correct one”. For
predictive modeling it is routinely stated that the best model must reflect “both criteria
that make up the Bayesian tradeoff, goodness-of-fit and parsimony (i.e., relatively small
variance in its predictions)” (Schöniger et al. 2015). It is believed that “non-identifiable
parameters often lead to imprecise model predictions.” (Maiwald et al. 2016). For sloppy
biogeochemical models the latter interpretation of Occam’s law as a bias-variance trade-
off is false. The conceptual uncertainty in biogeochemical models leads to large pa-
rameter uncertainties, thereby hampering system understanding, but it does not affect
model prediction uncertainty. For example, the full and reduced PECCAD ODE models fit
the data equally well and make statistically almost indistinguishable model predictions
with low variance (Fig. 5.3). Full and reduced PECCAD ODE are effectively the “same”
model, because the model prediction manifold of full PECCAD ODE has a hyper-ribbon
structure, i.e. a low effective dimensionality much less than the number of model pa-
rameters. Predictions from ensemble fits can be precise despite large uncertainties in
the sloppy parameter subspace (Fig. 3.6c). Conversely, knowing all but one parameter
a priori might give little information about the model behavior, if the precision of this
parameter measurement were to exceed the extent of the stiffest direction in parameter
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space (Fig. 3.6a). This justifies the use of purely data-constrained parameter estimates
to improve predictive biogeochemical model performance (e.g., Hararuk et al. 2015).

The principle of parsimony for sloppy biogeochemical models is solely reflected in the
emergent minimal model structures. The sole important implication for model perfor-
mance is that parameters of the effective model are identifiable (Fig. 4.6 and Table 5.2).
Fundamental mechanistic understanding from experimental studies that is otherwise ob-
fuscated by model complexity can be established by model reduction. By systematically
coarsening observations (Fig. 5.5) it is possible to assess which type of mechanistic in-
formation can be transferred across focal levels (Getz et al. 2018) at which the relevant
research questions are being asked. For example, the fungal substrate affinity coefficient
for growth on low quality carbon in PECCAD ODE is a parameter that remains relevant as
the scale of observation grows (Tables 5.1, 5.3 and 5.4). Although I am aware of the fact
that “there are no general laws for complexity”(Goldenfeld and Kadanoff 1999), empiri-
cal evidence points to the fact that it is mostly sufficient to describe complex soil systems
with intricate feedback structures by linear effective degradation rates and equilibrium
assumptions for the activity of a subset of microbial functional types and carbon pools
(Table 5.1).

However, finding a process representation that is informative with regard to the pre-
dictions of interest is a nontrivial task (Fig. 5.3). Among many possible refinements for
the representation of MCPA degradation in PECCAD ODE (WP3a, Collaborative Research
Center 1253 CAMPOS funded by Deutsche Forschungsgemeinschaft (Grant Agreement
SFB 1253/1 2017)) one solution might, e.g., consider the incorporation of energy-limited
growth on carbon substrates. Again, different conceptualizations exist for energy-limited
growth (Desmond-Le Quéméner and Bouchez 2014; LaRowe and Amend 2015). While
this thesis shows that a procedure is in place that allows to construct effective parsimo-
nious biogeochemical models, the problem of including the correct mechanistic processes
in the first place, i.e. the “Landau step” of renormalization in the physics analogy (Ne-
menman 2017) is much more difficult. In mechanistic modeling frameworks that require
inversion to generate the posterior distribution of model predictions, a sensitivity analy-
sis will usually be needed to determine whether calibration and forecast data are driven
by the same parameters. Any refinement that adds complexity to the original model
would likely entail the necessity of a subsequent simplification step to recover parsi-
mony. Model reduction by the MBAM (Transtrum and Qiu 2014) is especially suited to
the task, because it directly reveals conceptual uncertainty in the original model formu-
lation (Chapter 5).
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Conclusion

The presented results suggest that information geometry provides a powerful approach to
connect the inherent small-scale complexity of microbiological processes to the emergent
behavior of biogeochemical systems. My thesis contributes to solutions for two of the
biggest challenges in biogeochemical modeling: to assess the validity of model assump-
tions in light of equifinality and to construct mechanistic models that solve the inference
problem from data. The Manifold Boundary Approximation Method (Transtrum and Qiu
2014) is a valuable addition to existing model-data integration frameworks in biogeo-
chemical modeling that seek to maximize mechanistic system understanding. It remedies
drawbacks of global sensitivity analysis methods which depend on the sampling of high-
dimensional parameter spaces and the results of which are impossible to translate into
the model simplifications presented in this thesis. Its potential to routinely assist com-
monly used global sensitivity schemes will hinge on the technical implementation. The
computational overhead requires the integration of local sensitivity information with re-
spect to all model parameters. This task is usually feasible for biogeochemical models and
can be parallelized. The step that sets the barrier of entry quite high for general usage is
the manual translation of parameter limits into analytical model simplifications. As a first
step, my current research activities are intensely concentrating on finding an autonomous
solution that complements the analysis of short-term substrate-induced heterotrophic res-
piration data. Through an appropriate redefinition of the statistical model, the method
could be easily extended to include prior information on biogeochemical parameters in
the future. Above all, my thesis highlights that potential applications of the applied ap-
proach throughout mechanistic biogeochemical modeling are truly manifold.
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Nikšić, T., M. Imbrišak, and D. Vretenar. 2017. Sloppy nuclear energy density functionals.
II. Finite nuclei. Physical Review C, 95:054304.
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Appendix

Model Definitions, Initial Conditions and Parameter Values

Table A1 Model parameter symbols, descriptions, base values of parameters of the mini-
mal microbial soil carbon model (M=2, N=4; German et al. 2012, Table 3).

Symbol Description Value Unit

Vmax Maximum cycling rate of soil
carbon

0.0019
h

1
h cm3 mg

i

KS Half-saturation constant 1.24
h

mg

cm3

i

kB First-order cycling rate for
microbial biomass

0.0005
⇥ 1
h

⇤

Y Microbial carbon use efficiency 0.134 [�]

I External carbon input 0.001
h

mg

cm3 h

i

CB(0) Initial microbial biomass carbon 2.0
h

mg

cm3

i

CS(0) Initial soil organic carbon 100.0
h

mg

cm3

i

Table A2 Carbon stocks and governing differential equations of the extended NICA model
(M=10, N=15).

C stock Differential equation

i-s microbial biomass [mgC

g
]

dCb,is

dt
= risCb,is (µ(Cs,is)� a(Cs,is)) (1)

l-s microbial biomass [mgC

g
]

dCb,ls

dt
= rlsCb,ls

�
µ(Cs,ls)� a(Cs,ls)

�
(2)

Physiological state index of
i-s decomposer [�]

dris
dt

= µ(Cs,is) · (�(Cs,is)� ris) (3)

Physiological state index of
l-s decomposer [�]

drls
dt

= µ(Cs,ls) · (�(Cs,ls)� rls) (4)

i-s dissolved organic C
[mgC

g
]

dCs,is

dt
=

risCb,is

⇣
1
Ys

µ(Cs,is)�m(Cs,is)
⌘
+ Iis

(5)

l-s dissolved organic C
[mgC

g
]

dCs,ls

dt
=

rlsCb,ls

⇣
1
Ys

µ(Cs,ls)� q(Ch)Yr

⌘
+ Ils

(6)

Insoluble soil organic matter
[mgC

g
]

dCh
dt

= risCb,isa(Cs,is) +

rlsCb,ls

�
a(Cs,ls)� q(Ch)

� (7)

110
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Table A3 Biokinetic functions and composite parameter expressions of the extended
NICA model (M=10, N=15).

Description Expression Unit

Specific rate of initial-stage
decomposer growth

µ(Cs,is) =
µmax,isCs,is

Cs,is+Ks,is

⇥ 1
d

⇤
(8)

Specific rate of late-stage
decomposer growth

µ(Cs,ls) =
µmax,lsCs,ls

Cs,ls+Ks,ls

⇥ 1
d

⇤
(9)

Specific rate of organic matter
decomposition

q(Ch) =
qmaxCh
Ch+Kh

⇥ 1
d

⇤
(10)

Substrate dependent specific
death rate of initial-stage
decomposer

a(Cs,is) =
amax

1+Ka,isCs,is

⇥ 1
d

⇤
(11)

Substrate dependent specific
death rate of late-stage
decomposer

a(Cs,ls) =
amax

1+Ka,lsCs,ls

⇥ 1
d

⇤
(12)

Specific rate of maintenance
respiration of initial-stage
decomposer

m(Cs,is) =
mmaxCs,is

Km+Cs,is

⇥ 1
d

⇤
(13)

Limiting factor for activity
increase of initial-stage
decomposer

�(Cs,is) =
Cs,is

krC,is+Cs,is
[�] (14)

Limiting factor for activity
increase of late-stage
decomposer

�(Cs,ls) =
Cs,ls

krC,ls+Cs,ls
[�] (15)

Table A4 Model parameter symbols, descriptions, base values of parameters of the ex-
tended NICA model (M=10, N=15; Ingwersen et al. 2008, Table 2).

Symbol Description Value Unit

µmax,is Maximal specific growth rate of
initial-stage decomposer

25.5
⇥ 1
d

⇤

µmax,ls Maximal specific growth rate of
late-stage decomposer

2.59
⇥ 1
d

⇤

qmax Maximal specific rate of organic
matter decomposition

1.62
⇥ 1
d

⇤

amax Maximal specific
death/reutilization rate of
decomposer

1.309
⇥ 1
d

⇤

mmax Maximal specific maintenance
rate of initial-stage decomposer

0.25
⇥ 1
d

⇤

Ks,is MichaelisMenten constant for
initial-stage decomposer growth

0.264
h
mgC

g

i
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Ks,ls MichaelisMenten constant for
late-stage decomposer growth

0.264
h
mgC

g

i

Kh MichaelisMenten constant for
organic matter decomposition

13.75
h
mgC

g

i

Km MichaelisMenten constant for
maintenance respiration of
initial-stage decomposer

0.001
h
mgC

g

i

krC,is Inhibition constant for
C-dependent initial-stage
decomposer activity

1.3
h
mgC

g

i

krC,ls Inhibition constant for
C-dependent late-stage
decomposer activity

1.3
h
mgC

g

i

Ka,is Inhibition constant for
initial-stage decomposer death
rate

12.425
h

g

mg C

i

Ka,ls Inhibition constant for late-stage
decomposer death rate

12.425
h

g

mg C

i

Ys Efficiency of substrate uptake 0.848 [�]

Yr Efficiency of organic matter
mineralisation and biomass
reutilisation

0.50 [�]

Iis i-s litter carbon input 0.001
h
mgC

g d

i

Ils l-s litter carbon input 0.001
h
mgC

g d

i

Table A5 Carbon stocks and governing differential equations of the MEND model (M=10,
N=19).

C stock Differential equation

Lignocellulose-like
particulate organic carbon
[mgC

g
]

dP1
dt

= IP1 + (1� gD) · F12 � F1 (1)

Starch-like particulate
organic carbon [mgC

g
]

dP2
dt

= IP2 � F2 (2)

Mineral-associated organic
carbon [mgC

g
]

dM

dt
= (1� fD) · (F1 + F2)� F3 (3)

Dissolved organic carbon
(DOC) [mgC

g
]

dD

dt
= ID + fD · (F1 + F2) + gDF12 + F3 � F6

+
�
F14,EP1 + F14,EP2F14,EM

�
� (F4 � F5)

(4)

Adsorbed phase of DOC
[mgC

g
]

dQ

dt
= F4 � F5 (5)

Active microbial biomass
[mgC

g
]

dBA

dt
= F6 � (F7 � F8)� (F9 � F10)

� F12 �
�
F14,EP1 + F14,EP2F14,EM

�
(6)

Dormant microbial biomass
[mgC

g
]

dBD

dt
= (F7 � F8)� F11 (7)
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P1 degraded enzymes
[mgC

g
]

dEP1
dt

= F13,EP1 � F14,EP1 (8)

P2 degraded enzymes
[mgC

g
]

dEP2
dt

= F13,EP2 � F14,EP2 (9)

M degraded enzymes
[mgC

g
]

dEM

dt
= F13,EM � F14,EM (10)

CO2 [mgC

g
] dCO2

dt
= (F9 + F10) + F11 (11)

Table A6 Biokinetic functions and composite parameter expressions of the MEND model
(M=10, N=19).

Description Expression

P1 decomposition F1 = VP1·EP1·P1
KP1

+P1
(12)

P2 decomposition F2 = VP2·EP2·P2
KP2

+P2
(13)

Mineral-associated organic carbon
decomposition

F3 = VM ·EM·M
KM+M

(14)

Adsorption of DOC F4 = Kads · (1�Q/Qmax) ·D (15)

Desorption of DOC F5 = Kdes · (Q/Qmax) (16)

DOC uptake by microbes F6 = 1
YG

(VD +mR) D·BA

KD+D
(17)

Dormancy flux F7 =
⇣
1� D

KD+D

⌘
·mR ·BA (18)

Reactivation flux F8 = D

KD+D
·mR ·BD (19)

BA growth respiration F9 =
⇣

1
YG

� 1
⌘

VD·BA·D
KD+D

(20)

BA maintenance respiration F10 =
⇣

1
YG

� 1
⌘

mR·BA·D
KD+D

(21)

BD maintenance respiration F11 = � ·mR ·BD (22)

BA mortality F12 =

(1� pEP � pEM ) ·mR ·BA

(23)

Synthesis of enzymes for P1 F13,EP1 =
P1

P1+P2
· pEP ·mR ·BA

(24)

Synthesis of enzymes for P2 F13,EP2 =
P2

P1+P2
· pEP ·mR ·BA

(25)

Synthesis of enzymes for M F13,EM = pEM ·mR ·BA (26)

Turnover of enzymes F14,EP1 = rE · EP1

F14,EP2 = rE · EP2

F14,EM = rE · EM

(27)
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Table A7 Model parameter symbols, descriptions, base values of parameters of the MEND
model (M=10, N=19; Wang et al. 2015, Figure S2, Gelisol).

Symbol Description Value Unit

VP1 Maximum specific
decomposition rate for P1

1.6
⇥ 1
h

⇤

VP2 Maximum specific
decomposition rate for P2

38.0
⇥ 1
h

⇤

KP1 Half-saturation constant for P1
decomposition

50.0
h
mgC

g

i

KP2 Half-saturation constant for P2
decomposition

18.0
h
mgC

g

i

VM Maximum specific
decomposition rate for M

1.1
⇥ 1
h

⇤

KM Half-saturation constant for M
decomposition

455.0
h
mgC

g

i

VD Maximum specific uptake rate of
D for growth

0.04
⇥ 1
h

⇤

KM Half-saturation constant for
uptake of D

0.19
h
mgC

g

i

mR Specific maintenance rate of BA 0.033
⇥ 1
h

⇤

� Ratio of dormant maintenance
rate to mR

0.001 [�]

YG True growth yield 0.27 [�]

fD Fraction of decomposed P1 and
P2 allocated to D

0.7 [�]

gD Fraction of dead BA allocated to
D

0.3 [�]

pEP Fraction of mR for production
of EP1 and EP2

0.05 [�]

pEM Fraction of mR for production
of EM

0.05 [�]

rE Turnover rate of EP1, EP2, and
EM

0.0025
⇥ 1
h

⇤

Qmax Maximum DOC sorption
capacity

3.5
h
mgC

g

i

Kdes Desorption rate 0.048
h
mgC

g h

i

Kads Adsorption rate 0.48
⇥ 1
h

⇤
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Table A8 Carbon stocks and governing differential equations of the trait-based microbial
soil carbon model (M=7, N=24).

C stock Differential equation

Stable soil organic C
substrates [ g C

m3 ]

dCS
dt

= IL �D (1)

Soluble organic C [ g C

m3 ]
dCD

dt
= D +MB (1 + �) +MB,D (1 + �)

+ ED + PD!A� � U � LD

(2)

Enzymatic C [ g C

m3 ]
dCE
dt

= EP � ED � LE (3)

C in active microbial
biomass [ g C

m3 ]

dCB
dt

=
eU�RM�EP+PD!A

1+� � PA!D �MB

(4)

C in dormant microbial
biomass [ g C

m3 ]

dCB,D

dt
= PA!D � PD!A �MB,D (5)

Table A9 Biokinetic functions and composite parameter expressions of the trait-based
microbial soil carbon model (M=7, N=24).

Description Expression Unit

Microbial uptake U = hD(s)CD

h
gC

m3 d

i
(6)

Mortality of active microbial
biomass

MB = kBCB

h
gC

m3 d

i
(7)

Mortality of dormant microbial
biomass

MB,D = kB/10 · CB,D

h
gC

m3 d

i
(8)

Enzyme decay rate ED = kE · CE

h
gC

m3 d

i
(9)

Enzyme production rate EP = hE(s)
�
CE,0 � CE

� h
gC

m3 d

i
(10)

Transfer from dormant to active
population

PD!A =

kD!AfD!A( )CB,D

h
gC

m3 d

i
(11)

Transfer from active to dormant
population

PA!D = kA!DfA!D( )CB

h
gC

m3 d

i
(12)

Maintenance respiration RM = kMCB

h
gC

m3 d

i
(13)

Leaching of dissolved organic C LD =

CDLsZ
�1
r · (⇢bKd + n · s)�1

h
gC

m3 d

i
(14)

Leaching of enzymes LE =

LsCEZ�1
r · (⇢bKd + n · s)�1

h
gC

m3 d

i
(15)

Transfer coefficient for dissolved
organic C

hD(s) =

��2DD(s) · (⇢bKd + n · s)�1⌫

⇥ 1
d

⇤
(16)

Diffusivity of dissolved organic
C in bulk soil

DD(s) =

((sth � s) · (�1 + sth)�1)m2 ·
DD,0 · nm1 · (1� sth)m1

h
m

2

s

i
(17)

Transfer coefficient for enzymes hE(s) =

��2DE(s) · (⇢bKd + n · s)�1⌫

⇥ 1
d

⇤
(18)
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Diffusivity of enzymes in bulk
soil

DD(s) =

((sth � s) · (�1 + sth)�1)m2 ·
DE,0 · nm1 · (1� sth)m1

h
m

2

s

i
(19)

Switching function for
active-dormant state transition

fA!D( ) =
(� )w

(� )w+(� A!D)w

[�] (20)

Switching function for
dormant-active state transition

fD!A( ) =
(� D!A)w

(� )w+(� D!A)w

[�] (21)

Soil matric potential  = s�b ·  sat [MPa] (22)

Table A10 Model parameter symbols, descriptions, base values of parameters of the trait-
based microbial soil carbon model (M=7, N=24; Manzoni et al. 2014, Table 2).

Symbol Description Value Unit

b Exponent of the water retention
curve

4.9 [�]

CE,0 Enzyme concentration outside
the microbial cell

1.0
h
gC

m3

i

DD,0 Diffusivity of dissolved organic
C in pure water

8.1e�10
h
m

2

s

i

� Characteristic distance between
microbial cells and substrate

1e�4 [m]

e Growth efficiency 0.5 [�]

� Fixed ratio for constitutive
osmolyte production

0.026 [�]

IL Litter carbon input (fixed) 0.9
h

gC

m3 d

i

kA!D Maximum rate of transition
from active to dormant state

1.0
⇥ 1
d

⇤

kB Mortality rate of active
population

0.012
⇥ 1
d

⇤

Kd Solid-liquid partition coefficient 1e� 5
h
m

3

g

i

kD Maximum rate of decomposition 1e� 3
⇥ 1
d

⇤

kD!A Maximum rate of transition
from dormant to active state

kA!D

⇥ 1
d

⇤

kE Enzyme de-activation rate 5e� 4
⇥ 1
d

⇤

kM Maintenance respiration rate 0.022
⇥ 1
d

⇤

m1 Empirical exponent 1.5 [�]

m2 Empirical exponent 2.5 [�]

n Soil porosity 0.43 [�]

⌫ Scaling coefficient 6.0 [�]

 A!D Water potential at 50% of the
maximum rate kA!D

0.4 [MPa]
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 sat Soil water potential at
saturation

�0.002 [MPa]

⇢b Soil bulk density 1.2e6
h

g

m3

i

s Soil moisture 0.6 [�]

sth Diffusion threshold 0.18 [�]

w Sensitivity parameter for the
switching functions

4.0 [�]

Zr Soil depth 0.4 [m]
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Table A13 Model parameter symbols, descriptions, values of optimal parameters of the
full PECCAD ODE model (M=12, N=59) calibrated on the data of the MCPA + Litter
treatment, 95% highest posterior density interval (HDI) and units.

Symbol Description MCPA
+ Litter

HDI Unit

amax�B Maximal specific death rate of
bacteria

1.21 [0.004, 7.89]
⇥ 1
d

⇤

amax�BP Maximal specific death rate of
bacterial pesticide degraders

0.15 [0.004, 3.79]
⇥ 1
d

⇤

amax�F Maximal specific death rate of
fungi

10.88 [4.70, 23.94]
⇥ 1
d

⇤

Ka�B,hiq Inhibition coefficient of bacterial
death rate in response to hiq
DOC

9.74 [0.023, 622.48]
h

g

mg C

i

Ka�B,loq Inhibition coefficient of bacterial
death rate in response to loq
DOC

16.68 [0.39, 537.70]
h

g

mg C

i

Ka�BP,hiq Inhibition coefficient of bacterial
pesticide degrader death rate in
response to hiq DOC

123.96 [0.235, 2.64e3]
h

g

mg C

i

Ka�BP,loq Inhibition coefficient of bacterial
pesticide degrader death rate in
response to loq DOC

29.12 [0.093, 206.64]
h

g

mg C

i

Ka�BP,P Inhibition coefficient of bacterial
pesticide degrader death rate in
response to pesticide

19.41 [0.147, 441.90]
h

g

mg C

i

Ka�F,hiq Inhibition coefficient of fungal
death rate in response to hiq
DOC

161.16 [22.94, 1.27e3]
h

g

mg C

i

Ka�F,loq Inhibition coefficient of fungal
death rate in response to loq
DOC

15.92 [5.73, 90.0]
h

g

mg C

i

kB,hiq hiq DOC growth substrate
affinity coefficient of bacteria

231.20 [20.02, 1.95e3]
h

g

mg Cd

i

kB,loq loq DOC growth substrate
affinity coefficient of bacteria

5.83 [0.18, 25.43]
h

g

mg Cd

i

kBP,hiq hiq DOC growth substrate
affinity coefficient of bacterial
pesticide degraders

513.89 [1.54, 4.38e3]
h

g

mg Cd

i

kBP,loq loq DOC growth substrate
affinity coefficient of bacterial
pesticide degraders

335.55 [12.25, 1.07e3]
h

g

mg Cd

i

kBP,P pesticide growth substrate
affinity coefficient of bacterial
pesticide degraders

461.64 [1.43, 3.52e4]
h

g

mg Cd

i
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Kd�hiq Linear sorption coefficient of hiq
DOC

1.13 [0.115, 3.574]
h
mm

3

mg

i

Kd�loq Linear sorption coefficient of loq
DOC

70.76 [13.15, 2.32e3] [�]

kF,hiq hiq DOC growth substrate
affinity coefficient of fungi

0.96 [2e�3, 27.28]
h

g

mg Cd

i

kF,loq loq DOC growth substrate
affinity coefficient of fungi

79.17 [22.54, 147.99]
h

g

mg Cd

i

kF,P Maximum specific rate of
pesticide utilization in the
absence of growth substrates of
fungi

1.02 [1e�
4, 47.26]

⇥ 1
d

⇤

KI�B Substrate affinity coefficient of
insoluble organic matter
decomposition kinetics of
bacteria and bacterial pesticide
degraders

65.19 [0.16, 2.3e3]
h

g

mg C

i

KI�F Substrate affinity coefficient of
insoluble organic matter
decomposition kinetics of fungi

54.24 [0.07, 14.5e3]
h

g

mg C

i

km�B,hiq hiq DOC maintenance substrate
affinity coefficient of bacteria

652.74 [0.69, 8.0e4]
h

g

mg Cd

i

km�B,loq loq DOC maintenance substrate
affinity coefficient of bacteria

221.47 [4.87, 1.3e3]
h

g

mg Cd

i

km�BP,hiq hiq DOC maintenance substrate
affinity coefficient of bacterial
pesticide degraders

269.72 [0.90, 10.9e3]
h

g

mg Cd

i

km�BP,loq loq DOC maintenance substrate
affinity coefficient of bacterial
pesticide degraders

1365.72 [4.55, 3.8e5]
h

g

mg Cd

i

km�BP,P pesticide maintenance substrate
affinity coefficient of bacterial
pesticide degraders

679.53 [0.252, 1.1e4]
h

g

mg Cd

i

kr�B,hiq Inhibition coefficient of bacterial
activity in response to hiq DOC

0.432 [0.06, 8.31]
h
mgC

g

i

kr�B,loq Inhibition coefficient of bacterial
activity in response to loq DOC

1.25 [0.25, 9.74]
h
mgC

g

i

kr�BP,hiq Inhibition coefficient of bacterial
pesticide degrader activity in
response to hiq DOC

0.91 [0.27, 602.62]
h
mgC

g

i

kr�BP,loq Inhibition coefficient of bacterial
pesticide degrader activity in
response to loq DOC

25.09 [0.43, 26.57]
h
mgC

g

i

kr�BP,P Inhibition coefficient of bacterial
pesticide degrader activity in
response to pesticide

4.08 [0.013, 154.35]
h
mgC

g

i

kr�F,hiq Inhibition coefficient of fungal
activity in response to hiq DOC

9.41e�5 [2.05, 100]e�5
h
mgC

g

i
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kr�F,loq Inhibition coefficient of fungal
activity in response to loq DOC

122.20 [2.41, 2.1e4]
h
mgC

g

i

Ks�F,P Substrate affinity coefficient of
fungal co-metabolic pesticide
transformation kinetic

0.004 [3, 63]e�3
h
mgC

g

i

mmax�B Maximal specific maintenance
rate of bacteria

3.08 [0.93, 181.96]
⇥ 1
d

⇤

mmax�BP Maximal specific maintenance
rate of bacterial pesticide
degraders

3.94 [0.01, 133.18]
⇥ 1
d

⇤

µmax�B Maximal specific growth rate of
bacteria

68.60 [3.02, 2.5e3]
⇥ 1
d

⇤

µmax�BP Maximal specific growth rate of
bacterial pesticide degraders

8.41 [0.47, 28.91]
⇥ 1
d

⇤

µmax�F Maximal specific growth rate of
fungi

9.42 [3.32, 16.50]
⇥ 1
d

⇤

qmax�B Maximal specific decomposition
rate of insoluble organic matter
of bacteria and bacterial
pesticide degraders

5.84 [0.034, 47.13]
⇥ 1
d

⇤

qmax�F Maximal specific decomposition
rate of insoluble organic matter
of fungi

1.19 [0.2, 5.87]
⇥ 1
d

⇤

TF,P Co-metabolic pesticide
transformation capacity of fungi

4968.68 [56.56, 1.03e5]
h
mgC

mgC

i

Ty�F Growth substrate
transformation capacity of fungi

140.88 [4.19, 252e3]
h
mgC

mgC

i

YL,hiq Fraction of the decomposed hiq
litter transferred to soil

0.36 [0.113, 0.701] [�]

YL,loq Fraction of the decomposed loq
litter transferred to soil

0.84 [0.722, 0.983] [�]

Yr�B Efficiency of insoluble organic
matter decomposition by
bacteria and bacterial pesticide
degraders

0.700 [0.507, 1.0] [�]

Yr�F Efficiency of insoluble organic
matter decomposition by fungi

0.990 [0.982, 0.997] [�]

YR�F,P Efficiency of co-metabolic
pesticide transformation by
fungi

0.515 [0.298, 1.0] [�]

Ys�B,hiq Substrate uptake efficiency of
hiq DOC by bacteria

0.173 [0.075, 0.306] [�]

Ys�B,loq Substrate uptake efficiency of
loq DOC by bacteria

0.503 [0.260, 0.854] [�]

Ys�BP,hiq Substrate uptake efficiency of
hiq DOC by bacterial pesticide
degraders

0.500 [0.205, 0.876] [�]
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Ys�BP,loq Substrate uptake efficiency of
loq DOC by bacterial pesticide
degraders

0.200 [0.033, 0.771] [�]

Ys�BP,P Substrate uptake efficiency of
pesticide by bacterial pesticide
degraders

0.900 [0.835, 0.974] [�]

Ys�F,hiq Substrate uptake efficiency of
hiq DOC by fungi

0.113 [0.011, 0.622] [�]

Ys�F,loq Substrate uptake efficiency of
loq DOC by fungi

0.909 [0.824, 0.952] [�]

rB0 Initial physiological state index
of bacteria

0.058 [0.004, 0.139] [�]

rBP0 Initial physiological state index
of bacterial pesticide degraders

0.296 [0.057, 0.336] [�]

rF0 Initial physiological state index
of fungi

0.116 [0.004, 0.348] [�]
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Table A14 Model parameter symbols, descriptions, base values of parameters of the full
PECCAD ODE model (M=12, N=59) that define a pesticide stabilization curve.

Symbol Description Value Unit

amax�B Maximal specific death rate of bacteria 1.43
⇥ 1
d

⇤

amax�BP Maximal specific death rate of bacterial
pesticide degraders

1.24
⇥ 1
d

⇤

amax�F Maximal specific death rate of fungi 2.43
⇥ 1
d

⇤

Ka�B,hiq Inhibition coefficient of bacterial death
rate in response to hiq DOC

9.72
h

g

mg C

i

Ka�B,loq Inhibition coefficient of bacterial death
rate in response to loq DOC

6.07
h

g

mg C

i

Ka�BP,hiq Inhibition coefficient of bacterial
pesticide degrader death rate in
response to hiq DOC

21.06
h

g

mg C

i

Ka�BP,loq Inhibition coefficient of bacterial
pesticide degrader death rate in
response to loq DOC

1.63
h

g

mg C

i

Ka�BP,P Inhibition coefficient of bacterial
pesticide degrader death rate in
response to pesticide

1.97
h

g

mg C

i

Ka�F,hiq Inhibition coefficient of fungal death
rate in response to hiq DOC

75.24
h

g

mg C

i

Ka�F,loq Inhibition coefficient of fungal death
rate in response to loq DOC

59.99
h

g

mg C

i

kB,hiq hiq DOC growth substrate affinity
coefficient of bacteria

347.46
h

g

mg Cd

i

kB,loq loq DOC growth substrate affinity
coefficient of bacteria

4.91
h

g

mg Cd

i

kBP,hiq hiq DOC growth substrate affinity
coefficient of bacterial pesticide
degraders

160.86
h

g

mg Cd

i

kBP,loq loq DOC growth substrate affinity
coefficient of bacterial pesticide
degraders

195.22
h

g

mg Cd

i

kBP,P pesticide growth substrate affinity
coefficient of bacterial pesticide
degraders

297.78
h

g

mg Cd

i

Kd�hiq Linear sorption coefficient of hiq DOC 0.008
h
mm

3

mg

i

Kd�loq Linear sorption coefficient of loq DOC 0.003 [�]

kF,hiq hiq DOC growth substrate affinity
coefficient of fungi

151.04
h

g

mg Cd

i

kF,loq loq DOC growth substrate affinity
coefficient of fungi

69.83
h

g

mg Cd

i
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kF,P Maximum specific rate of pesticide
utilization in the absence of growth
substrates of fungi

0.19
⇥ 1
d

⇤

KI�B Substrate affinity coefficient of insoluble
organic matter decomposition kinetics of
bacteria and bacterial pesticide
degraders

90.06
h

g

mg C

i

KI�F Substrate affinity coefficient of insoluble
organic matter decomposition kinetics of
fungi

1.34
h

g

mg C

i

km�B,hiq hiq DOC maintenance substrate affinity
coefficient of bacteria

716.51
h

g

mg Cd

i

km�B,loq loq DOC maintenance substrate affinity
coefficient of bacteria

223.72
h

g

mg Cd

i

km�BP,hiq hiq DOC maintenance substrate affinity
coefficient of bacterial pesticide
degraders

178.07
h

g

mg Cd

i

km�BP,loq loq DOC maintenance substrate affinity
coefficient of bacterial pesticide
degraders

700.94
h

g

mg Cd

i

km�BP,P pesticide maintenance substrate affinity
coefficient of bacterial pesticide
degraders

497.26
h

g

mg Cd

i

kr�B,hiq Inhibition coefficient of bacterial activity
in response to hiq DOC

1.62
h
mgC

g

i

kr�B,loq Inhibition coefficient of bacterial activity
in response to loq DOC

9.85
h
mgC

g

i

kr�BP,hiq Inhibition coefficient of bacterial
pesticide degrader activity in response
to hiq DOC

2.27
h
mgC

g

i

kr�BP,loq Inhibition coefficient of bacterial
pesticide degrader activity in response
to loq DOC

1.64
h
mgC

g

i

kr�BP,P Inhibition coefficient of bacterial
pesticide degrader activity in response
to pesticide

1.19
h
mgC

g

i

kr�F,hiq Inhibition coefficient of fungal activity in
response to hiq DOC

0.05
h
mgC

g

i

kr�F,loq Inhibition coefficient of fungal activity in
response to loq DOC

6.56
h
mgC

g

i

Ks�F,P Substrate affinity coefficient of fungal
co-metabolic pesticide transformation
kinetic

6.35
h
mgC

g

i

mmax�B Maximal specific maintenance rate of
bacteria

0.41
⇥ 1
d

⇤

mmax�BP Maximal specific maintenance rate of
bacterial pesticide degraders

3.34
⇥ 1
d

⇤

µmax�B Maximal specific growth rate of bacteria 55.89
⇥ 1
d

⇤
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µmax�BP Maximal specific growth rate of bacterial
pesticide degraders

1.20
⇥ 1
d

⇤

µmax�F Maximal specific growth rate of fungi 2.46
⇥ 1
d

⇤

qmax�B Maximal specific decomposition rate of
insoluble organic matter of bacteria and
bacterial pesticide degraders

3.37
⇥ 1
d

⇤

qmax�F Maximal specific decomposition rate of
insoluble organic matter of fungi

1.45
⇥ 1
d

⇤

TF,P Co-metabolic pesticide transformation
capacity of fungi

4971.72
h
mgC

mgC

i

Ty�F Growth substrate transformation
capacity of fungi

0.002
h
mgC

mgC

i

Yr�B Efficiency of insoluble organic matter
decomposition by bacteria and bacterial
pesticide degraders

0.62 [�]

Yr�F Efficiency of insoluble organic matter
decomposition by fungi

0.98 [�]

YR�F,P Efficiency of co-metabolic pesticide
transformation by fungi

0.44 [�]

Ys�B,hiq Substrate uptake efficiency of hiq DOC
by bacteria

0.25 [�]

Ys�B,loq Substrate uptake efficiency of loq DOC
by bacteria

0.96 [�]

Ys�BP,hiq Substrate uptake efficiency of hiq DOC
by bacterial pesticide degraders

0.31 [�]

Ys�BP,loq Substrate uptake efficiency of loq DOC
by bacterial pesticide degraders

0.28 [�]

Ys�BP,P Substrate uptake efficiency of pesticide
by bacterial pesticide degraders

0.45 [�]

Ys�F,hiq Substrate uptake efficiency of hiq DOC
by fungi

0.72 [�]

Ys�F,loq Substrate uptake efficiency of loq DOC
by fungi

0.58 [�]

Ihiq Constant hiq DOC input 0.03
h
mgC

g d

i

Iloq Constant loq DOC input 0.07
h
mgC

g d

i

IP Constant pesticide input 3e�7
h
mgC

g d

i
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