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Abstract. In this paper we investigate parameter dependencies in the
echo state network (ESN). In particular, we investigate the interplay
between reservoir sizes and the choice of the average absolute output
feedback connection weight values (WOFB). We consider the multiple
sine wave oscillator problem and the powered sine problem. The results
show that somewhat contrary to basic intuition (1) smaller reservoir sizes
often yield better networks with higher probability; (2) large WOFB val-
ues paired with comparatively large reservoirs may strongly decrease the
likelihood of generating effective networks; (3) the likelihood of generat-
ing an effective ESN depends non-linearly on the choice of WOFB: very
small and large weight values often yield higher likelihoods of generating
effective ESNs than networks resulting from intermediate WOFB choices.
While the considered test problems are rather simple, the insights gained
need to be considered when designing effective ESNs for the problem at
hand. Nonetheless, further studies appear necessary to be able to explain
the actual reasons behind the observed phenomena.
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1 Introduction

Echo state networks (ESN) are a special kind of the artificial neural networks
(ANNs). They are a kind of reservoir computing network, which is a young and
intensively investigated area of ANNs. ESNs possess features that make them
unique compared to other ANN architectures. The most prominent attribute of
ESNs is the simplicity of setting-up and training such a network. The network
only adapts the connection weights to the output neurons by linear regression.

Despite their simplicity, ESN have been successfully applied to robotics tasks
([2], [3]) and to speech recognition ([4], [5]). Like standard RNNs, ESNs are often
applied to modeling the time-series of typical benchmark problems. One of them
is the multiple superimposed oscillator (MSO) considered, for example, in [6].
Despite its visible simplicity, it is widely accepted that it is hard for solving with
standard ESNs. Several modifications of the standard ESNs ([7] and [8]) were
successfully applied to solve this problem.
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In general the basic scheme of the ESNs is relatively tolerant to the choice
of their parameters. However, in [1] Herbert Jaeger, the creator of ESNs, un-
derscores the importance of a proper parameter choice: “However, it should be
emphasized that a rough optimization of these few parameters is crucial and
task-specific.” (p. 34) In his work [1], [2], and [10] Jaeger gave several useful rec-
ommendations for the correct choice of the ESN parameters. While the spectral
radius is clearly responsible for ensuring the echo-state property – essentially
preventing activity blow-up in the dynamic reservoir – also network size has
been mentioned as an important optimization candidate. Nonetheless, also other
parameters must be handpicked if the highest ESN performance is strived-for.

In the current work we study the dependency between two macro parameters
of ESNs: (a) the reservoir size and (b) the interval for initializing the output
feedback weight (WOFB) values. The output feedback weights determine the in-
fluence of the current time series dynamics on the unfolding dynamics inside the
reservoir. Thus, it is apparent that the output feedback weight values need to be
chosen with care to avoid overruling the unfolding dynamics inside the reservoir.
The obtained results show that the reservoir size must not be chosen too large
to ensure the generation of very accurate ESNs with high probability. Moreover,
the results show that large WOFB values paired with large dynamic reservoirs
may decrease the likelihood of generating effective ESNs severely. Finally, the
likelihood of generating good ESNs depends on the choice of the WOFB inter-
val non-linearly. These results are obtained exemplary on several related, rather
small benchmark problems. Thus, future work needs to evaluate the generality
of the conclusions - especially for larger and more complex time series prediction
problems. However, the insights gained ask more detailed studies and give im-
mediate recommendations on how ESNs should be initialized in the search for
effective networks.

2 ESNs

Echo State Networks (ESNs) are reservoir computing networks that maintain
an internal reservoir of neural activities over time. This reservoir determines the
output of the ESN via output connections. Only the weights of these output con-
nections are trained by means of the least mean square algorithm – or generally
any other linear regression algorithm that is guaranteed to minimize the mean
squared error between the target and generated output values [10].

Detailed descriptions of ESNs can be found elsewhere, e.g. [1,10]. Here, we
focus on the crucial aspects that we manipulated in this paper. According to our
experience with ESNs, it is indispensable that a balance is maintained between
the reservoir dynamics and the excitation signal coming from the “outside”. In
ESNs without input neurons, the output feedback connections are the only source
of external excitation. Its contribution to the activity of a particular reservoir
neuron i can be quantified as

COFB
i := wiyy, (1)
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where y is the output value in the previous iteration and wiy the output feedback
connection weight. The contribution of the reservoir dynamics, on the other
hand, can be quantified as

CRD
i :=

N∑

j=1

wijaj, (2)

where aj is the activity of reservoir neuron j within the dynamic reservoir of size
N , and wij is the connection weight from neuron j to the neuron in question i.

Elsewhere, we have proposed that the balance between both contributions is
established when

σ2(CRD) ≈ σ2(COFB) (3)

where σ2(X) is the variance of the output feedback or the internal reservoir [9].
The condition requires that the external signal does not dominate the reservoir
dynamics on average. If σ2(COFB) was systematically larger than σ2(CRD), then
the external signal would mostly dominate the internal dynamics, preventing
longer-term internal dynamics to unfold. On the other hand, if σ2(COFB) was
systematically smaller than σ2(CRD), then the feedback signal may not be strong
enough to excite the internal dynamics, resulting in progressive activity decline.

Since σ2(COFB) directly depends on the target dynamics and σ2(CRD) in-
directly depends on the target dynamics, it is however generally impossible to
assure the proposed balance. Thus, it seems vital to investigate the interaction
between crucial parameters in typical benchmark problems, to reveal parameter
interdependencies. Here, we focus on the dependency between reservoir size and
output feedback weights.

3 Experimental Study

In the following experiments we evaluate the performance of ESNs on three time
series functions. In all reported results, 500 ESNs were randomly generated for
every considered parameter setting. The considered ESNs did not contain any
input neurons and one output neuron. Thus, the dynamic reservoir was driven
only by the output feedback via the connections from the single output neuron
to every reservoir neuron.

The ESN reservoirs had a random connectivity of 40%. The connections with
non-zero weights were randomly distributed in the reservoir. To determine the
recurrent connection weights, the non-zero reservoir weights were assigned ran-
dom values uniformly distributed in the interval [−1,+1]. Next, the weights were
scaled to yield a spectral radius of 0.8 within the network. The reservoir neurons
had TANH as their activation function. Every reservoir neuron was connected
to the output neuron, which had a linear activation function. There was no self-
recurrent connection for the output neuron. All output feedback weights – those
that result into the weighted projection of the activity of the output neuron back
into the dynamic reservoir – were assigned random values uniformly distributed
in the interval [−WOFB,+WOFB ].
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To investigate the behavior of the feedback weights, we chose the MSO2,
PowerSin7, and PowerSin11 as the target dynamics. The MSO2 is a sum of two
sine waves of different frequencies. It is defined as

y(t) = sin(0.2t) + sin(0.311t), (4)

where t is the time step index. Due to the superimposed sine waves, the period of
the resulting function is rather large. Thus, the best solution for an ESN would
be to have both sinusoidal dynamics present within the reservoir and combine
them in an additive way in the output neuron.

The two PowerSin functions, on the other hand, are more simple periodic
functions based on a sinusoidal. They exhibit a stronger difficulty due to a higher
degree of non-linearity caused by the power function. They are computed as:

y(t) =
1

2
sinx(

2πt

T
) (5)

where T is the period and x is a degree of non-linearity. We set the period
T to 10π. The same value was used in the works of [1] and [11], where the
function with x = 7 was considered before. In our experiments we varied the
degree of non-linearity to check its impact on the ESN behavior. We compare
the originally used value of x = 7 with x = 11, and refer to the two target
dynamics with PowerSin7 and PowerSin11, respectively.

A sequence of 700 time steps was generated for every target dynamics. The
first 100 steps were used for the washout. The next 300 steps were used for train-
ing the output weights. Finally, 300 test steps followed. This sequence was used
to train and test every generated ESN. When applying an ESN to the sequence,
the states of all its reservoir neurons and the state of its output neuron were set
to zero. During the washout and the training phases, “teacher-forcing” was ap-
plied, thus feeding the target output activity back into the network. The states
of the reservoir neurons were collected to compute the output weights according
to the procedure described in [10]. After the determination and assignment of
the optimal output weights, the ESN was run 300 further steps without teacher-
forcing, thus feeding the predicted output back into the dynamic reservoir. The
difference between the predicted output values and the corresponding target
output values was evaluated further.

To evaluate the resulting ESNs, we distinguish between well-performing and
ill-performing ESNs. To do so, we define a small error length (SEL) criterion,
which denotes the number of consecutive time steps in the test phase during
which the ESN output does not differ from the target dynamics by more than a
predefined threshold. In the following evaluations, we always set this threshold
to 1% of the maximum value.

3.1 Reservoir Size Interacts with WOFB

To evaluate the interaction between reservoir sizes and the range WOFB of
output feedback weight values, we systematically varied the reservoir sizes and
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output feedback weights. We now first report the most suitable WOFB values
identified. These were deduced by considering 29 reservoir sizes for each target
function (reservoir sizes 3, 4, ..., 20, 30, ..., 100, 150, 200, 250) and considering for
each of these reservoir sizes 50 different WOFB values (0.1, .001, ..., 10−50). For
each of the setting, 500 networks were generated randomly and the number of
well-performing networks, as defined above, were recorded.

In this section, we report the most suitable WOFB , which was defined as the
WOFB setting that yielded the largest number of networks that satisfied the
SEL criterion for each particular reservoir size. The results for all three target
dynamics are shown in Fig. 1 (top). For all three target dynamics, the range
of suitable WOFB values comprises many orders of magnitude. In smaller reser-
voirs, relatively large WOFB settings yield the largest number of well-performing
ESNs. For larger reservoir sizes, however, the most promising WOFB values drop
down to values as low as 10−40 for comparatively large reservoirs. Within the
range of small reservoir sizes, where larger WOFB values yielded better perfor-
mance, a slight increase in the WOFB settings with increasing reservoir sizes
was also observable. Below, we show that the distribution of the likelihoods of
generating well-performing reservoirs progressively shifts from those with larger
WOFB values to those with very small values.
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Fig. 1. Most suitable WOFB (top) and the best NRMSE on the test sequence (bottom).
The curves of MSO2 are shown lines with squares, PowerSin7 - lines with triangles and
PowerSin11 - with solid lines. On all dynamics the smallest error was reached when
WOFB were relatively large, about 10−4 to 10−3.

Before investigating the distribution of the likelihoods of generating
well-performing ESNs dependent on WOFB further, however, we report the nor-
malized root-mean squared error values for the best performing network in the
respective settings. Fig. 1, bottom, shows that smaller reservoirs with larger
WOFB settings provided the most accurate ESNs. The results show that a criti-
cal minimal size of four neurons appears necessary to generate a well-performing
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ESN for the MSO2 problem with an NRMSE significantly below 0.01, a reservoir
size of eight is necessary for the PowerSin7 function, and a reservoir size of 13 is
necessary for the PowerSin11 function. This suggests that a higher non-linearity
requires a larger reservoir size. Note that the obtained NRMSE of 1.472× 10−12

for MSO2 is several orders of magnitude lower than the best results reported in
the literature we are aware of, which were obtained in [6] with a performance of
3.92× 10−8. Also for the PowerSin7, we obtained a comparatively low NRMSE
value of 3.272× 10−12.

3.2 WOFB-Dependent ESN Performance

While the results above suggested a sudden drop-off of the most suitable WOFB

setting, we now provide further details on the actual number of well-performing
networks generated for all WOFB setting for a particular target function and
reservoir size. Fig. 2 shows these results for reservoir sizes 20 and 70. The results
show that the likelihoods of generating a well-performing reservoir, systemati-
cally varies with the WOFB setting. However, this variation is non-linear yield-
ing a “two-hill” distribution. Gaussian-like distributions can only be found for
problem-respective very small or very large reservoir sizes. This can be seen for
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Fig. 2. Distribution of well-performing networks (those that satisfy the SEL criterion
with maximally 1% error) for the MSO2, PowerSin7, and PowerSin11 target functions
for reservoir sizes 20 (gray) and 70 (black)
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the reservoir size 70 for the PowerSinX functions to some degree - increasing
the size even further yields only well-performing networks for very small WOFB

settings. In the case of very small networks, only comparatively large WOFB

settings yield well-performing networks (distribution not shown).
For the case of small WOFB settings, it is apparent that larger networks

demand even smaller WOFB values to reach the highest likelihood of generating
a well-performing network. For the case of large WOFB settings, on the other
hand, larger networks require slightly larger WOFB values – until saturation is
reached whenWOFB values reach one. The complexity of the function is reflected
in these distributions as well. Comparing the PowerSin7 with the PowerSin11
distributions, the slightly higher difficulty of the PowerSin11 function is apparent
in that WOFB values need to be slightly higher for generating the PowerSin11
dynamics. The MSO2 with its two dynamics but lower local non-linearities, on
the other hand, yields well-performing networks still for much larger reservoir
networks with large WOFB settings.

4 Conclusions

In this study we revealed a non-linear dependency between the strength of the
driving signal, which is controlled by the output feedback weight ranges WOFB ,
and the reservoir size. When considering the case of system identification, in
which ESN is trained to reproduce particular target dynamics, the ESN dy-
namics are solely driven the output feedback. The larger the output feedback
weights, the stronger is the driving signal. According to the discovered depen-
dency, smaller reservoirs require relatively large feedback weights whereas larger
reservoirs need much smaller weights to have a rather high likelihood of gener-
ating well-performing ESNs.

The most intriguing observation made, however, is the fact that the likelihood
of generating good networks interacts non-linearly with the reservoir size and
with the output feedback weights. Given a generally suitable reservoir size, ei-
ther very lowWOFB values (in the order of 10−25 to 10−15) or values rather large
(in the order of 10−5 to 0.1) yield high chances of generating well-performing
ESNs. This suggests that there are somewhat two categories of reservoir dynam-
ics that are able to solve the considered dynamics. With the very low WOFB

values, the internal dynamics will be on a much lower level mainly fluctuating
around values close to zero. With the larger WOFB values, the internal dynam-
ics may also reach saturation values at times. When the reservoir size becomes
too large, large WOFB values are not suitable any longer – most likely because
neural saturation occurs too frequently, thus disallowing the reproduction of the
continuous sinusoidal dynamics. With very small networks, on the other hand,
very low WOFB values will have not enough effect to induce sufficient dynamics.
Unfortunately, though, it remains rather unclear to us why mid-range WOFB

values yield a very low probability of generating well-performing networks.
From an application-oriented perspective, it seems that the very low WOFB

values will not yield effective performance given more noisy signals than the
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ones investigated. Future investigations will explore the impact of noise on the
observed ESN performances. It also remains unclear if similar behaviors in the
likelihoods of generating well-performing networks can also be observed for more
complex target dynamics, such as the Mackey-Glass function or also the super-
imposed sine wave problem with more than two sinusoidal functions. Nonethe-
less, the observation that too large reservoirs yield only effective ESNs when the
feedback weights are very low suggests that small ESNs are generally preferable.
Future research is necessary to shed further light on the non-linear interactions
revealed between reservoir sizes and output feedback weights.
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