
Learning Motor Primitives with Echo State
Networks

Jakob Gütschow, Johannes Lohmann, Danil Koryakin, and Martin V. Butz

Cognitive Modeling, Department of Computer Science, University of Tübingen, Sand
14, 72076 Tübingen, Germany

Abstract. Movement control based on the combination of simple motor
patterns (movement primitives) has proven to be a suitable approach for
modeling human and robot behavior. Learning movement primitives in-
volves the approximation of movement trajectories that can be described
in terms of non-linear functions, different techniques have been proposed
to solve this task. Here we investigate the ability of a special type of
recurrent neural network, so called echo state networks, to perform this
learning task. Our results based on a simple 2D simulation show that
even quite small and simple structured networks are able to reproduce
complex motion patterns.

Keywords: Movement Primitives, ESN, Reservoir computing

1 Introduction

The planning and execution of precise reaching movements is a highly complex
challenge in robotics. Due to the high degrees of freedom of modern manipula-
tors, there is a high level of redundancy inherent in these tasks. Targets can be
reached on a large variety of trajectories and with a large variety of end-postures.

A promising approach to resolve this redundancy is to decompose the mo-
tions into basic patterns, so-called motor primitives [6]. The foundation for these
primitives comes from biology, where they are described as “motor patterns that
are considered basic units of voluntary motor control, thought to be present
throughout the life-span” or simply “building blocks of movement generation”
(see [11], p. 1). In vertebrates, the neuronal realization of motor primitives is
likely located in the spinal cord. Here populations of neurons were found that
recruit groups of muscles whose activities remained proportionally fixed through-
out their recruitment [2]. By flexibly combining just a relatively small number
of these building blocks, uncountable movement patterns and behaviors can be
generated. It has been speculated, that such motor primitives may be crucial
elements in early motor learning [2]. The existence of motor primitives implies
that there might be some kind of central pattern generator (CPG) that combines
simple low dimensional inputs to produce complex high dimensional outputs. A
combination of low dimensional inputs can be achieved for instance by blending
different motor primitives together.



To model such CPGs, two problems have to be addressed. First, the move-
ment patterns have to be defined in terms of trajectories; for instance as time-
series of task-space coordinates or angles in joint space. Second, a control process
is necessary to monitor the movement execution and to adapt it dynamically if
necessary. Apart from other approaches to learn and combine motor primitives
like dynamic movement primitives [15] or Gaussian mixture models [1,10], [5]
suggested an implementation via recurrent neural networks (RNNs). Especially
the ability to autonomously generate rhythmic activation in a self-recurrent way
is an interesting feature of RNNs as it seems to reflect the properties of biologic
pattern generators.

The idea to learn motor primitives with RNNs is not new (see for instance
[14]), but more recent research focuses on the capabilities of reservoir comput-
ing [18] to model a CPG. One architecture frequently used in studies on reservoir
computing is based on the echo state networks (ESNs) presented in [7]. Com-
pared to other RNNs, training of even very large ESNs is fast, easy to implement,
and quite robust. ESNs are especially well-suited for time-series learning, and
there are some examples for a successful application in the domain of movement
planning and movement control. [3] compares ESNs with other frequently used
algorithms used for time-series learning. [17] learned a bidirectional mapping
of forward and inverse kinematics to perform goal-directed reaching movements
within a single ESN. With an ESN applying leaky integrator neurons, [9] were
able to reproduce trajectories like the lazy figure eight. Additionally, [9] also
showed that the time scale of the reproduction of a certain ESN can be dy-
namically tuned. There have also been attempts to solve the mentioned control
problem, i.e. the ability to switch between different learned motor primitives,
within ESNs. As it was shown by [14], network dynamics can be shifted by bi-
furcation inputs. For instance, the architectures proposed by [19] and [13] proved
that this approach is also viable for ESNs. Both architectures fulfill the require-
ments of a model for a CPG. To sum up, there is plenty of evidence for the
ability of ESNs to account for the learning of movement primitives. With ar-
chitectures like the one proposed by [19] or [13] it is also possible to solve the
control problem within ESNs.

Even if these findings are promising, the applied networks were quite large
(300 neurons in [13], and up to 2200 neurons in [19]), used special types of
neurons with filter properties [20,19], or required more elaborate training mech-
anisms than the original ESNs 1. Therefore, we are interested in the ability of
“vanilla” ESNs to reproduce motor patterns in a completely self-recurrent way,
without any additional input. As a first step, we use a simple 2D-simulator of
an arm to define and execute basic movements to be learned and reproduced by
the networks. We are focusing on the kinematics of the movement. Hence, we
do not directly learn any dynamics. We concentrate on finding a coding scheme
for motion trajectories that can be accurately learned, that can generate stable
control commands, and that generalize well. Different encodings were employed

1 For instance [19] used ridge regression[4], instead of the simple linear regression,
proposed by [7].



to learn particular trajectories with ESNs. For instance, [13] as well as [3] used
two-dimensional task space coordinates, whereas [19] learned different joint angle
evolutions. In this work we assess the impact of different coding schemes on the
learning performance. More precisely, we investigate if different coding schemes
require different network parameters for successful learning.

As we are using networks that are guided by a constant output feedback loop
without any additional external input the notion of stability is crucial. Our aim
is to find output feedback stable networks in the sense of [16], i.e. networks that
are not driven into an extreme attractor state by there own recurrent feedback.
Some recent papers on output driven ESNs investigated which network proper-
ties are necessary to avoid error amplification due to recurrent feedback. While
[16] pointed out that regularized2 networks are less prone to error amplification,
[12] suggested a balancing between the scaling of the output feedback strength
and the amplitude of the learned time-series.

In the next section we provide a short introduction to ESNs. After this we
sketch out our experimental setup. Next, we evaluate performances with respect
to different coding schemes. A short discussion concludes the paper.

2 Echo State Networks

While a detailed description of the features and working of this architecture can
be found in [7] and [8], this section only gives an overview of its most important
features.

The basic ESN structure is quite similar to that of standard RNNs, consisting
of an (optional) input layer, a layer of the hidden neurons (the so-called, dynamic
reservoir), and an output layer. The crucial differences of ESNs compared to the
standard RNNs are the pre-wired dynamic reservoir and the simple training
procedure, which only optimizes the output weights. Figure 5 shows an overview
of the architecture. Within the dynamic reservoir different dynamics unfold over
time. These dynamics are combined to produce the output of the network.

It is necessary that the dynamic reservoir adheres to the so-called echo state
property. This property is a requirement for stable dynamics and leads to a fading
memory of the reservoir with respect to the input history. The echo state prop-
erty can be achieved by restricting the spread of the reservoir weights through
their division by the largest eigenvalue of the reservoir weight matrix and multi-
plying them with λ∗. This results in a matrix where the desired largest absolute
eigenvalue equals λ∗, in other words the spectral radius of the matrix equals λ∗.

The state of the dynamic reservoir at time-step n+ 1 can be described by:

x(n+ 1) = f(WINu(n+ 1) + Wx(n) + WOFBy(n)), (1)

where bold letters denote matrices and vectors. More precisely x(n) denotes the
state of the dynamic reservoir at the nth time-step, u(n+1) and y(n) denote the
current input and the previous output, respectively. The weight matrices WIN,

2 The term regularized refers to a low norm of the different weight matrices.



W, and WOFB contain weights of connections from the input neurons to the
reservoir neurons, recurrent connections within the reservoir, and output feed-
back connections from the output neurons to the reservoir neurons, respectively.
Finally, f denotes the transfer function of the units of the dynamic reservoir
— usually a sigmoid. The state of the units in the output layer is obtained as
follows:

y(n+ 1) = fOUT (WOUTu(n+ 1),x(n+ 1),y(n)), (2)

where fOUT denotes the transfer function of the output units — usually a linear
function.

Dynamic Reservoir
(N units)Input Layer

(K units)
Output Layer

(L units)

Fig. 1. Overview of the ESN-architecture. Dashed lines represent optional connections.
Optimized connections are those leading to the output layer.

As noted above, a unique feature of ESNs is that the randomly initialized
reservoir weights stay fixed. The only weights that are optimized during training
are those connecting the dynamic reservoir and optionally the input layer with
the output layer. To optimize the output weights the squared difference of the
network output and the desired time-series is minimized.

The training process itself is executed in three consecutive phases. First, the
initial transients of the dynamic reservoir are extinguished during a washout
phase.

Second, the crucial part of the training is executed in the sampling phase.
During this phase, teacher forcing is applied, feeding the intended output values
back into the network via the output feedback connection weights WOFB. The
resulting excitation of the reservoir is recorded in a matrix M (time-steps × in-
ternal nodes) while the corresponding teacher output values are collected within
a vector T . The optimal weights are then calculated by

WOUT = M−1T (3)



where WOUT denotes the connections to the output layer. In the third phase,
the quality of the estimated weights is evaluated. To allow a direct comparison
between different target time series we use the normed root mean squared error
between the target signal and the network output to evaluate the quality of a
certain ESN:

NRMSE =

√√√√ I∑
i=1

T−1∑
t=0

‖di(t)− yi(t)‖2
Tσ2

i

, (4)

where I refers to the output dimension, T is the target sequence length int the
exploitation phase, yi(t) is the network output at time step t in output dimension
i, and σ2

i is the variance of the target dynamics di(n) in the i’th dimension. There
also exist online-learning procedures for training ESNs, which we do not consider
here.

3 Experimental Setup

We use a simple simulator of a 2D-arm. This arm can be customized with regard
to the number of segments and the length of these segments. Movement genera-
tion is carried out by first manually defining a trajectory for the endpoint. The
trajectory is then reproduced by the arm, while data is recorded according to
one of the coding schemes described below. The inverse kinematics are solved
directly, without considering additional planning techniques.

We either recorded the position of the end-effector of the arm in target space,
or the evolution of joint angles over time. Angles are measured in radiants sep-
arately for each joint. The location of the end point is recorded in pixels of a
coordinate system laid over the task space. To investigate the ability of the net-
works to generalize the learned trajectories we did not only collect the absolute
angles, or target locations, but also the differences in joint angles or end-effector
coordinates between two subsequent steps. For the training we applied the raw
data as well as data normalized to unity.

This data is then used for teacher-forcing. In case of joint angle data one
output unit per joint is used. For the recordings of the location in target space,
one output unit is used each for x- and y-coordinate, independent of the number
of arm-segments. After training the ESNs, the activations of the output units
in the exploitation phase are once again stored. These activations are the move-
ment data that are then again used by the simulator to reproduce the recorded
trajectory.

For our main evaluation trials, we used an arm setup with three segments,
to draw different 8-shaped trajectories and recorded them with different coding
schemes. Hence, the task we applied is similar to the lazy figure eight task de-
scribed in [9]. With respect to these schemes varied crucial network parameters
to identify the most effective ESN setup settings that yield the most successful
learning of the trajectories. In the first set of trials, we investigated the influence
of the spectral radius λ∗, the connectivity of the dynamic reservoir, as well as the
initialization range of the output feedback weights WOFB on the performance



of the ESNs. We used seven different spectral radii, nine different connectivities,
and nine different initialization ranges for the output feedback weights. Given
that for every factor combination 20 networks were trained, the whole sequence
required the training of 11340 networks. Ranges and step sizes of the parameter
variations are displayed in the figures. As we were interested in the reproduc-
tion of the motion patterns with small networks, we kept the size of the dynamic
reservoir fixed to 20 units in these runs. To estimate the influence of the different
parameters, we trained 20 networks per parameter combination.

In the second set of trials another parameter setup was used. First, the con-
nectivity of the reservoir was fixed to 0.9, as it did not show any significant
influence on the results in the first trials. Instead, we varied the reservoir size
from 10 to 20 units. Second, we varied the values of the initialization range of
the output feedback weights WOFB over a broader range. We used the same
variations of the spectral radius λ∗ as in the first set of trials. In this set of
trials we applied seven different spectral radii, 11 reservoir sizes, and 24 initial-
ization ranges for the output feedback weights. Again, we trained 20 networks
per parameter combination, yielding a total of 30800 networks.

In the third set of trials we further investigated the influence of the reservoir
size, creating networks with 25 to 100 units. The other parameters were the same
as in the second run, yielding a total of 19600 networks.

Due to the large body of data and the fact that we would like to present
the characteristics of the error distributions as detailed as possible, we decided
to use box and whisker plots. The grayed area indicates the inter-quartile range
covering 50% of the data, the outer whiskers indicate the 5% nad 95% quan-
tile, repectively. Values out of this range but within the doubled inter-quartile
range are considered as outliers (marked as open circles), values outside the
doubled inter-quartile range are considered as extreme values and, if existent,
are indicated with open triangles. The arithmetic mean is indicated by a black
dot, whereas the smallest error value in each distribution is indicated by a gray
square.

4 Results

As noted above, the coding schemes can be divided into schemes relying on joint
angles and task space coordinates.

4.1 Relative Location in Target Space

We first investigated the network performance with data obtained with the nor-
malized relative scheme, i.e. subsequent changes of the end effector position were
recorded and normalized to unity. Fig. 2 displays the results of our first series of
experiments. As can be deduced from the figure, the inter-quartile ranges of the
different parameter setups overlap. There was not much variance due to the pa-
rameter variation and the overall performance was quite good. As it was pointed
out by [8], the optimal spectral radius depends on the frequency of the desired



signal. Interestingly, the best performing network was found for a spectral radius
of 0.9 despite the fact that most networks generated with such a high spectral
radius performed worse than networks with a smaller spectral radius.

The initialization of the output feedback weights WOFB did not show a
clear influence in the investigated interval and all values resulted in similarly
good performance, the best results were found for an initialization interval of
[−0.08, 0.08]. The overall effect of variations of the output feedback range was
surprisingly small, therefore we decided to sample a broader interval in the next
experiments.

The influence of the connectivity was completely indistinct, therefore we did
not considered this parameter in the further analysis but fixed it to 0.9. Appar-
ently, this task can be easily learned with ESNs, as even the näıve initialization
could result in suitable networks.

In the second series of experiments, the variations once again failed to show
more than minor effects (see Fig. 3). The error-medians remained nearly constant
over the whole WOFB initialization interval, but the variance increased for the
extreme ranges of the initialization interval. However, the best networks were
found in these ranges as well: Either with an initialization interval of [−1.0, 1.0],
or with an initialization interval of [−10−15, 10−15]. For this scheme varying the
reservoir size had no general effect on the majority of the error-values. The effect
of the variation of the error interval had no strong effect. The best performing
networks were found for a reservoir size of 12 units. Concerning λ∗, a value of
0.9 led to the best results.

To sum up, the two-dimensional progression of end-effector changes in task
space can be learned with quite small networks. The only parameter with more
than a small effect was the spectral radius, with values above 0.9 increasing the
error variance. The data pattern obtained with absolute task space coordinates
was quite similar, hence we did not include the results.

Task Space (relative)

0 , 0

0 , 5

1 , 0

1 , 5

2 , 0

2 , 5

3 , 0

3 , 5

4 , 0

4 , 5

5 , 0

N
R

M
S

E
 (

lo
g

)

0 , 4 0
0 , 5 0

0 , 6 0
0 , 7 0

0 , 8 0
0 , 9 0

1 , 0 0

Spectral Radius

0 , 2 0
0 , 3 0

0 , 4 0
0 , 5 0

0 , 6 0
0 , 7 0

0 , 8 0
0 , 9 0

1 , 0 0

Connectivity in [%]

10E-3

20E-3

30E-3

40E-3

50E-3

60E-3

70E-3

80E-3

90E-3

Output Feedback Range

Fig. 2. Box-plots for results of parameter optimization for task space data (first ex-
perimental setup). Scaling is logarithmic. Extreme values (outside the doubled inter-
quartile range) are indicated by arrows. The minimum of each distribution is indicated
by a gray rectangle.



Task Space (relative)

0 , 0

0 , 5

1 , 0

1 , 5

2 , 0

2 , 5

3 , 0

3 , 5

4 , 0

4 , 5

5 , 0

N
R

M
S

E
 (

lo
g

)

0 , 5 0
0 , 6 0

0 , 7 0
0 , 8 0

0 , 9 0
1 , 0 0

Spectral Radius

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

Reservoir size

1E-15

10E-15

100E-15

1E-12

10E-12

100E-12

1E-9
10E-9

50E-9

100E-9

500E-9

1E-6
5E-6

10E-6

50E-6

100E-6

500E-6

1E-3
5E-3

10E-3

50E-3

100E-3

500E-3

1E0

Output Feedback Range

Fig. 3. Box-plots for results of parameter optimization for task space data (second
experimental setup). Scaling is logarithmic. Extreme values (outside the doubled inter-
quartile range) are indicated by arrows. The minimum of each distribution is indicated
by a gray rectangle.

4.2 Joint Angles

Given the fact that the small networks we applied were able to learn a two-
dimensional sequence we proceeded to the more complex task of learning a
three-dimensional joint angle evolution within one dynamic reservoir. We con-
sidered two options of coding the movements in joint space. Either we recorded
the absolute angles of each joint or we recorded the angular changes in consecu-
tive time-steps. This latter relative coding proved to be problematic. Even if it
was possible to learn and reproduce the time-series for the original initial arm
posture, generalization was extremely poor. The reproduction of the trajectories
was severely flawed when the initial arm posture was changed. Even small dis-
placements led to major distortions of the original movement. The overall results
are display in Fig. 5. Please note that these results were obtained for setups were
the initial arm-posture during the reproduction was the same as during training.
As noted before in this case the results are quite good, and only small effects of
the parameter variations are visible. Once again a spectral radius of 0.9 turned
out to produce the best results, even if the error distribution becomes broader
for higher spectral radii. The variation of the initialization range of the output
feedback weights only affected the broadness of the error distributions, the min-
imal values remained nearly unaffected. It is noteworthy that the reservoir size
had only a very small effect on the overall performance — again quite small
networks were able to reproduce the intended distribution. Because of the low
generalization ability of networks trained with data obtained with this encoding
scheme, we did not further investigate it.

More promising results were obtained with the absolute coding scheme (cf.
Fig. 6). Although the output of the most successful network had a quite high
NRMSE of 4.72, it produced a smooth trajectory very close to the original one
(cf. Fig. 4). To reach this value, we identified several important parameters of
the network. It turned out that the small reservoir size of 20 units was sufficient
to reproduce the three different joint trajectories. This is in line with the results
reported by [3] where it was also shown that quite small networks are able to
reproduce at least three dimensional output series. For the spectral radius a



value of 0.8 provided the best results. The overall effect of the spectral radius
resembles the one observed in the other setups. The minimum error decreases
with higher spectral radii, but the error distribution gets broader. We also varied
the initialization interval of the output feedback weights WOFB based on the
considerations in [12], where it was pointed out that these bounds should be
balanced with the interval of the target dynamics. Here, the best results were
achieved with a value of 1.0 for the weight initialization interval. Again, this
was a quite surprising result as the error distribution becomes much broader
with higher initialization ranges, i.e. the most networks initialized with these
values performed quite bad. But as the variation of the overall error range also
increased the best network belonged to this sub-sample. It is noteworthy that
even the smallest networks with a reservoir consisting of only 10 units were able
to reproduce the intended trajectory with only slight distortions (cf. Fig. 7).

For the third experimental setup we increased the reservoir size up to 100
in several steps to examine whether we could find a maximal suitable size as
reported in [12]. A major effect of this increase was a wider distribution of error
values (see Fig. 8), but also a major increase in the error magnitude (see the
different scaling of the y-axis in Fig. 6 and Fig. 8). Especially networks with
small spectral radii and networks with large reservoirs tend to produce extreme
error values. Nonetheless, a network with a reservoir consisting of 100 units also
produced the lowest errors of all tested networks. For a better comparison of
the minima of the different distributions, Fig. 9 displays the lower ranges of the
error distributions. No clear effect of the variation of the initialization bound of
the output feedback weights could be found.

To sum up, our results show that even small networks with reservoirs consist-
ing of only 10 units are suitable to adapt to at least three-dimensional time-series.
Once again, it is noteworthy that the reproduction took place in a completely
self-recurrent manner, without any additional inputs. Surprisingly, the parameter
variations we investigated primarily affected the broadness of the error distri-
butions but not the extreme values. Nearly all of the investigated setups lead
to the generation of at least a few suitable networks. This effect was especially
prominent for the variation of the reservoir sizes, where the largest reservoir size
of 100 units resulted in a nearly uniform error distribution.

5 Discussion

In this paper we described our current work on employing ESNs to learn and
reproduce simple motor patterns. We mainly concentrated on finding encoding
schemes to record movement data, which can be easily learned by ESNs. Com-
pared to other approaches to learning motor primitives with reservoir computing
techniques, we focused on small and simple networks similar to those applied by
[3]. The first scheme we found to be viable codes the absolute angle of each
joint of an arm over time. Although the quality of data reproduction depends
on the parametrization of the ESN, we showed that it is generally possible to
reach high reproduction accuracy with very simple networks. Additionally, this



Fig. 4. Left to right: Comparison of original and reproduced trajectory coded in joint
space (absolute), two examples of reproduction with the same learned target space
dataset.

Joint Space (relative)

0 , 0

0 , 5

1 , 0

1 , 5

2 , 0

2 , 5

3 , 0

3 , 5

4 , 0

4 , 5

5 , 0

N
R

M
S

E
 (

lo
g

)

0 , 3 0
0 , 4 0

0 , 5 0
0 , 6 0

0 , 7 0
0 , 8 0

0 , 9 0
1 , 0 0

Spectral Radius

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

Reservoir size

1E-15

10E-15

100E-15

1E-12

10E-12

100E-12

1E-9
10E-9

50E-9

100E-9

500E-9

1E-6
5E-6

10E-6

50E-6

100E-6

500E-6

1E-3
5E-3

10E-3

50E-3

100E-3

500E-3

1E0

Output Feedback Range

Fig. 5. Box-plots for results of parameter optimization for joint space data recorded
with the relative coding scheme (second experimental setup). Scaling is logarithmic.
Extreme values (outside the doubled inter-quartile range) are indicated by arrows. The
minimum of each distribution is indicated by a gray rectangle.

scheme showed the interesting emergent effect of generating a smoothed and
more symmetrical version of the original trajectory.

Scaling this scheme to 3D-movements might result in problems of the training
due to the increased complexity of the data and the need for learning more time-
series data simultaneously. So far we did not investigate the scaling properties of
ESNs with respect to the movement data. [19] started with a network consisting
of 300 neurons to learn the movement pattern of a single joint-angle, and 2400
neurons to account for a system with 22 DoF. Given our results we are optimistic
to learn equally complex systems with a much smaller dynamic reservoir.

Another promising scheme encodes the movement in task space. It records
the relative movement of the end-effector between consecutive time steps. This
scheme has several advantages, apart from the general benefit that learning seems
quite easy. First, due to the relative nature of the data, the learned movements
can be simply transferred to any place in the task space, as long as it is not
too close to the boundaries. Second, the scheme is completely independent of
the number of arm-segments, as it only refers to the end-effector. Hence, there
should be no scaling problem when extending this coding scheme to a 3D task
space.



Joint Space (absolute)

0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3

N
R

M
S

E
 (

lo
g

)

0 , 3 0
0 , 4 0

0 , 5 0
0 , 6 0

0 , 7 0
0 , 8 0

0 , 9 0
1 , 0 0

Spectral Radius

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

Reservoir size

1E-15

10E-15

100E-15

1E-12

10E-12

100E-12

1E-9
10E-9

50E-9

100E-9

500E-9

1E-6
5E-6

10E-6

50E-6

100E-6

500E-6

1E-3
5E-3

10E-3

50E-3

100E-3

500E-3

1E0

Output Feedback Range

Fig. 6. Box-plots for results of parameter optimization for joint space data recorded
with the absolute coding scheme (second experimental setup). Scaling is logarithmic.
Extreme values (outside the doubled inter-quartile range) are indicated by arrows. The
minimum of each distribution is indicated by a gray rectangle.

Fig. 7. The left and the middle panel display the reproduction performance of two small
networks trained with absolute joint angle evolution. The rightmost panel displays the
intended trajectory.

To sum up, our experiments showed that it is possible to learn simple mo-
tor pattern with quite small and simple ESNs. Even without regularization of
the weight matrices (see for instance [16]), we found completely output-feedback
driven networks that remained stable, but analyses regarding the long term sta-
bility are pending. As it was mentioned in the introduction, the second aspect
of movement control with motor primitives, the adaptivity of movement con-
trol, is not realized yet. But as it was shown by [19] and [13], it is possible to
switch between different dynamics within the same reservoir to produce different
movements. This was achieved with a special input layer that served as a dy-
namic selection mechanism that enabled the selective activation of two different
movement patterns.

On the other hand, dealing with perturbations is a much greater problem,
which might not be solvable with our current approach. As it was mentioned
in [1], open-loop approaches like the one proposed here cannot adapt very well
to perturbations or delays. In [19], it was shown that reservoirs with suitable
weight matrices are able to recover from perturbations and to converge back to
the learned dynamic. At the moment experiments are missing that investigate if



Joint Space (absolute)

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5
6 0
6 5
7 0

N
R

M
S

E
 (

lo
g

)

0 , 3 0
0 , 4 0

0 , 5 0
0 , 6 0

0 , 7 0
0 , 8 0

0 , 9 0
1 , 0 0

Spectral Radius

2 5 3 0 3 5 4 0 5 0 7 5 1 0 0

Reservoir size

1E-15

10E-15

100E-15

1E-12

10E-12

100E-12

1E-9
10E-9

50E-9

100E-9

500E-9

1E-6
5E-6

10E-6

50E-6

100E-6

500E-6

1E-3
5E-3

10E-3

50E-3

100E-3

500E-3

1E0

Output Feedback Range

Fig. 8. Box-plots for results of parameter optimization for joint space data recorded
with the absolute coding scheme (third experimental setup). Scaling is logarithmic.
Extreme values (outside the doubled inter-quartile range) are indicated by arrows. The
minimum of each distribution is indicated by a gray rectangle.

Joint Space (absolute)

0 , 0

0 , 5

1 , 0

1 , 5

2 , 0

2 , 5

3 , 0

3 , 5

4 , 0

4 , 5

5 , 0

N
R

M
S

E
 (

lo
g

)

0 , 3 0
0 , 4 0

0 , 5 0
0 , 6 0

0 , 7 0
0 , 8 0

0 , 9 0
1 , 0 0

Spectral Radius

2 5 3 0 3 5 4 0 5 0 7 5 1 0 0

Reservoir size

1E-15

10E-15

100E-15

1E-12

10E-12

100E-12

1E-9
10E-9

50E-9

100E-9

500E-9

1E-6
5E-6

10E-6

50E-6

100E-6

500E-6

1E-3
5E-3

10E-3

50E-3

100E-3

500E-3

1E0

Output Feedback Range

Fig. 9. Box-plots for results of parameter optimization for joint space data recorded
with the absolute coding scheme (third experimental setup). Scaling is logarithmic
and restricted to a range of 105. Extreme values (outside the doubled inter-quartile
range) are indicated by arrows. The minimum of each distribution is indicated by a
gray rectangle.

the simple networks that we trained are also able to recover from perturbations.
So far we have shown that much simpler ESNs than previously thought are able
to learn stable movement primitives. Our next step is to investigate if a simulated
central pattern generator, like the ones proposed by [19] and [3], can be realized
with small and simple ESNs.

References

1. Gribovskaya, E., Khansari Zadeh, S.M., Billard, A.: Learning Nonlinear Multivari-
ate Dynamics of Motion in Robotic Manipulators [accepted]. International Journal
of Robotics Research (2010)

2. Hart, C.B., Giszter, S.F.: A neural basis for motor primitives in the spinal cord.
J. Neurosci. 30(4), 1322–1336 (2010), http://dx.doi.org/10.1523/JNEUROSCI.

5894-08.2010

3. Hellbach, S., Eggert, J.P., Körner, E., Gross, H.M.: Time series analysis for
long term prediction of human movement trajectories. In: Köppen, M., Kasabov,
N., Coghill, G. (eds.) Advances in Neuro-Information Processing, pp. 567–

http://dx.doi.org/10.1523/JNEUROSCI.5894-08.2010
http://dx.doi.org/10.1523/JNEUROSCI.5894-08.2010


574. Springer-Verlag, Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/

978-3-642-03040-6_69

4. Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics 12(1), 55–67 (1970)

5. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and
robots: a review. Neural Networks 21(4), 642–653 (2008)

6. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynam-
ical systems in humanoid robots. In: Robotics and Automation, 2002. Proceedings.
ICRA ’02. IEEE International Conference on. pp. 1398–1403 (2002)

7. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural
networks. Tech. Rep. GMD Report 148, German National Research Center for
Information Technology (2001)

8. Jaeger, H.: Tutorial on training recurrent neural networks, covering bppt, rtrl, ekf
and the echo state network approach. Tech. Rep. GMD Report 159, Fraunhofer
Institute AIS (2002)

9. Jaeger, H., Lukoševičius, M., Popovice, D.: Optimization and applications of echo
state networks with leaky integrator neurons. Neural Networks 20(3), 335–352
(2007)

10. Khansari-Zadeh, S.M., Billard, A.: Learning Stable Non-Linear Dynamical Systems
with Gaussian Mixture Models. IEEE Transaction on Robotics (2011), http://
lasa.epfl.ch/khansari

11. Konczak, J.: On the notion of motor primitives in humans and robots. In:
Berthouze, L., Kaplan, F., Kozima, H., Yano, H., Konczak, J., Metta, G., Nadel,
J., Sandini, G., Stojanov, G., Balkenius, C. (eds.) Proceedings of the Fifth Inter-
national Workshop on Epigenetic Robotics: Modeling Cognitive Development in
Robotic Systems. pp. 47–53 (2005), http://cogprints.org/4963/

12. Koryakin, D., Lohmann, J., Butz, M.V.: Balanced echo state networks. Neural
Networks (2012)

13. Krause, A.F., Bläsing, B., Dürr, V., Schack, T.: Direct control of an active tac-
tile sensor using echo state networks. In: Ritter, H., Sagerer, G., Dillmann, R.,
Buss, M. (eds.) Human Centered Robot Systems, Cognitive Systems Monographs,
vol. 6, pp. 11–21. Springer Berlin Heidelberg (2009), http://dx.doi.org/10.1007/
978-3-642-10403-9_2

14. Nishimoto, R., Tani, J.: Learning to generate combinatorical action sequences uti-
lizing the initial sensitivity of deterministic dynamical systems. Neural Networks
17(7), 925–933 (2004)

15. Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.: Skill learn-
ing and task outcome prediction for manipulation. In: Robotics and Automation
(ICRA), 2011 IEEE International Conference on (May 2011). pp. 3828–3834 (2011),
http://www-clmc.usc.edu/publications/P/pastor-ICRA2011.pdf

16. Reinhart, F., Steil, J.: Regularization and stability in reservoir networks with out-
put feedback. Neurocomputing 90, 96–105 (2012), http://www.sciencedirect.

com/science/article/pii/S0925231212001749, advances in artificial neural net-
works, machine learning, and computational intelligence (ESANN 2011)

17. Reinhart, R.F., Steil, J.J.: Reaching movement generation with a recurrent neural
network based on learning inverse kinematics for the humanoid robot icub. In:
Humanoids. pp. 323–330 (2009)

18. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental
unification of reservoir computing methods. Neural Networks 20, 391–403 (2007)

http://dx.doi.org/10.1007/978-3-642-03040-6_69
http://dx.doi.org/10.1007/978-3-642-03040-6_69
http://lasa.epfl.ch/khansari
http://lasa.epfl.ch/khansari
http://cogprints.org/4963/
http://dx.doi.org/10.1007/978-3-642-10403-9_2
http://dx.doi.org/10.1007/978-3-642-10403-9_2
http://www-clmc.usc.edu/publications/P/pastor-ICRA2011.pdf
http://www.sciencedirect.com/science/article/pii/S0925231212001749
http://www.sciencedirect.com/science/article/pii/S0925231212001749


19. Wyffels, F., Schrauwen, B.: Design of a central pattern generator using reservoir
computing for learning human motion. In: ECSIS Symp. on LAB-RS. pp. 118–122
(2009)

20. Wyffels, F., Schrauwen, B., Stroobandt, D.: Stable Output Feedback in Reservoir
Computing Using Ridge Regression. In: Kurková, V., Neruda, R., Koutńık, J.
(eds.) Artificial Neural Networks (ICANN), Lecture Notes in Computer Science,
vol. 5163, pp. 808–817. Springer Berlin / Heidelberg (2008), http://dx.doi.org/
10.1007/978-3-540-87536-9_83

http://dx.doi.org/10.1007/978-3-540-87536-9_83
http://dx.doi.org/10.1007/978-3-540-87536-9_83

	Learning Motor Primitives with Echo State Networks

