
Noise-Aware Stochastic Optimization

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Lukas Balles, M.Sc.

aus Hardheim

Tübingen
2021

To Maren and Selma.

Acknowledgements

I want to thank Philipp Hennig for the many things he has taught
me and for his contagious passion for research. And for allowing
me to put that research to the side when other things mattered
more. I am grateful to Michael Black and Georg Martius for serv-
ing on my thesis advisory committee, and to Matthias Hein, Jakob
Macke, and Michael Black for serving on my examination com-
mittee. I also want to thank Leila Masri, the coordinator of the
International Max Planck Research School for Intelligent Systems,
for her support and encouragement.

I had the privilege of working with many great colleagues at the
Max Planck Institute for Intelligent Systems and the University of
Tübingen. I cannot name all of them here, but I would be amiss
not to thank Maren Mahsereci, Frederik Kunstner, Frank Schneider,
Hans Kersting, Damien Garreau, Michael Schober, Anurag Ran-
jan, Javier Romero, Alexandra Gessner, Filip de Roos, Motonobu
Kanagawa, Felix Dangel and Agustinus Kristiadi.

Finally, I thank my wonderful wife, Maren Balles, for her strength
and unrelenting support.

Berlin, August 2021

Abstract

First-order stochastic optimization algorithms like stochastic gradi-
ent descent (sgd) are the workhorse of modern machine learning.
With their simplicity and low per-iteration cost, they have powered
the immense success of deep artificial neural network models. Sur-
prisingly, these stochastic optimization methods are essentially un-
aware of stochasticity. Neither do they collect information about the
stochastic noise associated with their gradient evaluations, nor do
they have explicit mechanisms to adjust their behavior accordingly.
This thesis presents approaches to make stochastic optimization
methods noise-aware using estimates of the (co-)variance of stochas-
tic gradients.

First, we show how such variance estimates can be used to au-
tomatically adapt the minibatch size for sgd, i.e., the number of
data points sampled in each iteration. This can replace the usual
decreasing step size schedule required for convergence, which is
much more challenging to automate. We highlight that both ap-
proaches can be viewed through the same lens of reducing the
mean squared error of the gradient estimate.

Next, we identify an implicit variance adaptation mechanism in
the ubiquitous adam method. In particular, we show that it can
be seen as a version of sign-sgd with a coordinatewise “damp-
ing” based on the stochastic gradient’s signal-to-noise ratio. We
make this variance adaptation mechanism explicit, formalize it, and
transfer it from sign-sgd to sgd.

Finally, we critically discuss a family of methods that precondi-
tions stochastic gradient descent updates with the so-called “empir-
ical Fisher” matrix, which is closely related to the stochastic gradi-
ent covariance matrix. This is usually motivated from information-
geometric considerations as an approximation to the Fisher infor-
mation matrix. We caution against this argument and show that the
empirical Fisher approximation has fundamental theoretical flaws.
We argue that preconditioning with the empirical Fisher is better
understood as a form of variance adaptation.

Zusammenfassung

Sochastische Optimierungsverfahren erster Ordnung, wie zum
Beispiel das stochastische Gradientenverfahren (stochastic gradi-
ent descent, sgd), sind das Arbeitstier des modernen maschinellen
Lernens. Mit ihrer Einfachheit und niedrigen Kosten pro Itera-
tion haben sie den immensen Erfolg künstlicher neuronaler Netze
maßgeblich vorangetrieben. Überraschender Weise sind diese
stochastischen Optimierungsmethoden blind gegenüber Stochas-
tizität. Weder sammeln sie Informationen über das stochastis-
che Rauschen der verwendeten Gradientenauswertungen, noch
verfügen sie über explizite Mechanismen, um ihr Verhalten an
dieses Rauschen anzupassen. Diese Arbeit präsentiert Ansätze,
stochastischen Optimierungsverfahren mittels Schätzung der (Ko-
)Varianz der stochastischen Gradienten ein “Bewusstsein” für
dieses Rauschen zu geben.

Zuerst zeigen wir, wie solche Varianzschätzungen genutzt wer-
den können, um die sogenannte Minibatchgröße bei sgd automa-
tisch anzupassen. Dies kann eine üblicherweise verwendete ab-
nehmende Schrittweite ersetzten, welche ihrerseits sehr viel schw-
erer zu automatisieren ist. Wir stellen heraus, dass beide Herange-
hensweisen aus einer gemeinsamen Perspektive betrachtet werden
können, nämlich als Reduktion der mittleren quadratischen Abwe-
ichung des Gradientenschätzers.

Als nächstes identifizieren wir in der außergewöhnlich pop-
ulären adam-Methode einen impliziten Varianzadaptierungsmech-
anismus. Wir betrachten adam als eine Version von sign-sgd mit
koordinatenweiser “Dämpfung” auf Basis des Signal-zu-Rausch-
Verhältnisses des stochastischen Gradienten. Wir machen diesen
Mechanismus explizit, formalisieren ihn, und übertragen ihn von
sign-sgd zu sgd.

Abschließend folgt eine kritische Diskussion einer Methodenfam-
ilie, welche sgd mit der sogenannten “empirischen Fisher-Matrix”
präkonditionert. Diese Matrix ist eng mit der Kovarianzmatrix des
stochastischen Gradienten verwandt. Die empirische Fisher-Matrix
wird üblicherweise als Approximation für die Fisher-Matrix und
somit aus informationsgeometrischen Überlegungen motiviert. Wir
kritisieren dieses Argument und zeigen, dass diese Approximation
fundamentale theoretische Schwächen hat. Wir argumentieren, dass
die Präkonditionierung mit der empirischen Fisher-Matrix besser
als eine Form von Varianzadaptierung gesehen werden sollte.

Contents

1 Introduction 1
1.1 Stochastic Optimization 1

1.2 Towards Noise-Aware Algorithms 3

1.3 Overview . 3

2 Preliminaries 5
2.1 Machine Learning . 5

2.2 Mathematical Optimization 13

3 Stochastic Optimization 25
3.1 Problem Statement . 25

3.2 Stochastic Gradient Descent 26

3.3 Stochastic Optimization for Deep Learning 29

3.4 Estimating the Gradient Variance 30

4 Variance-Based Step Size and Batch Size 33
4.1 Bias-Variance Trade-Off in Stochastic Optimization . . 33

4.2 Optimal Step Size and Batch Size 35

4.3 The Case for Adaptive Batch Size Methods 37

4.4 CABS—A Practical Adaptive Batch Size Method 38

4.5 Conclusion . 42

5 Dissecting Adam 45
5.1 Introduction . 45

5.2 Related Work . 48

5.3 Variance Adaptation . 48

5.4 Practical Implementation of M-SVAG 51

5.5 Connection to Generalization 53

5.6 Experiments . 54

5.7 Conclusion . 56

6 The Geometry of Sign Gradient Descent 59
6.1 Introduction . 60

6.2 Smoothness and Steepest Descent 61

6.3 Separable Smoothness and `∞-Smoothness 63

6.4 Understanding `∞-Smoothness 65

6.5 Gradient Descent vs Sign Gradient Descent 69

6.6 Conclusion . 71

7 Natural Gradient Descent and the “Empirical Fisher” 73

xii

7.1 Introduction . 73

7.2 Related Work . 76

7.3 Generalized Gauss-Newton and Natural Gradient De-
scent . 77

7.4 Critical Discussion of the Empirical Fisher 80

7.5 Variance Adaptation . 85

7.6 Computational Aspects 86

7.7 Conclusions . 88

8 Conclusion 89
8.1 Summary . 89

8.2 Further Research . 90

9 Bibliography 93

A Appendix to Chapter 4 105
A.1 Proofs . 105

A.2 Experimental Details . 106

B Appendix to Chapter 5 107
B.1 Experimental Details . 107

B.2 Mathematical Details . 109

B.3 Alternative Methods . 114

B.4 Minibatch Gradient Variance Estimates 116

C Appendix to Chapter 6 119
C.1 Details on Steepest Descent 119

C.2 Two-Dimensional Quadratic Example 122

C.3 On Normalized Steepest Descent 123

C.4 Experimental Details . 126

C.5 Proofs . 126

D Appendix to Chapter 7 135
D.1 Details on Natural Gradient Descent 135

D.2 Proofs . 138

D.3 Experimental Details . 140

D.4 Additional Experimental Results 143

1
Introduction

Optimization lies at the heart of machine learning. After training
data has been collected and a suitable model has been devised, we
usually want to find the model parameters that provide the best
explanation for the observed data. We have burdened ourselves
with an optimization problem.

This is most prominently reflected in empirical risk minimiza-
tion, the principal paradigm of statistical learning. Consider the
supervised task of learning to predict a target y ∈ Y from input
x ∈ X based on a training set (x1, y1), . . . , (xN , yN). Given a model
hθ : X → Y with parameters θ and a loss function ` : Y×Y → R,
we want to set θ such as to minimize the so-called empirical risk

R(θ) def
=

1
N

N

∑
n=1

`n(θ), `n(θ)
def
= `(hθ(xn), yn). (1.1)

For all but the most basic machine learning models, a minimizer
of R(θ) cannot be found in closed form and we have to rely on
numerical optimization methods. Such an algorithm repeatedly
evaluates the model and generates increasingly better choices for
its parameters. This procedure is where the model meets the data,
where the numbers are crunched and knowledge is extracted.

In recent years, increasingly complex machine learning models—
in particular deep artificial neural networks—have been remark-
ably successful in learning from ever larger datasets. This makes
optimization a key computational challenge. As you read this,
tens of thousands of processing units in data centers all over the
world are performing iteration after iteration of an optimization
algorithms. They are training machine learning models to answer
search queries, translate texts, predict stock prices, recommend
products to customers shopping online, or track moving objects in
video scenes.

1.1 Stochastic Optimization

One of the most basic methods, but still a cornerstone of mathe-
matical optimization, is gradient descent (gd), which can be traced
back to Cauchy [1847]. It minimizes Eq. (1.1) with updates of the

2 noise-aware stochastic optimization

form

θt+1 = θt − α∇R(θt), (1.2)

where α is a scalar, positive step size. The negative gradient −R(θt)

is the direction of steepest descent and—with an appropriate step
size—each iteration achieves a decrease in function value.

The gradient of the empirical risk takes the form

∇R(θ) =
1
N

N

∑
n=1
∇`n(θ) (1.3)

and, thus, requires the computation of N individual per-example
gradients ∇`n(θ). When using a computationally complex model to
learn from a large training set, evaluating this full gradient in each
iteration becomes inefficient or even prohibitively expensive.

In that case, we can resort to stochastic gradient descent (sgd)1, 1 Stochastic gradient descent dates
back to Robbins and Monro [1951],
who proposed a “Stochastic Approxi-
mation Method” for finding the root of
a function given access to noisy mea-
surements of its function value. Kiefer
et al. [1952] first applied it specifically
to gradient-based optimization.

which uses a cheap stochastic estimate of the gradient for each
update. In its simplest form, at iteration t, sgd samples a data point
n(t) uniformly at random from {1, . . . , N} and updates

θt+1 = θt − αtgt, gt
def
= ∇`n(t)(θt). (1.4)

The so-called stochastic gradient gt provides an unbiased estimate
of the true gradient,

E[gt] =
N

∑
n=1

P[n(t) = n]︸ ︷︷ ︸
=1/N

∇`n(θt) = ∇R(θt), (1.5)

while drastically reducing the computational cost per iteration,
since we compute only one instead of N individual gradients.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Steps

10 3

10 2

10 1

100

101

f(
t)

f

GD
SGD

6 4 2 0 2 4 6
1

3

2

1

0

1

2

3

2

GD
SGD

Figure 1.1: Gradient descent (gd)
and stochastic gradient descent (sgd)
on a two-dimensional quadratic
objective. Both methods use the same
constant step size. The plots depict
the suboptimality in function value
(left) and the iterates (right). While
gradient descent converges, sgd goes
into “diffusion” once it is near the
optimum.

However, the optimization algorithm now has to make do with
inexact gradient evaluations, subject to stochastic noise, which
brings about new challenges. Most prominently, the stochasticity
in the updates prevents sgd from converging to a solution with a
fixed step size, see Figure 1.1. As shown by Robbins and Monro
[1951], convergence of sgd requires us to set a decreasing step size
schedule. In practice, these schedules are usually tuned manually

introduction 3

by trial and error. In the deterministic setting, step sizes are rou-
tinely adapted automatically with subroutines called line searches.
Despite efforts of the research community and partial successes
[Mahsereci and Hennig, 2015, 2017, Vaswani et al., 2019, Paquette
and Scheinberg, 2020], robust and general line search methods for
the stochastic setting are still lacking.

The stochastic regime also complicates the use of other tools
and techniques from classical, deterministic optimization, such
as automatic stopping criteria or the use of preconditioners that
estimate the Hessian based on the observed changes in gradient
(quasi-Newton methods).

1.2 Towards Noise-Aware Algorithms

Most popular stochastic optimization methods are more or less
oblivious to the fact that they are operating in a stochastic regime.
Stochastic gradient descent (sgd) is just the gradient descent
method using the inexact gradient estimate in lieu of the true gra-
dient. If the properties of that gradient estimate were to change—
say it suddenly gets much less accurate—sgd would not change
its behavior. The same can be said of most other currently-used
stochastic optimization algorithms.

This thesis presents several approaches to make stochastic op-
timization methods noise-aware. The overarching goal is to design
stochastic optimization algorithms that actively estimate properties
of the stochastic error and adapt their behavior accordingly. A cen-
tral object of interest which captures many interesting properties of
the gradient estimate is its covariance matrix

Cov[gt] =
1
N

N

∑
n=1

[∇`n(θt)−∇R(θt)] [∇`n(θt)−∇R(θt)]
T . (1.6)

It describes the scale and “geometry” of the stochastic error asso-
ciated with gt. The exact covariance matrix will, of course, be un-
known in practice since it depends on all N individual gradients—
the absence of which defines the stochastic optimization regime.
But, as we will see shortly, it can be estimated in the common set-
ting of minibatch sgd, where a small number m � N of data points
are sampled for each sgd iteration.

The following chapters present various ways in which stochastic
optimization methods may utilize some of the information encoded
in this gradient covariance matrix.

1.3 Overview

Chapter 2 will briefly review some preliminaries from machine
learning and deterministic optimization. Chapter 3 will set the
scene by formally introducing the stochastic optimization setting
and discussing the basic stochastic gradient descent algorithm.

4 noise-aware stochastic optimization

In Chapter 4, we discuss how the convergence-harming effect
of gradient noise can be counteracted either by decreasing the step
size (the standard approach) or, alternatively, by increasing the
minibatch size, i.e., the number of data points sampled in each it-
eration. In fact, both approaches can be viewed through the same
lens: reducing the mean squared error of the local gradient esti-
mate. We show that, while the optimal greedy choice is to use a
batch size of 1 and decrease the step size, there are practical argu-
ments in favor of an increasing batch size. In particular, it lends
itself more easily to automation based on gradient variance esti-
mates; we present cabs, a heuristic for automatic batch size adapta-
tion.

Chapter 5 investigates the very popular adam method [Kingma
and Ba, 2015] and shows that it combines two aspects. Firstly, it can
be seen as a version of sign-sgd, that is, the method that updates
along the vector of coordinatewise signs of the negative stochas-
tic gradient. Secondly, on top of this sign-based direction, adam

employs a coordinatewise “damping” based on an estimate of the
signal-to-noise ratio of the stochastic gradient in each coordinate.
We defer a study of the first aspect to Chapter 6 and investigate
the second aspect, which we term variance adaptation. We formalize
the idea and transfer it from sign-sgd to sgd, which results in the
stochastic variance-adapted gradient (svag) method. Furthermore, we
perform an ablation study of the two aspects, which shows that the
sign aspect accounts for most of the difference between adam and
sgd.

Inspired by this empirical significance of the sign aspect, we take
to investigating it theoretically in Chapter 6. Focusing on the curva-
ture aspects, we study the noise-free version, sign gradient descent,
as steepest descent with respect to the maximum norm. We show
that sign gradient descent can outperform gradient descent for ob-
jectives whose Hessian is characterized by two properties: (i) a few
dominant outlier eigenvalues, and (ii) some degree of concentration
on its diagonal. Interestingly, these theoretical findings are matched
by recent empirical studies of properties of the Hessian in neural
network training objectives.

Finally, in Chapter 7, we discuss a family of methods that pre-
conditions stochastic gradient descent with the so-called “empirical
Fisher” matrix, which is closely related to the stochastic gradient
covariance matrix. This is usually motivated from information-
geometric considerations as an approximation to the Fisher infor-
mation matrix. We caution against this argument and show that the
empirical Fisher approximation has fundamental theoretical flaws.
We argue that preconditioning with the empirical Fisher might
better be understood as a form of variance adaptation.

2
Preliminaries

This manuscript makes extensive use of linear algebra, multivari-
ate calculus, and basic probability theory. General familiarity with
these topics is assumed; more specific concepts and results will be
introduced where needed. This chapter contains a short primer on
basic concepts in machine learning in Section 2.1 and (determinis-
tic) mathematical optimization in Section 2.2. Readers familiar with
these topics may safely skip this chapter.

2.1 Machine Learning

Machine learning is the study of algorithms that learn to solve
certain tasks by inspecting examples in the form of training data. It
has grown into a broad field, using a wide range of tools to tackle
various kinds of tasks with different assumptions on the available
data.

A common scenario, which will be our primary interest, is that
of supervised learning, where we want to learn to predict a target
quantity y ∈ Y given an input x ∈ X. We distinguish between re-
gression problems, where y is a continuous quantity, and classifica-
tion problems, where y is categorical. For example, in a regression
problem, we may want to predict the price y ∈ R of a house based
on a vector x ∈ Rp describing some of its features, e.g., its square
footage, the number of rooms, or the crime rate of the neighbor-
hood. As an example for a classification problem, assume you are
given a digital image of a handwritten digit and want to identify
the digit. The goal of a supervised learning method is to construct
a predictor h : X → Y based on a training set of examples of (x, y)
pairs.

In this section, we are going to describe a few key concepts of
statistical machine learning, highlighting its close connection to
optimization.

2.1.1 Empirical Risk Minimization

Empirical risk minimization (ERM) is the principal paradigm of
statistical machine learning. The relationship between the target
y ∈ Y and the input x ∈ X is modeled using joint probability distri-

6 noise-aware stochastic optimization

bution p(x, y). In the ERM paradigm we choose a hypothesis space
of possible predictors h : X → Y, which usually takes the form of
a parametrized family H = {hθ | θ ∈ Rd}. The hypothesis class
is also referred to as a model, because it posits a certain relationship
between x and y, and θ are the model parameters. Furthermore, we
specify a loss function ` : Y×Y → R such that `(y, ŷ) quantifies
our “discontent” with a prediction ŷ when the true target is y. Our
goal is to minimize the expected loss,

R(θ) = Ex,y[`(y, hθ(x))], (2.1)

which is also referred to as the risk of the predictor hθ . Of course,
the true data distribution p(x, y) is usually unknown and/or the
expectation in Eq. (2.1) is intractable. Instead, we rely on training
set

D = {(x1, y1), . . . , (xN , yN)}, (2.2)

which is assumed to consist of iid samples from the data-generating
distribution, and minimize the so-called empirical risk

RD(θ) =
1
N

N

∑
n=1

`(yn, hθ(xn)). (2.3)

The expectation over p(x, y) in Eq. (2.1) is approximated with the
sample average over the training set to construct a tractable sur-
rogate for the risk. Fitting model parameters by minimizing the
empirical risk is called empirical risk minimization. (We drop the
subscript D in the empirical risk whenever the dependence on the
training set need not be made explicit.)

Example: Linear Least-Squares Regression. Let X = Rp and Y = R.
We choose the hypothesis space of affine maps, hw,b(x) = wTx + b,
parametrized by w ∈ Rp and b ∈ R. We use the squared loss
`(y, ŷ) = 1

2 (ŷ − y)2. The resulting empirical risk minimization
problem,

R(θ) =
1

2N

N

∑
n=1

(wTxn + b− yn)
2, (2.4)

is known as (linear) least-squares regression.

Least-squares regression, a method which dates back at least to
Legendre [1805] and Gauss [1809], is probably the earliest applica-
tion of the ERM principle. The key idea has since featured in many
works in statistics and the burgeoning field of (statistical) machine
learning. The empirical risk minimization principle has been sum-
marized and formalized in the modern machine learning context by
Vapnik [1992].

2.1.2 Generalization

The idea underlying the ERM paradigm is that the empirical risk
R(θ) will approximate the true risk R(θ) sufficiently well such that

preliminaries 7

a solution minimizing the former will also achieve a low value in
the latter. This is the question of generalization: Does a model fit
to a training set generalize to previously unseen data drawn from
the same distribution? We will briefly discuss this question with a
special emphasis on the implications for optimization.

In a nutshell, the generalization behavior depends on the size of
the training set and the capacity1 of the chosen model class. Denote 1 A formal definition “capacity” of

a model class is beyond the scope
of this brief introduction; there is
not even a unique definition. For
our purposes, we can think of it as
the size of the hypothesis space H.
A large hypothesis space contains
many different predictions and has
the capacity to fit many different
datasets. A small hypothesis class is
more restricted.

by

θ?D = arg minθ RD(θ),

θ? = arg minθR(θ)
(2.5)

the solutions found by minimizing the empirical risk and the true
risk, respectively. Let

Rmin = min
f : X→Y

Ex,y[`(y, f (x))] (2.6)

be the lowest risk achievable by any possible predictor.2 With that, 2 This is referred to as the irreducible
risk or Bayes risk.we can decompose the excess risk

R(θ?D)−Rmin = R(θ?D)−R(θ?)︸ ︷︷ ︸
=εest

+R(θ?)−Rmin︸ ︷︷ ︸
=εapp

(2.7)

into an estimation error εest and an approximation error εapp. The es-
timation error arises from optimizing the empirical risk instead of
the true risk. The approximation error is due to a restricted model
class, which usually will not contain the optimal predictor and
therefore not achieve the minimal risk. Increasing model capacity
will decrease the approximation error, since we may get closer to
the optimal predictor. But it will tend to increase the estimation
error, since a high-capacity model class will tend to overfit to the
particular training set. A larger training set size will bring the em-
pirical risk closer to the true risk, thereby decreasing the estimation
error; the approximation error is unaffected by the training set size.

From the optimization perspective, an interesting aspect is that
overfitting happens over the course of the optimization procedure.
Let θt, t ∈ N, be a sequence of iterates generated by an optimiza-
tion algorithm which minimizes the empirical risk R(θ). If the
optimization procedure is doing its job, we expect R(θt) to be de-
creasing over time. But what about R(θt)? A typical behavior is
depicted in Figure 2.1. Early on, R(θt) ≈ R(θt) and the true risk de-
creases alongside the empirical risk as desired. As the optimization
progresses, θt gets more and more adapted to the training set and
the true risk begins to systematically exceed the empirical risk. At
some point, the true risk plateaus and can even start to increase, as
θt overfits to the training set. This effect can be detected and coun-
teracted by keeping a separate sample of data points, a so-called
validation set. Since the validation set is statistically independent
of θt, the average loss computed on the validation set is an unbi-
ased estimate of the true risk. Monitoring the validation loss lets us
detect overfitting and stop the optimization process when it occurs.

8 noise-aware stochastic optimization

0 20 40 60 80 100
Steps

4

5

6

7

8

Lo
ss

Empirical Risk
True Risk

Figure 2.1: Overfitting occurs gradu-
ally during empirical risk minimiza-
tion. Early on, R(θt) ≈ R(θt) and
the true risk decreases alongside the
empirical risk as desired. As the opti-
mization progresses, θt gets more and
more adapted to the training set and
the true risk begins to systematically
exceed the empirical risk. At some
point, the true risk plateaus and can
even start to increase.

This plot was created by running
gradient descent on an artificially gen-
erated linear least-squares regression
problem as described in Section 2.1.1.

The phenomenon of overfitting hints at a larger point: The best
optimization algorithm is not necessarily the best learning algo-
rithm. After all, the optimizer’s objective (the empirical risk) is
not the quantity we are ultimately interested in (the true risk).
Loosely speaking, an inexact optimization algorithm that gets us
reasonably close to the empirical risk minimum very quickly might
be preferable to an optimization algorithm that converges faster
asymptotically but may be slow initially. At some point, a further
reduction in the empirical risk will not pay off in terms of the true
risk and investing additional computational resources into the op-
timization will be wasteful. This was highlighted and formalized
in a landmark paper by Bottou and Bousquet [2008], who amend
the approximation-estimation trade-off (Eq. 2.7) by accounting for
the effect of inexact optimization of the empirical risk. Let θ̂D be the
(inexact) solution returned by an optimization method applied to
the empirical risk. We can decompose its excess risk as

R(θ̂D)−Rmin = R(θ̂D)−R(θ?D)︸ ︷︷ ︸
=εopt

+R(θ?D)−R(θ?)︸ ︷︷ ︸
=εest

+R(θ?)−Rmin︸ ︷︷ ︸
=εapp

.

(2.8)
Investing computational resources into the optimization method
will only reduce the optimization error εopt. As Bottou and Bousquet
[2008] show, in the regime of large training sets, this investment
might not pay off and would be better allocated to incorporate
more data (if the estimation error is large) or to increase the capac-
ity of the model class (if the approximation error is large).

Beyond that, if the empirical risk has multiple (local) minima,
the optimization can have an effect as to which of these minima
is found. This has found to be the case empirically in neural net-
works [e.g., Wilson et al., 2017] and studied theoretically in simpler
problems [e.g., Soudry et al., 2018].

2.1.3 Logistic Regression

Before introducing artificial neural networks, the model class of
primary interest for the research presented in this thesis, we intro-
duce the method of logistic regression, developed and popularized

preliminaries 9

by Berkson [1944]. Despite its name, it is a method for classification
problems, more specifically, binary classification where y ∈ {0, 1}.
As in linear regression, we use affine maps of the form wTx + b.
The output is then passed through the so-called logistic (or sig-
moid) function σ : R→ [0, 1],

σ(t) =
1

1 + e−t , (2.9)

which squashes it to a value between 0 and 1. This results in a
predictor

hw,b(x) = σ(wTx + b) =
1

1 + e−wTx−b
, (2.10)

which we interpret as the predictive probability for y = 1, i.e.,
hw,b(x) ≈ p(y = 1|x). As a loss function, the probabilistic formu-
lation suggests to use the negative log likelihood of our prediction,
meaning that predicting a probability of π ∈ [0, 1] for y = 1 incurs a
loss of

`(y, π) = −y log π − (1− y) log(1− π). (2.11)

This results in an empirical risk of the form

R(w, b) = − 1
N

N

∑
n=1

(yn log hw,b(xn) + (1− yn) log(1− hw,b(xn))) .

(2.12)
Logistic regression is possibly the simplest parametric classification
method and an interesting model problem for (stochastic) optimiza-
tion. While linear regression poses quadratic optimization problems,
for which there are specialized algorithms, logistic regression re-
quires a general purpose non-linear optimization method. At the
same time, it is a “well-behaved” optimization problem, in particu-
lar it can be shown to be smooth and convex (see Section 2.2 for an
introduction to these concepts). It can also be seen as the simplest
possible neural network model.

2.1.4 Artificial Neural Networks

Artificial neural networks are a broad family of machine learning
models and associated learning algorithms. Historically, they have
evolved from computational models of the brain but this biological
analogy only serves as a loose inspiration in most contemporary
uses of these models. Many different forms of neural network mod-
els have emerged, but they are all built on the same basic building
block: the artificial neuron.

An artificial neuron can be described as a function which re-
ceives a vector of input signals z ∈ Rn and computes a single scalar
output as

a(wTz + b), (2.13)

where w ∈ Rn and b ∈ R are the parameters of the neuron (called
its weight vector and bias, respectively) and a : R → R is a nonlin-
ear activation function. This basic structure was first proposed under

10 noise-aware stochastic optimization

the name perceptron by Rosenblatt [1958], who used a threshold
activation function,

a(t) =

1 if t > 0,

0 if t ≤ 0,
(2.14)

inspired by biological neurons. More recent choices for the activa-
tion function include the sigmoid function (Eq. 2.9), the hyperbolic
tangent, or the so-called rectified linear unit [ReLU, Nair and Hin-
ton, 2010],

a(t) =

t if t > 0,

0 if t ≤ 0,
(2.15)

which has become ubiquitous in modern deep learning.

Fully-Connected Neural Networks Neural network models are com-
posed of multiple layers of artificial neurons, where the outputs of
neurons in one layer form the input of neurons in subsequent lay-
ers. Networks with many such layers are called deep and the term
deep learning has been coined to describe machine learning with
deep artificial neural networks. The simplest and historically earli-
est form of artificial neural networks are so-called fully-connected
networks or multilayer perceptrons (MLPs). In a fully-connected
network, the concatenated outputs of all neurons in one layer form
the input vector for the neurons in the consecutive layer. Hence, the
neurons in two consecutive layers are fully interconnected. Mathe-
matically, we can describe a layer as a function h(`) : Rn`−1 → Rn` ,

h(`)(z) = σ
(

W(`)z + b(`)
)

, (2.16)

parametrized by a weight matrix W(`) ∈ Rn`×n`−1 and a bias vector
b(`) ∈ Rn` . The application of the nonlinearity σ has to be under-
stood elementwise. The fully-connected network is simply a com-
position of such layer functions, hθ = h(L) ◦ . . . ◦ h(1) with compati-
ble input and output sizes. The network is parametrized by the the
collection of weights and biases of all layers, θ = (W(1), b(1), . . . , W(L), b(L)).
To construct a fully-connected neural network that maps and n-
dimensional input to an m-dimensional output, we choose the input
dimension of the first layer (input layer) to be n0 = n and the out-
put dimension of the final final layer (output layer) to be nL = m.
Modelling choices include the number of intermediate (“hidden”)
layers and the number of neurons in each of them, as well as the
choice of activation function. These aspects are jointly referred to as
the architecture of the neural network model.

Fully-connected neural networks are a modular class of non-
linear predictors. They are very flexible in the types of functions
they can approximate. In fact, they have been shown [e.g. Hornik,
1991] to be universal function approximators: With an adequate
number of hidden layers and neurons therein, they can approxi-
mate any continuous function over a compact domain to any de-
sired accuracy.

preliminaries 11

2.1.5 Modern Deep Learning Architectures

Many variants of the basic fully-connected neural network have
been developed over time, a few of which we want to mention here
without diving into any details. Rather than giving a full under-
standing of each of these models and techniques, the purpose of
this excursion is to highlight the versatility of neural networks.

Convolutional Neural Networks Some neural network variants
are designed to facilitate the processing of different data modali-
ties. E.g., convolutional neural networks [CNNs, Fukushima and
Miyake, 1982, LeCun et al., 1989] were designed to process image
data. In images, information is encoded in the patterns formed
by a local neighborhood of pixels. MLPs do not by design con-
sider this spatial nature of image data, since they treat each feature
as “independent” from the others. Moreover, the number of pix-
els in a digital image is usually very large, leading to large fully-
connected layers, which are computationally expensive and prone
to overfitting. A convolution layer retains and leverages the spatial
nature of image data by replacing the matrix multiplication in a
fully-connected layer (Eq. 2.16) with a convolution operation. The
“convolution kernel” acts as a (learnable) filter that scans an image
for certain patterns and outputs an image-like feature map. This is
much more efficient operation and, at the same time, encodes prior
structural knowledge about image data, which acts as an inductive
bias and facilitates learning. Note that, like a matrix multiplication,
a convolution is a linear operation. Convolution layers are usually
interspersed with so-called pooling layers, which reduce the spatial
dimension of the feature map before passing it to the next layer.
Variants of convolutional neural networks constitute the state of the
art in computer vision tasks.

Autoencoders Other architectures, such as autoencoders, are de-
signed for unsupervised learning. An autoencoder can be seen as
the concatentation of two neural nets. An encoder hθ(x) maps the
input x ∈ Rd to an encoding hθ(x) ∈ Rp with p < d. A decoder
maps the encoding z ∈ Rp back to the input space, gω(z) ∈ Rd. The
goal is minimize a reconstruction error for an (unlabeled) training
dataset, such as

min
θ,ω

1
N

N

∑
n=1
‖xn − gω(hθ(xn)‖2. (2.17)

The p-dimensional encoding serves as a bottleneck; to achieve a
low reconstruction error, the autoencoder has to learn a compressed
representation of the data, which can be used for dimensionality
reduction [Kramer, 1991] or representation learning [Vincent et al.,
2010].

Residual Networks Residual networks [ResNets He et al., 2016] are
a class of neural network architectures achieving state-of-the-art re-

12 noise-aware stochastic optimization

sults in computer vision. They introduce so-called residual (or skip)
connections to standard feed-forward architectures. Instead of each
layer’s output feeding only into the immediately following layer, a
residual connection feeds the output of a layer directly into a layer a
few steps ahead. While the skip connections do not fundamentally
alter the expressiveness of the neural network architecture, it has
been shown empirically to aid gradient-based training compared to
a comparable (non-residual) architecture. It is, thus, a remarkable
example where a model is altered purely to make it more amenable
to gradient-based optimization algorithms. Another recent devel-
opment that is mostly motivated by facilitating gradient-based
training—and a key feature of ResNets—are normalization layers,
the most popular technique being Batch Normalization [Ioffe and
Szegedy, 2015].

This list is by no means exhaustive, as the field of deep learn-
ing has developed rapidly over the last decade and continues to
innovate at a high pace. So-called recurrent neural networks [e.g.,
LSTMs Hochreiter and Schmidhuber, 1997] are designed to oper-
ate on sequences or time series and have driven many advances
in natural language processing. Generative adversarial networks
[GANs Goodfellow et al., 2014] are combinations of two neural net-
works trained in a “competing” manner for unsupervised learning
of generative models. Not to mention countless small “tricks of
the trade”, such as new activation functions [e.g. Ramachandran
et al., 2017], parameter initialization schemes [e.g. Glorot and Ben-
gio, 2010], or regularization methods such as “dropout” [Srivastava
et al., 2014].

Practical deep learning has become an engineering discipline,
with many different tools, best practices and rules of thumb.
However, in the big picture—and in particular from the perspec-
tive of optimization—all variants have a lot in common: They are
parametrized functions composed of multiple layers of (learnable)
affine maps followed by a nonlinear activation function.

2.1.6 Gradient-Based Learning in Neural Nets: Backpropagation

Modern neural networks are trained using empirical risk mini-
mization as described in Section 2.1.1. Minimizing the empirical
risk with numerical optimization algorithms requires the compu-
tation of its gradient with respect to the parameters of the neural
network. These computations can be implemented efficiently and
the resulting algorithm is called the method of backpropagation of er-
rors or simply backpropagation. The attribution of the “invention” of
backpropagation is disputed, but its popularization for the training
of neural networks is due to Rumelhart et al. [1986]. Backpropaga-
tion in neural networks is a special case of reverse-mode automatic
differentiation, which implements the chain rule of calculus for
functions specified by general computational graphs.

preliminaries 13

Computational graphs are directed acyclic graphs, where each
node represents the output of a computation. The inputs to the
computation performed by an individual node are given by its
parents and the result of the computation is fed as input to the chil-
dren. In that way, a computational graph can represent complex
computations as a composition of basic computational modules.
The computation graph also has “constant” nodes, who do not per-
form computations but simply represent inputs to the computation.
In a machine learning context, these constant nodes may represent
input data or model parameters.

With a slight abuse of notation, we can state the chain rule of
calculus in the following way: Assume we have a composition
z(y(x)) with x ∈ Rn, y : Rn → Rm and z : Rm → R. Then the
gradient of z w.r.t. x can be written as

∇xz =
∂y
∂x

T

∇yz, (2.18)

where ∂y/∂x ∈ Rm×n is the Jacobian matrix of y w.r.t. x. That is, we
can compute the gradient of z w.r.t. x by multiplying the gradient of
z w.r.t. to the output of an intermediate computation y(x) with the
Jacobian of y w.r.t. x.

This gives us a recipe to compute the gradients of a computation
graph’s output w.r.t. any (intermediate or input) node of a compu-
tation graph. We start with the output node, which trivially has a
gradient w.r.t. itself of 1. We then find the parent node and “back-
propagate” the gradient by multiplying with the Jacobian of the
node. All that is required is for each node, whose forward opera-
tion represents a basic computational building block, to be able to
multiply with the Jacobian of that operation. This is what lies at the
heart of modern automatic differentation frameworks such as Ten-
sorFlow [Abadi et al., 2015] or PyTorch [Paszke et al., 2019], which
power much of contemporary machine learning.

2.2 Mathematical Optimization

We briefly recall some fundamental concepts from (determinis-
tic) mathematical optimization, loosely following the textbook of
Nesterov [1983]. The treatment of stochastic optimization algo-
rithms is deferred to the next section. Mathematical optimization
is concerned with finding extremal values of an objective function
f : D → R. We assume the domain D to be a subset of Rd which
puts us in the realm of so-called continuous optimization (as op-
posed to discrete optimization, where the domain is partly discrete,
e.g., a set of integers). Optimization problems are canonically for-
mulated as minimization problems3 and written as 3 Maximization is equivalent to mini-

mization of − f (θ).
min
θ∈D

f (θ). (2.19)

We ideally want to find a global minimum of f , that is, θ? ∈ D such
that f (θ?) ≤ f (θ) for all θ ∈ D. We assume that f is lower-bounded

14 noise-aware stochastic optimization

and that the lower bound is attained so that there will be at least
one global minimum. We denote the minimal value as f? = f (θ?).
If f (θ?) < f (θ) for all θ ∈ D\{θ?} we call f (θ?) a strict (global)
minimum.

Sometimes we are satisfied (or forced to content ourselves) with
finding a local minimum, i.e., θ? for which there exists a neighbor-
hood such that f (θ?) ≤ f (θ) for all θ in that neighborhood. We
call θ? a strict local minimum if there is a neighborhood such that
f (θ?) < f (θ) for all θ 6= θ? in that neighborhood.

Optimization problems are commonly classified based on prop-
erties of f and D. In this work, we are mostly concerned with un-
constrained, smooth, non-linear optimization problems.

• In unconstrained optimization problems the domain is D = Rd as
opposed to constrained optimization where D is a strict subset
of Rd, usually given in the form of multiple functional inequality
and equality constraints gi(θ) ≤ 0 and hj(θ) = 0.

• In smooth problems the objective f —and, if applicable, all con-
straint functions—are differentiable. This allows the optimiza-
tion method to rely on gradients and, possibly, higher-order
derivatives. Note that the word “smooth” can have other mean-
ings depending on the context, notably the notion of Lipschitz
smoothness of a function, which will be introduced below.

• The objectives we consider are nonlinear. There are specialized
algorithms for linear optimization problems, where f is a linear
function and the domain is a convex polytope given by linear
equality and inequality constraints.

2.2.1 Optimality Conditions

The definition of a minimum is descriptive rather than constructive
and does not directly inspire methods to find such a point. Differ-
entiable objective functions allow for a characterization of minima
in terms of their derivatives.

We start by establishing a necessary condition for optimality in
terms of the first-order derivative.

Theorem 2.1. Let θ? be a local minimum of a differentiable function
f : Rd → R. Then

∇ f (θ?) = 0. (2.20)

Proof. See, e.g., Theorem 1.2.1 in Nesterov [2018].

We call a point with zero gradient a stationary point of f . The-
orem 2.1 says that every local minimum is also a stationary point
or, in other words, that stationarity is a necessary condition for a
miminum. The intuitive reason is that, if there were a nonzero gra-
dient, taking a small step into the direction of the negative gradient
would lead to a further decrease in function value, contradicting the
presence of a minimum. Note that not every stationary point is a

preliminaries 15

local minimum; stationary points can also be maxima or so-called
saddle points.

For a twice differentiable function, another necessary optimal-
ity condition is that its second derivative (its curvature) is “non-
negative”. In the case of a multivariate objective, this means that its
Hessian matrix is positive semi-definite4: 4 A symmetric matrix A ∈ Rd×d is

positive semi-definite if xTAx ≥ 0 for
all x ∈ Rd. It is called positive definite
if xTAx > 0 for all nonzero x ∈ Rd. We
denote these properties as A � 0 and
A � 0, respectively.

Theorem 2.2. Let θ? be a local minimum of a twice differentiable function
f : Rd → R. Then

∇ f (θ?) = 0 and ∇2 f (θ?) � 0. (2.21)

Proof. See, e.g., Theorem 1.2.2 in Nesterov [2018].

Again, this is not a sufficient condition; such a point could also
be a saddle point, see for example f (θ) = θ3 at θ = 0.

Let us, finally, discuss a sufficient condition.

Theorem 2.3. Let f : Rd → R be twice differentiable. If θ? ∈ Rd satisfies

∇ f (θ?) and ∇2 f (θ?) � 0, (2.22)

then θ? is a strict local minimum of f .

Proof. See, e.g., Theorem 1.2.3 in Nesterov [2018].

A stationary point with strictly positive curvature is a strict
local minimum. Note that this condition is slightly stronger than
necessary; an example is, again, f (θ) = θ4, which has a strict local
minimum at θ = 0 despite having zero curvature at that point.
Nevertheless, this criterion will be convenient to work with.

2.2.2 Regularity Assumptions

So far, we have only assumed the objective function to be differen-
tiable and to have at least one local minimum. This encompasses a
great many objective functions and it seems like a monstrous task
to find optimization algorithms that work for all of them. To find
efficient algorithms, we will have to make additional assumptions
that the objective is, in some sense, well-behaved. These are often
called regularity assumptions. We will discuss two of them here,
Lipschitz smoothness and convexity, which are of paramount im-
portance in mathematical optimization.

Lipschitz Smoothness One of the key assumption in numerical
optimization is smoothness, which in this context means that the
gradient function is Lipschitz.

Definition 2.1 (Smoothness). A function f : Rd → R is L-smooth if

‖∇ f (θ′)−∇ f (θ)‖2 ≤ L‖θ′ − θ‖2 (2.23)

for all θ, θ′ ∈ Rd.

16 noise-aware stochastic optimization

Smoothness controls how fast the gradient function changes
as we move in its input space. It is commonly formulated with
respect to the Euclidean norm, as we just did, but can equivalently
be formulated for other norms. This will play an important role
in Chapter 6 and will be discussed there. A crucial consequence
of smoothness is that the function can be bounded by quadratic
functions:

Lemma 2.1. If f : Rd → R is L-smooth, then

f (θ′) ≤ f (θ) +∇ f (θ)T(θ′ − θ) +
L
2
‖θ′ − θ‖2

2 (2.24)

and
f (θ′) ≥ f (θ) +∇ f (θ)T(θ′ − θ)− L

2
‖θ′ − θ‖2

2 (2.25)

for all θ, θ′ ∈ Rd.

Proof. See, e.g., Lemma 1.2.3 in Nesterov [2018].

Bounds of this form are crucial for first-order optimization. In
fact, gradient descent—the most basic first-order optimization
method, which we will discuss shortly—can be seen as iteratively
minimizing the upper bound, centered around the previous iterate:

θt+1 = arg minθ′

(
f (θt) +∇ f (θt)

T(θ′ − θt) +
L
2
‖θ′ − θt‖2

2

)

= θt −
1
L
∇ f (θt).

(2.26)

For twice differentiable functions, smoothness arises from a
bound on the Hessian matrix.

Lemma 2.2. A twice differentiable function f : Rd → R is L-smooth if
and only if

‖∇2 f (θ)‖2 ≤ L. (2.27)

Proof. See, e.g., Lemma 1.2.2 in Nesterov [2018].

Here, ‖A‖2 for a matrix A refers to its spectral norm which—for
symmetric matrices like Hessians—is given by the largest absolute
eigenvalue. We can therefore also write this bound as −L · Id �
∇2 f (x) � L · Id, where A � B means that B− A is positive semi-
definite.

Convexity Another important regularity assumption is convexity.
We call a set D ⊂ Rd convex if for any θ, θ′ ∈ D and λ ∈ [0, 1],
λθ + (1− λ)θ′ is also in D. Pictorially, for two points in a convex
set, the set also contains all points on the straight line between the
two. Examples for convex sets are D ≡ Rd or balls Bε(θ0) = {θ ∈
Rd | ‖θ − θ0‖2 ≤ ε} for ε > 0.

Next, we define a convex function:

Definition 2.2 (Convex function). Let D ⊂ Rd be a convex set. A
function f : D → R is convex if, for any θ, θ′ ∈ D and λ ∈ [0, 1],

f (λθ + (1− λ)θ′) ≤ λ f (θ) + (1− λ) f (θ′). (2.28)

preliminaries 17

The function is strictly convex if the inequality holds strictly for any
λ ∈ (0, 1).

Pictorially, the line interpolating between two points on the
graph of a convex function lies above the graph.

For differentiable functions there is a useful equivalent character-
ization of convexity:

Lemma 2.3. Let D ⊂ Rd be a convex set and f : D → R be continuously
differentiable. Then f is convex if and only if, for any θ, θ′ ∈ Rd,

f (θ′) ≥ f (θ) +∇ f (θ)T(θ′ − θ). (2.29)

Strict convexity holds if the inequality is strict.

Proof. See, e.g., Theorem 2.1.2 in Nesterov [2018].

The latter condition has the pictorial interpretation that the tan-
gent which touches the graph of f at θ lies below that graph. An
immediate consequence of this characterization—which is key to
optimization—is that any stationary point of a convex function
f is a global minimum: If ∇ f (θ?) = 0, then Eq. (2.29) implies
f (θ′) ≥ f (θ?) for all θ′. This also means that any local minimum of
a convex function is also a global minimum.

Intuitively, convexity means that the function “bends upwards”
everywhere, which relates to the curvature of the function. For a
twice continuously differentiable function, this translates directly
into a requirement on the Hessian of the function:

Lemma 2.4. Let D ⊂ Rd be an open convex set and f : D → R be twice
continuously differentiable. Then f is convex if and only if

∇2 f (θ) � 0 ∀θ ∈ D, (2.30)

i.e., the Hessian is positive semi-definite on D. Strict convexity holds if the
Hessian is positive definite.

Proof. See, e.g., Theorem 2.1.4 in Nesterov [2018].

Strong Convexity There is an even stronger version of convexity,
aptly named strong convexity, which plays an important role in
optimization.

Definition 2.3 (Strongly convex function). Let D ⊂ Rd be a convex
set. A continuously differentiable function f : D → R is called µ-strongly
convex for µ > 0 if, for any θ, θ′,

f (θ′) ≥ f (θ) +∇ f (θ)T(θ′ − θ) +
µ

2
‖θ′ − θ‖2

2. (2.31)

Convexity, in the form of Eq. (2.29) lower-bounded the function
with the tangent touching f at θ, that is, with a linear function.
Strong convexity is a stronger requirement in that it demands f to
be lower-bounded by a quadratic function touching f at θ.

As one might expect, we can formulate strong convexity in terms
of the Hessian of a twice differentiable function:

18 noise-aware stochastic optimization

Lemma 2.5. Let D ⊂ Rd be an open convex set and f : D → R be twice
continuously differentiable. Then f is µ-strongly convex if and only if

∇2 f (θ) � µId ∀θ ∈ D, (2.32)

i.e., ∇2 f − µId is positive semi-definite on D.

Proof. See, e.g., Theorem 2.1.11 in Nesterov [2018].

Of course, strong convexity with any µ > 0 implies strict con-
vexity. The reverse is not true. In the second-order formulation of
Lemmata 2.4 and 2.5, respectively, strict convexity requires a strictly
positive definite Hessian everywhere, whereas strong convexity
requires the Hessian to be “bounded away” from zero. As an exam-
ple, f (θ) = eθ is strictly convex but not strongly convex, since its
second derivative f ′′(θ) approaches zero for θ → −∞. Pictorially,
the exponential function gets flatter and flatter for negative input
values and, thus, can not be lower-bounded by quadratic functions
with a uniform curvature of µ > 0.

An important property of strongly-convex function is given by
the following Lemma.

Lemma 2.6. Let f : Rd → R be µ-strongly convex. Then

‖∇ f (θ)‖2
2 ≥ 2µ(f (θ)− f?). (2.33)

Proof. Special case of Theorem 2.1.10 in Nesterov [2018].

Note that we defined strong convexity with respect to the Eu-
clidean norm in Definition 2.3. It can also be formulated with
respect to other norms, which may change the strong convexity
parameter µ. This will become important in Chapter 6 and will be
discussed there.

Smooth and Strongly Convex Functions As a consequence of Lem-
mata 2.5 and 2.2, a twice differentiable function is L-smooth and
µ-strongly convex if and only if

µId � ∇2 f (θ) � LId ∀θ ∈ D. (2.34)

Functions of this class can be lower- and upper-bounded by quadratic
functions and, thus, behave “almost” like quadratic functions. As
we will see, this makes them particularly well-behaved from an
optimization perspective and, therefore, an important class to study.

2.2.3 Convergence of Optimization Algorithms

Practical optimization algorithms for general continuous optimiza-
tion are approximate and iterative in nature. They are approximate in
that they do not attempt to find the exact minimizer θ?. Instead,
they start from a (user-provided) starting point θ0 ∈ Rd and it-
eratively produce a sequence of iterates, θ0, θ1, θ2, . . . which con-
verges to a minimum. The pure fact that an algorithm will converge
eventually is reassuring but we are usually also interested in its
speed. Before proceeding to the discussion of specific algorithms, we
briefly review common notions of convergence speed.

preliminaries 19

Convergence Bounds Convergence bounds are always formulated
for classes of functions, i.e., the set of functions satisfying certain
assumptions. In a setting where convergence to a global minimum
can be guaranteed, e.g., for convex objectives, we are usually inter-
ested in bounds of the form5 5 Here, and throughout the remainder

of this thesis, we denote ft = f (θt),
∇ ft = ∇ f (θt), et cetera.ft − f? ≤ h(t) or ‖θt − θ?‖ ≤ h(t). (2.35)

That is, we bound the so-called suboptimality (ft − f?) or the dis-
tance to the minimizer (‖θt − θ?‖) as a function of the number of
iterations of the algorithm. Both notions of convergence are related
and we know that

ft − f? → 0⇔ ‖θt − θ?‖ → 0 (2.36)

for sufficiently regular functions, but there can be a nontrivial rela-
tionship between the respective right-hand sides of the bounds.

A few remarks on such notions of convergence speed are in
order:

• The guarantees take the form of upper bounds. We usually de-
sire these bounds to be tight, meaning that it holds with equality
for some worst-case situation, e.g., for a specific function from
the class of functions under consideration.

• The bounds are formulated as a function of the number of it-
erations. Of course, this is merely a proxy for other quantities,
which would be more informative but harder to measure and
compare impartially. Eventually, we are interested in which algo-
rithm is faster in actual wall-clock time but this depends, among
other things, on the programming language used to implement
it and the hardware that the resulting program is run on. Al-
ternatively, we might want to quantify convergence speed as a
function of the computational cost, but this is not a perfect mea-
sure either. Some algorithms have high computational cost, but
lend themselves to easy parallelization, which makes them fast
in wall-clock time. Others have low computational complexity,
but require large amounts of additional memory. Formulating
convergence bounds by number of iterations makes for easy
comparability and relegates the considerations hinted at above
to a later point in time. Bounds of this form usually make the
assumption that f is a black box, and that the algorithm requires
a single evaluation (e.g., of the gradient and/or the Hessian) per
iteration.

• Instead of giving an exact expression for the right-hand side h(t),
we often use “big O notation” to specify the asymptotic order of
convergence. That is, we write ft − f? ∈ O(h(t)), meaning that
there exists M > 0, t0 ∈ N such that ft − f≤Mh(t) for all t ≥
t0. This hides all constants and lower-order terms, but is often
easier to parse and simplifies proofs. However, it is important to
understand that these constants and lower-order terms can very
well matter in practice!

20 noise-aware stochastic optimization

• Convergence bounds are sometimes equivalently expressed
as the number of iterations needed to reach an “accuracy” of
ε > 0, e.g., an algorithm needs at most T(ε) iterations to achieve
a suboptimality of ε.

Example As an example, we will shortly see that, for L-smooth and
µ-strongly convex functions, the gradient descent algorithm satisfies

ft − f? ≤
(

1− µ

L

)t
(f0 − f?). (2.37)

Such convergence of order O(ct) with c < 1 is called linear con-
vergence. It implies that at most O(log ε) iterations are needed to
guarantee ft − f? ≤ ε.

Weaker Convergence Statements In settings where convergence to
a global minimum may not be guaranteed, similar bounds may be
proven for convergence to a local minimum or to a stationary point.
The latter can take the form of a bound

‖∇ ft‖ ≤ h(t). (2.38)

2.2.4 Gradient Descent

We will now discuss the basic first-order optimization algorithm,
gradient descent. It performs iterations of the form

θt+1 = θt − αt∇ ft, (2.39)

where αt > 0 is a sequence of step sizes. The underlying idea is that
the negative gradient points in the direction of steepest descent.
Assume we are at θ ∈ Rd and take a step of size ε > 0 in a (nor-
malized) direction δ ∈ Rd, ‖δ‖2 = 1. The directional derivative
of f along δ, that is, the rate of change as we move infinitesimally
along direction δ, is given by limε→0 ε−1(f (θ + εδ)− f (θ)) and can
be shown to evaluate to ∇ f (θ)Tδ. The direction of steepest descent
is defined as the direction with smallest (most negative) directional
derivative

min
δ∈Rd
∇ f (θ)Tδ s.t. ‖δ‖2

2 = 1, (2.40)

and is given by δ ∝ −∇ f (θ). With a suitably chosen step size,
gradient descent decreases the function value at each iteration.

Gradient descent can be traced back to Cauchy [1847] who ap-
plied the method to astronomical calculations.

Choosing Step Sizes Choosing a step size sequence αt > 0 in
Eq. (2.39) is not a trivial task. As we will see below, gradient de-
scent will diverge for step sizes that are too large. On the other
hand, choosing excessively small step sizes will lead to painfully
slow convergence. In practice, one of two options is typically used:
Either the step size is set to a constant, chosen by trial and error
or based on prior knowledge about the problem at hand. Or the

preliminaries 21

step size is set automatically at each iteration by a subroutine called
a line search. Line searches attempt to solve the one-dimensional
optimization problem

min
α>0

f (θt − α∇ ft). (2.41)

Practical line search routines search for approximate solutions that
are “good enough” to guarantee fast convergence of the algorithm.
Line searches increase the computational cost, since they require
additional evaluations of function value and/or the gradient in
order to test multiple step sizes before finding a satisfactory choice.
But they relieve us of the burden of having to choose a step size
manually.

Convergence Results For illustration, we will now prove two con-
vergence results for gradient descent. For the first result, the only
assumption we make is that f is L-smooth.

Theorem 2.4. Let f be L-smooth and bounded from below. Then gradient
descent with a constant step size α < 2/L satisfies

T

∑
t=0
‖∇ ft‖2

2 ≤ C (2.42)

for some constant C > 0.

This bound on the sum of squared gradients implies that ‖∇ ft‖ →
0, that is, gradient descent converges to a stationary point.

Proof. By smoothness and the resulting bound in Lemma 2.1 we get

ft+1 ≤ ft − α‖∇ ft‖2
2 +

Lα2

2
‖∇ ft‖2

2 (2.43)

or, after rearranging,

‖∇ ft‖2
2 ≤

(
α− Lα2

2

)−1

(ft − ft+1), (2.44)

where we used the fact that α − Lα2/2 is positive due to our as-
sumption that α < 2/L. Summing this inequality from t = 0 to
t = T yields

T

∑
t=0
‖∇ ft‖2

2 ≤
(

α− Lα2

2

)−1 T

∑
t=0

(ft − ft+1)

=

(
α− Lα2

2

)−1

(f0 − fT+1)

≤
(

α− Lα2

2

)−1

(f0 − f?).

(2.45)

The last step is simply by definition of the lower bound f?.

For smooth and strongly convex functions gradient descent
achieves linear convergence in suboptimality.

22 noise-aware stochastic optimization

Theorem 2.5. Let f : Rd → R be L-smooth and µ-strongly convex. Then
gradient descent with step size α = 1/L achieves

ft − f? ≤
(

1− µ

L

)t
(f0 − f?). (2.46)

Proof. By smoothness and the resulting bound in Lemma 2.1 we get

ft ≤ ft−1 − α‖∇ ft−1‖2
2 +

Lα2

2
‖∇ ft−1‖2

2

= ft−1 −
1

2L
‖∇ ft−1‖2

2.
(2.47)

Subtracting f? from both sides and using Lemma 2.6 yields

ft − f? ≤
(

1− µ

L

)
(ft−1 − f?). (2.48)

Applying this inequality recursively implies the desired result.

The quantity L/µ is called the condition number of the problem.
If this number is very large, then the constant in the linear conver-
gence of gradient descent is very close to 1 and the algorithm can
take a long time to converge. An pictorial example can be given
with a two-dimensional quadratic function f : R2 → R,

f (θ) =
1
2

θTHθ, R2×2 3 H � 0, (2.49)

whose contour lines can be depicted, see Figure 2.2. By Lem-
mata 2.2 and 2.5, the smoothness constant and the strong convexity
constant will be given by the largest and the smallest eigenvalue
of H, respectively. If the condition number is small (close to 1), the
contour lines will be close to circular and the negative gradient
will point towards the minimum; gradient descent will converge
quickly. If the condition number is large, the contour lines are elon-
gated and and the gradient can be a bad indicator of the location of
the minimum. Gradient descent exhibits very slow convergence.

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

Figure 2.2: The convergence speed
of gradient descent depends on the
condition number of the problem. The
figure depicts the contour lines of two-
dimensional quadratic objectives with
condition numbers of L/µ = 2 (left)
and L/µ = 8 (right) and the trajectory
of 10 gradient descent steps.

2.2.5 Newton’s Method

Gradient descent is a so-called first-order method, since it only
utilizes first-order derivatives of the objective function. Gradient

preliminaries 23

descent can be seen as iteratively minimizing a local linear model
of its objective function plus a penalty term that keeps the new
iterate close to the current one. The first-order Taylor expansion of
f around a point θ̄ is

f lin
θ̄ (θ)

def
= f (θ̄) +∇ f (θ̄)T(θ − θ̄), (2.50)

and a gradient descent update can be defined as

θt+1 = arg minθ∈Rd

(
f lin
θt

(θ) +
1

2αt
‖θ − θt‖2

2

)
. (2.51)

In contrast to that, second-order methods utilize second-order
derivatives of the objective to minimize a local quadratic model.
The prototypical second-order method is Newton’s method, which
goes back to Sir Isaac Newton, who described a particular instance
of the method in his 1711 work De analysi per aequationes numero
terminorum infinitas.

Newton’s method minimizes the second-order Taylor expansion
of its objective,

f quad
θ̄

(θ)
def
= f (θ̄) +∇ f (θ̄)T(θ− θ̄) +

1
2
(θ− θ̄)T∇2 f (θ)(θ− θ̄), (2.52)

which leads to updates of the form

θt+1 = arg minθ∈Rd f quad
θt

(θ) = θt −∇2 f (θt)
−1∇ f (θt). (2.53)

We assume f to be strictly convex, which makes the Hessian posi-
tive definite and, thus, invertible.

Incorporating second-order (curvature) information makes New-
ton’s method a potentially much more powerful method than gradi-
ent descent. Taking the local geometry of the obective into account
counteracts gradient descent’s zig-zagging behavior described
above. Newton’s method finds the solution of a quadratic opti-
mization problem in a single step, whereas gradient descent can
take a very long time to converge on poorly-conditioned quadratic
problems as shown in Figure 2.2.

Of course, these advantages come with some drawbacks. First,
we had to make the additional assumption of a twice differentiable
and convex objective. In a non-convex setting, the Hessian might
be negative definite, which makes the local quadratic model un-
bounded from below and renders the Newton update meaningless.
Even if these assumptions are fulfilled, we need computational ac-
cess to the Hessian, which may be cumbersome from an implemen-
tation point of view and might cause considerable computational
cost. These computational aspects have inspired a multitude of
approximate Newton methods, which employ various approxima-
tions to the Hessian matrix, e.g., by computing only its diagonal.
We will revisit one such approximation, the so-called generalized
Gauss-Newton matrix in Chapter 7.

3
Stochastic Optimization

We now turn to the stochastic optimization regime, which we al-
ready briefly introduced in Chapter 1. We give a general, formal
problem statement and establish notation for the remainder of this
manuscript. We then discuss stochastic gradient descent, the proto-
typical stochastic optimization algorithm.

3.1 Problem Statement

It will be convenient to adopt a more abstract formulation of
stochastic optimization than the one given in Chapter 1. In a
stochastic optimization problem, we want to minimize an objec-
tive of the form

f (θ) = Eξ [f (θ; ξ)] (3.1)

but only have access to samples from p(ξ), while the distribution
itself is unknown.

An element ξ can be considered an abstract notion of a data
point. Eq. (3.1) includes the empirical risk minimization problem
from Eq. (1.1) if we set ξ = (x, y), define the function f (θ; ξ) :=
`(hθ(x), y), and let p(ξ) be the empirical measure of the training
set. But Eq. (3.1) also includes the “infinite data” regime as in the
true risk (Eq. 2.1). While not stated explicitly, the distribution p(ξ)
could also change with θ, which incorporates objectives that include
(intractable) expectations over distributions defined by the model
itself, such as in the training of variational autoencoders [Kingma
and Welling, 2014].

By definition of the objective Eq. (3.1)—and the linearity of the
expectation and the gradient—we know that

E[∇θ f (θ, ξ)] = ∇θE[f (θ, ξ)] = ∇ f (θ). (3.2)

We can obtain an unbiased estimate of ∇ f (θ) by sampling ξ ∼ p(ξ)
and using ∇θ f (θ, ξ). From now on, we will drop the subscript and
write ∇ f (θ, ξ) instead of ∇θ f (θ, ξ), since gradients will always be
taken with respect to the parameters θ.

The stochastic properties of the gradient estimate are encoded in

26 noise-aware stochastic optimization

its covariance matrix

Σ(θ) def
= Cov[∇ f (θ; ξ)]

= E
[
(∇ f (θ; ξ)−∇ f (θ))(∇ f (θ; ξ)−∇ f (θ))T

]
.

(3.3)

This covariance matrix will be a key object of interest in the re-
maineder of this thesis.

Instead of using a single sample ξ, we can obtain multiple iid
samples and compute the average gradient over this so-called mini-
batch.

g def
=

1
m

m

∑
i=1
∇ f (θ; ξi), ξ1, . . . , ξm

iid∼ p(ξ). (3.4)

The (co-)variance of the minibatch gradient scales inversely propor-
tional with the batch size,1 1 For any set of random variables,

X1, . . . , Xm, the bilinearity of the
covariance yields

Cov[1
m ∑m

i=1 Xi] = ∑i,j
1

m2 Cov(Xi , Xj).

If the Xi are iid with Cov[Xi] = Σ,
then Cov(Xi , Xj) = δijΣ and

Cov[1
m ∑m

i=1 Xi] =
Σ
m .

Cov[g] =
Σ(θ)

m
. (3.5)

We can therefore decrease the stochastic error of our gradient esti-
mate by using a larger minibatch. Of course, this requires sampling
m data points and computing m individual gradients ∇ f (θ, ξi). The
trade-offs involved in minibatching will be discussed in detail in
Chapter 4. For now, we simply assume m to be a given constant.

3.2 Stochastic Gradient Descent

The prototypical stochastic optimziation algorithm is stochastic
gradient descent, which dates back to Robbins and Monro [1951],
who proposed a “Stochastic Approximation Method” for finding
the root of a function given access to noisy measurements of its
function value. Kiefer et al. [1952] first applied it specifically to
gradient-based optimization.

At each iteration, stochastic gradient descent computes a (mini-
batch) stochastic gradient,

gt
def
=

1
m

m

∑
i=1
∇ f (θt; ξ

(t)
i), ξ

(t)
1 , . . . , ξ

(t)
m

iid∼ p(ξ), (3.6)

and updates
θt+1 = θt − αtgt. (sgd) (3.7)

We will now proceed to a convergence analysis of stochastic
gradient descent as a means of introducing some basic tools used in
later chapters. We loosely follow Bottou et al. [2018].

3.2.1 Conditional and Total Expectation

The iterates (θt)t∈N generated by sgd—or any other stochastic op-
timization algorithm—are a stochastic process, since randomness is
injected at every iteration via the random sampling of data points.
The same hold for associated sequences like f (θt), ∇ f (θt), or gt.
We need to distinguish between a conditional expectation given

stochastic optimization 27

θt, denoted by Et[·] and the “total” expectation, denoted by E[·].2 2 For readers familiar with measure
theory, Et is defined as the conditional
expectation with respect to the σ-field

Ft
def
= σ(θ1, . . . , θt) = σ(g0, . . . , gt−1).

(3.8)

Unfortunately, this details is often glossed over in the machine
learning literature. For example, we know that Et[gt] = ∇ f (θt). But
a statement like E[gt] = ∇ f (θt)—often found in the literature—
is nonsensical, since the left-hand side is a deterministic quantity
whereas the right-hand side is a random variable.

3.2.2 A Descent Lemma

Most convergence results for sgd start from the following lemma,
which shows that an sgd update achieves an expected decrease in
function value for a sufficiently small step size.

Lemma 3.1. Let f be L-smooth. The iterates generated by sgd (Eq. 3.7)
satisfy

Et[f (θt+1)] ≤ ft − αt‖∇ ft‖2
2 +

Lα2
t

2
Et[‖gt‖2]

= ft − αt‖∇ ft‖2
2 +

Lα2
t

2

(
‖∇ ft‖2 +

tr(Σ(θt))

m

)
.

(3.9)

If the variance is bounded, we can always choose αt small enough
to decrease the function value in expectation.

Proof. Using the smoothness-based upper bound of Lemma 2.1, we
have

Et[f (θt+1)] ≤ Et

[
f (θt) +∇ f (θt)

T(θt+1 − θt) +
L
2
‖θt+1 − θt‖2

2

]
.

(3.10)
Plugging in θt+1 − θt = −αtgt and using the linearity of the expec-
tation (note that f (θt),∇ f (θt) ∈ Ft), this yields

Et[f (θt+1)] ≤ f (θt)− αt∇ f (θt)
TEt[gt] +

Lα2
t

2
Et[‖gt‖2

2]. (3.11)

Since, Et[gt] = ∇ f (θt), this proves the first inequality.
The second inequality results from the fact that, for any random

variable X ∈ Rd with mean µ and covariance Σ, we have

tr(Σ) =
d

∑
i=1

E[(Xi − µi)
2] = E

[
d

∑
i=1

(Xi − µi)
2

]
= E[‖X− µ‖2

2] (3.12)

and

E[‖X− µ‖2
2] = E[‖X‖2

2 − 2XTµ + ‖µ‖2
2] = E[‖X‖2

2]− ‖µ‖2
2, (3.13)

and therefore E[‖X‖2
2] = ‖µ‖2

2 + tr(Σ). Note that Covt[gt] =

Σ(θt)/m.

The descent lemma shows that the performance of sgd depends
on the gradient covariance matrix. Therefore, we have to make ad-
ditional assumptions on the stochastic properties of the gradient
estimates gt. Different assumptions can be found in the stochas-
tic optimization literature. Some of them are overly simplifying

28 noise-aware stochastic optimization

and unrealistic, such as bounding the covariance by a constant,
tr(Σ(θ)) ≤ C, or even bounding the stochastic gradient norm itself
(‖gt‖ ≤ C for all t). These assumptions are broken even in simple
toy examples, e.g., when f (θ, ξ) = ‖θ − ξ‖2. A more realistic as-
sumption that has been commonly used, and is adequate for our
purposes, is the following.

Assumption 3.1. There are constants C0, C1 ≥ 0 such that

tr(Σ(θ)) ≤ C0 + C1‖∇ f (θ)‖2
2, (3.14)

for all θ ∈ Rd.

This allows the covariance to be non-zero everywhere (including
at stationary points) and to grow quadratically in the gradient
norm. Plugging Assumption 3.1 into the descent lemma reads:

Lemma 3.2. Let f be L-smooth and assume the variance bound in As-
sumption 3.1 holds. Then the iterates generated by sgd satisfy

Et[ft+1] ≤ ft −
(

αt −
(

1 +
C1

m

)
Lα2

t
2

)
‖∇ ft‖2

2 +
Lα2

t C0

2m
(3.15)

Proof. Use Assumption 3.1 in Lemma 3.1.

3.2.3 Convergence for Strongly-Convex Objectives

We give a simple covergence result for sgd on strongly convex
objectives. It is particularly illustrative to first consider the behavior
of sgd with a constant step size.

Theorem 3.1. Let f be L-smooth and µ-strongly convex and assume the
gradient distribution satisfies Assumption 3.1. Then sgd with a constant
step size

αt ≡ α ≤ 1
L(1 + C1/m)

(3.16)

satisfies

E[ft − f?] ≤
αLC0

2mµ
+ (1− αµ)t

(
f0 − f? +

αLC0

2mµ

)
. (3.17)

Before we give the proof, let’s understand the implications of
this result. First, note how it incorporates the result for noise-free
gradient descent: If the gradient estimate is exact, we will have
C0 = C1 = 0 and recover the linear convergence from Theo-
rem 2.5. In the stochastic regime, constant step size sgd will not
converge to the optimum While the second term on the right-hand
side of Eq. (3.17) still decreases linearly, the first term defines an
irreducible “plateau level”,

E[ft − f?]→
αLC0

2mµ
, (3.18)

which depends on the step size α, the batch size m, the geometry of
the problem (through L and µ) as well as the noise level at the mini-
mum C0. This can be seen as linear convergence to a neighborhood

stochastic optimization 29

of the optimum, defined by a plateau level of the suboptimality.
Note the effect of the step size: Choosing a smaller step size leads
to a lower plateau level but, at the same time, reduces the linear
convergence speed in the second term. A larger batch size enables
a larger step size (Eq. 3.16) and reduces the plateau level, at the
expense of a higher per-iteration cost.

Proof of Theorem 3.1. Using the bound on the step size in Lemma 3.2
yields

Et[ft+1] ≤ ft −
α

2
‖∇ ft‖2

2 +
Lα2C0

2m
. (3.19)

Strong convexity implies ‖∇ ft‖ ≥ 2µ(ft − f?) (Lemma 2.6). Plug-
ging that in, subtracting f? from both sides, and rearranging results
in

Et[ft+1]− f? ≤ (1− µα)(ft − f?) +
Lα2C0

2m
. (3.20)

Taking the total expectation and subtracting the constant αLC0/(2mµ)

from both sides, yields

E[ft+1 − f?]−
αLC0

2mµ
≤ (1− µα)

(
E[ft − f?]−

αLC0

2mµ

)
. (3.21)

The result follows from iterating this contraction inequality back-
wards.

The dependency on the step size in Theorem 3.1 makes clear
that, for sgd to converge, we need to let the step size go to zero
over time. A natural strategy would be to run sgd with a constant
step size until the plateau level is reached, then decrease the step
size and repeat. Such strategies are indeed used successfully in
practice, but they are not very amenable to theoretical analysis.

The question is: At what speed should αt decrease? This has
already been answered in the seminal paper by Robbins and Monro
[1951]. They show that a step size schedule for sgd has to satisfy

∞

∑
t=0

αt = ∞,
∞

∑
t=0

α2
t < ∞. (3.22)

For a strongly convex function, this guarantees a sublinear conver-
gence rate of

E[f (θt)− f?] ∈ O
(

1
t

)
, (3.23)

see, e.g., Theorem 4.7 in Bottou et al. [2018].
In Chapter 4, we will discuss locally optimal step sizes as well

as an alternative strategy, which keeps the step size constant and
instead increases the batch size.

3.3 Stochastic Optimization for Deep Learning

The training of deep neural networks involves large datasets, ex-
tremely high-dimensional parameter spaces, and non-convex

30 noise-aware stochastic optimization

empirical risk landscapes. These characteristics favor cheap first-
order over more involved methods like, for example, quasi-Newton
methods. They also make it difficult to establish strong theoretical
guarantees for any optimization method. As a consequence, the
development of optimization methods for deep learning has been
driven by empirical comparisons and many methods are heuristic
in nature. This section describes the most popular methods.

Momentum sgd with momentum updates

vt = βvt−1 − αtgt, θt+1 = θt + vt. (3.24)

In deterministic optimization, this method has been shown to im-
prove the dependency on the conditioning of the problem [Polyak,
1964, Nesterov, 1983]. Such an effect has not been proven to exist in
the stochastic regime, but practitioners have found momentum to
greatly improve stability and speed in deep learning optimization
[e.g. Sutskever et al., 2013]. This is often attributed to the fact that
momentum effectively averages stochastic gradients over time and,
thus, has the effect of smoothing the gradient estimate. This is why
a slight variation of the momentum method is often used, which
can be written as

mt = βmt−1 + (1− β)gt, θt+1 = θt − αtmt, (3.25)

and explicitly maintains an exponential moving average of stochas-
tic gradients.

Adaptive gradient methods are a family of stochastic optimization
methods which employ an elementwise rescaling of the stochastic
gradient, based on gradient information aggregated over the trajec-
tory of the optimizer. This line of research was spawned by Duchi
et al. [2011], who proposed adagrad, which updates

θt+1 = θt − αt
gt√

vt + ε
, vt = vt−1 + g2

t =
t

∑
τ=0

g2
τ , (3.26)

where all operations on vectors (division, square-root, square) are
to be understood elementwise, and ε > 0 is a small constant.

A number of variants and extensions of adagrad have been
proposed over time [Zeiler, 2012, Tieleman and Hinton, 2012]. The
most popular adaptive gradient method, adam [Kingma and Ba,
2015], will be the subject of Chapter 5 and will be discussed in
detail there.

3.4 Estimating the Gradient Variance

As we have seen, the (co-)variance of stochastic gradients plays a
crucial role in stochastic optimization. This thesis presents different
approaches of explicitly using (co-)variance information in stochas-
tic optimization methods. Of course, the true covariance matrix,

stochastic optimization 31

Σ(θ) = E
[
(∇ f (θ; ξ)−∇ f (θ))(∇ f (θ; ξ)−∇ f (θ))T

]
, (3.27)

is unknown since it requires the gradients of all data points, the
absence of which is exactly what defines the stochastic optimization
regime.

However, we can estimate the covariance matrix from a minibatch
of datapoints, ξ1, . . . , ξm. Just like we compute a stochastic gradient
as the empirical mean of the individual gradients,

g def
=

1
m

m

∑
i=1
∇ f (θ; ξi), (3.28)

we can compute their empirical covariance matrix as

S def
=

1
m− 1

m

∑
i=1

(∇ f (θ; ξi)− g)(∇ f (θ; ξi)− g)T ∈ Rd×d. (3.29)

For high-dimensional problems, this matrix will be expensive to
compute and even store, but we can still compute its diagonal effi-
ciently,

s def
=

1
m− 1

m

∑
i=1

(∇ f (θ; ξi)− g)2 ∈ Rd, (3.30)

where the square is to be understood elementwise. Such estimates
will feature throughout this manuscript.

4
Variance-Based Step Size and Batch Size

As we have seen, the stochasticity of the gradient estimates prevents
sgd from converging with a constant step size. We now want to
understand this behavior in more detail and discuss how both a
decreasing step size and an increasing batch size can force sgd into
convergence. This will lead us to propose the Coupled Adaptive Batch
Size (cabs), a heuristic for automatic batch size adaptation.

The contents of this chapter, in particular those of Sec-
tion 4.4, are based on the following publication:

Lukas Balles, Javier Romero, and Philipp Hennig. Coupling adaptive
batch sizes with learning rates. In Proceedings of the Thirty-Third
Conference on Uncertainty in Artificial Intelligence (UAI), pages 410–419,
2017b.

Coauthor contributions:

Sc. Ideas Experiments Interpretation Writing
Lukas Balles 70% 100% 70% 70%
Javier Romero 15% 0% 15% 15%
Philipp Hennig 15% 0% 15% 15%

4.1 Bias-Variance Trade-Off in Stochastic Optimization

For the remainder of this chapter, we will mostly be concerned with
the effect of a single sgd step, starting from a fixed but arbitrary
point θ ∈ Rd. We will therefore occasionally drop θ from the nota-
tion, e.g., ∇ f = ∇ f (θ), Σ = Σ(θ), et cetera. Let g̃ be any estimate
of ∇ f . It need not necessarily be of the form of Eq. (3.4) and we
do not require it to be unbiased; we merely assume that it has a
finite mean squared error (MSE), E

[
‖g̃−∇ f ‖2

2
]
< ∞. If we assume

f to be L-smooth then, by Lemma 2.1, an sgd step with g̃ as the

34 noise-aware stochastic optimization

gradient estimate and step size α ≤ 1/L yields

E [f (θ − αg̃)] ≤ f (θ)− α∇ fTE[g̃] +
L
2

E[‖αg̃‖2
2]

≤ f (θ)− α∇ fTE[g̃] +
α

2
E[‖g̃‖2

2]

= f (θ)− α

2

(
‖∇ f ‖2

2 − E
[
‖g̃‖2

2 − 2∇ fT g̃ + ‖∇ f ‖2
2

])

= f (θ)− α

2

(
‖∇ f ‖2

2 − E
[
‖g̃−∇ f ‖2

2

])
.

(4.1)

Hence, the expected change in function value from a single sgd

step depends on the gradient estimate g̃ exclusively through its
MSE. To achieve a decrease in expectation, we require

E
[
‖g̃−∇ f ‖2

2

]
< ‖∇ f ‖2

2. (4.2)

In particular, there is absolutely no need for g̃ to be unbiased. By
a standard bias-variance decomposition, we know that

E
[
‖g̃−∇ f ‖2

2

]

︸ ︷︷ ︸
MSE

= ‖E[g̃]−∇ f ‖2
2︸ ︷︷ ︸

bias

+ E
[
‖g̃− E[g̃]‖2

2

]

︸ ︷︷ ︸
variance

. (4.3)

A certain degree of bias in the gradient estimate is, thus, absolutely
acceptable if it leads to lower variance.

While not commonly viewed through this lens, a decreasing
step size sequence can be seen as a way of trading a bias for lower
variance to enforce the condition given in Eq. (4.2). A minibatch
gradient (Eq. 3.4) is unbiased and has an MSE of

E
[∥∥∥g(m) −∇ f

∥∥∥
2

2

]
=

tr(Σ)
m

. (4.4)

It will thus fulfill the requirement of Eq. (4.2) only up until the
point where ‖∇ f ‖2 becomes too small compared to the variance.
Now define

g̃(m) = γg(m), γ ∈ [0, 1]. (4.5)

Since E[g̃(m)] = γ∇ f , this will be a biased estimate of ∇ f . Its MSE
is

E[‖γg(m) −∇ f ‖2
2] = ‖∇ f ‖2

2 − 2γ‖∇ f ‖2
2 + γ2

(
‖∇ f ‖2

2 +
tr(Σ)

m

)
.

(4.6)
If ‖∇ f ‖2 is small compared to tr(Σ)/m, choosing a small γ leads
to a better MSE. In fact, we will shortly see that the optimal γ is a
function of the “noise-to-signal ratio” tr(Σ)/‖∇ f ‖2

2.
We can thus think of the decreasing step size αt in sgd (Eq. 1.4)

as the product of two terms, αt = αγt.

• The constant geometric step size of α ≈ 1/L adjusts to the curva-
ture of the problem. This is the optimal step size in the noise-free
setting.

• A decreasing sequence γt ∈ [0, 1] adjusts for stochasticity by
increasingly shrinking the gradient estimate towards zero. This
reduces its variance at the expense of a bias towards zero.

variance-based step size and batch size 35

4.2 Optimal Step Size and Batch Size

For simplicity, assume we know L and can set α to the optimal
noise-free step size of α = 1/L. Combining Eqs. (4.1) and (4.6), the
expected decrease in function value from the step θ − γ

L g(m) is

f (θ)− E[f (θ − γ

L
g(m))] ≥ ‖∇ f ‖2

2
2L

(
2γ− γ2 − tr(Σ)

‖∇ f ‖2
2

γ2

m

)
. (4.7)

The first factor, ‖∇ f ‖2
2/2L is the decrease we could achieve with

a noise-free gradient step (Σ = 0, γ = 1). The second factor is

G(γ, m)
def
= 2γ− γ2 − η2 γ2

m
, (4.8)

where we define the noise-to-signal ratio

η2 def
=

tr(Σ)
‖∇ f ‖2

2
. (4.9)

The factor G(γ, m) is smaller than 1 and is a function of step size
and batch size. It can be seen as the proportion of the noise-free
decrease that can be realized in the stochastic setting.

Naturally, we want to set the step size and/or batch size such as
to maximize the expected decrease. We will now discuss these op-
timal settings. With regards to the batch size, G(γ, m) is obviously
maximized for m → ∞. However, increasing the batch size also
linearly1 increases the computational cost of the stochastic gradient 1 In practice, the relationship is not

perfectly linear due to potential for
parallelization. This will be discussed
further in Section 4.3.

evaluation. We therefore consider a cost-normalized version

G(γ, m)

m
= 2

γ

m
− γ2

m
− η2 γ2

m2 , (4.10)

which quantifies the expected decrease per "unit" of computational
cost. The cost normalization does not alter the optimal setting of γ.

4.2.1 Optimal Step Size

First, we find the step size that maximizes Eq. (4.10) given a batch
size.

Proposition 4.1. For a given batch size m, the step size which maximizes
G(γ, m)/m is

γ? =

(
1 +

η2

m

)−1

(4.11)

and yields
G(γ?, m)

m
=

1
m + η2 . (4.12)

Proof. The proof of this and all other results in this chapter may be
found in Appendix A.

The step size factor γ? is in [0, 1] and adapts the step size to the
noise-to-signal ratio: The larger the noise-to-signal ratio, the smaller
the step size.

36 noise-aware stochastic optimization

4.2.2 Optimal Batch Size

Next, we we optimize the batch size while treating the step size as
given. For the purpose of this theoretical consideration, we treat the
batch size as a continuous quantity; in practice it would have to be
rounded to the nearest integer.

Proposition 4.2. For a given step size γ, the batch size that maximizes
G(γ, m)/m is given by

m? =
2γ

2− γ
η2. (4.13)

and yields
G(γ, m?)

m?
=

(2− γ)2

4η2 . (4.14)

Again, the optimal batch size adapts to the noise-to-signal ratio.
Here, m? is directly proportional to η2. This means that the effective
noise-to-signal ratio of the mini-batch gradient estimate, η2/m?, is
held constant.

4.2.3 A Batch Size of One is Theoretically Optimal

What is the jointly optimal setting of batch size m and step size γ?
It is easy to observe, e.g. from Eq. (4.12), that the batch size should
be chosen as small as possible. Since the batch size is a discrete
quantity, this means that m = 1 is the optimal choice, combined
with a step size of

γ =

(
1 +

tr(Σ)
‖∇ f ‖2

)−1

(4.15)

Interestingly, this simple finding is not discussed in the literature.
Various works have argued for small batch sizes from different
angles, but our reasoning above is much more fundamental.

• In their seminal paper, Bottou and Bousquet [2008] argued for
stochastic gradient descent (which they understand to mean
batch size 1) over full-batch gradient descent from the perspec-
tive of the overall tradeoff between total computational cost of
the learning procedure and the generalization error. Their ratio-
nale is that—under a finite computational budget and in the
presence of other sources of generalization error, such as approx-
imation2 and estimation3 error—“it should not be necessary to 2 Approximation error stems from

choosing a restricted class of pre-
diction functions, even the “best” of
which can only approximate the true
function.
3 Estimation error arises because, given
a finite data set, we can only estimate
the “best” function within our class of
possible prediction functions.

carry out [the] minimization with great accuracy.” Similar points
have been made by Bottou and LeCun [2004], Bottou et al. [2018],
and other authors.

• Another line of research is based on the (largely empirical) obser-
vation that in neural network training, small-batch sgd seems to
find parameter settings with better generalization performance
compared to large-batch sgd; even if both methods converge
to similar levels of training loss [e.g., LeCun et al., 1998, Keskar
et al., 2017].

variance-based step size and batch size 37

In both cases, the arguments concern the generalization perfor-
mance of the obtained solution. Our reasoning is distinct from that.
We show that, even if we ignore the generalization aspect and just
want to minimize the training loss as quickly as possible, sgd with
a batch size of one is the (theoretically) most efficient greedy choice.

4.3 The Case for Adaptive Batch Size Methods

Of course, the previous section was a purely theoretical exercise,
since the noise-to-signal ratio η that determines the optimal step
size and batch size is not known in practice. We would like to es-
timate it and use those estimates to automate sgd optimization.
From this perspective, an adaptively increasing batch size is a valid
practical choice for two reasons:

• The assumed linear relationship between batch size and compu-
tational cost does not hold if parallel computing resources are
available.

• The noise-to-signal ratio—and therefore the optimal step size
(Eq. 4.11)—is fundamentally hard to estimate at small batch
sizes. Therefore, the optimal decreasing step size schedule does
not lend itself to automation.

Nonlinear Relationship of Batch Size and Computational Cost When
optimizing G(γ, m)/m, we assumed that the cost is linear in m, i.e.,
that evaluating a minibatch stochastic gradient on ten data points is
ten times more expensive than evaluating it on a single data point.
This assumption was an oversimplification. The forward and back-
ward pass in neural nets consists largely of matrix multiplication
operations. Hardware accelerators, such as GPUs or TPUs, are de-
signed to execute such operations in a massively parallel fashion.
Therefore, small batch sizes that do not fully leverage the compu-
tational power of the available hardware are wasteful. This holds
even more so, if we have access to a distributed system of workers.
The gradient computation can be trivially parallelized by splitting
the minibatch and letting each worker compute the gradient on a
subset.4 4 This will involve communication

overhead, which can be a bottleneck in
practice, but this is beyond the scope
of our considerations here.Estimating the Noise-to-Signal Ratio is Hard The noise-to-signal

ratio is fundamentally hard to estimate at small batch sizes. The
obvious extreme case is m = 1, in which case no empirical variance
estimate can be obtained. But even if we fix m to a constant, such
as m = 10 or m = 100, estimating η2 is fundamentally ill-posed
for large values of η2. We can illustrate this with the following toy
experiment: Assume we have m iid samples x1, . . . , xm ∼ N (µ, σ2),
and we estimate η2 = σ2/µ2 based on the standard empirical
moments:

η̂2 =
σ̂2

µ̂2 , µ̂ =
1
m

m

∑
i=1

xi, σ̂2 =
1

m− 1

m

∑
i=1

(xi − µ̂)2.

38 noise-aware stochastic optimization

Figure 4.1 shows histograms of the distribution of η̂2 for varying
sample size m and true values for η2. While small noise-to-signal
ratios (η = 0.25) can be estimated relatively accurately with as little
as m = 10 samples, the estimates start to deteriorate as η grows.

m
=

10

= 0.25

0

100

200

300

400

= 1.0

0

100

200

300

= 4.0

10 2 100 102 104

2

m
=

10
0

10 2 100 102 104

2

0

100

200

10 2 100 102 104

2

0

100

200

300

400

Figure 4.1: Estimating large noise-
to-signal ratios is fundamentally
ill-posed. Based on m samples from a
one-dimensional Gaussian distribution
N (µ, σ2), we estimate the noise-
to-signal ratio with the standard
empirical moments. The histograms
show the distribution of η̂2 = σ̂2/µ̂2

over 1000 independent trials for
varying sample size m and true values
for η2. While small noise-to-signal
ratios (η = 0.25) can be estimated
relatively accurately with as little as
m = 10 samples, the estimates start to
deteriorate as η grows. For η = 4.0, the
estimate η̂2 scatters over roughly three
orders of magnitude even for m = 100
samples.

Part of the problem is that µ̂2 is a biased estimate of µ2,

E[µ̂2] = µ2 +
σ2

m
. (4.16)

This bias becomes more severe as σ2 � µ, i.e., in the high noise-to-
signal ratio regime.

Operating in the optimal batch size regime can ameliorate this
problem. Since the optimal batch size (Eq. 4.13) is proportional to
η2, an adaptive batch size scheme will keep the effective noise-to-
signal ratio η2/m roughly constant over time. This will allow us to
estimate η2 with some fixed relative accuracy, even as η2 grows to
very large values.

4.4 CABS—A Practical Adaptive Batch Size Method

Based on these considerations, in this section, we propose a practi-
cal method for dynamic batch size adaptation. We emphasize that
the method is a heuristic without guarantees and that it is only
one way of leveraging the insights of the preceding sections. The
method, called the Coupled Adaptive Batch Size (cabs), estimates the
stochastic gradient variance and adapts the batch size to decrease
the variance proportionally to the value of the objective function. In
contrast to recent work, our algorithm couples the batch size to the
learning rate, reflecting the known relationship between the two.
We show experimentally that our batch size adaptation yields faster
convergence and simplifies learning rate tuning.

variance-based step size and batch size 39

4.4.1 Related Work

Increasing batch size schedules have received attention in recent
works, e.g., by Friedlander and Schmidt [2012], who propose to
increase the batch size by a pre-specified constant factor in each
iteration. However, this strategy does not attempt to estimate the
optimal batch size Eq. (4.13) and, therefore, is not adaptive to the
specific problem.

Byrd et al. [2012] and De et al. [2017] have proposed to adapt the
batch size based on variance estimates. Their criterion is based on
the observation that −g(m) is a descent direction if

‖g(m) −∇ f ‖ ≤ θ‖g(m)‖, with 0 ≤ θ < 1 (4.17)

(proof in Appendix A). The squared expectation of the left-hand
side evaluates to tr(Σ)/m, which inspires a criterion of the form

m =
1
θ2

tr(Σ)
‖g(m)‖2

, (4.18)

which resembles the optimal batch size (Eq. 4.13) with an empirical
estimate of the noise-to-signal ratio. As we have just discussed,
such estimates have fundamental limitations.

4.4.2 The Coupled Adaptive Batch Size (CABS)

Our method is based on the theoretically optimal batch size given
in Proposition 4.2. Since we want to avoid a decreasing step size
schedule, we set γ = 1, in which case the optimal batch size is
simply

m? = 2η2 = 2
tr(Σ)
‖∇ f ‖2 . (4.19)

As discussed in Section 4.3, this noise-to-signal ratio is difficult to
reliably and robustly estimate. To address this practical problem
we propose to use the following rule, which we term the Coupled
Adaptive Batch Size (cabs):

m = α
tr(Σ)

f
. (4.20)

A formal justification for this simplification will be given shortly,
but first we want to highlight some intuitive benefits of this batch
size adaptation scheme.

Most importantly, by replacing the squared gradient norm with
the function value, the quantity becomes easier to estimate. The
function value computed on a minibatch, |B|−1 ∑i∈B f (θ, ξi), is an
unbiased estimate of the true quantity f (θ). That is in contrast to
the gradient norm, where ‖g(m)‖2 is a biased estimate of ‖∇ f ‖2,
which causes the problems described in Section 4.3.

Another advantage of the cabs rule is the direct coupling of
learning rate and batch size, which reflects the known relationship
between the two. Using cabs can thus be seen as “tailoring” the
noise level to the chosen learning rate. We show experimentally, see

40 noise-aware stochastic optimization

Section 4.4.4, that this makes finding a well-performing learning
rate easier.

Mathematical Motivation for CABS cabs was largely motivated as
a heuristic based on experimental success. However, one can show
that the cabs rule matches the optimal batch size for a very simple
optimization problem of the form

f (θ) =
h
2
‖θ − θ?‖2. (4.21)

For this function, we have

‖∇ f (θ)‖2 = 2h(f (θ)− f (θ?)) = 2h f (θ). (4.22)

Plugging this into the optimal batch size formula (Eq. 4.19) and
assuming a well-tuned learning rate, α ≈ 1/L = 1/h, yields the
cabs rule.

This is, of course, a substantial simplification. The result can
partly be generalized to the less restrictive assumption of µ-strong
convexity, under which we still have ‖∇ f (θ)‖ ≥ 2µ(f (θ)− f?) (see
Lemma B.2). This gives us a proportionality of the squared gradient
norm and the function value, if we assume f? ≈ 0, which holds in
most practical deep learning problems, where the empirical risk can
typically reach zero [Zhang et al., 2017].

4.4.3 Practical Implementation

Obviously, neither f nor tr(Σ) are known exactly at each individual
sgd step, but unbiased estimates of both quantities can be obtained
from a minibatch, as described in Chapter 3.

We realize the cabs criterion in a predictive manner, meaning
that we do not find the exact batch size that satisfies Eq. (4.20) in
each single optimization step.5 Instead, we leverage the observation 5 Byrd et al. [2012] and De et al. [2017]

increase the batch size by a small
increment whenever the criterion is not
satisfied, and only then perform the
update. This incremental computation
introduces an overhead and, when the
increment is small, can lead to under-
utilization of computing resources.

that gradient variance and function value change only slowly from
one optimization step to the next, which allows us to use our cur-
rent estimates of f and tr(Σ) to set the batch size used for the next
optimization step. It also allows for a smoothing of both quantities
over multiple optimization steps.

The resulting batch size is rounded to the nearest integer and
clipped at minimal and maximal batch sizes. A minimal batch size
avoids under-utilization of the computational resources with very
small batches and provides additional stability of the algorithm in
the small-batch regime. A maximal batch size is necessary due to
hardware limitations: In contemporary deep learning, GPU mem-
ory limits the number of samples that can be processed at once.
Our implementation has such a limit but it was never reached in
our experiments.6 6 Note that algorithmic batch size

(the number of training samples
used to compute a gradient estimate
before updating the parameters)
and computational batch size (the
number of training samples that are
processed simultaneously) are in
principle independent and one could
split an algorithmic batch into feasible
computational batches when necessary,
freeing the algorithm of hardware-
specific constraints.

Algorithm 1 provides pseudo-code. Evaluate(θ, B) denotes an
evaluation of function value f (θ), stochastic gradient g(θ) and vari-
ance estimate s(θ) (Eq. 3.30) using mini-batch B. Round_Clip(m,

variance-based step size and batch size 41

mmin, mmax) rounds m to the nearest integer and clips it at the pro-
vided minimal and maximal values.

Require: Learning rate α, initial parameters θ0, number of steps T,
batch size bounds (mmin, mmax), running average constant µ

θ ← θ0, m← mmin, favg ← 0, σ̂2 ← 0
for t = 1, . . . , T do

Draw a mini-batch B of size m
f , g, s← Evaluate(θ, B)
θ ← θ − αg
σ̂2 ← µσ̂2 + (1− µ)‖s‖1

favg ← µ favg + (1− µ) f
m←Round_Clip(ασ̂2/ favg, mmin, mmax)

end for
Algorithm 1: sgd with Coupled Adaptive Batch Size

4.4.4 Experiments

We evaluate the proposed batch size adaptation method by training
convolutional neural networks (CNNs) on four popular image
classification benchmark data sets: mnist [LeCun et al., 1989],
Street View House Numbers (svhn) [Netzer et al., 2011], as well as
cifar-10 and cifar-100 [Krizhevsky, 2009]. A description of the
neural network architectures and further details can be found in
Appendix A.

We compared against constant batch sizes 32, 128, and 512. We
also compare against a batch size adaptation based on the criterion
given by Eq. (4.18) used by Byrd et al. [2012] and De et al. [2017].
Since implementation details differ between these two works, and
both combine batch size adaptation with other techniques (Byrd
et al. [2012] use it in a Newton-CG method, De et al. [2017] use a
backtracking line search), we resort to a custom implementation
of said criterion. For a fair comparison, we realize it in a similar
manner as cabs. That is, we use the criterion of Eq. (4.18), while
keeping the predictive update mechanism for the batch size, the
smoothing via exponential moving averages, rounding and clipping
exactly as in our cabs implementation described in Section 4.4.3
and Algorithm 1. This method will simply be referred to as Com-
petitor in the remainder of this section.

Performance is tracked as a function of the number of accessed
training examples, instead of the number of optimization steps. The
(constant) learning rate for each batch size method was tuned for
maximum test accuracy given the fixed budget of accessed training
examples. We tried six candidates α ∈ {0.3, 0.1, 0.06, 0.03, 0.01, 0.006};
this relevant range has been determined with a few exploratory ex-
periments. In addition to the learning rate, the competitor method
has a free parameter θ. De et al. [2017] suggest setting it to 1.0, the
highest possible noise tolerance. In our experiments, we found the
performance of the method to be fairly sensitive to the choice of

42 noise-aware stochastic optimization

θ. We thus tried θ ∈ {0.6, 0.8, 1.0} and report results for the best-
performing choice. For cabs, there is no such parameter to tune.

Results and Discussion Results are depicted in Figure 4.2. On
svhn, cifar-10 and cifar-100, cabs yields significantly faster de-
crease in training loss with the curve continuously lying below all
others. It also achieves the best test set accuracy of all methods on
all three problems. While the margin over the second-best method
is very small on svhn, it amounts to a noticeable 0.4 percentage
points on cifar-10 and even 1.4 points on cifar-100.

Surprisingly, on mnist—the least complex of the benchmark
problems we investigated—our method is outperformed by the
small constant batch size of 32 and the competitor method, which
also chooses small batch sizes throughout. cabs makes rapid
progress initially, but seems to choose unnecessarily large batch
sizes later on. We conjecture that cabs overestimates the gradient
variance due to the homogeneous structure of the mnist data set;
if the distribution of gradients is very closely-centered, outliers
in a few coordinate directions lead to comparably high variance
estimates.

Overall, cabs outperforms alternative batch size schemes on
three out of the four benchmark problems we investigated and
the benefits seem to increase with the complexity of the problem
(mnist → svhn → cifar-10 → cifar-100).

Learning Rate Tuning We also present results regarding the sensi-
tivity to the choice of learning rate when using cabs. As detailed
above, the coupling of learning rate and batch size in cabs can be
seen as tailoring the noise level to the chosen learning rate. This
suggests that the performance of the optimizer should be less sen-
sitive to the choice of learning rate when adapting the batch size
with our method. Indeed, this can be observed in Figure 4.3. cabs

significantly reduces the dependency of the performance on the
learning rate compared to both the constant batch size and the
competing adaptive method.

4.5 Conclusion

In this chapter, we saw that the gradient estimate affects the per-
formance of sgd exclusively through its mean squared error; in
particular, it need not be unbiased. A decreasing step size can be
seen as a way of enforcing a sufficiently small MSE at the expense
of a bias towards zero.

An alternative way to decrease the MSE is to increase the batch
size. While a decreasing step size is theoretically more efficient,
multiple practical considerations favor an increasing batch size. In
particular, an increasing batch size is more amenable to adaptive
automation.

variance-based step size and batch size 43

10−2

10−1

100

101

Tr
ai

n
lo

ss

MNIST

Const. 32 (α = .06)
Const. 128 (α = .1)
Const. 512 (α = .3)
Comp. (θ = 1.0, α = .1)
CABS (α = .1)

0.85

0.9

0.95

1

Te
st

ac
cu

ra
cy

0 1 2 3 4

·105

0
100
200
300

Examples accessed

m

100

101

Tr
ai

n
lo

ss

SVHN

Const. 32 (α = .006)
Const. 128 (α = .06)
Const. 512 (α = .1)
Comp. (θ = .8, α = .006)
CABS (α = .01)

0.75

0.8

0.85

0.9

0.95

Te
st

ac
cu

ra
cy

0 0.2 0.4 0.6 0.8 1

·107

20
40
60

Examples accessed

m

10−1

100

101

Tr
ai

n
lo

ss

CIFAR-10

Const. 32 (α = .01)
Const. 128 (α = .03)
Const. 512 (α = .1)
Comp. (θ = .6, α = .01)
CABS (α = .03)

0.65

0.7

0.75

0.8

0.85

Te
st

ac
cu

ra
cy

0 0.2 0.4 0.6 0.8 1

·107

0
50

100

Examples accessed

m

100

101

Tr
ai

n
lo

ss

CIFAR-100

Const. 32 (α = .01)
Const. 128 (α = .03)
Const. 512 (α = .06)
Comp. (θ = .6, α = .006)
CABS (α = .01)

0.3

0.4

0.5

Te
st

ac
cu

ra
cy

0 2 4 6 8

·106

0
50

100
150
200

Examples accessed

m

Figure 4.2: Experimental results for
different batch size strategy. The
(shared) horizontal axis indicates
the number of examples used for
training. The top and middle panel
depict evolution of training loss and
test accuracy, respectively, color-coded
for different batch size methods, each
with its optimal learning rate. The
bottom panel shows the batch size
chosen by cabs. cabs outperforms
competing method on three out of the
four problems.

44 noise-aware stochastic optimization

0 1 2 3 4

·105

10−2

10−1

100

101

Examples accessed

Tr
ai

n
lo

ss
MNIST

Const. 128

Comp. (θ = 1.0)
CABS

0 0.2 0.4 0.6 0.8 1

·107

100

101

Examples accessed

Tr
ai

n
lo

ss

SVHN

Const. 128

Comp. (θ = 0.8)
CABS

Figure 4.3: Learning rate sensitivity.
Families of training loss curves for
cabs, Competitor and a constant batch
size (color-coded). Each individual
curve corresponds to a learning rate
α ∈ {.1, .06, .03, .01, .006}. The curves
for different step sizes cluster much
more closely together when adapting
the batch size with cabs.

We proposed cabs, a practical rule for dynamic batch size adap-
tation based on estimates of the gradient variance and coupled
to the chosen learning rate. In our experiments, cabs was able to
speed up sgd training in neural networks and simplify the tuning
of the learning rate.

5
Dissecting Adam

The deep learning community has originated a number of stochas-
tic optimization algorithms that achieve great practical performance—
often outperforming basic sgd significantly—but are of somewhat
heuristic nature. Arguably the most popular among those is the
adam optimizer [Kingma and Ba, 2015].1 In this chapter, we want 1 Some of our considerations naturally

extend to adam’s relatives, like rm-
sprop [Tieleman and Hinton, 2012],
but we restrict our attention to adam

to keep the presentation concise.

to gain a better understanding of this method. More specifically,
we interpret adam as a combination of two aspects: for each coor-
dinate the update direction is determined by the sign of stochastic
gradients, whereas the update magnitude is determined by an esti-
mate of their relative variance. We disentangle these two aspects and
consider them in isolation, gaining insight into the mechanisms un-
derlying adam. This analysis also extends recent results on adverse
effects of adam on generalization performance, isolating the sign
aspect as the problematic one.

The contents of this chapter are based on:

Lukas Balles and Philipp Hennig. Dissecting Adam: The sign, mag-
nitude and variance of stochastic gradients. In Jennifer G. Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pages 413–422. PMLR, 2018.

Coauthor contributions:

Sc. Ideas Experiments Interpretation Writing
Lukas Balles 80% 100% 80% 70%
Philipp Hennig 20% 0% 20% 30%

5.1 Introduction

Let us start by introducing the adam method. Assuming access to
stochastic gradient estimates gt at θt, adam maintains exponential
moving averages of observed stochastic gradients,

m̃t = β1m̃t−1 + (1− β1)gt, (5.1)

and their elementwise squares,

ṽt = β2ṽt−1 + (1− β2)g2
t , (5.2)

46 noise-aware stochastic optimization

with β1, β2 ∈ (0, 1). These are initialized as m̃0 = ṽ0 = 0 and thus
are biased towards small values in early iterations. adam “bias-
corrects” these moving averages,

mt =
m̃t

1− βt+1
1

, vt =
ṽt

1− βt+1
2

, (5.3)

making sure that mt and vt are convex combinations of (squared)
stochastic gradients. With that, the adam update reads

θt+1 = θt − αt
mt√
vt + ε

(5.4)

with a small (default: 10−8) constant ε > 0 preventing division by
zero. Here and throughout the rest of this chapter, all operations
on vectors—in particular multiplication, division, squares, square-
roots, and the sign operator—have to be understood elementwise.

5.1.1 A New Perspective on Adam

Denote mt,i := [mt]i, vt,i := [vt]i, et cetera. Ignoring ε and assuming
|vt,i|, |mt,i| > 0 for the moment, we can rewrite the adam update as

mt√
vt

=

(
vt

m2
t

)−1/2
sign(mt) =

(
1 +

vt −m2
t

m2
t

)−1/2

sign(mt), (5.5)

where the sign is to be understood elementwise.
The name adam stands (loosely) for adaptive moment estima-

tion. Kingma and Ba [2015] argue that mt is an estimate of the
first moment (mean) of gt, i.e., mt ≈ E[gt], whereas vt is an esti-
mate of its (elementwise) non-central second moment, vt ≈ E[g2

t].
If we adopt that notion—which we will discuss further in Sec-
tion 5.4.1—the quantity (vt − m2

t) can be seen as an estimate
of the vector of elementwise variances of a stochastic gradient,
vt − m2

t = E[g2
t] − E[gt]2 =: σ2

t ∈ Rd. That is the diagonal of its
covariance matrix. The magnitude of mt is effectively cancelled out
of the update direction; it only appears in the ratio (vt − m2

t)/m2
t .

Hence, adam can be interpreted as a combination of two aspects:

• The update direction for the i-th coordinate is given by the sign of
mt,i, whereas

• the update magnitude for the i-th coordinate is solely determined
by the global step size α and the factor

γt,i :=
(

1 + η̂2
t,i

)−1/2
, (5.6)

where η̂2
t,i estimates the relative variance or noise-to-signal ratio,

η̂2
t,i :=

vt,i −m2
t,i

m2
t,i

≈ Var[gt,i]

E[gt,i]2
=: η2

t,i. (5.7)

We will refer to the second aspect as variance adaptation. The vari-
ance adaptation factors shorten the update in directions of high

dissecting adam 47

relative variance, adapting for varying reliability of the stochastic
gradient estimate in different coordinates.

The above interpretation of adam’s update rule has to be viewed
in contrast to existing ones. A motivation given by Kingma and
Ba [2015] is that vt is a diagonal approximation to the empirical
Fisher information matrix, making adam an approximation to
natural gradient descent [Amari, 1998]. However, there are funda-
mental reservations towards the empirical Fisher, which have been
discussed, among others, by Martens [2020] and will be the main
topic of Chapter 7 of this thesis. Furthermore, even if we accepted
diag(vt) as an approximation of the Fisher, adam preconditions
with its square root, which is entirely uncalled for from the natural
gradient perspective.

Another possible motivation—which is not found in peer-
reviewed publications but circulates the community as “conven-
tional wisdom”—is that adam performs an approximate whitening
of stochastic gradients. However, this view hinges on the fact that
adam divides by the square-root of the non-central second moment
and not by the standard deviation.

5.1.2 Overview

Both aspects of adam—taking the sign and variance adaptation—
are briefly mentioned in Kingma and Ba [2015], who note that
“[t]he effective stepsize [...] is also invariant to the scale of the
gradients” and refer to mt/

√
vt as a “signal-to-noise ratio”. The

purpose of this work is to disentangle these two aspects in order
to discuss and analyze them in isolation. This naturally suggests
an ablation study by incorporating one of the aspects while ex-
cluding the other. Taking the sign of a stochastic gradient without
any further modification gives rise to sign-sgd

2. On the other 2 In the original publication [Balles
and Hennig, 2018], we referred to
this method as Stochastic Sign Descent
(SSD). It was concurrently studied by
Bernstein et al. [2018] under the name
sign-sgd, which has been used more
frequently since, and has therefore
been adopted for this manuscript.

hand, Stochastic Variance-Adapted Gradient (svag)—to be derived
in §5.3.2—applies variance adaptation directly to the stochastic
gradient instead of its sign. Together with adam, the momentum
variants of sgd, sign-sgd, and svag constitute the four possible
recombinations of the sign aspect and the variance adaptation, see
Fig. 5.1.

m-sgd

θt+1 = θt − αmt

variance adaptation

m-svag

sign
m-sign-sgd

θt+1 = θt − α sign(mt)

variance adaptation

adam

Figure 5.1: The methods under con-
sideration in this paper. “M-” refers to
the use of mt in place of gt, which we
colloquially refer to as the momentum
variant. m-svag will be derived below.

The original publication on which the current chapter is based
[Balles and Hennig, 2018] contained a brief discussion of sign-
sgd, which has since been refined in a separate paper [Balles et al.,
2020]. An analysis of the sign aspect is thus deferred to a sepa-

48 noise-aware stochastic optimization

rate Chapter 6 and we proceed as follows: After discussing related
work, Section 5.3 presents a principled derivation of elementwise
variance adaptation factors and introduces svag. Subsequently, we
discuss the practical implementation of variance-adapted meth-
ods (Section 5.4). Section 5.5 draws a connection to recent work
on adam’s effect on generalization. Finally, Section 5.6 presents
experimental results.

5.2 Related Work

Sign-based optimization algorithms have received some attention
in the past. rprop [Riedmiller and Braun, 1993] is based on gra-
dient signs and adapts per-element update magnitudes based on
observed sign changes. Karimi et al. [2016] prove convergence re-
sults for a variant of rprop in the non-stochastic case. Seide et al.
[2014] empirically investigate the use of stochastic gradient signs in
a distributed setting with the goal of reducing communication cost.
sign-sgd has been studied by Bernstein et al. [2018] concurrently
with the original paper on which this chapter is based. Refinements
of the theoretical analysis by Bernstein et al. [2019] and Safaryan
and Richtárik [2019] appeared thereafter. These works will be dis-
cussed in detail in Chapter 6, which is based on our own follow-up
work [Balles et al., 2020].

Variance-based update directions have been proposed before,
e.g., by Schaul et al. [2013], where the variance appears together
with curvature estimates in a diagonal preconditioner for sgd.
Their variance-dependent terms resemble the variance adaptation
factors we will derive in Section 5.3. The corresponding parts of our
work complement that of Schaul et al. [2013] in various ways. Most
notably, we provide a principled motivation for variance adaptation
that is independent of the update direction and use that to extend
the variance adaptation to the momentum case.

Research on variance-reduced stochastic optimization methods
[e.g., Le Roux et al., 2012, Johnson and Zhang, 2013] is related but
largely orthogonal to our notion of variance adaptation: The former
aims to construct gradient estimates with lower variance whereas
the latter adapts the search direction to mitigate adverse effects of
the (remaining) variance.

5.3 Variance Adaptation

In our decomposition of the adam update (Eq. 5.5), we observed
that the update magnitude in each coordinate is scaled by γt,i =

(1 + η̂2
t,i)
−1/2, where ˆηt,i is an estimate of the relative variance,

η̂t,i ≈ Var[gt,i]/E[gt,i]
2. This shortens the update in directions of high

relative variance, adapting for varying reliability of the stochastic
gradient estimate in different coordinates. Considering this general
idea in isolation from the sign aspect naturally suggests to employ
it on other update directions, for example directly on the stochastic

dissecting adam 49

gradient instead of its sign.
A principled motivation arises from the following consideration:

Assume we want to update in a direction p ∈ Rd, but only have
access to an estimate p̂ with E[p̂] = p. We allow elementwise factors
γ ∈ Rd and update γ � p̂, where � denotes elementwise multi-
plication for emphasis. One way to make “optimal” use of these
factors is to choose them such as to minimize the expected squared
distance to the desired update direction.

Lemma 5.1. Let p̂ ∈ Rd be a random variable with E[p̂] = p and
var[pi] = σ2

i . Then E[‖γ� p̂− p‖2
2] is minimized by

γi =
E[p̂i]

2

E[p̂2
i]

=
p2

i
p2

i + σ2
i
=

1
1 + σ2

i /p2
i

. (5.8)

The factor γi is determined by the relative variance of p̂i with
a maximum of 1 for vanishing variance and approaching 0 for
σi � p2

i .
The expression in Eq. (5.8) already looks remarkably similar to

the variance adaptation factors in our decomposition of the adam

update (Eq. 5.5). However, we have to slightly adapt the argument
to handle the nonlinear sign operator. Assume we want to update
in a direction sign(p), but only have access to sign(p̂). The follow-
ing Lemma gives the optimal (i.e., achieving minimal mean-squared
distances) variance adaptation factors for this case.

Lemma 5.2. Let p̂ ∈ Rd be a random variable with E[p̂] = p and
var[pi] = σ2

i . Then E[‖γ� sign(p̂)− sign(p)‖2
2] is minimized by

γi = (2ρi − 1), (5.9)

where ρi := P[sign(p̂i) = sign(pi)].

The quantity ρi is very intuitive; it is simply the probability of
“guessing the sign correctly” when using the noisy estimate p̂i

instead of pi. This means that γi is proportional to the success
probability with a maximum of 1 when we are perfectly certain
about the sign of the gradient (ρi = 1) and a minimum of 0 in the
absence of information (ρi = 0.5, i.e., we are randomly guessing the
sign).

5.3.1 Adam as Variance-Adapted Sign-SGD

How does this general notion of variance adaptation relate to
adam? We argue that adam implements an approximation to
the optimal variance adaptation factors for sign-sgd, as given
by Lemma 5.2. Applied to p = ∇ ft, p̂ = gt, the Lemma sug-
gests to use variance adaptation factors γ

opt
t,i = 2ρt,i − 1 with

ρt,i = P [sign(gt,i) = sign(∇ ft,i)]. The success probability ρt,i

generally depends on the distribution of gt. If we assume gt to
be normally distributed,3 we have 3 Since a mini-batch gradient gt is the

sum of iid terms, this is supported by
a central limit argument for large batch
sizes.γ

opt
t,i = 2ρt,i − 1 = erf

(
|∇ ft,i|√

2σt,i

)
= erf

(
1√
2ηt,i

)
, (5.10)

50 noise-aware stochastic optimization

see Appendix B.2.1. Note that it is uniquely determined by ηt,i, that
is, the relative variance of gt,i.

Figure 5.2 shows that these optimal variance adaptation factors
in Eq. (5.10) are closely approximated by (1 + η2

t,i)
−1/2, the vari-

ance adaptation terms we identified in adam (see Eq. 5.5). Hence,
adam can be regarded as an approximate realization of this opti-
mal variance adaptation scheme. This comes with the caveat that
adam applies these factors to sign(mt) instead of sign(gt). Vari-
ance adaptation for mt will be discussed further in §5.4.3 and in
Appendix B.2.4.

0 1 2 3 4 5 6
η

0.0

0.2

0.4

0.6

0.8

1.0

V
ar

ia
nc

e
ad

ap
ta

tio
n

fa
ct

or

(1 + η2)−1

erf[(
√

2η)−1]

(1 + η2)−1/2

Figure 5.2: Variance adaptation factors
as functions of the relative standard
deviation η. The optimal factor for
the sign of a (Gaussian) stochastic
gradient is erf[(

√
2η)−1], which is

closely approximated by (1 + η2)−1/2,
the factor implicitly employed by
adam. (1 + η2)−1 is the optimal factor
for a stochastic gradient.

5.3.2 Stochastic Variance-Adapted Gradient (SVAG)

Applying Lemma 5.1 to p = ∇ ft, p̂ = gt, the optimal variance
adaptation factors for a stochastic gradient are found to be

γt,i =
∇ f 2

i
∇ f 2

i + σ2
i
=

1
1 + σ2

i /∇ f 2
i
=

1
1 + η2

i
. (5.11)

A term of this form also appears, together with diagonal curvature
estimates, in Schaul et al. [2013]. We refer to the method updating
along γ� g as Stochastic Variance-Adapted Gradient (svag). To sup-
port intuition, Fig. 5.3 shows a conceptual sketch of this variance
adaptation scheme.

−1 0 1 2 3
θ1

−1

0

1

2

3

θ 2

σ1σ1

σ2

σ2

−1 0 1 2 3
θ1

−1

0

1

2

3

θ 2

Figure 5.3: Conceptual sketch of
variance-adapted stochastic gradients.
The top panel shows the true gradient
∇ f = (2, 1) and stochastic gradients
scattered around it with (σ1, σ2) =
(1, 1.5). In the bottom panel, we apply
variance adaptation with factors
Eq. (5.11). In this example, the θ2-
coordinate has much higher relative
variance (η2

2 = 2.25) than the θ1-
coordinate (η2

1 = 0.25) and is thus
scaled back more. This reduces the
variance of the update direction at the
expense of biasing it away from the
true gradient in expectation.

Variance adaptation of this form guarantees convergence without
manually decreasing the global step size. We recover the O(1/t)
rate of sgd for smooth, strongly convex functions. We emphasize
that this result considers an idealized version of svag with exact
variance adaptation factors. It should be considered as a motiva-
tion for this variance adaptation strategy, not a statement about its
performance with estimated variance adaptation factors.

dissecting adam 51

Theorem 5.1. Let f : Rd → R be µ-strongly convex and L-smooth. We
update θt+1 = θt − α(γt � gt), with stochastic gradients Et[gt] = ∇ ft,
Vart[gt,i] = σ2

t,i, variance adaptation factors γt,i = ∇ f 2
t,i/(∇ f 2

t,i + σ2
t,i),

and a global step size α = 1/L. Assume that there are constants cv, Mv >

0 such that ∑d
i=1 σ2

t,i ≤ cv‖∇ ft‖2 + Mv (cf. Assumption 3.1). Then

E[f (θt)− f?] ∈ O
(

1
t

)
, (5.12)

where f? is the minimum value of f .

The assumption on the variance is relatively mild, allowing it to
be non-zero everywhere and to grow quadratically in the gradient
norm.

5.4 Practical Implementation of M-SVAG

Section 5.3 has introduced the general idea of variance adapta-
tion; we now discuss its practical implementation. For the sake of a
concise presentation, we focus on one particular variance-adapted
method, m-svag, which applies variance adaptation to the update
direction mt. This method is of particular interest due to its rela-
tionship to adam outlined in Figure 5.1. Many of the following
considerations correspondingly apply to other variance-adapted
methods, e.g., svag and variants of adam, some of which are dis-
cussed and evaluated in Appendix B.3.

5.4.1 Estimating Gradient Variance

In practice, the optimal variance adaptation factors are unknown
and have to be estimated. A key ingredient is an estimate of the
stochastic gradient variance. We have argued in the introduction
that adam obtains such an estimate from moving averages, σ2

t,i ≈
vt,i − m2

t,i. The underlying assumption is that the distribution of
stochastic gradients is approximately constant over the effective
time horizon of the exponential moving average, making mt and vt

estimates of the first and second moment of gt, respectively:

Assumption 5.1. At step t, assume

E[mt,i] ≈ ∇ ft,i, E[vt,i] ≈ ∇ f 2
t,i + σ2

t,i. (5.13)

While this can only ever hold approximately, Assumption 5.1 is
the tool we need to obtain gradient variance estimates from past
gradient observations. It will be more realistic in the case of high
noise and small step size, where the variation between succes-
sive stochastic gradients is dominated by stochasticity rather than
change in the true gradient.

We make two modifications to adam’s variance estimate. First,
we will use the same moving average constant β1 = β2 = β for mt

and vt. This constant should define the effective range for which we
implicitly assume the stochastic gradients to come from the same

52 noise-aware stochastic optimization

distribution, making different constants for the first and second
moment implausible.

Secondly, we account for a systematic bias in the variance esti-
mate. As we show in Appendix B.2.4, under Assumption 1,

E[m2
t,i] ≈ ∇ f 2

t,i + ρ(β, t)σ2
t,i, (5.14)

with

ρ(β, t) def
=

(1− β)(1 + βt+1)

(1 + β)(1− βt+1)
, (5.15)

and consequently E[vt,i −m2
t,i] ≈ (1− ρ(β, t)) σ2

t,i. We correct for this
bias and use the variance estimate

ŝt :=
1

1− ρ(β, t)
(vt −m2

t). (5.16)

Mini-Batch Gradient Variance Estimates: An alternative variance
estimate can be computed locally “within” a single minibatch,
see Section B.4 of the appendix. We have experimented with both
estimators and found the resulting methods to have similar perfor-
mance. For the main paper, we stick to the moving average variant
for its ease of implementation and direct correspondence with
adam. We present experiments with the minibatch variant in the
supplementary material. These demonstrate the merit of variance
adaptation irrespective of how the variance is estimated.

5.4.2 Estimating the Variance Adaptation Factors

The gradient variance itself is not of primary interest; we have to
estimate the variance adaptation factors, given by Eq. (5.11) in the
case of svag. We propose to use the estimate

γ̂
g
t =

1
1 + ŝt/m2

t
=

m2
t

m2
t + ŝt

. (5.17)

While γ̂
g
t is an intuitive quantity, it is not an unbiased estimate of

the exact variance adaptation factors as defined in Eq. (5.11). To our
knowledge, unbiased estimation of the exact factors is intractable.
We have experimented with several partial bias correction terms but
found them to have destabilizing effects.

5.4.3 Incorporating Momentum

So far, we have considered variance adaptation for the update di-
rection gt. In practice, we may want to update in the direction of
mt to incorporate momentum.4 According to Lemma 5.1, the vari- 4 Our use of the term momentum is

somewhat colloquial. To highlight the
relationship with adam (Fig. 5.1), we
have defined m-sgd as the method
using the update direction mt, which
is a rescaled version of sgd with
momentum. m-svag applies variance
adaptation to mt. This is not to be
confused with the application of
momentum acceleration [Polyak,
1964, Nesterov, 1983] on top of a svag

update.

ance adaptation factors should then be determined by the relative
of variance of mt.

Once more adopting Assumption 5.1, we have E[mt] ≈ ∇ ft and
Var[mt,i] ≈ ρ(β, t)σ2

t,i, the latter being due to Eq. (5.14). Hence,
the relative variance of mt is ρ(β, t) times that of gt, such that the

dissecting adam 53

optimal variance adaptation factors for the update direction mt

according to Lemma 5.1 are

γm
t,i =

1
1 + ρ(β, t)σ2

t,i/∇ f 2
t,i

. (5.18)

We use the following estimate thereof:

γ̂m
t =

1
1 + ρ(β, t) ŝt/m2

t
=

m2
t

m2
t + ρ(β, t) ŝt

. (5.19)

Note that mt now serves a double purpose: It determines the base
update direction and, at the same time, is used to obtain an esti-
mate of the gradient variance.

5.4.4 Details

Note that Eq. (5.16) is ill-defined for t = 0, since ρ(β, 0) = 0. We
use ŝ0 = 0 for the first iteration, resulting in an initial sgd-step.
One final detail concerns a possible division by zero in Eq. (5.19).
Unlike adam, we do not add a constant offset ε in the denominator.
A division by zero only occurs when mt,i = vt,i = 0; we check for
this case and perform no update in the respective coordinates.

This completes the description of our implementation of m-svag.
Alg. 2 provides pseudo-code (ignoring the details discussed in
§5.4.4 for readability).

Input: θ0 ∈ Rd, α > 0, β ∈ [0, 1], T ∈N

Initialize θ ← θ0, m̃← 0, ṽ← 0
for t = 0, . . . , T − 1 do

m̃← βm̃ + (1− β)g(θ), ṽ← βṽ + (1− β)g(θ)2

m← (1− βt+1)−1m̃, v← (1− βt+1)−1ṽ
s← (1− ρ(β, t))−1(v−m2)

γ← m2/(m2 + ρ(β, t)s)
θ ← θ − α(γ�m)

end for
Algorithm 2: m-svag

5.5 Connection to Generalization

In deep learning, different solutions with comparable training loss
can have significantly varying generalization performance. Re-
cently, the question of the effect of the optimization algorithm
on generalization has received increased attention. In particular,
Wilson et al. [2017] have argued that “adaptive methods” (referring
to AdaGrad, RMSProp, and adam) have adverse effects on gener-
alization compared to “non-adaptive methods” (gradient descent,
sgd, and their momentum variants). In addition to an extensive
empirical validation of that claim, the authors make a theoretical

54 noise-aware stochastic optimization

argument using a binary least-squares classification problem,

R(θ) =
1
n

n

∑
i=1

1
2
(xTi θ − yi)

2 =
1

2n
‖Xθ − y‖2, (5.20)

with n data points (xi, yi) ∈ Rd × {±1}, stacked in a matrix X ∈
Rn×d and a label vector y ∈ {±1}n. For this problem class, the non-
adaptive methods provably converge to the max-margin solution,
which we expect to have favorable generalization properties. In
contrast to that, Wilson et al. [2017] show that—for some instances
of this problem class—the adaptive methods converge to solutions
with arbitrarily bad generalization to unseen data. The authors
construct such problematic instances using the following Lemma.

Lemma 5.3 (Lemma 3.1 in Wilson et al. [2017]). Suppose [XTy]i 6= 0
for i = 1, . . . , d, and there exists c ∈ R such that X sign(XTy) = cy.
Then, when initialized at θ0 = 0, the iterates generated by full-batch
adagrad, adam, and rmsprop on the objective (5.20) satisfy θt ∝
sign(XTy).

Intriguingly, as we show in Appendix B.2.5, this statement easily
extends to sign descent, i.e., the method updating θt+1 = θt −
α sign(∇R(θt)).

Lemma 5.4. Under the assumptions of Lemma 5.3, the iterates generated
by sign descent satisfy θt ∝ sign(XTy).

On the other hand, this does not extend to m-svag,5 which is 5 This follows easily from the fact that
the first step of m-svag coincides with
a gradient descent step.

an adaptive method by any standard. While this does by no means
imply that it converges to the max-margin solution or has otherwise
favorable generalization properties, the construction of Wilson et al.
[2017] does not apply to m-svag.

This suggests that it is the sign aspect that impedes generaliza-
tion in the examples constructed by Wilson et al. [2017], rather than
the elementwise adaptivity as such. Our experiments substantiate
this suspicion. The fact that all currently popular adaptive methods
are also sign-based has led to a conflation of these two aspects. The
main motivation for this work was to disentangle them.

5.6 Experiments

We experimentally compare m-svag and adam to their non-
variance-adapted counterparts m-sgd and m-sign-sgd (Alg. 3).
Since these are the four possible recombinations of the sign and the
variance adaptation (Fig. 5.1), this comparison allows us to separate
the effects of the two aspects.

5.6.1 Experimental Set-Up

We evaluated the four methods on the following problems:

P1 A vanilla convolutional neural network (CNN) with two con-
volutional and two fully-connected layers on the Fashion-mnist

dataset [Xiao et al., 2017].

dissecting adam 55

Input: θ0 ∈ Rd, α > 0, β ∈ [0, 1], T ∈N

Initialize θ ← θ0, m̃← 0
for t = 0, . . . , T − 1 do

m̃← βm̃ + (1− β)g(θ)

m← (1− βt+1)−1m̃

θ ← θ − αm θ ← θ − α sign(m̃)

end for
Algorithm 3: m-sgd and m-sign-sgd

P2 A vanilla CNN with three convolutional and three fully-connected
layers on cifar-10 [Krizhevsky, 2009].

P3 The wide residual network WRN-40-4 architecture of Zagoruyko
and Komodakis [2016] on cifar-100.

P4 A two-layer LSTM [Hochreiter and Schmidhuber, 1997] for
character-level language modelling on Tolstoy’s War and Peace.

A detailed description of all network architectures has been moved
to Section B.1 of the Appendix.

For all experiments, we used β = 0.9 for m-sgd, m-ssd and
m-svag and default parameters (β1 = 0.9, β2 = 0.999, ε = 10−8)
for adam. The global step size α was tuned for each method in-
dividually by first finding the maximal stable step size by trial
and error, then searching downwards. We selected the one that
yielded maximal test accuracy within a fixed number of training
steps; a scenario close to an actual application of the methods by
a practitioner. (Loss and accuracy have been evaluated at a fixed
interval on the full test set as well as on an equally-sized portion
of the training set). Experiments with the best step size have been
replicated ten times with different random seeds. While (P1) and
(P2) were trained with constant α, we used a decreasing schedule
for (P3) and (P4), which was fixed in advance for all methods. Full
details can be found in Appendix B.1.

5.6.2 Results

The results are depicted in Fig. 5.4. We make four main observa-
tions.

1) The sign aspect dominates. With the exception of (P4), the perfor-
mance of the four methods distinctly clusters into sign-based and
non-sign-based methods. Of the two components of adam identi-
fied in §5.1.1, the sign aspect seems to be by far the dominant one,
accounting for most of the difference between adam and m-sgd.
adam and m-sign-sgd display surprisingly similar performance;
an observation that might inform practitioners’ choice of algorithm,
especially for very high-dimensional problems, where adam’s ad-
ditional memory requirements are an issue.

56 noise-aware stochastic optimization

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

ni
ng

lo
ss

Fashion-MNIST (P1)

M-SGD

ADAM

M-SSD

M-SVAG

0 1 2 3 4 5
Steps (103)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Te
st

ac
cu

ra
cy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Tr
ai

ni
ng

lo
ss

CIFAR-10 (P2)

0 5 10 15 20 25 30 35 40
Steps (103)

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84
Te

st
ac

cu
ra

cy

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Tr
ai

ni
ng

lo
ss

CIFAR-100 (P3)

0 10 20 30 40 50 60 70 80
Steps (103)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

ac
cu

ra
cy

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

Tr
ai

ni
ng

lo
ss

War and Peace (P4)

0 50 100 150 200
Steps (103)

0.55

0.56

0.57

0.58

0.59

0.60

0.61

Te
st

ac
cu

ra
cy

Figure 5.4: Experimental results on
the four test problems. Plots display
training loss and test accuracy over
the number of steps. Curves for the
different optimization methods are
color-coded. The shaded area spans
one standard deviation, obtained from
ten replications with different random
seeds. m-sign-sgd is referred to as m-
ssd in the legend due to a difference
in terminology between the original
paper and this manuscript.

2) The usefulness of the sign is problem-dependent. Considering only
training loss, the two sign-based methods clearly outperform
the two non-sign-based methods on problems (P1) and (P3). On
(P2), adam and m-sign-sgd make rapid initial progress, but later
plateau and are undercut by m-sgd and m-svag. On the language
modelling task (P4) the non-sign-based methods show superior
performance. This shows that the usefulness of sign-based methods
depends on the particular problem at hand.

3) Variance adaptation helps. In all experiments, the variance-
adapted variants perform at least as good as, and often better than,
their “base algorithms”. The magnitude of the effect varies. For
example, adam and m-sign-sgd have identical performance on
(P3), but m-svag significantly outperforms m-sgd on (P3) as well
as (P4).

4) Generalization effects are caused by the sign. The cifar-100 exam-
ple (P3) displays similar effects as reported by Wilson et al. [2017]:
adam vastly outperforms m-sgd in training loss, but has signifi-
cantly worse test performance. Observe that m-sign-sgd behaves
almost identical to adam in both train and test and, thus, displays
the same generalization-harming effects. m-svag, on the other
hand, improves upon m-sgd and, in particular, does not display
any adverse effects on generalization. This corroborates the suspi-
cion raised in §5.5 that the generalization-harming effects of adam

are caused by the sign aspect rather than the elementwise adaptive
step sizes.

5.7 Conclusion

We have argued that adam combines two components: taking
signs and applying variance adaptation. Our experiments show

dissecting adam 57

that the sign aspect is by far the dominant one, but its usefulness is
problem-dependent. Chapter 6 will discuss the sign aspect in more
detail and, in short, will show that the usefuless of sign gradient
descent depends on the conditioning of the problem as well as its
axis-alignment. Sign-based methods also seem to have an adverse
effect on the generalization performance of the obtained solution; a
possible starting point for further research into the generalization
effects of optimization algorithms.

The second aspect, variance adaptation, is not restricted to adam

but can be applied to any update direction. We have provided a
general motivation for variance adaptation factors that is indepen-
dent of the update direction. In particular, we introduced m-svag, a
variance-adapted variant of momentum sgd, which is a useful ad-
dition to the practitioner’s toolbox for problems where sign-based
methods like adam fail. A TensorFlow [Abadi et al., 2015] imple-
mentation can be found at https://github.com/lballes/msvag.

https://github.com/lballes/msvag

6
The Geometry of Sign Gradient Descent

In Chapter 5 we have seen that the exceedingly popular adam

method is closely related to sign-sgd. Beyond this connection,
sign-based optimization methods themselves have become popular
in machine learning due to their favorable communication cost in
distributed optimization and their surprisingly good performance
in neural network training. In this chapter, we review and expand
the analysis of sign-based optimization methods. Recent works ana-
lyzing sign-sgd have used a non-standard “separable smoothness”
assumption, whereas some older works study sign gradient descent
as steepest descent with respect to the `∞-norm. In this work, we
unify these existing results by showing a close connection between
separable smoothness and `∞-smoothness and argue that the latter
is the weaker and more natural assumption. We then proceed to
study the smoothness constant with respect to the `∞-norm and
thereby isolate geometric properties of the objective function which
affect the performance of sign-based methods. In short, we find
sign-based methods to be preferable over gradient descent if (i) the
Hessian is to some degree concentrated on its diagonal, and (ii) its
maximal eigenvalue is much larger than the average eigenvalue.
Both properties are common in deep networks.

The contents of this chapter are based on the preprint:

Lukas Balles, Fabian Pedregosa, and Nicolas Le Roux. The geometry
of sign gradient descent. arXiv preprint arXiv:2002.08056, 2020

Coauthor contributions:

Sc. Ideas Experiments Interpretation Writing
Lukas Balles 60% 70% 60% 60%
Fabian Pedregosa 20% 30% 20% 10%
Nicolas Le Roux 20% 0% 20% 30%

60 noise-aware stochastic optimization

6.1 Introduction

Several recent works have considered the sign gradient descent
(sign-gd) method and its stochastic counterpart (sign-sgd)

θt+1 = θt − αt sign(∇ ft), (6.1)

θt+1 = θt − αt sign(gt), (6.2)

where the sign is applied elementwise. In particular, these methods
have been studied in the context of distributed optimization where
they conveniently reduce the communication cost to a single bit
per gradient coordinate [e.g., Seide et al., 2014, Bernstein et al.,
2018, Karimireddy et al., 2019]. sign-sgd is also of interest due to a
connection to the popular adam method [Kingma and Ba, 2015] as
discussed in Chapter 5.

Analysis of Sign-Based Methods Multiple authors [Kelner et al.,
2014, Carlson et al., 2015, Karimi et al., 2016] have analyzed variants
of sign-based methods under the assumption of smoothness with
respect to the `∞-norm (maximum norm), i.e.,

‖∇ f (θ′)−∇ f (θ)‖1 ≤ L∞‖θ′ − θ‖∞ (6.3)

for all θ, θ′ ∈ Rd with smoothness constant L∞ > 0. On the other
hand, Bernstein et al. [2018] have analyzed sign-sgd under a non-
standard smoothness assumption that there are constants l1 . . . , ld >

0 such that

f (θ′) ≤ f (θ) + 〈∇ f (θ), θ′ − θ〉+ 1
2 ∑

i
li(θ′i − θi)

2 (6.4)

for all θ, θ′ ∈ Rd. (In a slight overload of notation, θi refers to
the i-th dimension of the vector θ and not to the i-th iterate of an
optimization procedure.) Follow-up works refining the analysis
also adopted this assumption [Bernstein et al., 2019, Safaryan and
Richtárik, 2019], which we will refer to as separable smoothness to
emphasize that the quadratic term separates over coordinates with
individual constants li.

Reiterating all convergence results from these works would be
beyond the scope of this chapter, but it is crucial to understand that
the convergence rates of sign-based methods are governed by L∞ in
the papers based on `∞-smoothness and by ∑i li in those based on
the separable smoothness assumption.

Contributions The separable smoothness assumption seems to add
an unnecessary level of granularity since neither the algorithm itself
nor its analysis uses the individual values li but only their sum.
This work clarifies the relationship between separable smoothness
and `∞-smoothness. We show that the convergence results based on
separable smoothness also hold under `∞-smoothness if L∞ = ∑i li
and that the latter is a strictly weaker assumption. This unifies all

the geometry of sign gradient descent 61

existing results on sign-based methods under the umbrella of `∞-
smoothness.

We then proceed to analyze the geometric meaning of `∞-
smoothness. We tie the corresponding smoothness constant L∞

to properties of the Hessian and show that it is favorable if the
Hessian fulfills two conditions: (i) some degree of “diagonal con-
centration” and (ii) the maximal eigenvalue being much larger than
the average eigenvalue. Notably, these properties have repeatedly
been observed in deep learning training tasks. Our analysis thus
provides a possible explanation of the empirical success of sign-
based methods—and, by extension, adam—in deep learning. The
dependence on the diagonal concentration of the Hessian, which re-
lates to the axis alignment of the objective, is in stark contrast to the
Euclidean smoothness constant L2, which controls the convergence
speed of (stochastic) gradient descent.

6.2 Smoothness and Steepest Descent

Before proceeding, we briefly review the concept of smoothness
with respect to arbitrary norms and the associated steepest descent
methods, which will be crucial the remainder of this work.

6.2.1 Smoothness w.r.t. Arbitrary Norms

Smoothness is a standard assumption in optimization and means
that the gradient function is Lipschitz, i.e., ‖∇ f (θ′) −∇ f (θ)‖2 ≤
L2‖θ′ − θ‖2 for some positive scalar L2. The crucial significance of
this assumption is that it gives rise to local quadratic bounds on f :

f (θ′) ≤ f (θ′) + 〈∇ f (θ), θ′ − θ〉+ L2

2
‖θ′ − θ‖2

2. (6.5)

This bound motivates gradient descent; fixing θ and minimizing
w.r.t. θ′ yields the update θ′ = θ − L−1

2 ∇ f (θ).
This notion of smoothness can be generalized to arbitrary norms.

We say f is L-smooth w.r.t. a norm ‖ · ‖ if

‖∇ f (θ′)−∇ f (θ)‖∗ ≤ L‖θ′ − θ‖ (6.6)

for all θ, θ′ ∈ Rd. Here, ‖ · ‖∗ denotes the dual norm of ‖ · ‖, defined
as ‖ω‖∗ := max‖θ‖≤1〈ω, θ〉. Table 6.1 lists the dual norm pairs
for the methods under consideration in this chapter. The standard
case of Euclidean smoothness falls under this definition since the
Euclidean norm is dual to itself.

Due to the equivalence of norms on Rd, a function that is smooth
with respect to one norm is also smooth with respect to any other
norm. However, the tightest possible smoothness constant,

L def
= sup

θ 6=θ′

‖∇ f (θ′)−∇ f (θ)‖∗
‖θ′ − θ‖ , (6.7)

will depend on the choice of norm. In the following, we will always
assume L to be given by Eq. (6.7). This constant governs the conver-

62 noise-aware stochastic optimization

Method Norm Dual Update direction
Gradient descent ‖ · ‖2 ‖ · ‖2 ∇ f
Sign gradient descent ‖ · ‖∞ ‖ · ‖1 ‖∇ f ‖1 sign(∇ f)
Coordinate descent ‖ · ‖1 ‖ · ‖∞ ∇ fimax e(imax)

Block-normalized gd ‖ · ‖B∞ ‖ · ‖B1 see Appendix C.1

Table 6.1: A few steepest descent
methods. The table lists the used norm
‖ · ‖, its dual ‖ · ‖∗, and the resulting
update direction. Coordinate descent
and block-normalized gradient descent
are discussed in Appendix C.1.

gence speed of the corresponding steepest descent method, which
we will define next.

6.2.2 Steepest Descent

As in the Euclidean case, smoothness gives rise to a local quadratic
bound on the function around a point θ:

Lemma 6.1. If f is L-smooth w.r.t. ‖ · ‖, then

f (θ′) ≤ f (θ) + 〈∇ f (θ), θ′ − θ〉+ L
2
‖θ′ − θ‖2 (6.8)

for all θ, θ′ ∈ Rd.

Steepest descent with respect to the norm ‖ · ‖ iteratively mini-
mizes this upper bound:

θt+1 ∈ arg minθ∈Rd

(
〈∇ ft, θ − θt〉+

L
2
‖θ − θt‖2

)
. (6.9)

This minimizer need not be unique, in which case steepest descent
is to be understood as choosing any solution.

We have already seen that gradient descent is steepest descent
with respect to the Euclidean norm. As noted by Kelner et al. [2014]
and Carlson et al. [2015], steepest descent with respect to the maxi-
mum norm gives rise to a version of sign gradient descent, namely

θt+1 = θt −
1

L∞
‖∇ ft‖1 sign(∇ ft). (6.10)

This is equivalent to Eq. (6.1) up to the scaling with the gradient
norm which may be subsumed in the step size.

Side note The steepest descent framework encompasses many
other well-known methods, see Table 6.1. For example, steepest
descent w.r.t. the `1-norm yields a version of coordinate descent.
An interesting observation is that a block-wise maximum norm
gives rise to a “block-normalized” gradient descent, which may be
seen as a block-wise extension of sign gradient descent. Variants
of block-wise normalization have recently found application in
deep learning [Yu et al., 2017, Ginsburg et al., 2019] with blocks
corresponding to layers. We discuss this further in Appendix C.1.

6.2.3 Convergence of Steepest Descent

The convergence of steepest descent methods bases upon the fol-
lowing Lemma, which guarantees an improvement in function
value in each step.

the geometry of sign gradient descent 63

Lemma 6.2. Let f be L-smooth w.r.t. ‖ · ‖. Then steepest descent (Eq. 6.9)
satisfies

f (θt+1) ≤ f (θt)−
1

2L
‖∇ f (θt)‖2

∗. (6.11)

This implies various convergence results, which we discuss in
Appendix C.1. Generally, all steepest descent methods will enjoy
the same rate of convergence, but Lemma 6.2 shows the significance
of (i) the smoothness constant, which we want to be small, and
(ii) the dual gradient norm, which we want to be large. These two
aspects will play a role when we compare sign gradient descent and
gradient descent in Section 6.5.

6.3 Separable Smoothness and `∞-Smoothness

This section clarifies the relationship between separable smoothness
and `∞-smoothness in order to unify existing convergence results.

6.3.1 `∞-Smoothness Can Replace Separable Smoothness

We now show that `∞-smoothness can replace separable smooth-
ness for the analysis of sign-based methods by showing that

(i) separable smoothness with constants l1, . . . , ld implies `∞-
smoothness with constant L∞ = ∑i li, and

(ii) convergence results based on separable smoothness also hold
under the latter, weaker assumption.

While separable smoothness is directly defined by Eq. (6.4) in ex-
isting works, it is easily embedded in the framework of Section 6.2
as 1-smoothness w.r.t. the norm ‖ · ‖L where L = diag(l1, . . . , ld) and
‖ω‖2

L :=
(
∑i liω2

i
)
. The bound given by Lemma 6.1 then coincides

with Eq. (6.4). With that, we can establish statement (i).

Proposition 6.1. If f is 1-smooth w.r.t. ‖ · ‖L, then f is (∑i li)-smooth
w.r.t. the maximum norm.

Regarding statement (ii), we note that the separable smoothness
assumption in form of Eq. (6.4) enters existing convergence proofs
exclusively with θ = θt, θ′ = θt+1. The simple but essential obser-
vation is that, since sign-based updates have the same magnitude in
each coordinate, (∑i li)-smoothness w.r.t. the maximum norm yields
the exact same bound.

Proposition 6.2. Let θ ∈ Rd, δ ∈ {−1, 1}d and α > 0. Both separable
smoothness with constants l1, . . . , ld and `∞-smoothness with constant
L∞ = ∑i li imply

f (θ + αδ) ≤ f (θ) + α〈∇ f (θ), δ〉+ α2

2 ∑
i

li. (6.12)

Since all existing convergence results start from exactly this
bound they hold under either of the two assumptions.

64 noise-aware stochastic optimization

In summary, separable smoothness adds a level of granularity
that sign-based algorithms cannot exploit and that is not necessary
for their analysis. Max-norm smoothness removes this unnecessary
granularity, is a strictly weaker assumption, and is naturally tied
to sign-based methods via the steepest descent formalism. We thus
argue that `∞-smoothness should be used for the analysis of sign-
based methods.

6.3.2 Consequences of the Unification

The results established in the previous subsection relax the assump-
tions of some previous works and allow for a better comparabil-
ity of existing results. We can adapt results based on separable
smoothness to use `∞-smoothness simply by replacing ∑i li with
L∞. As an example, Theorem 1 of Bernstein et al. [2018] shows
convergence to a stationary point for sign-sgd on non-convex
problems in the “large-batch setting”, where a mini-batch size of T
is used to perform T iterations. Adapted to `∞-smoothness, the rate
reads

E

[
1
T

T−1

∑
t=0
‖∇ ft‖1

]2

≤ 1
T

[√
L∞

(
f0 − f ? +

1
2

)
+ const

]2
. (6.13)

Bernstein et al. [2018] contrast this with a rate for sgd achieved
under similar assumptions, namely

E

[
1
T

T−1

∑
t=0
‖∇ ft‖2

2

]
≤ 1

T
[2L2 (f0 − f ?) + const] . (6.14)

For details refer to Bernstein et al. [2018].
This can now easily be compared with other results, for example,

those arising from the steepest descent framework. In the determin-
istic setting, norm-scaled sign gradient descent (Eq. 6.10) achieves a
non-convex rate of

1
T

T−1

∑
t=0
‖∇ ft‖2

1 ≤
2L∞(f0 − f ?)

T
, (6.15)

whereas gradient descent achieves

1
T

T−1

∑
t=0
‖∇ ft‖2

2 ≤
2L2(f0 − f ?)

T
, (6.16)

see Proposition C.2 in Appendix C.1.
Our unification makes clear that the max-norm smoothness

constant L∞ crucially affects the convergence speed of sign-based
methods, irrespective of the setting (stochastic vs. deterministic)
and the precise version (Eq. 6.1 vs. Eq. 6.10). It is thus critical to
establish a better understanding of the geometric meaning of `∞-
smoothness, which we will tackle in the next section.

the geometry of sign gradient descent 65

6.4 Understanding `∞-Smoothness

The previous sections have established the significance of smooth-
ness w.r.t. the maximum norm for sign-based optimization meth-
ods, showing that the corresponding smoothness constant L∞ cru-
cially affects their convergence speed. We now turn our attention
to the “meaning” of this constant. While we have a good intuition
for the Euclidean smoothness constant—an upper bound on the
eigenvalues of the Hessian—this is lacking for smoothness w.r.t. the
maximum norm. Our goal in this section is to understand which
properties of the objective function affect the constant L∞. We first
introduce a Hessian-based formulation of general smoothness
constants, generalizing the aforementioned result for Euclidean
smoothness. We then show that L∞ depends on both the eigenval-
ues of the Hessian as well as its degree of “diagonal concentration”,
which corresponds to the axis alignment of the objective. Next, we
contrast this more explicitly with Euclidean smoothness, pinpoint-
ing conditions under which the objective function has a favorable
L∞ constant relative to L2, suggesting a susceptibility to sign-based
optimization methods. Finally, we discuss how these insights relate
back to the separable smoothness condition.

6.4.1 Smoothness as a Bound on the Hessian

The definition of smoothness in Eq. (6.6) is unwieldy. For the Eu-
clidean norm, a more intuitive characterization is widely known:
A twice-differentiable function f is L2-smooth w.r.t. the Euclidean
norm if and only if ‖∇2 f (θ)‖2 ≤ L2 for all θ ∈ Rd. Here, ‖ · ‖2 for
matrices denotes the spectral norm, given by the largest-magnitude
eigenvalue for symmetric matrices. To facilitate our discussion of
the `∞-smoothness constant, the following proposition generalizes
this Hessian-based formulation of smoothness constants. It shows
that smoothness with respect to any other norm likewise arises
from a bound on the Hessian, but in different matrix norms.

Proposition 6.3. For any norm ‖ · ‖ on Rd, we define the matrix norm
induced by ‖ · ‖ (also denoted by ‖ · ‖) as

‖H‖ def
= max
‖θ‖≤1

‖Hθ‖∗ . (6.17)

A twice-differentiable function f : Rd → R is L-smooth w.r.t. ‖ · ‖ if and
only if ‖∇2 f (θ)‖ ≤ L for all θ.

We are not aware of prior works showing this for the general
case. For the Euclidean norm, Proposition 6.3 gives back the famil-
iar spectral norm bound.

6.4.2 L∞ is Sensitive to Axis-Alignment

By Proposition 6.3, L∞ is determined by

L∞ = sup
θ∈Rd
‖∇2 f (θ)‖∞,1, ‖H‖∞,1

def
= max
‖θ‖∞≤1

‖Hθ‖1. (6.18)

66 noise-aware stochastic optimization

Unfortunately, computing ‖H‖∞,1 is NP-hard [Rohn, 2000], but
we can gain some intuition on a two-dimensional quadratic where
all relevant quantities are easily found in closed form (see Ap-
pendix C.2 for details). As depicted in Fig. 6.1, L∞ does not only
depend on the eigenvalues, but also on the axis alignment of the
objective, which is encoded in the diagonal concentration of the
Hessian.

λ
m

a
x

=
2
.0

L∞ = 3.00

ω = 0◦

L∞ = 3.34

ω = 10◦

L∞ = 3.87

ω = 30◦

λ
m

a
x

=
4
.0

L∞ = 5.00 L∞ = 6.03 L∞ = 7.60

H

Figure 6.1: For H ∈ R2×2, we plot
a contour line of f (θ) = 1

2 θTHθ,
which forms an ellipse with principal
axes given by the eigenvectors of H
and axis lengths given by the inverse
eigenvalues. We fix λmin = 1 and
vary λmax > 1 as well as the angle
ω between the principal axes of
the ellipse and the coordinate axes.
(Mathematical details can be found in
Appendix C.2.) The `∞-smoothness
constant L∞ = ‖H‖∞,1 is sensitive
to the axis alignment of the objective.
This is in contrast to the Euclidean
smoothness constant, which is simply
given by L2 = λmax.

We can generalize this insight through the following upper
bound.

Proposition 6.4. Let H ∈ Rd×d be nonzero, positive semi-definite with
eigenvalues λ1, . . . , λd. Then

‖H‖∞,1 ≤ ρdiag(H)−1
d

∑
i=1

λi (6.19)

with ρdiag(H) := ∑i |Hii|/ ∑i,j |Hij|.

The quantity ρdiag(H) ∈ [d−1, 1] measures the degree of diagonal
concentration. Proposition 6.4 thus indicates that L∞ will depend
both on the axis alignment of the Hessian as well as its eigenvalues.
This is in stark contrast to Euclidean smoothness, for which the
relevant matrix norm is invariant to rotations. We will make this
comparison more explicit in the next subsection.

Proposition 6.4 only applies to positive semi-definite matrices.
We provide a similar, albeit slightly looser, bound for all symmetric
matrices:

Proposition 6.5. Let H ∈ Rd×d be symmetric with eigenvalues
λ1, . . . , λd and orthonormal eigenvectors v(1), . . . , v(d). Then

‖H‖∞,1 ≤
d

∑
i=1
|λi| ‖v(i)‖2

1 . (6.20)

In this bound, the dependency on the axis alignment appears
through ‖v(i)‖2

1. Since the eigenvectors have unit `2-norm, their
squared `1-norm is bounded by 1 ≤ ‖v(i)‖2

1 ≤ d. The lower bound
is attained if v(i) is perfectly axis-aligned. The upper bound is at-
tained if all elements of v(i) are of equal magnitude. Due to the

the geometry of sign gradient descent 67

weighting by |λi|, we see that the axis alignment particularly mat-
ters for eigenvectors associated with eigenvalues of large magni-
tude. Both bounds are tight for axis-aligned matrices but can be
substantially loose for very non-axis-aligned ones.

These upper bounds on ‖H‖∞,1 identify sufficient conditions
which favor sign gradient descent. We note that the sensitivity to
axis alignment also manifests itself in a lower bound. Indeed, for
any pair (λi, v(i)) we have

‖H‖∞,1 ≥
‖Hv(i)‖1

‖v(i)‖∞
= |λi|

‖v(i)‖1

‖v(i)‖∞
. (6.21)

Again, the ratio ‖v(i)‖1/‖v(i)‖∞ ∈ [1, d] can be seen as a measure of
axis alignment of v(i).

6.4.3 Comparing L∞ and L2

We have seen that the `∞-smoothness constant governs the con-
vergence of sign gradient descent (and related methods) whereas
the Euclidean smoothness constant governs the convergence of
gradient descent. We now want to compare these two constants.
Assume f to be L2-smooth w.r.t. ‖ · ‖2 and L∞-smooth w.r.t. ‖ · ‖∞ in
the “tight” sense of Eq. (6.7). Basic inequalities between the norms
yield (see Appendix C.5)

L2 ≤ L∞ ≤ dL2 (6.22)

irrespective of f . The smoothness constant governing the conver-
gence speed of sign gradient descent will always be larger (worse)
than the one pertinent to gradient descent. This does not mean that
sign-gd is always worse than gd. The smoothness constant is only
one factor influencing the convergence speed; Lemma 6.2 shows
that the dual gradient norm plays a role as well. As we will discuss
in Section 6.5, this norm is larger for sign-gd which can make up
for the disadvantage of a larger smoothness constant.

Here, we want to characterize under which circumstances L∞

tends to be small—in particular much smaller than its worst case
of dL2—such that sign-based methods can be competitive with
gradient descent. Propositons 6.4 and 6.5 imply the following two
conditions:

1. We need the Hessian to exhibit some degree of diagonal concen-
tration or, equivalently, to have somewhat axis-aligned eigenvec-
tors.

2. The sum of absolute eigenvalues should be much smaller than
its worst case of dλmax or, equivalently, the average absolute
eigenvalue should be much smaller than the maximal one:

λ̄
def
=

1
d ∑

i
|λi| � max

i
|λi| =: λmax. (6.23)

68 noise-aware stochastic optimization

Notably, both properties have independently been found to be
present in neural network training. Multiple papers studying the
Hessian in neural network training objectives [Chaudhari et al.,
2017, Papyan, 2018, Ghorbani et al., 2019, Li et al., 2020] find that
the spectrum is dominated by a small number of outlier eigenval-
ues that far exceed the bulk of eigenvalues, which are concentrated
close to zero. This is exactly the setting that will lead to λ̄ � λmax.
The question of the diagonal concentration of the Hessian has
been studied as early as 1988 by Becker and LeCun. More recently,
Adolphs et al. [2019] have confirmed some degree of diagonal con-
centration in contemporary neural architectures. In light of our
analysis above, these observations suggest that the geometry of
optimization problems encountered in deep learning lends itself to
sign-based optimization methods (and its relatives such as adam).

6.4.4 Separable Smoothness in the Hessian-Based View

A natural question is how separable smoothness fits into this
Hessian-based formulation and—given its close connection to
`∞-smoothness—how it reflects the sensitivity to axis alignment.
Bernstein et al. [2018] note that, for twice-differentiable f , separa-
ble smoothness results from a diagonal bound on the Hessian, i.e.,
−L � ∇2 f (θ) � L for all x ∈ Rd with L = diag(l1, . . . , ld). It is
tempting to think of the values l1, . . . , ld merely as bounds on the
eigenvalues of ∇2 f (θ), but we will see in the following that these
values also depend on the axis alignment of the Hessian.

With “�” being only a partial ordering there is no clear def-
inition of the tightest diagonal bound. Since the performance of
sign-based methods depends on ∑i li, we will choose the bound
which minimizes this sum. With that, we can establish the follow-
ing result:

Proposition 6.6. Let H ∈ Rd×d be positive semi-definite with eigenval-
ues λ1 . . . , λd and define

L∞(H)
def
= max
‖θ‖∞≤1

‖Hθ‖1, (6.24)

Lsep(H)
def
= min

li≥0
∑

i
li s.t. H � diag(li). (6.25)

Then
L∞(H) ≤ Lsep(H) ≤ ρdiag(H)−1 ∑

i
λi. (6.26)

Hence, Lsep upper bounds L∞, reflecting again that `∞-smoothness
is the weaker of the two conditions. At the same time, Lsep is
upper-bounded by the same quantity that appears in Proposi-
tion 6.4, reflecting the sensitivity to axis alignment. Figure 6.2 il-
lustrates this on a two-dimensional quadratic example.

Side note. The two-dimensional example also reveals another
shortcoming of the analysis based on separable smoothness. To
contrast the performance of sign-based methods with that of

the geometry of sign gradient descent 69

λ
m

a
x

=
2
.0

ω = 0◦ ω = 10◦ ω = 30◦

λ
m

a
x

=
4
.0

H diag(l1, ..., ld) λmaxI

Figure 6.2: For H ∈ R2×2, we plot
a contour line of f (θ) = 1

2 θTHθ,
which forms an ellipse with principal
axes given by the eigenvectors of H
and axis lengths given by the inverse
eigenvalues. We fix λmin = 1 and
vary λmax > 1 as well as the angle
ω between the principal axes of
the ellipse and the coordinate axes.
(Mathematical details can be found in
Appendix C.2.) Separable smoothness
bounds H by a diagonal matrix,
diag(l1, . . . , ld) � H, corresponding
to an axis-aligned ellipse that lies
fully within the H-ellipse. The “best”
bounding ellipse is given by Eq. (6.25).
This bound changes with the axis
alignment, becoming both smaller and
more circular (i.e., larger and more
similar li) as we rotate further from
the coordinate axes. In contrast to that,
Euclidean smoothness bounds H by
λmaxI � H, i.e., a rotation-invariant
circle.

(stochastic) gradient descent, it is assumed that the convergence
speed of the latter is controlled by lmax, which implicitly assumes
lmax = λmax. This may be misleading since lmax can exceed λmax,
see Appendix C.2. Of course, we could deviate from the definition
in Eq. (6.25) and choose li ≡ λmax to guarantee lmax = λmax, but the
resulting Lsep would be very unfavorable for sign-sgd.

6.5 Gradient Descent vs Sign Gradient Descent

We found in Section 6.4 that L∞ always exceeds L2 but identified
conditions under which L∞ � dL2. In this section, we want to
explicitly compare gradient descent and sign gradient descent. To
facilitate this comparison, we make two restrictions. First, we con-
sider the non-stochastic setting in order to isolate the dependency
of the two methods on the geometry of the objective rather than
the stochasticity. Second, we consider the norm-scaled version of
sign gradient descent (Eq. 6.10). This variant is not usually applied
to, say, deep learning tasks, for multiple possible reasons which
we discuss in Appendix C.3. We argue that, in the smooth, non-
stochastic setting, the norm-scaled version is natural and preferable
since (i) it arises as steepest descent w.r.t. the maximum norm, and
(ii) unlike the version in Eq. (6.1), it converges with a constant step
size.

Hence, we are comparing two steepest descent methods. By
Lemma 6.2, their guaranteed improvement in function value at
θ ∈ Rd is given by

Igd(θ)
def
=
‖∇ f (θ)‖2

2
L2

, (6.27)

Isign-gd(θ)
def
=
‖∇ f (θ)‖2

1
L∞

. (6.28)

We now compare the two methods based on these improvement
guarantees, thus taking into account the dual gradient norm in
addition to the smoothness constant. Basic norm inequalities,
d‖∇ f (θ)‖2

2 ≥ ‖∇ f (θ)‖2
1 ≥ ‖∇ f (θ)‖2

2, show that this potentially
favors sign gradient descent.

70 noise-aware stochastic optimization

Following Bernstein et al. [2018] we define

φ(ω)
def
=
‖ω‖2

1
d‖ω‖2

2
∈ [d−1, 1], (6.29)

which measures the density of the vector ω, i.e., how evenly its
mass is distributed across coordinates. With that, we can write

R(θ) def
=
Isign-gd(θ)

Igd(θ)
= φ(∇ f (θ))

dL2

L∞
. (6.30)

If in addition to L∞ � dL2, for which we have identified conditions
in Section 6.4, we encounter dense gradients, then R(θ) is large and
sign gradient descent makes faster progress than gradient descent.

We emphasize that this is a local comparison at θ ∈ Rd due to
the dependence on the gradient ∇ f (θ). It is tempting to try and
lower-bound the gradient density—that is, to assume φ(∇ f (θ)) ≥
φg � d−1 for all θ—in order to make global statements. Bernstein
et al. [2018] assume such a lower bound when contrasting sign-gd

and gd in their analysis. However, φ(∇ f (θ)) can easily be shown to
attain d−1 even on quadratics. Any non-trivial lower bound would
thus have to be restricted to the trajectory of the optimizer and
take into account the initialization, which seems out of reach at the
moment. The effect of the gradient norm thus remains an empirical
question which we now address.

0.0 0.1 0.2 0.3 0.4 0.5

ϕ

2

4

6

8

10

λ
m

a
x
/
λ

L∞/L2

0.0 0.1 0.2 0.3 0.4 0.5

ϕ

2

4

6

8

10

λ
m

a
x
/
λ

‖θsign
T − θ?‖2

/
‖θGD
T − θ?‖2

1

2

3

4

5

6

7

8

9

10

10−1

100

101

Figure 6.3: We consider quadratic
objectives varying across two axes:
λmax/λ̄ as well as a rotation value θ.
The left plot depicts the ratio of the
two relevant smoothness constants. L∞
is sensitive to ϕ and grows relative to
L2 = λmax as the problem becomes
less axis-aligned. The right plot depicts
the relative performance of gradient
descent and sign gradient descent on
these problems. gd drastically (the
colormap is clipped) outperforms
sign-gd for mildly-conditioned (small
λmax/λ̄) and non-axis-aligned (large
ϕ) problems. However, sign gradient
descent is preferable for problems with
high λmax/λ̄, given that they have
some degree of axis alignment (small
ϕ). The dashed line represents equal
performance of both algorithms.

Quadratic Experiments We give a simple toy experiment to illus-
trate and verify the conditions under which sign-gd outperforms
gradient descent. Synthetic quadratic problems of moderate di-
mension allow us to compute and control all relevant quantities.
To generate Hessians with varying λ̄/λmax and axis alignment,
we set the eigenvalues as Λ = diag(1, 1, . . . , 1, λmax) and rotate
the eigenvectors by some ratio ϕ in the direction prescribed by a
randomly-drawn rotation matrix. One may think of ϕ as a degree
of rotation; the technical details can be found in Appendix C.4. For
each Hessian, we compute the two smoothness constants L2 = λmax

the geometry of sign gradient descent 71

and L∞ = ‖H‖∞,1. We then run T = 100 iterations of gradient
descent (with α = 1/L2) and sign gradient descent (with α = 1/L∞)
and compute the distance to the optimum ‖θT − θ∗‖2

2 as a scale-
invariant performance measure. Averaging over repeated runs with
θ0 ∼ N (0, I) marginalizes out the effect of initialization. The re-
sults are depicted in Fig. 6.3 and confirm the findings of Sections
6.4 and 6.5. The L∞ constant—and consequently the performance
of sign-gd—is sensitive to the axis alignment of H and suffers as
we increase θ. For problems with λmax � λ̄ that are somewhat
axis-aligned, sign gradient descent outperforms gradient descent,
even on these simple quadratic problems.

6.6 Conclusion

In this chapter, we made two main contributions. First, we unified
the assumptions of existing works on both batch and stochastic
sign-based methods by clarifying the relationship between separa-
ble smoothness and `∞-smoothness. The latter is the less restrictive,
more natural assumption, and sufficient to support all existing re-
sults. Second, by studying the corresponding smoothness constant
L∞ we give a clear characterization of properties of the objective
function which drive the performance of sign-(s)gd and related
methods, e.g., adam. We showed that sign-(s)gd may be prefer-
able to (stochastic) gradient descent in the presence of outlier eigen-
values (λmax � λ̄) given that the objective is somewhat axis-aligned.
Notably, these properties have independently been found to be
present in neural network training tasks. Hence, sign-(s)gd need
not necessarily be seen as a gradient compression scheme for dis-
tributed optimization, i.e., as an approximation of (s)gd, but it is a
well-motivated optimization method in its own right.

Our approach of understanding sign-(s)gd via the correspond-
ing smoothness constant can be transferred to other methods. In
Appendix C.1, we briefly discuss the case of block-normalized gra-
dient descent, which can be seen as a block-wise generalization of
sign-gd.

Finally, we want to mention two other interesting aspects of
sign-based methods, which we sidestepped in this work. First,
we focused on the geometric implications of sign-based methods,
leaving aside the impact of gradient noise. Since the magnitude of
sign-based updates is bounded, one might hope to gain additional
robustness to noise. This aspect features somewhat implicitly in
the work of Bernstein et al. [2018, 2019] and Safaryan and Richtárik
[2019]. Relatedly, Zhang et al. [2019b] suggest that adam has a
certain robustness to heavy-tailed gradient noise.

Second, in practice, sign-(s)gd is often used in the form of
Eq. (6.1) and not in the norm-scaled version arising in the steepest
descent framework (Eq. 6.10). There are various possible reasons
for this discrepancy, which we discuss in Appendix C.3. In partic-
ular, we expand on the work of Zhang et al. [2019a] who recently

72 noise-aware stochastic optimization

suggested that normalized gradient descent is actually adapted to a
certain “relaxed smoothness” condition. We generalize this argu-
ment to sign-gd, providing a possible explanation for the afore-
mentioned discrepancy.

7
Natural Gradient Descent and the “Empirical Fisher”

Natural gradient descent, which preconditions a gradient descent
update with the Fisher information matrix of the underlying statis-
tical model, is a way to capture partial second-order information.
Several highly visible works have advocated an approximation
known as the empirical Fisher, drawing connections between ap-
proximate second-order methods and heuristics like adam. We
dispute this argument by showing that the empirical Fisher—unlike
the Fisher—does not generally capture second-order information.
We further argue that the conditions under which the empirical
Fisher approaches the Fisher (and the Hessian) are unlikely to be
met in practice, and that, even on simple optimization problems,
the pathologies of the empirical Fisher can have undesirable effects.

The empirical Fisher does, however, contain useful information as
it is the non-central covariance matrix of the stochastic gradient. We
point to the concept of variance adaptation as a possible alternative
explanation for the empirical success of methods that precondition
with the empirical Fisher.

This chapter is based on the conference paper:

Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations
of the empirical Fisher approximation for natural gradient descent.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 4156–4167. Curran Associates, Inc., 2019

Coauthor contributions:

Sc. Ideas Experiments Interpretation Writing
Frederik Kunstner 50% 80% 50% 50%
Lukas Balles 40% 20% 40% 40%
Philipp Hennig 10% 0% 10% 10%

7.1 Introduction

In this chapter, we will make additional assumptions about the op-
timization problem compared to the generic form given in Eq. (3.1).
We assume that θ ∈ Rd parametrizes a probabilistic model for
the conditional distribution of an output y given an input x, i.e.,
pθ(y|x). We further assume that the loss is the negative log likeli-

74 noise-aware stochastic optimization

hood thereof, `n(θ) := − log pθ(yn|xn) and that the probabilistic
model is of the form pθ(y|x) = p(y| f (x, θ)), where p(y|·) is an ex-
ponential family with natural parameters in F and f : X×Rd → F

is a prediction function parameterized by θ ∈ Rd. (The prediction
function could be anything from a simple linear map to a complex
neural network architecture.) Our objective thus reads

R(θ) def
= −∑

n
log pθ(yn|xn) = −∑

n
log p(yn| f (xn, θ)). (7.1)

This framework covers many common scenarios such as least-
squares regression (Y = F = R and p(y| f) = N (y; f , 1)) or C-class
classification with cross-entropy loss (Y = {1, . . . , C}, F = RC and
p(y = c| f) = exp(fc)/ ∑i exp(fi)).

Gradient descent updates of the form θt+1 = θt − αt∇R(θt) can
be preconditioned with a matrix Bt that incorporates additional in-
formation, such as local curvature, leading to updates of the form
θt+1 = θt − γtBt

−1∇R(θt). Choosing Bt to be the Hessian yields
Newton’s method, but its computation is often burdensome and
might not be desirable for non-convex problems. A prominent vari-
ant in machine learning is natural gradient descent [ngd; Amari,
1998]. It adapts to the information geometry of the problem by mea-
suring the distance between parameters with the Kullback–Leibler
divergence between the resulting distributions rather than their
Euclidean distance, using the Fisher information matrix (or simply
“Fisher”) of the model as a preconditioner,

F(θ) def
= ∑

n
Epθ(y|xn)

[
∇θ log pθ(y|xn)∇θ log pθ(y|xn)

T
]

. (7.2)

While this motivation is conceptually distinct from approximating
the Hessian, the Fisher coincides with a generalized Gauss-Newton
[Schraudolph, 2002] approximation of the Hessian for objectives
of the form Eq. (7.1). This gives ngd theoretical grounding as an
approximate second-order method.

A number of recent works in machine learning have relied on
a certain approximation of the Fisher, which is often called the
empirical Fisher (EF) and is defined as

F̃(θ) := ∑
n
∇θ log pθ(yn|xn)∇θ log pθ(yn|xn)

T. (7.3)

At first glance, this approximation is merely replacing the expecta-
tion over y in Eq. (7.2) with a sample yn. However, yn is a training
label and not a sample from the model’s predictive distribution
pθ(y|xn). Therefore, and contrary to what its name suggests, the
empirical Fisher is not an empirical (i.e. Monte Carlo) estimate of
the Fisher. Due to the unclear relationship between the model dis-
tribution and the data distribution, the theoretical grounding of the
empirical Fisher approximation is dubious.

Adding to the confusion, the term “empirical Fisher” is used by
different communities to refer to different quantities. Authors closer
to statistics tend to use “empirical Fisher” for Eq. (7.2), while many

natural gradient descent and the “empirical fisher” 75

Dataset

y = θx+ b

GD NGD EF Figure 7.1: Fisher vs. empirical Fisher
as preconditioners for linear least-
squares regression on the data shown
in the left-most panel. The second plot
shows the gradient vector field of the
(quadratic) loss function and sample
trajectories for gradient descent. The
remaining plots depict the vector fields
of the natural gradient and the “EF-
preconditioned” gradient, respectively.
ngd successfully adapts to the curva-
ture whereas preconditioning with the
empirical Fisher results in a distorted
gradient field.works in machine learning, some listed in Section 7.2, use “empir-

ical Fisher” for Eq. (7.3). While the statistical terminology is more
accurate, we adopt the term “Fisher” for Eq. (7.2) and “empirical
Fisher” for Eq. (7.3), which is the subject of this work, to be accessi-
ble to readers more familiar with this convention. We elaborate on
the different uses of the terminology in Section 7.3.1.

The main purpose of this work is to provide a detailed crit-
ical discussion of the empirical Fisher approximation. While
the discrepancy between the empirical Fisher and the Fisher has
been mentioned in the literature before [Pascanu and Bengio, 2014,
Martens, 2020], we see the need for a detailed elaboration of the
subtleties of this important issue. The intricacies of the relation-
ship between the empirical Fisher and the Fisher remain opaque
from the current literature. Not all authors using the EF seem to
be fully aware of the heuristic nature of this approximation and
overlook its shortcomings, which can be seen clearly even on simple
linear regression problems, see Fig. 7.1. Natural gradients adapt
to the curvature of the function using the Fisher while the empir-
ical Fisher distorts the gradient field in a way that lead to worse
updates than gradient descent.

The empirical Fisher approximation is so ubiquitous that it is
sometimes just called the Fisher [e.g., Chaudhari et al., 2017, Wen
et al., 2020]. Possibly as a result of this, there are examples of algo-
rithms involving the Fisher, such as Elastic Weight Consolidation
[Kirkpatrick et al., 2017] and kfac [Martens and Grosse, 2015],
which have been re-implemented by third parties using the em-
pirical Fisher. Interestingly, there is also at least one example of an
algorithm that was originally developed using the empirical Fisher
and later found to work better with the Fisher [Wierstra et al., 2008,
Sun et al., 2009]. As the empirical Fisher is now used beyond opti-
mization, for example as an approximation of the Hessian in em-
pirical works studying properties of neural networks [Chaudhari
et al., 2017, Jastrzębski et al., 2018], the pathologies of the EF ap-
proximation may lead the community to erroneous conclusions—an
arguably more worrysome outcome than a suboptimal precondi-
tioner.

The poor theoretical grounding stands in stark contrast to the
practical success that empirical Fisher-based methods have seen.
This paper is in no way meant to negate these practical advances
but rather points out that the existing justifications for the approx-

76 noise-aware stochastic optimization

imation are insufficient and do not stand the test of simple exam-
ples. This indicates that there are effects at play that currently elude
our understanding, which is not only unsatisfying, but might also
prevent advancement of these methods. We hope that this paper
helps spark interest in understanding these effects; our final section
explores a possible direction.

7.1.1 Overview and Contributions

We first provide a short but complete overview of the natural gra-
dient and the closely related generalized Gauss-Newton method.
Our main contribution is a critical discussion of the specific ar-
guments used to advocate the empirical Fisher approximation. A
principal conclusion is that, while the empirical Fisher follows the
formal definition of a generalized Gauss-Newton matrix, it is not
guaranteed to capture any useful second-order information. We
propose a clarifying amendment to the definition of a generalized
Gauss-Newton to ensure that all matrices satisfying it have useful
approximation properties. Furthermore, while there are conditions
under which the empirical Fisher approaches the true Fisher, we
argue that these are unlikely to be met in practice. We illustrate that
using the empirical Fisher can lead to highly undesirable effects;
Fig. 7.1 shows a first example.

This raises the question: Why are methods based on the empir-
ical Fisher practically successful? We point to an alternative expla-
nation, as an adaptation to gradient noise in stochastic optimization
instead of an adaptation to curvature.

7.2 Related Work

The generalized Gauss-Newton [Schraudolph, 2002] and natural
gradient descent [Amari, 1998] methods have inspired a line of
work on approximate second-order optimization [Martens, 2010,
Botev et al., 2017, Park et al., 2000, Pascanu and Bengio, 2014, Ol-
livier, 2015]. A successful example in modern deep learning is the
kfac algorithm [Martens and Grosse, 2015], which uses a computa-
tionally efficient structural approximation to the Fisher.

Numerous papers have relied on the empirical Fisher approxi-
mation for preconditioning and other purposes. Our critical discus-
sion is in no way intended as an invalidation of these works. All of
them provide important insights and the use of the empirical Fisher
is usually not essential to the main contribution. However, there is
a certain degree of vagueness regarding the relationship between
the Fisher, the EF, Gauss-Newton matrices and the Hessian. Often-
times, only limited attention is devoted to possible implications of
the empirical Fisher approximation.

The most prominent example of preconditioning with the EF is
adam, which uses a moving average of squared gradients as “an
approximation to the diagonal of the Fisher information matrix”

natural gradient descent and the “empirical fisher” 77

[Kingma and Ba, 2015]. The EF has been used in the context of
variational inference by various authors [Graves, 2011, Zhang et al.,
2018, Salas et al., 2018, Khan et al., 2018, Mishkin et al., 2018], some
of which have drawn further connections between ngd and adam.
There are also several works building upon which substitute the EF
for the Fisher [George et al., 2018, Osawa et al., 2019].

The empirical Fisher has also been used as an approximation of
the Hessian for purposes other than preconditioning. Chaudhari
et al. [2017] use it to investigate curvature properties of deep learn-
ing training objectives. It has also been employed to explain certain
characteristics of sgd [Zhu et al., 2019, Jastrzębski et al., 2018] or as
a diagnostic tool during training [Liao et al., 2020].

Le Roux et al. [2008] and Roux and Fitzgibbon [2010] have con-
sidered the empirical Fisher in its interpretation as the (non-central)
covariance matrix of stochastic gradients. While they refer to their
method as “Online Natural Gradient”, their goal is explicitly to
adapt the update to the stochasticity of the gradient estimate, not to
curvature. We will return to this perspective in Section 7.5.

Before moving on, we want to re-emphasize that other authors
have previously raised concerns about the empirical Fisher approx-
imation [e.g., Pascanu and Bengio, 2014, Martens, 2020]. This paper
is meant as a detailed elaboration of this known but subtle issue,
with novel results and insights. Concurrent to our work, Thomas
et al. [2020] investigated similar issues in the context of estimating
the generalization gap using information criteria.

7.3 Generalized Gauss-Newton and Natural Gradient Descent

This section briefly introduces natural gradient descent, addresses
the difference in terminology for the quantities of interest across
fields, introduces the generalized Gauss-Newton (GGN) and re-
views the connections between the Fisher, the GGN, and the Hes-
sian.

7.3.1 Natural Gradient Descent

Gradient descent follows the direction of “steepest descent”, the
negative gradient. But the definition of steepest depends on a no-
tion of distance and the gradient is defined with respect to the
Euclidean distance. The natural gradient is a concept from infor-
mation geometry [Amari, 1998] and applies when the gradient is
taken w.r.t. the parameters θ of a family of probability distribu-
tions pθ . Instead of measuring the distance between parameters θ

and θ′ with the Euclidean distance, we use the Kullback–Leibler
(KL) divergence between the distributions pθ and pθ′ . The resulting
steepest descent direction is the negative gradient preconditioned
with the Hessian of the KL divergence, which is exactly the Fisher

78 noise-aware stochastic optimization

information matrix of pθ ,

F(θ) def
= Epθ(z)

[
∇θ log pθ(z)∇θ log pθ(z)T

]

= Epθ(z)

[
−∇2

θ logθ pθ(z)
]

.
(7.4)

The second equality may seem counterintuitive, but the difference
between the outer product of gradients and the Hessian cancels
out in expectation with respect to the model distribution at θ, see
Appendix D.1. This equivalence highlights the relationship of the
Fisher to the Hessian.

7.3.2 Difference in Terminology Across Fields

In our setting, we only model the conditional distribution pθ(y|x) of
the joint distribution pθ(x, y) = p(x)pθ(y|x). The Fisher information
of θ for N samples from the joint distribution pθ(x, y) is

F∏n pθ(x,y)(θ) = NEx,y∼p(x)pθ(y|x)
[
∇θ log pθ(y|x)∇θ log pθ(y|x)T

]
,

(7.5)

This is what statisticians would call the “Fisher information” of the
model pθ(x, y). However, we typically do not know the distribution
over inputs p(x), so we use the empirical distribution over x instead
and compute the Fisher information of the conditional distribution
∏n pθ(y|xn);

F∏n pθ(y|xn)(θ) = ∑
n

Ey∼pθ(y|xn)

[
∇θ log pθ(y|xn)∇θ log pθ(y|xn)

T
]

.

(7.6)

This is Eq. (7.2), which we call the “Fisher”. This is the terminology
used by work on the application of natural gradient methods in
machine learning, such as Martens [2020] and Pascanu and Bengio
[2014], as it is the Fisher information for the distribution we are
optimizing, ∏n pθ(y|xn). Work closer to the statistics literature,
following the seminal paper of Amari [1998], such as Park et al.
[2000] and Karakida et al. [2019], call this quantity the “empirical
Fisher” due to the usage of the empirical samples for the inputs. In
contrast, we call Eq. (7.3) the “empirical Fisher”, restated here,

F̃(θ) = ∑
n
∇θ log pθ(yn|xn)∇θ log pθ(yn|xn)

T, (7.7)

where “empirical” describes the use of samples for both the inputs
and the outputs. This expression, however, does not have a direct
interpretation as a Fisher information as it does not sample the out-
put according to the distribution defined by the model. Neither is it
a Monte Carlo approximation of Eq. (7.6), as the samples yn do not
come from pθ(y|xn) but from the data distribution p(y|xn). How
close the empirical Fisher (Eq. 7.7) is to the Fisher (Eq. 7.6) depends
on how close the model pθ(y|xn) is to the true data-generating dis-
tribution p(y|xn).

natural gradient descent and the “empirical fisher” 79

Quantity Statistics terminology ML terminology

F∏n pθ(x,y) Eq. (7.5) Fisher
F∏n pθ(y|xn) Eq. (7.6) empirical Fisher Fisher
F̃ Eq. (7.7) empirical Fisher

Table 7.1: Common terminology for
the Fisher information and related
matrices by authors closely aligned
with statistics, such as Amari [1998],
Park et al. [2000], and Karakida et al.
[2019], or machine learning, such as
Martens [2010], Schaul et al. [2013],
and Pascanu and Bengio [2014].

7.3.3 Generalized Gauss-Newton

One line of argument justifying the use of the empirical Fisher
approximation uses the connection between the Hessian and the
Fisher through the generalized Gauss-Newton (GGN) matrix
[Schraudolph, 2002]. Here, we give a condensed overview of the
definition and properties of the GGN.

The original Gauss-Newton algorithm is an approximation to
Newton’s method for nonlinear least squares problems, R(θ) =
1
2 ∑n(f (xn, θ)− yn)2. By the chain rule, the Hessian can be written
as

∇2R(θ) = ∑
n
∇θ f (xn, θ)∇θ f (xn, θ)T

︸ ︷︷ ︸
=:G(θ)

+∑
n

rn∇2
θ f (xn, θ)

︸ ︷︷ ︸
=:Γ(θ)

, (7.8)

where rn = f (xn, θ)− yn are the residuals. The first part, G(θ), is
the Gauss-Newton matrix. For small residuals, Γ(θ) will be small
and G(θ) will approximate the Hessian. In particular, when the
model perfectly fits the data, the Gauss-Newton is equal to the
Hessian.

Schraudolph [2002] generalized this idea to objectives of the
form R(θ) = ∑n an(bn(θ)), with bn : Rd → RM and an : RM → R,
for which the Hessian can be written as1 1 Jθbn(θ) ∈ RM×d is the Jacobian of

bn; we use the shortened notation
∇2

ban(bn(θ)) := ∇2
ban(b)|b=bn(θ); [·]m

selects the m-th component of a vector;
and b(m)

n denotes the m-th component
function of bn.

∇2R(θ) = ∑
n
(Jθbn(θ))

T ∇2
ban(bn(θ)) (Jθbn(θ))

+ ∑
n,m

[∇ban(bn(θ))]m∇2
θb(m)

n (θ).
(7.9)

The generalized Gauss-Newton matrix (GGN) is defined as the part
of the Hessian that ignores the second-order information of bn,

G(θ) := ∑
n
[Jθbn(θ)]

T ∇2
ban(bn(θ)) [Jθbn(θ)]. (7.10)

If an is convex, as is customary, the GGN is positive (semi-)definite
even if the Hessian itself is not, making it a popular curvature ma-
trix in non-convex problems such as neural network training. The
GGN is ambiguous as it crucially depends on the “split” given
by an and bn. As an example, consider the two following possible
splits for the least-squares problem from above:

an(b) =
1
2
(b− yn)

2, bn(θ) = f (xn, θ), or (7.11)

an(b) =
1
2
(f (xn, b)− yn)

2, bn(θ) = θ. (7.12)

80 noise-aware stochastic optimization

The first recovers the classical Gauss-Newton, while in the second
case, the GGN equals the Hessian. While this is an extreme exam-
ple, the split will be important for our discussion.

7.3.4 Connections Between the Fisher, the GGN and the Hessian

While ngd is not explicitly motivated as an approximate second-
order method, the following result, noted by several authors,2 2 Heskes [2000] showed this for re-

gression with squared loss, Pascanu
and Bengio [2014] for classification
with cross-entropy loss, and Martens
[2020] for general exponential families.
However, this has been known earlier
in the statistics literature in the context
of “Fisher Scoring” (see Wang [2010]
for a review).

shows that the Fisher captures partial curvature information about
the problem defined in Eq. (7.1).

Proposition 7.1 (Martens [2020], §9.2). If p(y| f) is an exponential
family distribution with natural parameters f ∈ F, then the Fisher
information matrix coincides with the GGN of the objective in Eq. (7.1)
using the split

an(b) = − log p(yn|b), bn(θ) = f (xn, θ), (7.13)

and reads

F(θ) = G(θ) = −∑
n
[Jθ f (xn, θ)]T∇2

f log p(yn| f (xn, θ)) [Jθ f (xn, θ)].

(7.14)

For completeness, a proof can be found in Appendix D.2. The
key insight is that ∇2

f log p(y| f) does not depend on y for exponen-
tial families. One can see Eq. (7.13) as the “canonical” split, since it
matches the classical Gauss-Newton for the probabilistic interpre-
tation of least-squares. From now on, when referencing “the GGN”
without further specification, we mean this particular split.

The GGN, and under the assumptions of Proposition 7.1 also
the Fisher, are well-justified approximations of the Hessian and we
can bound their approximation error in terms of the (generalized)
residuals, mirroring the motivation behind the classical Gauss-
Newton (Proof in Appendix D.2.2).

Proposition 7.2. Let R(θ) be defined as in Eq. (7.1) with F = RM.
Denote by f (m)

n the m-th component of f (xn, ·) : RD→ RM and assume
each f (m)

n is β-smooth. Let G(θ) be the GGN (Eq. 7.10). Then,

‖∇2R(θ)− G(θ)‖2
2 ≤ r(θ)β, (7.15)

where ‖ · ‖2 denotes the spectral norm for matrices and

r(θ)
def
=

N

∑
n=1
‖∇ f log p(yn| f (xn, θ))‖1. (7.16)

The approximation improves as the residuals in r(θ) diminish,
and is exact if the data is perfectly fit.

7.4 Critical Discussion of the Empirical Fisher

Two arguments have been put forward to advocate the empirical
Fisher approximation. Firstly, it has been argued that it follows

natural gradient descent and the “empirical fisher” 81

the definition of a generalized Gauss-Newton matrix, making it an
approximate curvature matrix in its own right. We examine this
relation in §7.4.1 and show that, while technically correct, it does
not entail the approximation guarantee usually associated with the
GGN.

Secondly, a popular argument is that the empirical Fisher ap-
proaches the Fisher at a minimum if the model “is a good fit for
the data”. We discuss this argument in §7.4.2 and point out that it
requires strong additional assumptions, which are unlikely to be
met in practical scenarios. In addition, this argument only applies
close to a minimum, which calls into question the usefulness of the
empirical Fisher as a preconditioner in the early phase of optimiza-
tion. We discuss this in §7.4.3, showing that preconditioning with
the empirical Fisher leads to adverse effects on the scaling and the
direction of the updates far from an optimum.

We use simple examples to illustrate our arguments. We want
to emphasize that—as counter-examples to arguments found in the
existing literature—they are designed to be as simple as possible,
and deliberately do not involve intricate state-of-the art models that
would complicate analysis. On a related note, while contemporary
machine learning often relies on stochastic optimization, we restrict
our considerations to the deterministic (full-batch) setting to focus
on the adaptation to curvature.

7.4.1 The Empirical Fisher as a Generalized Gauss-Newton Matrix

The first justification for the empirical Fisher is that it matches the
construction of a generalized Gauss-Newton (Eq. 7.10) using the
split [Bottou et al., 2018]

an(b) = − log b, bn(θ) = p(yn| f (xn, θ)). (7.17)

Although technically correct,3 we argue that this split does not 3 The equality can easily be verified by
plugging the split (7.17) into the defini-
tion of the GGN (Eq. 7.10) and observ-
ing that ∇2

ban(b) = ∇ban(b)∇ban(b)T

as a special property of the choice
an(b) = − log(b).

provide a reasonable approximation.
For example, consider a least-squares problem which corre-

sponds to the log-likelihood log p(y| f) = log exp[− 1
2 (y− f)2]. In

this case, Eq. (7.17) splits the identity function, log exp(·), and takes
into account the curvature from the log while ignoring that of exp.
This questionable split runs counter to the basic motivation behind
the classical Gauss-Newton matrix, that small residuals lead to a
good approximation to the Hessian: The empirical Fisher

F̃(θ) = ∑
n
∇θ log pθ(yn|xn)∇θ log pθ(yn|xn)

T

= ∑
n

r2
n ∇θ f (xn, θ)∇θ f (xn, θ)T,

(7.18)

approaches zero as the residuals rn = f (xn, θ)− yn become small.
In that same limit, the Fisher F(θ) = ∑n∇ f (xn, θ)∇ f (xn, θ)T does
approach the Hessian, which we recall from Eq. (7.8) to be given
by ∇2R(θ) = F(θ) + ∑n rn∇2

θ f (xn, θ). This argument generally
applies for problems where we can fit all training samples such

82 noise-aware stochastic optimization

that ∇θ log pθ(yn|xn) = 0 for all n. In such cases, the EF goes to
zero while the Fisher (and the corresponding GGN) approaches the
Hessian (Prop. 7.2), which will generally be non-zero.

For the generalized Gauss-Newton, the role of the “residual”
is played by the gradient ∇ban(b); compare Equations (7.8) and
(7.9). To retain the motivation behind the classical Gauss-Newton,
the split should be chosen such that this gradient can in principle
attain zero, in which case the residual curvature not captured by
the GGN in (7.9) vanishes. The EF split (Eq. 7.17) does not satisfy
this property, as ∇b log b can never go to zero for a probability b ∈
[0, 1]. It might be desirable to amend the definition of a generalized
Gauss-Newton to enforce this property (addition in bold):

Definition 7.1 (Generalized Gauss-Newton). A split R(θ) =

∑n an(bn(θ)) with convex an, leads to a generalized Gauss-Newton ma-
trix of R, defined as

G(θ) = ∑
n

Gn(θ), Gn(θ) := [Jθbn(θ)]
T ∇2

ban(bn(θ)) [Jθbn(θ)],

(7.19)

if the split an, bn is chosen such that there is b∗n ∈ Im(bn) such that
∇ban(b)|b=b∗n = 0.

Under suitable smoothness conditions, a split satisfying this con-
dition will have a meaningful error bound akin to Proposition 7.2.
To avoid confusion, we want to note that this condition does not
assume the existence of θ∗ such that bn(θ∗) = b∗n for all n; only that
the residual gradient for each data point can, in principle, go to
zero.

7.4.2 The Empirical Fisher Near a Minimum

An often repeated argument is that the empirical Fisher converges
to the true Fisher when the model is a good fit for the data [e.g.,
Jastrzębski et al., 2018, Zhu et al., 2019]. Unfortunately, this is often
misunderstood to simply mean “near the minimum”. The above
statement has to be carefully formalized and requires additional
assumptions, which we detail in the following.

Assume that the training data consists of iid samples from some
data-generating distribution ptrue(x, y) = ptrue(y|x)ptrue(x). If the
model is realizable, i.e., there exists a parameter setting θT such
that pθT(y|x) = ptrue(y|x), then clearly by a Monte Carlo sampling
argument,

F̃(θT)/N → F(θT)/N, N → ∞. (7.20)

Additionally, if the maximum likelihood estimate for N samples θ?N
is consistent in the sense that pθ?N

(y|x) converges to ptrue(y|x) as
N → ∞,

1
N

F̃(θ?N)
N→∞−→ 1

N
F(θ?N). (7.21)

natural gradient descent and the “empirical fisher” 83

That is, the empirical Fisher converges to the Fisher at the min-
imum as the number of data points grows. (Both approach the
Hessian, as can be seen from the second equality in Eq. 7.4 and de-
tailed in Appendix D.2.2.) For the EF to be a useful approximation,
we thus need

(i) a “correctly-specified” model in the sense of the realizability
condition, and

(ii) enough data to recover the true parameters.

These two requirements are often at odds with each other.

D
a
ta

se
t

Correct Misspecified (A) Misspecified (B)

Q
u

a
d

ra
ti

c
a
p

p
ro

x
im

a
ti

o
n

Loss contour Fisher emp. Fisher Minimum

D
a
ta

se
t

Correct Misspecified (A) Misspecified (B)

Q
u

a
d

ra
ti

c
a
p

p
ro

x
im

a
ti

o
n

Loss contour Fisher emp. Fisher Minimum

Figure 7.2: Quadratic approximations
of the loss function at the minimum
using the Fisher and the empirical
Fisher on linear regression (top)
and logistic regression (bottom)
problems. The true Fisher coincides
with the GGN in all cases and is a
decent approximation of the true
loss. The EF closely approximates the
Fisher if the model captures the true
data-generating process, but can be
arbitrarily wrong if that assumption
is violated, even though we are at the
exact minimum and use a very large
number of data points.

Correctly-Specified Model Condition (i) requires that the likelihood
p(y| f) is well-specified and that the prediction function f (x, θ) cap-
tures all relevant information. This is possible in classical statistical
modeling of, say, scientific phenomena where the effect of x on y
is modeled based on domain knowledge. But it is unlikely to hold
when the model is only approximate, as is most often the case in
machine learning. We will now illustrate this with various exam-
ples of model misspecification on two-dimensional toy problems
for linear and logistic regression. In both cases the Fisher coincides
with the GGN (Section 7.3.4) making it a well-grounded approxi-
mation of the Hessian at the minimum (and even exact for linear
regression). We compare the empirical and the true Fisher at the
exact minimum and use a very large number of data points, mak-
ing model misspecification the only significant source of deviation
between the two. Figure 7.2 depicts the examples:

• The top row shows a linear regression model, which assumes the
data to be generated as y|x ∼ N (xθ∗ + b∗, 1). If this is fulfilled
(left), the EF is a good approximation of the Fisher and, thus, the

84 noise-aware stochastic optimization

Hessian. The middle panel (Misspecified (A)) shows a situation
where the data is actually generated by y|x ∼ N (xθ∗ + b∗, 2),
that is, the observation noise is higher than the model assumes.
The EF “underestimates” the scale of the Fisher in this situation.
Finally, in the right panel (Misspecified (B)), the true data has a
quadratic relationship that is not captured by the linear model.
The EF deviates substantially from the Fisher both in scale and
shape.

• The plot on the bottom shows logistic regression experiments.
Logistic regression assumes a linear relationship between the fea-
tures and the logits [Hastie et al., 2009, §4.4.5]. This assumption
is fulfilled if the features are generated by two class-conditional
Gaussians with identical covariance matrices (left panel), which
results in a good correspondence between the EF and the true
Fisher. Using different class-conditional covariances (middle
and right panels) violates the logistic regression assumption
and can cause the EF to be arbitrarily wrong. Note: we achieve
classification accuracies of ≥ 85% in the misspecified cases com-
pared to 73% in the well-specified case, which shows that a well-
performing model is not necessarily a well-specified one.

Enough Data It is, of course, possible to satisfy the realizability
condition by using a very flexible prediction function f (x, θ), such
as a deep network. However, this will typically be at odds with
requirement (ii), since “enough” data has to be seen relative to the
model capacity. The higher the model capacity, the more data is
necessary to recover a parameter setting that replicates the true data
distribution. The massively overparameterized models typically
used in deep learning are able to fit the training data almost per-
fectly, even when regularized [Zhang et al., 2017]. As discussed in
7.4.1, this will lead to the individual gradients, and thus the EF, be-
ing close to zero at a minimum, whereas the Hessian will generally
be nonzero.

7.4.3 Preconditioning with the Empirical Fisher Far from an Optimum

The relationship discussed in §7.4.2 only holds close to the min-
imum. Any similarity between pθ(y|x) and ptrue(y|x) is very un-
likely when θ has not been adapted to the data, for example, at the
beginning of an optimization procedure. This makes the empirical
Fisher a questionable choice as a preconditioner, in particular in
such early phases.

In fact, the empirical Fisher can cause severe, adverse distortions
of the gradient field far from the optimum, as evident even on the
elementary linear regression problem of Fig. 7.1. As a consequence,
EF-preconditioned gradient descent compares unfavorably to ngd

even on simple linear regression and classification tasks, as shown
in Fig. 7.3. The cosine similarity plotted in Fig. 7.3 shows that the

natural gradient descent and the “empirical fisher” 85

empirical Fisher can be arbitrarily far from the Fisher in that the
two preconditioned updates point in almost opposite directions.

10−2

100

L
o
ss

BreastCancer

101

102

Boston
100 a1a

0 25 75 100Iteration
-1

1

C
o
si

n
e

(N
G

D
,E

F
G

)

0 25 75 100Iteration
-1

1

0 50Iteration
-1

1

GD
NGD
EFGD

Figure 7.3: Fisher (ngd) vs. empirical
Fisher (efgd) as preconditioners (with
damping) on linear classification
(BreastCancer, a1a) and regression
(Boston). While the EF can be a good
approximation for preconditioning
on some problems (e.g., a1a), it is not
guaranteed to be. The second row
shows the cosine similarity between
the EF direction and the natural
gradient, over the path taken by efgd,
showing that the EF can lead to update
directions that are opposite to the
natural gradient (see Boston). Even
when the direction is correct, the
magnitude of the steps can lead to
poor performance (see BreastCancer).
See Appendix D.3 for details and
additional experiments.

One particular issue is the scaling of EF-preconditioned updates.
As the empirical Fisher is the sum of “squared” gradients (Eq. 7.3),
multiplying the gradient by the inverse of the EF leads to updates
of magnitude almost inversely proportional to that of the gradient,
at least far from the optimum. This effect has to be counteracted by
adapting the step size, which requires manual tuning and makes
the selected step size dependent on the starting point. Fig. 7.4
shows the linear regression problem on the Boston dataset, origi-
nally shown in Fig. 7.3, where each line is a different starting point,
using the same hyperparameters as in Fig. 7.3. The starting points
are selected from [−θ?, θ?], where θ? is the optimum. When the
optimization starts close to the minimum (low loss), the empirical
Fisher is a good approximation to the Fisher and there are very few
differences with ngd. However, when the optimization starts far
from the minimum (high loss), the individual gradients, and thus
the sum of outer product gradients, are large, which leads to very
small steps, regardless of curvature, and slow convergence. While
this could be counteracted with a larger step size in the beginning,
this large step size would not work close to the minimum where it
would cause oscillations. The selection of the step size therefore de-
pends on the starting point, and would ideally follow a decreasing
schedule. ngd does not suffer from these issues.

0 20Iteration
101

102

Boston NGD

EFGD

Figure 7.4: Linear regression on
the Boston dataset with different
starting points (each line is a different
initialization). When the optimization
starts close to the minimum (low initial
loss), the empirical Fisher is a good
approximation to the Fisher and there
are very few differences with ngd,
but the performance degrades as the
optimization procedure starts farther
away (large initial loss).

7.5 Variance Adaptation

The previous sections have shown that, interpreted as a curvature
matrix, the empirical Fisher is a questionable choice at best. An-
other perspective on the empirical Fisher is that, in contrast to the
Fisher, it contains useful information to adapt to the gradient noise
in stochastic optimization.

In stochastic gradient descent [sgd; Robbins and Monro, 1951],
we sample n ∈ [N] uniformly at random and use a stochastic gra-
dient g(θ) = −N ∇θ log pθ(yn|xn) as an inexpensive but noisy
estimate of ∇R(θ). The empirical Fisher, as a sum of outer prod-
ucts of individual gradients, coincides with the non-central second
moment of this estimate and can be written as

NF̃(θ) = Σ(θ) +∇R(θ)∇R(θ)T, Σ(θ) := Cov[g(θ)]. (7.22)

86 noise-aware stochastic optimization

Gradient noise is a major hindrance to sgd and the covariance
information encoded in the EF may be used to attenuate its harmful
effects, e.g., by scaling back the update in high-noise directions.

A small number of works have explored this idea before. Le Roux
et al. [2008] showed that the update direction Σ(θ)−1g(θ) maxi-
mizes the probability of achieving a decrease in function value,
while Schaul et al. [2013] proposed a diagonal rescaling based on
the signal-to-noise ratio of each coordinate, Dii := [∇R(θ)]2i / ([∇R(θ)]2i +
Σ(θ)ii). Balles and Hennig [2018] identified these factors as optimal
in that they minimize the expected error E

[
‖Dg(θ)−∇R(θ)‖2

2
]

for
a diagonal matrix D.

A straightforward extension of this argument to full matrices
yields the variance adaptation matrix

M =
(

Σ(θ) +∇R(θ)∇R(θ)T
)−1
∇R(θ)∇R(θ)T

= (NF̃(θ))−1∇R(θ)∇R(θ)T.
(7.23)

In that sense, preconditioning with the empirical Fisher can be un-
derstood as an adaptation to gradient noise instead of an adap-
tation to curvature. The multiplication with ∇R(θ)∇R(θ)T in
Eq. (7.23) will counteract the poor scaling discussed in §7.4.3.

This perspective on the empirical Fisher is currently not well
studied. Of course, there are obvious difficulties ahead: Comput-
ing the matrix in Eq. (7.23) requires the evaluation of all gradients,
which defeats its purpose. It is not obvious how to obtain meaning-
ful estimates of this matrix from, say, a mini-batch of gradients, that
would provably attenuate the effects of gradient noise. Neverthe-
less, we believe that variance adaptation is a possible explanation
for the practical success of existing methods using the EF and an
interesting avenue for future research. To put it bluntly: it may just
be that the name “empirical Fisher” is a fateful historical misnomer,
and the quantity should instead just be described as the gradient’s
non-central second moment.

As a final comment, it is worth pointing out that some methods
precondition with the square-root of the EF, the prime example being
adam. While this avoids the “inverse gradient” scaling discussed in
§7.4.3, it further widens the conceptual gap between those methods
and natural gradient. In fact, such a preconditioning effectively can-
cels out the gradient magnitude, which has recently been examined
more closely as “sign gradient descent” [Balles and Hennig, 2018,
Bernstein et al., 2018].

7.6 Computational Aspects

The empirical Fisher approximation is often motivated as an easier-
to-compute alternative to the Fisher. While there is some merit
to this argument, we argued above that it computes the wrong
quantity. A Monte Carlo approximation to the Fisher has the same
computational complexity and a similar implementation: sample

natural gradient descent and the “empirical fisher” 87

one output ỹn from the model distribution p(y| f (xn, θ)) for each
input xn and compute the outer product of the gradients

∑
n
∇θ log p(ỹn| f (xn, θ))∇θ log p(ỹn| f (xn, θ))T. (7.24)

While noisy, this one-sample estimate is unbiased and does not
suffer from the problems discussed above. This is the approach
used by Martens and Grosse [2015] and Zhang et al. [2018].

As a side note, some implementations use a biased estimate by
using the most likely output ŷn = arg maxy p(y| f (xn, θ)) instead
of sampling ỹn from p(y| f (xn, θ)). This scheme could be beneficial
in some circumstances as it reduces variance, but it can backfire
by increasing the bias. For the least-squares loss, p(y| f (xn, θ)) is
a Gaussian distribution centered at f (xn, θ) and the most likely
output is f (xn, θ). The gradient ∇θ log p(y| f (xn, θ))|y= f (xn ,θ) is then
always zero.

For high quality estimates, sampling additional outputs and
averaging the results is inefficient. If M Monte Carlo samples
ỹ1, . . . , ỹM per input xn are used to compute the gradients gm =

∇ log p(ỹm| f (xn, θ)), most of the computation is repeated. The gra-
dient gm is

gm = −∇θ log p(ỹm| f (xn, θ)) = −(Jθ f (xn, θ))T∇ f log p(ỹm| f),
(7.25)

where the Jacobian of the model output, Jθ f , does not depend on
ỹm. The Jacobian of the model is typically more expensive to com-
pute than the gradient of the log-likelihood w.r.t. the model output,
especially when the model is a neural network. This approach
repeats the difficult part of the computation M times. The expecta-
tion can instead be computed in closed form using the generalized
Gauss-Newton equation (Eq. D.7, or Eq. 7.10 in the main text),
which requires the computation of the Jacobian only once per sam-
ple xn.

The main issue with this approach is that computing Jacobians is
currently not well supported by deep learning auto-differentiation
libraries, such as TensorFlow or Pytorch. However, the current
implementations relying on the empirical Fisher also suffer from
this lack of support, as they need access to the individual gradients
to compute their outer product. Access to the individual gradients
is equivalent to computing the Jacobian of the vector ,

[− log p(y1| f (x1, θ)), ...,− log p(yN | f (xN , θ)]T. (7.26)

The ability to efficiently compute Jacobians and/or individual
gradients in parallel would drastically improve the practical per-
formance of methods based on the Fisher and empirical Fisher,
as most of the computation of the backward pass can be shared
between samples.

88 noise-aware stochastic optimization

7.7 Conclusions

We offered a critical discussion of the empirical Fisher approxima-
tion, summarized as follows:

• While the empirical Fisher follows the formal definition of a gen-
eralized Gauss-Newton matrix, we argued that the underlying
split of the objective function does not retain useful second-order
information. We proposed a clarifying amendment to the defini-
tion of the GGN.

• A clear relationship between the empirical Fisher and the Fisher
only exists at a minimum under strong additional assump-
tions: (i) a realizable model and (ii) enough data relative to that
model’s capacity. These two conditions are at odds with each
other and unlikely to be met in practice, especially when using
vastly overparametrized general function approximators and
settling for approximate minima, as is common practice in deep
learning.

• Far from an optimum, preconditioning with the empirical Fisher
leads to update magnitudes which are inversely proportional
to that of the gradient, complicating step size tuning and often
leading to poor performance even for linear models.

• As a possible alternative explanation of the practical success
of EF preconditioning, and an interesting avenue for future re-
search, we have pointed to the concept of variance adaptation.

The existing arguments do not justify the empirical Fisher as a
reasonable approximation to the Fisher or the Hessian. Of course,
this does not rule out the existence of certain model classes for
which the EF might give reasonable approximations. However,
as long as we have not clearly identified and understood these
cases, the true Fisher is the “safer” choice as a curvature matrix and
should be preferred in virtually all cases.

Contrary to conventional wisdom, the Fisher is not inherently
harder to compute than the EF. As shown by Martens and Grosse
[2015], an unbiased estimate of the true Fisher can be obtained
at the same computational cost as the empirical Fisher by replac-
ing the expectation in Eq. (7.2) with a single sample ỹn from the
model’s predictive distribution pθ(y|xn); even exact computation
of the Fisher is feasible in many cases, as discussed in Section 7.6.
The apparent reluctance to compute the Fisher might have more
to do with the current lack of convenient implementations in deep
learning libraries. We believe that it is misguided—and potentially
dangerous—to accept the poor theoretical grounding of the EF
approximation purely for implementational convenience.

8
Conclusion

Stochastic optimization algorithms have become the computational
workhorse of contemporary machine learning and, in particular,
deep learning. Custom computer processors have been designed
to compute gradients of deep learning models faster and more ef-
ficiently. Technology companies are housing thousands of them
in their data centers to power machine learning-based services
from speech recognition to object tracking in videos. In light of
that, it is astonishing that we seem to be stuck with the most sim-
plistic optimization algorithms. With the rise of deep learning,
we have shelved half a century worth of research on deterministic
optimization—quasi-Newton methods, line searches, automatic
stopping criteria, to name just a few aspects—and reverted to basic
first-order methods and manual hyperparameter tuning.

There are various reasons for this setback. The training of deep
neural networks poses highly non-convex optimization problems,
which are well known to be fundamentally more challenging.
Tricks and heuristics like rectified linear units [Nair and Hinton,
2010] or batch normalization [Ioffe and Szegedy, 2015] introduce
additional pathologies from the optimization perspective.

This thesis suggests that another major reason is that current
algorithms are unaware of the stochastic error in the evaluations
they receive. They are unable to obtain any information about the
characteristics of the error (e.g., properties such as its covariance)
and they lack any mechanism that would allow them to adapt their
behavior accordingly. In the preceding chapters we have presented
various advances to make stochastic optimization methods noise-
aware.

8.1 Summary

Chapter 4 discussed how batch size and step size influence the
behavior of stochastic gradient descent. We showed that a batch
size of 1 is cost-efficient in a greedy sense, but demands a step
size schedule that decreases with the signal-to-noise ratio of the
stochastic gradient. Accurately estimating that signal-to-noise ratio
is fundamentally ill-posed and, therefore, the optimal step size
schedule is not amenable to automation. An increasing step size

90 noise-aware stochastic optimization

schedule offers an alternative that can be automated in a principled
way. Doing so requires an estimate of the trace of the gradient
covariance matrix, which can be obtained from the evaluation of a
minibatch of gradients.

In Chapter 5, we identified a variance-based adaptation mech-
anism in the the adam optimizer by Kingma and Ba [2015], likely
the most widely-used optimization method in deep learning. We
interpreted adam as a combination of two aspects: sign-sgd and
elementwise variance adaptation. We formalized the variance adap-
tation aspect, which can be seen as an elementwise extension of the
optimal variance-based (scalar) step size identified in Chapter 4. We
transferred it from sign-sgd to sgd to facilitate an ablation study
of the two aspects. Our experiments showed that the sign aspect ac-
counts for most of the empirical difference in performance between
adam and sgd.

Chapter 6 studied that sign aspect in greater detail. Ignoring
stochasticity, we studied sign gradient descent as steepest descent
in the non-Euclidean geometry induced by the maximum norm.
This unified and simplified various existing results on sign-based
optimization methods. We show that an objective function is most
amenable to sign-based methods if its Hessian is characterized by
outlier eigenvalues and a certain degree of diagonal concentration,
which is remarkably in line with recent experimental studies on the
Hessian in deep learning training tasks.

Finally, Chapter 7 examined methods that use the (noncentral)
gradient covariance matrix as a preconditioner for (stochastic) gra-
dient descent. These methods are usually motivated as approximate
versions of natural gradient descent, arguing that the (noncentral)
gradient covariance matrix approximates the Fisher information
and dubbing it the “empirical Fisher”. We showed that this approx-
imation has fundamental theoretical and practical flaws. We argued
that the empirical success of methods that precondition with the
empirical Fisher might better be understood as a form of variance
adaptation, akin to the mechanism discussed in Chapter 5.

8.2 Further Research

The overarching goal of the work presented in this thesis is to de-
vise methods that act like little intelligent agents themselves: They
should autonomously collect information about the stochastic noise
and actively adapt their behavior accordingly. While a lot more
work will be necessary, hopefully, some elements and ideas that
might enable such methods have been provided here.

There are several avenues for further research, most of which
have already been highlighted in the respective chapters. A broader
point that briefly surfaced in multiple chapters is the interplay
between geometry and stochasticity. Most research—including that
presented here—tackles one of these aspects while the other one is
ignored or hidden away in crude bounds that often rely on overly

conclusion 91

simplifying assumptions. However, there are many connections
between the geometry of an empirical risk minimization problem
and its stochastic properties. A more comprehensive approach that
considers both aspects jointly will very likely be fruitful.

Finally, it is the author’s strong conviction that there is an ur-
gent need for more bold and creative research to take us beyond
simple first-order methods in deep learning. Deep learning frame-
works, such as TensorFlow and PyTorch, have clearly helped the
community make enormous progress in recent years. But their
dominance also channels research efforts into ideas that are easy
to realize within those frameworks. With regards to optimization,
this favors simple methods that use exactly one stochastic gradient
evaluation per iteration. Thankfully, we have recently seen some
progress with the emergence of new and more flexible frameworks
[Bradbury et al., 2018] and community efforts to improve existing
ones [Dangel et al., 2020].

9
Bibliography

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

Leonard Adolphs, Jonas Kohler, and Aurelien Lucchi. Ellipsoidal
trust region methods and the marginal value of Hessian informa-
tion for neural network training. arXiv preprint arXiv:1905.09201,
2019.

Shun-ichi Amari. Natural gradient works efficiently in learning.
Neural computation, 10(2):251–276, 1998.

Lukas Balles and Philipp Hennig. Dissecting Adam: The sign,
magnitude and variance of stochastic gradients. In Jennifer G. Dy
and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of
Machine Learning Research, pages 413–422. PMLR, 2018.

Lukas Balles, Maren Mahsereci, and Philipp Hennig. Automizing
stochastic optimization with gradient variance estimates. In
Automatic Machine Learning Workshop at ICML 2017, 2017a.

Lukas Balles, Javier Romero, and Philipp Hennig. Coupling adap-
tive batch sizes with learning rates. In Proceedings of the Thirty-
Third Conference on Uncertainty in Artificial Intelligence (UAI), pages
410–419, 2017b.

Lukas Balles, Fabian Pedregosa, and Nicolas Le Roux. The geom-
etry of sign gradient descent. arXiv preprint arXiv:2002.08056,
2020.

94 noise-aware stochastic optimization

S Becker and Yann LeCun. Improving the convergence of back-
propagation learning with second-order methods. i-voc. 1988

connectionist models summer school, 1988.

Joseph Berkson. Application of the logistic function to bio-assay.
Journal of the American statistical association, 39(227):357–365, 1944.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and
Anima Anandkumar. SignSGD: compressed optimisation for
non-convex problems. In Jennifer G. Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pages 559–568. PMLR, 2018.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and
Animashree Anandkumar. SignSGD with majority vote is com-
munication efficient and fault tolerant. In 7th International Confer-
ence on Learning Representations (ICLR), 2019.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical
Gauss-Newton optimisation for deep learning. In Doina Precup
and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 557–565. PMLR, 06–11 Aug 2017.

Léon Bottou and Olivier Bousquet. The tradeoffs of large scale
learning. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors,
Advances in Neural Information Processing Systems, volume 20.
Curran Associates, Inc., 2008.

Léon Bottou and Yann LeCun. Large scale online learning. In
S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural
Information Processing Systems, volume 16. MIT Press, 2004.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization
methods for large-scale machine learning. SIAM Review, 60(2):
223–311, 2018. doi: 10.1137/16M1080173.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James John-
son, Chris Leary, Dougal Maclaurin, and Skye Wanderman-Milne.
JAX: composable transformations of Python+NumPy programs,
2018. URL http://github.com/google/jax.

Richard H Byrd, Gillian M Chin, Jorge Nocedal, and Yuchen Wu.
Sample size selection in optimization methods for machine learn-
ing. Mathematical Programming, 134(1):127–155, 2012.

David Carlson, Ya-Ping Hsieh, Edo Collins, Lawrence Carin, and
Volkan Cevher. Stochastic spectral descent for discrete graphical
models. IEEE Journal of Selected Topics in Signal Processing, 10(2),
2015.

http://github.com/google/jax

bibliography 95

Augustin Louis Cauchy. Méthode générale pour la résolution des
systemes d’équations simultanées. Comp. Rend. Sci. Paris, 25

(1847):536–538, 1847.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun,
Carlo Baldassi, Christian Borgs, Jennifer Chayes, Levent Sagun,
and Riccardo Zecchina. Entropy-SGD: Biasing gradient descent
into wide valleys. In 5th International Conference on Learning
Representations (ICLR), 2017.

Felix Dangel, Frederik Kunstner, and Philipp Hennig. Backpack:
Packing more into backprop. In 8th International Conference on
Learning Representations (ICLR), 2020.

Soham De, Abhay Yadav, David Jacobs, and Tom Goldstein. Au-
tomated Inference with Adaptive Batches. In Aarti Singh and
Jerry Zhu, editors, Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, volume 54 of Proceedings of
Machine Learning Research, pages 1504–1513, Fort Lauderdale,
Florida, USA, 20–22 Apr 2017. PMLR.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal
of Machine Learning Research, 12(61):2121–2159, 2011.

Michael P Friedlander and Mark Schmidt. Hybrid deterministic-
stochastic methods for data fitting. SIAM Journal on Scientific
Computing, 34(3):A1380–A1405, 2012.

Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-
organizing neural network model for a mechanism of visual
pattern recognition. In Competition and cooperation in neural nets,
pages 267–285. Springer, 1982.

C.F. Gauss. Theoria motus corporum coelestium in sectionibus conicis
solem ambientium. Hamburgi sumptibus Frid. Perthes et I.H.
Besser, 1809.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas,
and Pascal Vincent. Fast approximate natural gradient descent in
a Kronecker-factored eigenbasis. In Samy Bengio, Hanna Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and
Roman Garnett, editors, Advances in Neural Information Processing
Systems 31, pages 9573–9583, Montréal, Canada, 3–8 Dec 2018.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investiga-
tion into neural net optimization via Hessian eigenvalue density.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Pro-
ceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 2232–
2241. PMLR, 9–15 Jun 2019.

Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Olek-
sii Kuchaiev, Vitaly Lavrukhin, Ryan Leary, Jason Li, Huyen

96 noise-aware stochastic optimization

Nguyen, and Jonathan M Cohen. Stochastic gradient methods
with layer-wise adaptive moments for training of deep networks.
arXiv preprint arXiv:1905.11286, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Yee Whye Teh and
Mike Titterington, editors, Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics, volume 9 of
Proceedings of Machine Learning Research, pages 249–256, Sardinia,
Italy, 13–15 May 2010. PMLR.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Ben-
gio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 27. Curran Asso-
ciates, Inc., 2014.

Alex Graves. Practical variational inference for neural networks. In
John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fernando
C. N. Pereira, and Kilian Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 24, pages 2348–2356, Granada,
Spain, 12–14 Dec 2011.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements
of statistical learning: data mining, inference, and prediction. Springer
Verlag, 2009.

Elad Hazan, Kfir Levy, and Shai Shalev-Shwartz. Beyond convexity:
Stochastic quasi-convex optimization. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc.,
2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 770–778,
2016. doi: 10.1109/CVPR.2016.90.

Tom Heskes. On “natural” learning and pruning in multilayered
perceptrons. Neural Computation, 12(4):881–901, 2000.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term mem-
ory. Neural Computation, 9(8):1735–1780, 1997.

Kurt Hornik. Approximation capabilities of multilayer feedforward
networks. Neural networks, 4(2):251–257, 1991.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift. In
Francis Bach and David Blei, editors, Proceedings of the 32nd Inter-
national Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pages 448–456, Lille, France, 07–09

Jul 2015. PMLR.

bibliography 97

Stanisław Jastrzębski, Zac Kenton, Devansh Arpit, Nicolas Ballas,
Asja Fischer, Amos Storkey, and Yoshua Bengio. Three factors
influencing minima in SGD. In International Conference on Artificial
Neural Networks, 2018.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient
descent using predictive variance reduction. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, edi-
tors, Advances in Neural Information Processing Systems, volume 26.
Curran Associates, Inc., 2013.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open
source scientific tools for Python, 2001. URL http://www.scipy.

org/.

Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal
statistics of Fisher information in deep neural networks: Mean
field approach. In Kamalika Chaudhuri and Masashi Sugiyama,
editors, The 22nd International Conference on Artificial Intelligence
and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa,
Japan, volume 89 of Proceedings of Machine Learning Research, pages
1032–1041. PMLR, 2019.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear conver-
gence of gradient and proximal-gradient methods under the
Polyak-Łojasiewicz condition. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer,
2016.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and
Martin Jaggi. Error feedback fixes SignSGD and other gradient
compression schemes. In Proceedings of the 36th International
Conference on Machine Learning (ICML), volume 97 of Proceedings of
Machine Learning Research. PMLR, 2019.

Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sid-
ford. An almost-linear-time algorithm for approximate max flow
in undirected graphs, and its multicommodity generalizations.
In Proceedings of the twenty-fifth annual ACM-SIAM symposium on
discrete algorithms. SIAM, 2014.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P.T.
Tang. On large-batch training for deep learning: Generalization
gap and sharp minima. In 5th International Conference on Learning
Representations (ICLR), 2017.

Mohammad Emtiyaz Khan, Didrik Nielsen, Voot Tangkaratt,
Wu Lin, Yarin Gal, and Akash Srivastava. Fast and scalable
Bayesian deep learning by weight-perturbation in Adam. In Jen-
nifer G. Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of

http://www.scipy.org/
http://www.scipy.org/

98 noise-aware stochastic optimization

Proceedings of Machine Learning Research, pages 2616–2625. PMLR,
2018.

Jack Kiefer, Jacob Wolfowitz, et al. Stochastic estimation of the
maximum of a regression function. The Annals of Mathematical
Statistics, 23(3):462–466, 1952.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In 3rd International Conference on Learning Represen-
tations (ICLR), 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational
Bayes. In 2nd International Conference on Learning Representations
(ICLR), 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness,
Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan,
Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Over-
coming catastrophic forgetting in neural networks. Proceedings of
the National Academy of Sciences, 114(13):3521–3526, 2017.

Mark A Kramer. Nonlinear principal component analysis using
autoassociative neural networks. AIChE journal, 37(2):233–243,
1991.

Alex Krizhevsky. Learning multiple layers of features from tiny
images. Technical report, University of Toronto, 2009.

Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of
the empirical Fisher approximation for natural gradient descent.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 4156–4167. Curran Associates, Inc.,
2019.

Nicolas Le Roux, Pierre-Antoine Manzagol, and Yoshua Bengio.
Topmoumoute online natural gradient algorithm. In J. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural
Information Processing Systems, volume 20. Curran Associates, Inc.,
2008.

Nicolas Le Roux, Mark Schmidt, and Francis Bach. A stochastic
gradient method with an exponential convergence rate for finite
training sets. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc., 2012.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel.
Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

bibliography 99

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert
Müller. Efficient backprop. In Neural networks: Tricks of the trade,
pages 9–48. Springer, 1998.

A.M. Legendre. Nouvelles méthodes pour la détermination des orbites
des comètes. 1805.

Kfir Y Levy. The power of normalization: Faster evasion of saddle
points. arXiv preprint arXiv:1611.04831, 2016.

Xinyan Li, Qilong Gu, Yingxue Zhou, Tiancong Chen, and Arindam
Banerjee. Hessian based analysis of SGD for deep nets: Dynamics
and generalization. In Proceedings of the 2020 SIAM International
Conference on Data Mining, pages 190–198. SIAM, 2020.

Zhibin Liao, Tom Drummond, Ian Reid, and Gustavo Carneiro. Ap-
proximate Fisher information matrix to characterise the training
of deep neural networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 42(1):15–26, 2020.

Maren Mahsereci and Philipp Hennig. Probabilistic line searches
for stochastic optimization. In C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems 28, pages 181–189. Curran Associates,
Inc., 2015.

Maren Mahsereci and Philipp Hennig. Probabilistic line searches
for stochastic optimization. Journal of Machine Learning Research,
18(119):1–59, 2017.

James Martens. Deep learning via Hessian-free optimization. In
Johannes Fürnkranz and Thorsten Joachims, editors, Proceedings
of the 27th International Conference on Machine Learning (ICML-10),
June 21-24, 2010, Haifa, Israel, pages 735–742. Omnipress, 2010.

James Martens. New insights and perspectives on the natural
gradient method. Journal of Machine Learning Research, 21(146):
1–76, 2020.

James Martens and Roger Grosse. Optimizing neural networks
with Kronecker-factored approximate curvature. In Francis Bach
and David M. Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37 of JMLR Workshop and Conference Proceedings,
pages 2408–2417, 2015.

Aaron Mishkin, Frederik Kunstner, Didrik Nielsen, Mark Schmidt,
and Mohammad Emtiyaz Khan. SLANG: Fast structured co-
variance approximations for Bayesian deep learning with natural
gradient. In Samy Bengio, Hanna Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, ed-
itors, Advances in Neural Information Processing Systems 31, pages
6248–6258. Curran Associates, Inc., Montréal, Canada, 3–8 Dec
2018.

100 noise-aware stochastic optimization

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve
restricted Boltzmann machines. In Johannes Fürnkranz and
Thorsten Joachims, editors, Proceedings of the 27th International
Conference on Machine Learning, pages 807–814. Omnipress, 2010.

Yurii Nesterov. A method of solving a convex programming prob-
lem with convergence rate O(1/k2). In Soviet Mathematics Dok-
lady, volume 27, pages 372–376, 1983.

Yurii Nesterov. Lectures on Convex Optimization. Springer Publishing
Company, Incorporated, 2nd edition, 2018. ISBN 3319915770.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,
Bo Wu, and Andrew Y Ng. Reading digits in natural images with
unsupervised feature learning. NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Isaac Newton. De analysi per aequationes numero terminorum infinitas.
1711.

Yann Ollivier. Riemannian metrics for neural networks I: feedfor-
ward networks. Information and Inference: A Journal of the IMA, 4

(2):108–153, 2015.

Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio
Yokota, and Satoshi Matsuoka. Large-scale distributed second-
order optimization using Kronecker-factored approximate curva-
ture for deep convolutional neural networks. In The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages
12359–12367. Computer Vision Foundation / IEEE, June 2019.

Vardan Papyan. The full spectrum of deep net Hessians at scale:
Dynamics with sample size. arXiv preprint arXiv:1811.07062, 2018.

Courtney Paquette and Katya Scheinberg. A stochastic line search
method with expected complexity analysis. SIAM Journal on
Optimization, 30(1):349–376, 2020. doi: 10.1137/18M1216250.

Hyeyoung Park, Shun-ichi Amari, and Kenji Fukumizu. Adap-
tive natural gradient learning algorithms for various stochastic
models. Neural Networks, 13(7):755–764, 2000.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for
deep networks. In Yoshua Bengio and Yann LeCun, editors, 2nd
International Conference on Learning Representations (ICLR), 2014.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Na-
talia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,

bibliography 101

Advances in Neural Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019.

Boris T Polyak. Some methods of speeding up the convergence of
iteration methods. USSR Computational Mathematics and Mathe-
matical Physics, 4(5):1–17, 1964.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for
activation functions. arXiv preprint arXiv:1710.05941, 2017.

Martin Riedmiller and Heinrich Braun. A direct adaptive method
for faster backpropagation learning: The RPROP algorithm. In
IEEE International Conference on Neural Networks, pages 586–591,
1993.

Herbert Robbins and Sutton Monro. A stochastic approximation
method. The Annals of Mathematical Statistics, pages 400–407, 1951.

Jiri Rohn. Computing the norm ‖A‖∞,1 is NP-hard. Linear &
Multilinear Algebra, 47, 2000.

Frank Rosenblatt. The perceptron: a probabilistic model for infor-
mation storage and organization in the brain. Psychological review,
65(6):386, 1958.

Nicolas Le Roux and Andrew Fitzgibbon. A fast natural Newton
method. In Johannes Fürnkranz and Thorsten Joachims, editors,
Proceedings of the 27th International Conference on Machine Learning,
pages 623–630, Haifa, Israel, June 2010. Omnipress.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
Learning representations by back-propagating errors. Nature, 323:
533–536, 1986.

Mher Safaryan and Peter Richtárik. On stochastic sign descent
methods. arXiv preprint arXiv:1905.12938, 2019.

Arnold Salas, Stefan Zohren, and Stephen Roberts. Practical
Bayesian learning of neural networks via adaptive subgradient
methods. arXiv preprint arXiv:1811.03679, 2018.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learn-
ing rates. In Sanjoy Dasgupta and David McAllester, editors,
Proceedings of the 30th International Conference on Machine Learn-
ing, volume 28 of Proceedings of Machine Learning Research, pages
343–351, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

Nicol N. Schraudolph. Fast curvature matrix-vector products for
second-order gradient descent. Neural Computation, 14(7):1723–
1738, 2002.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit
stochastic gradient descent and its application to data-parallel
distributed training of speech DNNs. In Fifteenth Annual Confer-
ence of the International Speech Communication Association, 2014.

102 noise-aware stochastic optimization

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar,
and Nathan Srebro. The implicit bias of gradient descent on
separable data. Journal of Machine Learning Research, 19(70):1–57,
2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent
neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958, 2014.

Yi Sun, Daan Wierstra, Tom Schaul, and Jürgen Schmidhuber. Effi-
cient natural evolution strategies. In Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation, pages 539–546,
2009.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hin-
ton. On the importance of initialization and momentum in deep
learning. In Sanjoy Dasgupta and David McAllester, editors,
Proceedings of the 30th International Conference on Machine Learn-
ing, volume 28 of Proceedings of Machine Learning Research, pages
1139–1147, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

Valentin Thomas, Fabian Pedregosa, Bart van Merriënboer, Pierre-
Antoine Manzagol, Yoshua Bengio, and Nicolas Le Roux. On the
interplay between noise and curvature and its effect on optimiza-
tion and generalization. In Silvia Chiappa and Roberto Calandra,
editors, Proceedings of the Twenty Third International Conference on
Artificial Intelligence and Statistics, volume 108 of Proceedings of
Machine Learning Research, pages 3503–3513. PMLR, 26–28 Aug
2020.

Tijmen Tieleman and Geoffrey Hinton. RMSPROP: Divide the
gradient by a running average of its recent magnitude. Coursera
Online Course: Neural networks for machine learning, Lecture
6.5, 2012.

Vladimir Vapnik. Principles of risk minimization for learning
theory. In J. Moody, S. Hanson, and R. P. Lippmann, editors, Ad-
vances in Neural Information Processing Systems, volume 4. Morgan-
Kaufmann, 1992.

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt,
Gauthier Gidel, and Simon Lacoste-Julien. Painless stochastic
gradient: Interpolation, line-search, and convergence rates. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio,
and Pierre-Antoine Manzagol. Stacked denoising autoencoders:
Learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research, 11(110):
3371–3408, 2010.

bibliography 103

Yong Wang. Fisher scoring: An interpolation family and its Monte
Carlo implementations. Computational Statistics & Data Analysis,
54(7):1744–1755, 2010.

Yeming Wen, Kevin Luk, Maxime Gazeau, Guodong Zhang, Harris
Chan, and Jimmy Ba. An empirical study of stochastic gradient
descent with structured covariance noise. In Silvia Chiappa and
Roberto Calandra, editors, Proceedings of the Twenty Third Inter-
national Conference on Artificial Intelligence and Statistics, volume
108 of Proceedings of Machine Learning Research, pages 3621–3631.
PMLR, 26–28 Aug 2020.

Daan Wierstra, Tom Schaul, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. In 2008 IEEE Congress on Evolu-
tionary Computation (IEEE World Congress on Computational Intelli-
gence), pages 3381–3387, 2008.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and
Benjamin Recht. The marginal value of adaptive gradient meth-
ods in machine learning. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A
novel image dataset for benchmarking machine learning algo-
rithms. arXiv preprint arXiv:1708.07747, 2017.

Adams Wei Yu, Lei Huang, Qihang Lin, Ruslan Salakhutdinov,
and Jaime Carbonell. Block-normalized gradient method: An
empirical study for training deep neural network. arXiv preprint
arXiv:1707.04822, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks.
In Proceedings of the British Machine Vision Conference (BMVC),
pages 87.1–87.12, September 2016.

Matthew D Zeiler. ADADELTA: An adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals. Understanding deep learning requires rethinking
generalization. In 5th International Conference on Learning Represen-
tations (ICLR), 2017.

Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger
Grosse. Noisy natural gradient as variational inference. In
Jennifer G. Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80

of Proceedings of Machine Learning Research, pages 5847–5856.
PMLR, 2018.

104 noise-aware stochastic optimization

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Anal-
ysis of gradient clipping and adaptive scaling with a relaxed
smoothness condition. arXiv preprint arXiv:1905.11881, 2019a.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Se-
ungyeon Kim, Sashank J Reddi, Sanjiv Kumar, and Suvrit Sra.
Why Adam beats SGD for attention models. arXiv preprint
arXiv:1912.03194, 2019b.

Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The
anisotropic noise in stochastic gradient descent: Its behavior of
escaping from sharp minima and regularization effects. In Kama-
lika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, ICML 2019, 9-
15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 7654–7663. PMLR, 2019.

A
Appendix to Chapter 4

A.1 Proofs

Proof of Proposition 4.1. The maximizer is easily found by setting the
partial derivative w.r.t. γ to zero:

0 !
=

d
dγ

[G(γ, m)

m

]

γ=γ?

=
2
m
− 2γ?

m
− 2η2γ?

m2 . (A.1)

If we plug γ? back in, we get

G(γ?, m)

m
=

γ?

m

(
2− γ? −

η2γ?

m

)

=
1

m(1 + η2/m)

(
2− 1

1 + η2/m
− η2

m(1 + η2/m)

)

=
1

m + η2

(
2− m

m + η2 −
η2

m + η2

)

=
1

m + η2

(A.2)

Proof of Proposition 4.2. The maximizer is easily found by setting the
partial derivative w.r.t. m to zero:

0 !
=

d
dm

[G(γ, m)

m

]

m=m?

= −2
γ

m2
?
+

γ2

m2
?
+ 2

η2γ2

m3
?

. (A.3)

Multiplying by m3
?/γ results in

0 = (−2 + γ)m? + 2η2γ. (A.4)

Plugging m? back in yields

G(γ, m?)

m?
=

γ

m?

(
2− γ− η2γ

m?

)

= γ
2− γ

2γη2

(
2− γ− γη2 2− γ

2γη2

)

=
2− γ

2η2

(
2− γ− 2− γ

2

)

=
(2− γ)2

4η2

(A.5)

and solving for m? yields the desired solution.

106 noise-aware stochastic optimization

Proof of Equation (4.17). By the Cauchy-Schwarz inequality, 〈g,∇ f 〉 =
〈g, g〉 − 〈g, g−∇ f 〉 ≥ ‖g‖2− ‖g‖‖g−∇ f ‖ = ‖g‖(‖g‖ − ‖g−∇ f ‖).
This becomes positive if ‖g−∇ f ‖ < ‖g‖.

A.2 Experimental Details

MNIST Our network has two convolutional layers with 5×5 filters
(32 and 64 filters, respectively) and subsequent max-pooling over
2×2 windows. This is followed by a fully-connected layer with 1024

units. The activation function is ReLU for all layers. The output
layer has 10 units with softmax activation and we use cross-entropy
loss.

SVHN We train a CNN with two convolutional layers, each with
64 filters of size 5×5 and subsequent max-pooling over 3×3 win-
dows with stride 2. They are followed by two fully-connected layers
with 256 and 128 units, respectively. The activation function is
ReLU for all layers. The output layer has 10 units with softmax ac-
tivation and we use cross-entropy loss. We apply L2-regularization
and perform data augmentation operations (random cropping of
24×24 pixel subimages, left-right mirroring, color distortion) on the
training inputs.

CIFAR-10 and CIFAR-100 For cifar-10, we crop the images to
24×24 pixels and train a CNN with two convolutional layers, each
with 64 filters of size 5x5 and subsequent max-pooling over 3x3

windows with stride 2. They are followed by two fully-connected
layers with 384 and 192 units, respectively. The activation function
is ReLU for all layers. The output layer has 10 units with softmax
activation and we use cross-entropy loss. We perform data aug-
mentation operations (random cropping, left-right mirroring, color
distortion) on the training set.

For cifar-100, we use the full 32×32 image and add a third con-
volutional layer (64 filters of size 5× 5 followed by max pooling).
The fully-connected layers have 512 and 256 units, respectively, and
the output layer has 100 units. We add L2-regularization.

B
Appendix to Chapter 5

B.1 Experimental Details

B.1.1 Network Architectures

Fashion-MNIST We trained a simple convolutional neural network
with two convolutional layers (size 5×5, 32 and 64 filters, respec-
tively), each followed by max-pooling over 3×3 areas with stride
2, and a fully-connected layer with 1024 units. ReLU activation
was used for all layers. The output layer has 10 units with softmax
activation. We used cross-entropy loss, without any additional reg-
ularization, and a minibatch size of 64. We trained for a total of
6000 steps with a constant global step size α.

CIFAR-10 We trained a CNN with three convolutional layers (64

filters of size 5×5, 96 filters of size 3×3, and 128 filters of size 3×3)
interspersed with max-pooling over 3×3 areas with stride 2 and
followed by two fully-connected layers with 512 and 256 units.
ReLU activation was used for all layers. The output layer has 10

units with softmax activation. We used cross-entropy loss function
and applied L2-regularization on all weights, but not the biases.
During training we performed some standard data augmentation
operations (random cropping of sub-images, left-right mirroring,
color distortion) on the input images. We used a batch size of 128

and trained for a total of 40k steps with a constant global step size
α.

CIFAR-100 We use the WRN-40-4 architecture of Zagoruyko
and Komodakis [2016]; details can be found in the original pa-
per. We used cross-entropy loss and applied L2-regularization on
all weights, but not the biases. We used the same data augmenta-
tion operations as for cifar-10, a batch size of 128, and trained for
80k steps. For the global step size α, we used the decrease schedule
suggested by Zagoruyko and Komodakis [2016], which amounts
to multiplying with a factor of 0.2 after 24k, 48k, and 64k steps.
TensorFlow code was adapted from https://github.com/dalgu90/

wrn-tensorflow.

https://github.com/dalgu90/wrn-tensorflow
https://github.com/dalgu90/wrn-tensorflow

108 noise-aware stochastic optimization

War and Peace We preprocessed War and Peace, extracting a vo-
cabulary of 83 characters. The language model is a two-layer
LSTM with 128 hidden units each. We used a sequence length of
50 characters and a batch size of 50. Drop-out regularization was
applied during training. We trained for 200k steps; the global step
size α was multiplied with a factor of 0.1 after 125k steps. Tensor-
Flow code was adapted from https://github.com/sherjilozair/

char-rnn-tensorflow.

B.1.2 Step Size Tuning

Step sizes α (initial step sizes for the experiments with a step size
decrease schedule) for each optimizer have been tuned by first
finding the maximal stable step size by trial and error and then
searching downwards over multiple orders of magnitude, testing
6 · 10m, 3 · 10m, and 1 · 10m for order of magnitude m. We evaluated
loss and accuracy on the full test set (as well as on an equally-sized
portion of the training set) at a constant interval and selected the
best-performing step size for each method in terms of maximally
reached test accuracy. Using the best choice, we replicated the ex-
periment ten times with different random seeds, randomizing the
parameter initialization, data set shuffling, drop-out, et cetera. In
some rare cases where the accuracies for two different step sizes
were very close, we replicated both and then chose the one with the
higher maximum mean accuracy.

The following list shows all explored step sizes, with the “win-
ner” in boldface.

Problem 1: Fashion-MNIST
m-sgd:
3, 1, 6 · 10−1, 3 · 10−1, 1 · 10−1, 6 · 10−2, 3 · 10−2, 1 · 10−2, 6 · 10−3, 3 ·

10−3

adam:
3 · 10−2, 10−2, 6 · 10−3, 3 · 10−3, 1 · 10−3, 6 · 10−4, 3 · 10−4, 1 · 10−4

m-ssd:
10−2, 6 · 10−3, 3 · 10−3, 1 · 10−3, 6 · 10−4, 3 · 10−4, 1 · 10−4

m-svag:
3, 1, 6 · 10−1, 3 · 10−1, 1 · 10−1, 6 · 10−2, 3 · 10−2, 1 · 10−2, 6 · 10−3, 3 ·

10−3

Problem 2: CIFAR-10
m-sgd:
6 · 10−1, 3 · 10−1, 1 · 10−1, 6 · 10−2, 3 · 10−2, 1 · 10−2, 6 · 10−3, 3 · 10−3

adam:
6 · 10−3, 3 · 10−3, 1 · 10−3, 6 · 10−4, 3 · 10−4, 1 · 10−4, 6 · 10−5

m-ssd:
6 · 10−3, 3 · 10−3, 1 · 10−3, 6 · 10−4, 3 · 10−4, 1 · 10−4, 6 · 10−5, 3 · 10−5

m-svag:
1, 6 · 10−1, 3 · 10−1, 1 · 10−1, 6 · 10−2, 3 · 10−2, 1 · 10−2, 6 · 10−3

Problem 3: CIFAR-100
m-sgd:

https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/sherjilozair/char-rnn-tensorflow

appendix to chapter 5 109

6, 3, 1, 6 · 10−1, 3 · 10−1, 1 · 10−1, 6 · 10−2, 3 · 10−2, 1 · 10−2

adam:
1 · 10−2, 6 · 10−3, 3 · 10−3, 1 · 10−3, 6 · 10−4, 3 · 10−4, 1 · 10−4, 6 ·

10−5, 3 · 10−5

m-ssd:
1 · 10−2, 6 · 10−3, 3 · 10−3, 1 · 10−3, 6 · 10−4, 3 · 10−4, 1 · 10−4, 6 ·

10−5, 3 · 10−5

m-svag:
6, 3, 1, 6 · 10−1, 3 · 10−1, 1 · 10−1, 6 · 10−2, 3 · 10−2, 1 · 10−2

Problem 4: War and Peace
m-sgd:
10, 6, 3, 1, 6 · 10−1, 3 · 10−1, 1 · 10−1, 6 · 10−2

adam:
1 · 10−2, 6 · 10−3, 3 · 10−3, 1 · 10−3, 6 · 10−4, 3 · 10−4, 1 · 10−4, 6 · 10−5

m-ssd:
1 · 10−2, 6 · 10−3, 3 · 10−3, 1 · 10−3, 6 · 10−4, 3 · 10−4, 1 · 10−4, 6 · 10−5

m-svag:
30, 10, 6, 3, 1, 6 · 10−1, 3 · 10−1, 1 · 10−1

B.2 Mathematical Details

B.2.1 The Sign of a Stochastic Gradient

We have stated in the main text that the sign of a stochastic gradi-
ent, s := sign(g), has success probabilities

ρi := P[si = sign(∇ fi)] =
1
2
+

1
2

erf
(|∇ fi|√

2σi

)
(B.1)

under the assumption that g ∼ N (∇ f , Σ) and σ2
i = Σii. The

following Lemma formally proves this statement and Figure B.1
provides a pictorial illustration.

−4 −3 −2 −1 0 1 2 3 4
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pd
f(

x)

−4 −3 −2 −1 0 1 2 3 4
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−4 −3 −2 −1 0 1 2 3 4
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Figure B.1: Probability density func-
tions (pdf) of three Gaussian distri-
butions, all with µ = 1, but different
variances σ2 = 0.5 (left), σ2 = 1.0
(middle), σ2 = 4.0 (right). The shaded
area under the curve corresponds to
the probability that a sample from
the distribution has the opposite sign
than its mean. For the Gaussian dis-
tribution, this probability is uniquely
determined by the fraction σ/|µ|, as
shown in Lemma B.1.

Lemma B.1. If X ∼ N (µ, σ2) then

P[sign(X) = sign(µ)] =
1
2

(
1 + erf

(|µ|√
2σ

))
. (B.2)

Proof. Define ρ := P[sign(X) = sign(µ)]. The cumulative density
function (cdf) of X ∼ N (µ, σ2) is P[X ≤ x] = Φ((x − µ)/σ),

110 noise-aware stochastic optimization

where Φ(z) = 0.5(1 + erf(z/
√

2)) is the cdf of the standard normal
distribution. If µ < 0, then

ρ = P[X < 0] = Φ
(

0− µ

σ

)
=

1
2

(
1 + erf

(−µ√
2σ

))
. (B.3)

If µ > 0, then

ρ = P[X > 0] = 1− P[X ≤ 0] = 1−Φ
(

0− µ

σ

)

= 1− 1
2

(
1 + erf

(−µ√
2σ

))
=

1
2

(
1 + erf

(
µ√
2σ

))
,

(B.4)

where the last step used the anti-symmetry of the error function.

B.2.2 Variance Adaptation Factors

Proof of Lemma 5.1. Using E[p̂i] = pi and E[p̂2
i] = p2

i + σ2
i , we get

E[‖γ� p̂− p‖2
2] =

d

∑
i=1

E[(γi p̂i − pi)
2]

=
d

∑
i=1

(
γ2

i E[p̂2
i]− 2γi piE[p̂i] + p2

i

)

=
d

∑
i=1

(
γ2

i (p2
i + σ2

i)− 2γi p2
i + p2

i

)
.

(B.5)

Setting the derivative w.r.t. γi to zero, we find the optimal choice

γi =
p2

i
p2

i + σ2
i

. (B.6)

Proof of Lemma 5.2. Using E[sign(p̂i)] = (2ρi − 1) sign(pi) and
sign(·)2 = 1, we get

E[‖γ� sign(p̂)− sign(p)‖2
2] =

d

∑
i=1

E
[
(γi sign(p̂i)− sign(pi))

2
]

=
d

∑
i=1

(
γ2

i − 2γi sign(pi)E[sign(p̂i)] + 1
)

=
d

∑
i=1

(
γ2

i − 2γi(2ρi − 1) + 1
)

(B.7)

and easily find the optimal choice

γi = 2ρi − 1. (B.8)

by setting the derivative to zero.

appendix to chapter 5 111

B.2.3 Convergence of Idealized SVAG

We prove the convergence results for idealized variance-adapted
stochastic gradient descent (Theorem 5.1). The stochastic opti-
mizer generates a discrete stochastic process {θt}t∈N0 . We denote as
Et[·] = E[·|θt] the conditional expectation given a realization of that
process up to time step t. Recall that E[Et[·]] = E[·].

We first show the following Lemma.

Lemma B.2. Let f : Rd → R be µ-strongly convex and L-smooth.
Denote as θ∗ := arg minθ∈Rd f (θ) the unique minimizer and f∗ = f (θ∗).
Then, for any θ ∈ Rd,

2L2

µ
(f (θ)− f∗) ≥ ‖∇ f (θ)‖2 ≥ 2µ(f (θ)− f∗). (B.9)

Proof. Regarding the first inequality, we use ∇ f (θ∗) = 0 and
the Lipschitz continuity of ∇ f (·) to get ‖∇ f (θ)‖2 = ‖∇ f (θ) −
∇ f (θ∗)‖2 ≤ L2‖θ − θ∗‖2. Using strong convexity, we have f (θ) ≥
f∗ +∇ f (θ∗)T(θ − θ∗) + (µ/2)‖θ − θ∗‖2 = f∗ + (µ/2)‖θ − θ∗‖2.
Plugging the two inequalities together yields the desired inequality.

The second inequality arises from strong convexity, by minimiz-
ing both sides of

f (θ′) ≥ f (θ) +∇ f (θ)T(θ′ − θ) +
µ

2
‖θ′ − θ‖2 (B.10)

w.r.t. θ′. The left-hand side obviously has minimal value f∗. For the
right-hand side, we set its derivative, ∇ f (θ) + µ(θ′ − θ), to zero to
find the minimizer θ′ = θ −∇ f (θ)/µ. Plugging that back in yields
the minimal value f (θ)− ‖∇ f (θ)‖/(2µ).

Proof of Theorem 5.1. Using the Lipschitz continuity of ∇ f , we can
bound f (θ + ∆θ) ≤ f (θ) +∇ f (θ)T∆θ + L

2 ‖∆θ‖2. Hence,

Et[ft+1] ≤ ft − αEt[∇ fTt (γt � gt)] +
Lα2

2
Et[‖γt � gt‖2]

= ft −
1
L

d

∑
i=1

γt,i∇ ft,iEt[gt,i] +
1

2L

d

∑
i=1

γ2
t,iEt[g2

t,i]

= ft −
1
L

d

∑
i=1

γt,i∇ f 2
t,i +

1
2L

d

∑
i=1

γ2
t,i(∇ f 2

t,i + σ2
t,i).

(B.11)

Plugging in the definition γt,i = ∇ f 2
t,i/(∇ f 2

t,i + σ2
t,i) and simplifying,

we get

Et[ft+1] ≤ ft −
1

2L

d

∑
i=1

∇ f 4
t,i

∇ f 2
t,i + σ2

t,i
. (B.12)

This shows that Et[ft+1] ≤ ft. Defining et := ft − f∗, this implies

E[et+1] = E[Et[et+1]] ≤ E[et] (B.13)

and consequently, by iterating backwards, E[et] ≤ E[e0] = e0 for all
t. Next, using the discrete version of Jensen’s inequality1 we find 1 Jensen’s inequality states that, for

a real convex function φ, numbers
xi ∈ R, and positive weights ai ∈ R+

with ∑i ai = 1, we have ∑i aiφ(xi) ≥
φ (∑i aixi). We apply it here to the
convex function φ(x) = 1/x, x > 0,

with xi :=
∇ f 2

t,i+σ2
t,i

∇ f 2
t,i

and ai :=
∇ f 2

t,i
‖∇ ft‖2 .

d

∑
i=1

∇ f 4
t,i

∇ f 2
t,i + σ2

t,i
≥ ‖∇ ft‖4

‖∇ ft‖2 + ∑d
i=1 σ2

t,i

. (B.14)

112 noise-aware stochastic optimization

Using the assumption ∑d
i=1 σ2

t,i ≤ cv|∇ ft‖2 + Mv in the denominator,
we obtain

‖∇ ft‖4

‖∇ ft‖2 + ∑d
i=1 σ2

t,i

≥ ‖∇ ft‖4

(1 + cv)‖∇ ft‖2 + Mv
. (B.15)

Using Lemma B.2, we have

2L2

µ
et ≥ ‖∇ ft‖2 ≥ 2µet (B.16)

and can further bound

‖∇ ft‖4

(1 + cv)‖∇ ft‖2 + Mv
≥ 4µ2e2

t
2(1+cv)L2

µ et + Mv

def
=

c1e2
t

c2et + c3
, (B.17)

where the last equality defines the (positive) constants c1, c2 and
c3. Combining Eqs. (B.14), (B.15) and (B.17), inserting in (B.12), and
subtracting f∗ from both sides, we obtain

Et[et+1] ≤ et −
1

2L
c1e2

t
c2et + c3

, (B.18)

and, consequently, by taking expectations on both sides,

E[et+1] ≤ E[et]−
1

2L
E
[

c1e2
t

c2et + c3

]

≤ E[et]−
1

2L
c1E[et]2

c2E[et] + c3

(B.19)

where the last step is due to Jensen’s inequality applied to the

convex function φ(x) = c1x2

c2x+c3
. Using E[et] ≤ e0 in the denominator

and introducing the shorthand ēt := E[et], we get

ēt+1 ≤ ēt − cē2
t = ēt(1− cēt), (B.20)

with c := c1/(2L(c2e0 + c3)) > 0. To conclude the proof, we will
show that this implies ēt ∈ O(1

t). Without loss of generality, we
assume ēt+1 > 0 and obtain

ē−1
t+1 ≥ ē−1

t (1− cēt)
−1 ≥ ē−1

t (1 + cēt) = ē−1
t + c, (B.21)

where the second step is due to the simple fact that (1− x)−1 ≥
(1 + x) for any x ∈ [0, 1). Summing this inequality over t =

0, . . . , T − 1 yields ē−1
T ≥ e−1

0 + Tc and, thus,

TēT ≤
(

1
Te0

+ c
)−1

T→∞−→ 1
c
< ∞, (B.22)

which shows that ēt ∈ O(1
t).

B.2.4 Gradient Variance Estimates via Moving Averages

We proof Eq. (5.14). Iterating the recursive formula for m̃t back-
wards, we get

mt =
t

∑
s=0

1− β1

1− βt+1
1

βt−s
1

︸ ︷︷ ︸
=:c(β1,t,s)

gs,
(B.23)

appendix to chapter 5 113

with coefficients c(β1, t, s) summing to one by the geometric sum
formula, making mt a convex combination of stochastic gradients.
Likewise, vt = ∑t

s=0 c(β2, t, s)g2
s is a convex combination of squared

stochastic gradients. Hence,

E[mt,i] = ∑ c(β, t, s)E[gs,i],

E[vt,i] = ∑ c(β, t, s)E[g2
s,i].

(B.24)

Assumption 5.1 thus necessarily implies E[gs,i] ≈ ∇ ft,i and
E[g2

s,i] ≈ ∇ f 2
t,i + σ2

t,i. (This will of course be utterly wrong for gradi-
ent observations that are far in the past, but these won’t contribute
significantly to the moving average.) It follows that

E[m2
t,i] = E[mt,i]

2 + Var[mt,i]

= ∇ f 2
t,i +

t

∑
s=0

c(β, t, s)2 Var[gs,i]

= ∇ f 2
t,i + σ2

t,i

t

∑
s=0

c(β, t, s)2,

(B.25)

where the second step is due to the fact that gs and gs′ are stochasti-
cally independent for s 6= s′. The last term evaluates to

ρ(β, t) :=
t

∑
s=0

c(β, t, s)2 =
t

∑
s=0

(
1− β

1− βt+1 βt−s
)2

=
(1− β)2

(1− βt+1)2

t

∑
k=0

(β2)k

=
(1− β)2

(1− βt+1)2
1− (β2)t+1

1− β2

=
(1− β)(1− β)

(1− βt+1)(1− βt+1)

(1− βt+1)(1 + βt+1)

(1− β)(1 + β)

=
(1− β)(1 + βt+1)

(1 + β)(1− βt+1)
,

(B.26)

where the fourth step is another application of the geometric sum
formula, and the fifth step uses 1− x2 = (1− x)(1 + x). Note that

ρ(β, t)→ 1− β

1 + β
(t→ ∞), (B.27)

such that ρ(β, t) is uniquely defined by β in the long term.
As an interesting side note, the division by 1− ρ(β, t) in Eq. (5.16)

is analogous to Bessel’s correction (the use of n− 1 instead of n in
the classical sample variance) for the case where we use moving
averages instead of arithmetic means.

B.2.5 Connection to Generalization

Proof of Lemma 5.4. Like in the proof of Lemma 3.1 in Wilson et al.
[2017], we inductively show that θt = λt sign(XTy) with a scalar λt.
This trivially holds for θ0 = 0. Assume that the assertion holds for

114 noise-aware stochastic optimization

all s ≤ t. Then

∇R(θt) =
1
n

XT(Xθt − y)

=
1
n

XT(λtX sign(XTy)− y)

=
1
n

XT(λtcy− y) =
1
n
(λtc− 1)XTy,

(B.28)

where the first step is the gradient of the objective (Eq. 5.20), the
second step uses the inductive assumption, and the third step uses
the assumption X sign(XTy) = cy. Now, plugging Eq. (B.28) into
the update rule, we find

θt+1 = θt − α sign(∇R(θt))

= λt sign(XTy)− α sign((λtc− 1)XTy)

= (λt − α sign(λtc− 1)) sign(XTy).

(B.29)

Hence, the assertion holds for t + 1.

B.3 Alternative Methods

B.3.1 SVAG

m-svag applies variance adaptation to the update direction mt, re-
sulting in the variance adaptation factors Eq. 5.19. We can also up-
date in direction gt and choose the appropriate estimated variance
adaptation factors, resulting in an implementation of svag with-
out momentum. We have already derived the necessary variance
adaptation factors en route to those for the momentum variant, see
Eq. (5.17) in §5.4.2. Pseudo-code is provided in Alg. 4. It differs
from m-svag only in the last two lines.

Input: θ0 ∈ Rd, α > 0, β ∈ [0, 1], T ∈N

Initialize θ ← θ0, m̃← 0, ṽ← 0
for t = 0, . . . , T − 1 do

m̃← βm̃ + (1− β)g(θ), ṽ← βṽ + (1− β)g(θ)2

m← (1− βt+1)−1m̃, v← (1− βt+1)−1ṽ
s← (1− ρ(β, t))−1(v−m2)

γ← m2/(m2 + s)
θ ← θ − α(γ� g)

end for
Algorithm 4: svag

B.3.2 Variants of Adam

This paper interpreted adam as variance-adapted m-ssd. The
experiments in the main paper used a standard implementation
of adam as described by Kingma and Ba [2015]. However, in the
derivation of our implementation of m-svag, we have made mul-
tiple adjustments regarding the estimation of variance adaptation

appendix to chapter 5 115

factors which correspondingly apply to the sign case. Specifically,
this concerns:

• The use of the same moving average constant for the first and
second moment (β1 = β2 = β).

• The bias correction in the gradient variance estimate, see Eq. (5.16).

• The adjustment of the variance adaptation factors for the mo-
mentum case, see §5.4.3.

• The omission of a constant offset ε in the denominator.

Applying these adjustment to the sign case gives rise to a vari-
ant of the original adam algorithm, which we will refer to as
adam*. Pseudo-code is provided in Alg. 5. Note that we use the
variance adaptation factors (1 + η)−1/2 and not the optimal ones
derived in §5.3.1, which would under the Gaussian assumption be
erf[(
√

2η)−1]. We initially experimented with both variants and
found them to perform almost identically, which is not surprising
given how similar the two are (see Fig. 5.2). We thus stuck with the
first option for direct correspondence with the original adam and
to avoid the cumbersome error function.

In analogy to svag versus m-svag, we could also define a
variance-adapted version stochastic sign descent without momen-
tum, i.e., using the base update direction sign(gt). We did not ex-
plore this further in this work.

Input: θ0 ∈ Rd, α > 0, β ∈ [0, 1], T ∈N

Initialize θ ← θ0, m̃← 0, ṽ← 0
for t = 0, . . . , T − 1 do

m̃← βm̃ + (1− β)g(θ), ṽ← βṽ + (1− β)g(θ)2

m← (1− βt+1)−1m̃, v← (1− βt+1)−1ṽ
s← (1− ρ(β, t))−1(v−m2)

γ←
√

m2/(m2 + ρ(β, t)s)
θ ← θ − α(γ� sign(m))

end for
Algorithm 5: adam*

B.3.3 Experiments

We tested svag as well as adam* with and without momentum on
the problems (P2) and (P3) from the main paper. Results are shown
in Figure B.2.

We observe that svag performs better than m-svag on (P2). On
(P3), it makes faster initial progress but later plateaus, leading to
slightly worse outcomes in both training loss and test accuracy.
svag is a viable alternative. In future work, it will be interesting to
apply svag to problems where sgd outperforms m-sgd.

Next, we compare adam* to the original adam algorithm. In
the cifar-100 example (P3) the two methods are on par. On (P2),

116 noise-aware stochastic optimization

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Tr
ai

ni
ng

lo
ss

CIFAR-10 (P2)

M-SVAG

SVAG

ADAM

ADAM*

0 5 10 15 20 25 30 35 40
Steps (103)

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Te
st

ac
cu

ra
cy

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Tr
ai

ni
ng

lo
ss

CIFAR-100 (P3)

0 10 20 30 40 50 60 70 80
Steps (103)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

ac
cu

ra
cy

Figure B.2: Experimental results for
svag and adam*. The plot is set-up
like Fig. 5.4.

adam is marginally faster in the early stages of the the optimiza-
tion process. adam* quickly catches up and reaches lower minimal
training loss values. We conclude that the adjustments to the vari-
ance adaptation factors derived in §5.4 do have a positive effect.

B.4 Minibatch Gradient Variance Estimates

In the main text, we have discussed estimation of gradient variances
via moving averages of the past gradient observations. An alter-
native gradient variance estimate can be obtained locally, within
a single minibatch. Given θt, the individual gradients ∇ f (θt; ξ

(t)
i),

i = 1, . . . m, in a minibatch are iid random variables with covariance
matrix Σ(θt) and, thus,

Covt[gt] =
Σ(θt)

m
. (B.30)

We can thus estimate the covariance of gt based on the sample
covariance of the {∇ f (θ; ξ

(t)
i)}m

i=1. We are only interested in its
diagonal, Var[X] := diag(Cov[X]) ∈ Rd, i.e., the vector containing
its elementwise variances. We can estimate it via

ŝmb(θt)
def
=

1
m

(
1

m− 1

m

∑
i=1
∇ f (θ; ξi)

2 − g2
t

)
. (B.31)

Several recent papers [Mahsereci and Hennig, 2015, Balles et al.,
2017a] have used this variance estimate for other aspects of stochas-
tic optimization. In contrast to the moving average-based estima-
tors, this is an unbiased estimate of the local gradient variance. The
(non-trivial) implementation of this estimator for neural networks is
described in Balles et al. [2017a].

appendix to chapter 5 117

B.4.1 M-SVAG with Mini-Batch Estimates

We explored a variant of m-svag which use minibatch gradient
variance estimates. The local variance estimation allows for a the-
oretically more pleasing treatment of the variance of the update
direction mt. Starting from the formulation of mt in Eq. (B.23) and
considering that gs and gs′ are stochastically independent for s 6= s′,
we have

Var[mt] =
t

∑
s=0

(
1− β

1− βt+1 βt−s
)2

Var[gs]. (B.32)

Given that we now have access to a true, local, unbiased estimate of
Var[gs], we can estimate Var[mt] by

s̄t :=
t

∑
s=0

(
1− β

1− βt+1 βt−s
)2

ŝmb(θs). (B.33)

It turns out that we can track this quantity with another exponential
moving average: It is s̄t = ρ(β, t)rt with

r̃t = β2r̃t−1 + (1− β2)ŝmb
t , rt =

r̃t

1− (β2)t+1 . (B.34)

This can be shown by iterating Eq. (B.34) backwards and comparing
coefficients with Eq. (B.33). The resulting minibatch variant of m-
svag is presented in Algorithm 6.

Note that minibatch gradient variance estimates could likewise
be used for the alternative methods discussed in §B.3. We do not
explore this further in this work.

B.4.2 Experiments

We tested the minibatch variant of m-svag on the problems (P1)
and (P2) from the main text and compared it to the moving average
version. Results are shown in Figure B.3. The two algorithms have
almost identical performance.

Input: θ0 ∈ Rd, α > 0, β ∈ [0, 1], T ∈N

Initialize θ ← θ0, m̃← 0, r̃ ← 0
for t = 0, . . . , T − 1 do

Compute minibatch gradient g(θ) and variance ŝmb(θ)

m̃← βm̃ + (1− β)g(θ), r̃ ← β2r̃ + (1− β2)ŝmb(θ)

m← (1− βt+1)−1m̃, r ← (1− β2(t+1))−1r̃
γ← m2/(m2 + ρ(β, t)r)
θ ← θ − α(γ�m)

end for
Algorithm 6: m-svag with minibatch variance estimate

118 noise-aware stochastic optimization

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

ni
ng

lo
ss

Fashion-MNIST (P1)

M-SVAG

M-SVAG (mb)

0 1 2 3 4 5
Steps (103)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Te
st

ac
cu

ra
cy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Tr
ai

ni
ng

lo
ss

CIFAR-10 (P2)

0 5 10 15 20 25 30 35 40
Steps (103)

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Te
st

ac
cu

ra
cy

Figure B.3: Experimental results for the
minibatch variant of m-svag (marked
“mb” in the legend). The plot is set-up
like Fig. 5.4.

C
Appendix to Chapter 6

• Appendix C.1 extends the discussion of steepest descent meth-
ods.

• Appendix C.2 gives details on the two-dimensional quadratic
example used in Section 6.4.

• Appendix C.3 discusses normalized steepest descent methods as
a possible explanation for the discrepancy between Eq. (6.1) and
Eq. (6.10).

• Appendix C.4 provides details on the experiments.

• All proofs, including those of results in the appendices, can be
found in Appendix C.5.

C.1 Details on Steepest Descent

In this section, we provide a more comprehensive overview of
steepest descent methods including various convergence results.

C.1.1 The Steepest Descent Operator

Following earlier works on steepest descent methods [e.g. Kelner
et al., 2014], it will be useful to re-write the steepest descent update
(Eq. 6.9) as

θt+1 = θt− αt∇ f ‖·‖t with ω‖·‖ ∈ arg maxθ′∈Rd

(
〈ω, θ′〉 − 1

2
‖θ′‖2

)
.

(C.1)
The equivalence arises from substituting θ′ = − 1

αt
(θ − θt) in

Eq. (6.9). This allows to concisely express the steepest descent up-
date direction.

C.1.2 Additional Examples for Steepest Descent Methods

We give two additional examples for steepest descent methods to
demonstrate the versatility of this framework.

120 noise-aware stochastic optimization

Coordinate Descent Steepest descent with respect to the L1-norm
yields coordinate descent,

∇ f ‖·‖1 = |∇ fimax |e(imax) (C.2)

where the selected coordinate is chosen as imax ∈ arg maxi∈[d] |∇ ft,i|
and e(i) denotes the i-th coordinate vector. The corresponding
smoothness assumption is

‖∇ f (θ′)−∇ f (θ)‖∞ ≤ L1‖θ′ − θ‖1. (C.3)

In fact, this assumption implies the coordinate-wise Lipschitz
smoothness assumption,

|∇ f (θ + he(i))i −∇ f (θ)i| ≤ L1|h| ∀i ∈ [d], (C.4)

which is widely-used in the literature on coordinate descent, since

|∇ f (θ + he(i))i −∇ f (θ)i| ≤ ‖∇ f (θ + he(i))−∇ f (θ)‖∞
(C.3)
≤ L1‖θ + he(i) − θ‖1 = L1|h|.

(C.5)

Block-Normalized Gradient Descent Assume a block structure on
Rd given by a partitioning B = {B1, . . . , Bb} of [d], with Bk ⊂ [d],
Bk ∩ Bl = ∅ for k 6= l, and

⋃
k Bk = [d]. For B ⊂ [d], define θB ∈ R|B|

to be the vector consisting of (θi)i∈B. We can now define norms
with respect to this block structure, such as

‖θ‖B∞ = max
B∈B
‖θB‖2 with dual norm ‖θ‖B1 = ∑

B∈B
‖θB‖2. (C.6)

Steepest descent w.r.t. ‖ · ‖B∞ results in block-normalized gradient
descent,

∇ f ‖·‖
B
∞ = ‖∇ f ‖B1 normB(∇ f), normB(ω) =

(
ωT

B1

‖ωB1‖2
, . . . ,

ωT
Bb

‖ωBb‖2

)T

.

(C.7)
This method is a block-wise equivalent of sign gradient descent,
normalizing the update magnitude over blocks instead of elemen-
twise. Variants of this method have recently been studied empir-
ically for neural network training [Yu et al., 2017, Ginsburg et al.,
2019] with the blocks corresponding to the weights and biases of
individual layers.

We can analyze this method in a similar fashion as we did for
signGD in the main paper. The matrix norm determining the corre-
sponding smoothness constant is given by

‖H‖B∞,1 = max
‖θ‖B∞≤1

‖Hθ‖B1 . (C.8)

We can provide an upper bound for this matrix norm analogous to
Proposition 6.4.

Proposition C.1. Let H ∈ Rd×d be nonzero, positive semi-definite and
let a block structure be given by a partitioning B. Then

‖H‖B∞,1 ≤ ρBdiag(H)−1 ∑
B∈B

λmax(HBB) (C.9)

appendix to chapter 6 121

with ρBdiag(H) := ∑BB′ ‖HBB′‖2
∑B ‖HBB‖2

.

The quantity ρBdiag(H) measures the degree of concentration of
H on its block diagonal. Without going into details, this allows
us to reason about block-normalized gradient descent in a similar
way as we did for sign gradient descent in the main paper. In par-
ticular, we can identify conditions which favor block-normalized
GD. Firstly, this will require ρBdiag to be sufficiently large, i.e., some
degree of concentration of the Hessian on the diagonal blocks. Sec-
ondly, it requires a certain structure among the eigenvalues of the
blocks. With a slight abuse of notation, denote λB = λmax(HBB) and
note that λmax(H) ≥ maxB λB. Then block-normalized GD will be
favored relative to GD if

max
B

λB �
1
|B| ∑

B∈B
λB (C.10)

given that ρBdiag(H) is not too small.

C.1.3 Convergence Results for Steepest Descent

Without further assumptions, smoothness guarantees convergence
to a first-order stationary point.

Proposition C.2. If f is L-smooth w.r.t. ‖ · ‖, then steepest descent
(Eq. 6.9) satisfies

1
T

T−1

∑
t=0
‖∇ ft‖2

∗ ≤
2L(f0 − f ?)

T
. (C.11)

For smooth and convex functions, Kelner et al. [2014] showed
O(1/T) convergence in suboptimality. We restate this result here
for completeness.

Theorem C.1 (Theorem 1 in Kelner et al. [2014]). If f is L-smooth
w.r.t. ‖ · ‖ and convex, then steepest descent (Eq. 6.9) satisfies

fT − f ? ≤ 2LR2

T + 4
with R

def
= max

θ s.t. f (θ)≤ f (θ0)
min

θ? s.t. f (θ?)= f ?
‖θ − θ?‖.

(C.12)

The rate has a dependence on the initial distance to the nearest
minimizer measured in the respective norm.

It is also straight-forward to show linear convergence in sub-
optimality under an additional assumption, known as the Polyak-
Łojasiewicz (PL) condition. It is usually given for the Euclidean
case as ‖∇ f (θ)‖2

2 ≥ 2µ(f (θ)− f ?) but can likewise be formulated
for arbitrary norms.

Definition C.1. A function f : Rd → R satisfies the PL condition with
constant µ w.r.t. a norm ‖ · ‖ if ‖∇ f (θ)‖2∗ ≥ 2µ(f (θ) − f ?) for all
θ ∈ Rd.

122 noise-aware stochastic optimization

We refer to this as PL with respect to ‖ · ‖ even though only the
dual norm appears in the definition, since it is the natural counter-
part to smoothness w.r.t. ‖ · ‖ and used to prove linear convergence
for steepest descent w.r.t. ‖ · ‖. As with smoothness, we have equiv-
alence of the PL condition for all norms, but constants may differ.
Note that strong convexity implies the PL condition, but the class of
PL functions also covers some non-convex functions.

Proposition C.3. If f is L-smooth and fulfills the PL condition with
constant µ w.r.t ‖ · ‖, then steepest descent (Eq. 6.9) satisfies

fT − f ? ≤
(

1− µ

L

)T
(f0 − f ?). (C.13)

We are not aware of any published work showing this simple
result in its general form.

C.2 Two-Dimensional Quadratic Example

We give details on the two-dimensional quadratic example used
in Section 6.4. We consider f (θ) = 1

2 θTHθ with positive definite
Hessian ∇2 f (θ) ≡ H =

[
a b
b d

]
. In this case, we can easily find

closed-form expressions to L∞(H) and Lsep(H) in Proposition 6.6.
For L∞, we have L∞(H) = ‖H‖∞,1 = max‖θ‖∞≤1 ‖Hθ‖1 =

max‖θ‖∞≤1 (|ax1 + bx2|+ |bx1 + dx2|). Recall that a, d > 0 by posi-
tive definiteness of H. By separating the two cases b ≥ 0 and b < 0
we find

L∞(H) = a + d + 2|b|. (C.14)

Hence, L∞ and Lsep coincide in this case. Furthermore, the
upper-bound in Proposition 6.6 is also tight,

ρdiag(H)−1 ∑
i

λi = a + d + 2|b|, (C.15)

since ∑i λi = tr(H) = a + d and ρdiag(H) = (a + d)/(a + d + 2|b|).
Side note This example also reveals another problem with the

separable smoothness condition. In the literature using the sepa-
rable smoothness condition it is assumed that the convergence of
GD is determined by lmax, which implicitly assumes lmax = λmax.
The example above shows that this may be misleading since The
eigenvalues of H evaluate to

λ1/2 =
a + d

2
±
√

(a− d)2

4
+ b2. (C.16)

W.l.o.g. assume d ≥ a. Then we have

lmax = d + |b| and λmax =
a + d

2
+

√
(a− d)2

4
+ b2 (C.17)

We see that λmax can easily exceed lmax. Of course, we could devi-
ate from the definition of Eq. (6.25) and choose li ≡ λmax to guaran-
tee lmax = λmax. However, this bound would very unfavorable for
sign(S)GD, whose performance depends on ∑i li.

appendix to chapter 6 123

C.3 On Normalized Steepest Descent

There is a discrepancy between the version of sign gradient de-
scent arising as steepest descent w.r.t. maximum norm, θt+1 =

θt − α‖∇ ft‖1 sign(∇ ft), and signSGD as used in neural network
training, θt+1 = θt − αt sign(gt), with a constant or manually de-
creasing step size sequence αt. The norm-scaled version has actu-
ally been shown to be useful in the smooth, convex, non-stochastic
setting; e.g., Kelner et al. [2014] successfully apply it to solve max-
flow problems in graphs. Without the scaling by the gradient norm,
we have a normalized method with an update magnitude deter-
mined solely by the step size, independent of the gradient magni-
tude. There are various possible reasons why this might be benefi-
cial in settings like neural network training.

One possible explanation is that normalized methods address
certain challenges of non-convex problems, e.g., by escaping from
saddle points faster [Levy, 2016] or converging to global minima for
quasi-convex functions [Hazan et al., 2015].

Another rationale is that, in the stochastic optimization setting,
a decreasing step size is needed anyway to enforce convergence.
Since ‖∇ ft‖1 is not available in the stochastic setting—and ‖gt‖1

may be a poor estimate—it might be easier to subsume a similar
scaling effect in the manually-tuned step size schedule.

We want to add to this discussion in two ways. First, we provide
a basic convergence result for non-stochastic normalized steepest
descent methods with a decreasing step size under the classical
smoothness assumption, which we could not find in the literature.
While normalized methods are clearly suboptimal under that as-
sumption, this provides at least a basic convergence guarantee.

Second, we expand on the work of Zhang et al. [2019a], who
show that normalized gradient descent is adapted to a certain re-
laxed smoothness condition which might be a better description
of the regularity exhibited by neural network training objectives,
which are not smooth in the sense of Eq. (6.6). By extending their
reasoning to arbitrary norms, we provide a possible explanation for
the success of normalized signGD (Eq. 6.1).

C.3.1 Convergence of Normalized Steepest Descent under Classical
Smoothness

We show convergence to a first-order stationary point for normal-
ized steepest descent

θt+1 = θt − αt
∇ f ‖·‖t
‖∇ ft‖∗

(C.18)

with a decreasing step size schedule. To see that this is indeed a
normalized method, recall from Lemma C.2 that ‖ω‖·‖‖ = ‖ω‖∗.
Normalized steepest descent w.r.t. the maximum norm thus is sign
gradient descent in the version of Eq. (6.1).

124 noise-aware stochastic optimization

Proposition C.4. Let f : Rd → R be L-smooth w.r.t. ‖ · ‖ and assume we
perform normalized steepest descent updates

θt+1 = θt −
αt

L
∇ f ‖·‖t
‖∇ ft‖∗

(C.19)

with αt =
1√
t+1

. Then

1
T

T−1

∑
t=0
‖∇ ft‖∗ ≤

L(f0 − f?)√
T

+
log(T + 1)

2
√

T
T→∞−→ 0. (C.20)

The proof may be found in Appendix C.5.

C.3.2 Relaxed Smoothness

Zhang et al. [2019a] discuss a “soft” version of normalized gradient
descent method,

θt+1 = θt − α
1

‖∇ ft‖2 + β
∇ ft. (C.21)

and show that it is better geared towards the type of regularity ex-
hibited by neural network training objectives, which are not smooth
in the sense of Eq. (6.6). In particular, they show that this method is
optimal under a certain “relaxed” smoothness assumption, which
allows the curvature to grow with the gradient norm instead of
bounding it globally as in classical smoothness.

Since they consider normalized gradient descent, their discussion
is based on Euclidean geometry. We show here that their reasoning
can be generalized to arbitrary norms, providing another possible
explanation of the practical success of normalized steepest descent
methods, e.g., sign gradient descent without the scaling by ‖∇ ft‖1.

Results of Zhang et al. [2019a] The relaxed smoothness condition
proposed by Zhang et al. [2019a] reads

‖∇2 f (θ)‖2 ≤ L(0) + L(1)‖∇ f (θ)‖2, (C.22)

where ‖ · ‖2 for matrices denotes the spectral norm. This allows the
curvature to grow with the gradient norm, in contrast to classical
smoothness, which demands a global bound on the Hessian.

This relaxed smoothness gives rise to normalized gradient de-
scent since, as we will see later, it provides local quadratic bounds
of the form

ft+1 ≤ ft + 〈∇ ft, θt+1− θt〉+
1
2
(A+ B‖∇ ft‖2)‖θt+1− θt‖2

2, A, B ≥ 0.
(C.23)

This resembles the bound of Lemma 6.1, but the quadratic term
now scales with the gradient norm. It is minimized by a normal-
ized gradient descent update (Eq. C.21) with appropriately chosen
α and β.

The main finding of Zhang et al. [2019a] is that gradient descent
can become arbitrarily slow for the class of functions satisfying

appendix to chapter 6 125

this relaxed smoothness, whereas normalized gradient descent
(Eq. C.21) retains an O(1/ε2) rate of convergence to an ε-stationary
point.

Generalization to Arbitrary Norms In this section, we generalize the
concept of relaxed smoothness to arbitrary norms, which will give
rise to general normalized steepest descent methods. We define
relaxed smoothness w.r.t. to some norm ‖ · ‖ analogously to the
Euclidean case (Eq. C.22), but use the dual norm for the gradient
and the induced matrix norm of Proposition 6.3 for the Hessian.

Definition C.2. A function f is called (L(0), L(1))-smooth with respect to
some norm ‖ · ‖ if

‖∇2 f (θ)‖ ≤ L(0) + L(1)‖∇ f (θ)‖∗, (C.24)

where ‖ · ‖ for matrices is the norm defined in Eq. (6.17).

Under this smoothness assumption, we have the following local
quadratic bound:

Lemma C.1. Assume f is (L(0), L(1))-smooth with respect to a norm
‖ · ‖. Then for θ, θ′ ∈ Rd with ‖θ′ − θ‖ ≤ 1

L(1) ,

f (θ′) ≤ f (θ) + 〈∇ f (θ), θ′ − θ〉+ 1
2
(5L(0) + 4L(1)‖∇ f (θ)‖∗)‖θ′ − θ‖2.

(C.25)

This resembles the bound in Lemma 6.1, but the quadratic term
now scales with the gradient norm. In analogy to steepest descent,
we can now construct an optimization method that minimizes this
bound in each step. Using Lemma C.1 with θ = θt and minimizing
w.r.t. θ′ yields

θt+1 = θt −
1

(5L(0) + 4L(1)‖∇ ft‖∗)
∇ f ‖·‖t . (C.26)

This can be seen as a “soft” version of normalized steepest descent
which reverts back to steepest descent in the vicinity of a stationary
point, i.e., when ‖∇ ft‖∗ becomes small.

We now show that the convergence theorem of Zhang et al.
[2019a] carries over to this generalized setting. The proofs (see Ap-
pendix C.5) are straight-forward adaptations of that in Zhang et al.
[2019a], with a little bit of extra care with regards to the norms.

Theorem C.2. Assume f is (L(0), L(1))-smooth with respect to a norm
‖ · ‖. Then normalized steepest descent (Eq. C.26) converges to an ε-
stationary point, ‖∇ f ‖∗ ≤ ε, in at most

Tε = 18(f0 − f ?)max

(
L(0)

ε2 ,
(L(1))2

L(0)

)
(C.27)

iterations.

126 noise-aware stochastic optimization

C.4 Experimental Details

C.4.1 Quadratic Experiments

Generating Hessians. We draw a random rotation matrix R from
the Haar distribution1 and set the Hessian to be H = RϕΛ(Rϕ)∗, 1 The uniform distribution on the

special orthogonal group SO(d) of
d-dimensional rotation matrices.
We used the special_ortho_group

function provided by the scipy.stats

package [Jones et al., 2001].

where Rϕ for ϕ ∈ [0, 1] is a non-integer matrix power and A∗

denotes the conjugate transpose matrix. We can think of this as
rotating the eigenvectors of the Hessian by a fraction of ϕ in the
direction prescribed by R. The non-integer matrix power Rϕ, is
computed via the eigendecomposition R = UDU∗ as Rϕ = UDϕU∗

where Dϕ for the diagonal matrix D is obtained by raising its ele-
ments to the power ϕ.

Computing L∞. To compute the smoothness constant w.r.t. the
maximum norm, we have to compute the matrix norm ‖H‖∞,1 =

max‖θ‖∞≤1 ‖Hθ‖1. We use the fact that the solution is attained
at θ ∈ {−1, 1}d [see Rohn, 2000] and brute-force search for the
maximum ‖Hθ‖1 in this set. Since there are 2d vectors in {−1, 1}d,
this is only possible for relatively small dimension.

On the performance measure. When comparing gradient descent and
sign gradient descent on these quadratic problems, we use the dis-
tance to the optimum as a performance measure. The reason is that
we are interested in a comparison over a range of different quadrat-
ics with varying λmax. The function value, which scales with λmax

would not be suitable for such a comparison. Since we are compar-
ing optimization methods which are adapted to different norms, it
might make a difference which norm we choose to compute the dis-
tance to the optimum. We opted for the Euclidean norm to benefit
the baseline method (gradient descent) as the lesser of two evils.

C.5 Proofs

This section contains proofs for all statements in the main text as
well in the appendix. We proceed by order of appearance.

The proofs relating to steepest descent methods make use of
the formulation introduced in Eq. (C.1) with the steepest descent
operator ω‖·‖. For later use, we establish the following Lemma
connecting this steepest descent operator to the dual norm.

Lemma C.2. For all θ, ω ∈ Rd, we have

(a) 〈θ, ω〉 ≤ ‖θ‖‖ω‖∗ (C.28)

(b) ‖ω‖·‖‖2 = 〈ω, ω‖·‖〉 (C.29)

(c) ‖ω‖·‖‖ = ‖ω‖∗ (C.30)

Proof of Lemma C.2. Statement (a) follows immediately from the
definition of the dual norm.

appendix to chapter 6 127

Regarding (b), by definition of ω‖·‖, we know that 〈ω, cω‖·‖〉 −
1
2‖cω‖·‖‖2 is maximized by c = 1. Hence the derivative w.r.t. c,

d
dc

[
〈ω, cω‖·‖〉 − 1

2
‖cω‖·‖‖2

]
= 〈ω, ω‖·‖〉 − c‖ω‖·‖‖2, (C.31)

must evaluate to 0 at c = 1, which proves (b).
For (c), we use the equivalent definition

‖ω‖∗ = max
θ 6=0

〈θ, ω〉
‖θ‖ . (C.32)

Assume w.l.o.g. that ω‖·‖ 6= 0. Then

‖ω‖∗ = max
θ 6=0

〈θ, ω〉
‖θ‖ ≥

〈ω‖·‖, ω〉
‖ω‖·‖‖

(b)
= ‖ω‖·‖‖. (C.33)

Conversely, Let θ′ ∈ arg max‖θ‖=1〈θ, ω〉, such that 〈ω, θ′〉 = ‖ω‖∗.
Then
1
2
‖ω‖2

∗ = 〈ω, ‖ω‖∗θ′〉−
1
2
‖‖ω‖∗θ′‖2 ≤ 〈ω, ω‖·‖〉− 1

2
‖ω‖·‖‖2 (b)

=
1
2
‖ω‖·‖‖2,

(C.34)
where the inequality is by definition of ω‖·‖.

C.5.1 Proofs for Section 6.3

Proof. Proof of Lemma 6.1 Define g(τ) = f (θ + τ(θ′ − θ)) for
τ ∈ [0, 1] with g′(τ) = 〈∇ f (θ + τ(θ′ − θ)), θ′ − θ〉. Then

f (θ′) = f (θ) +
∫ 1

0
g′(τ)dτ

= f (θ) +
∫ 1

0
〈∇ f (θ + τ(θ′ − θ)), θ′ − θ〉dτ

= f (θ) + 〈∇ f (θ), θ′ − θ〉+
∫ 1

0
〈∇ f (θ + τ(θ′ − θ))−∇ f (θ), θ′ − θ〉dτ

(C.28)
≤ f (θ) + 〈∇ f (θ), θ′ − θ〉+

∫ 1

0
‖∇ f (θ + τ(θ′ − θ))−∇ f (θ)‖∗‖θ′ − θ‖dτ

(6.6)
≤ f (θ) + 〈∇ f (θ), θ′ − θ〉+

∫ 1

0
L‖τ(θ′ − θ)‖‖θ′ − θ‖dτ

= f (θ) + 〈∇ f (θ), θ′ − θ〉+ L‖θ′ − θ‖2
∫ 1

0
τ dτ

= f (θ) + 〈∇ f (θ), θ′ − θ〉+ L
2
‖θ′ − θ‖2.

(C.35)

The first inequality is due to Lemma C.2(a) and the second inequal-
ity uses the L-smoothness.

Proof of Lemma 6.2. We apply Lemma 6.1 with θ′ = θ+ = θ −
1
L∇ f (θ)‖·‖

f (θ+) ≤ f (θ) + 〈∇ f (θ), θ+ − θ〉+ L
2
‖θ+ − θ‖2

= f (θ) + 〈∇ f (θ),− 1
L
∇ f (θ)‖·‖〉+ L

2

∥∥∥∥−
1
L
∇ f (θ)‖·‖

∥∥∥∥
2

= f (θ)− 1
L

(
〈∇ f (θ),∇ f (θ)‖·‖〉 − 1

2
‖∇ f (θ)‖·‖‖2

)
.

(C.36)

128 noise-aware stochastic optimization

By Lemma C.2, we have 〈∇ f (θ),∇ f (θ)‖·‖〉 = ‖∇ f (θ)‖·‖‖2 =

‖∇ f (θ)‖2∗. Substituting this in yields the desired bound.

Proof of Proposition 6.1. The dual norm of ‖ · ‖L is ‖ · ‖L−1 , such that
the assumption of 1-smoothness w.r.t. ‖ · ‖L amounts to

‖∇ f (θ′)−∇ f (θ)‖L−1 ≤ ‖θ′ − θ‖L ∀ θ, θ′ ∈ Rd. (C.37)

First, by definition of the maximum norm, we get

‖ω‖L =
√

∑
i

liω2
i ≤

√
∑

i
li‖ω‖2

∞ =
√

∑
i

li‖ω‖∞. (C.38)

Secondly, using Cauchy-Schwarz,

‖ω‖1 = ∑
i
|ωi| = ∑

i

|ωi|√
li

√
li ≤

√√√√∑
i

ω2
i

li

√
∑

i
li =

√
∑

i
li‖ω‖L−1 .

(C.39)
Combining these two inequalities with the assumption yields the
assertion:

‖∇ f (θ′)−∇ f (θ)‖1
(C.39)
≤

√
∑

i
li‖∇ f (θ′)−∇ f (θ)‖L−1

(C.37)
≤

√
∑

i
li‖θ′ − θ‖L

(C.38)
≤

√
∑

i
li
√

∑
i

li‖θ′ − θ‖∞ =

(
∑

i
li

)
‖θ′ − θ‖∞.

(C.40)

Proof of Proposition 6.2. For separable smoothness, we use the defi-
nition (Eq. 6.4) with θ′ = θ + αδ and get

f (θ + αδ) ≤ f (θ)+ 〈∇ f (θ), δ〉+ α2

2 ∑
i

liδ2
i = f (θ)+ 〈∇ f (θ), δ〉+ α2

2 ∑
i

li.

(C.41)
due to δ2

i = 1 for all i.
For `∞-smoothness, we use Lemma 6.1 with θ′ = θ + αδ and get

f (θ + αδ) ≤ f (θ)+ 〈∇ f (θ), δ〉+ L∞

2
α2‖δ‖2

∞ = f (θ)+ 〈∇ f (θ), δ〉+ α2

2 ∑
i

li.

(C.42)
where the second step is due to ‖δ‖∞ = 1 and the assumption that
L∞ = ∑i li.

C.5.2 Proofs for Section 6.4

Proof of Proposition 6.3. Note that the matrix norm by construction
satisfies

‖Hθ‖∗ ≤ ‖H‖‖θ‖. (C.43)

We first show that Eq. (6.17) defines a matrix norm. Clearly ‖H‖ ≥
0 and ‖H‖ = 0 iff H = 0. Furthermore, ‖λH‖ = |λ|‖H‖. It remains
to show subadditivity. Let H, H′ ∈ Rd×d

‖H + H′‖ = max
‖θ‖≤1

‖(H + H′)θ‖∗ ≤ max
‖θ‖≤1

(
‖Hθ‖∗ + ‖H′θ‖∗

)

≤ max
‖θ‖≤1

‖Hθ‖∗ + max
‖θ′‖≤1

‖H′θ′‖∗ = ‖H‖+ ‖H′‖.
(C.44)

appendix to chapter 6 129

Now assume ‖∇2 f (θ)‖ ≤ L for all x ∈ Rd. Let θ, θ′ ∈ Rd and
define g(τ) = ∇ f (θ + τ(θ′ − θ)) for τ ∈ [0, 1].

‖∇ f (θ′)−∇ f (θ)‖∗ =
∥∥∥∥
∫ 1

0

d
dτ

g(τ)dτ

∥∥∥∥
∗

=

∥∥∥∥
∫ 1

0
∇2 f (θ + τ(θ′ − θ))(θ′ − θ)dτ

∥∥∥∥
∗

≤
∫ 1

0

∥∥∥∇2 f (θ + τ(θ′ − θ))(θ′ − θ)
∥∥∥
∗

dτ

(C.43)
≤

∫ 1

0
‖∇2 f (θ + τ(θ′ − θ))‖‖θ′ − θ‖dτ

≤ L‖θ′ − θ‖
∫ 1

0
1 dτ = L‖θ′ − θ‖.

(C.45)

Conversely, assume L-smoothness and fix θ ∈ Rd. For any
‖δ‖ ≤ 1 and ε > 0,
∥∥∥∥
(∫ ε

0
∇2 f (θ + τδ)dτ

)
δ

∥∥∥∥
∗
= ‖∇ f (θ + εδ)−∇ f (θ)‖∗ ≤ εL‖δ‖ ≤ εL.

(C.46)
Dividing by ε and letting ε→ 0, we get

‖∇2 f (θ) δ‖∗ =
∥∥∥∥lim

ε→0

(
1
ε

∫ ε

0
∇2 f (θ + τδ)dτ

)
δ

∥∥∥∥
∗

= lim
ε→0

1
ε

∥∥∥∥
(∫ ε

0
∇2 f (θ + τδ)dτ

)
δ

∥∥∥∥
∗
≤ L.

(C.47)

This implies ‖∇2 f (θ)‖ = sup‖δ‖≤1 ‖∇2 f (θ)δ‖∗ ≤ L.

Proof of Proposition 6.4. First note that

‖H‖∞,1
def
= max
‖θ‖∞≤1

‖Hθ‖1 = max
‖θ‖∞≤1

∑
i

∣∣∣∣∣∑j
Hijxj

∣∣∣∣∣ ≤∑
i,j
|Hij|. (C.48)

Recall that ∑i |Hii| = ∑i Hii = ∑i λi for positive definite matrices.
Then

‖H‖∞,1 ≤∑
i,j
|Hij| =

∑i,j |Hij|
∑i |Hii| ∑

i
λi = ρdiag(H)−1 ∑

i
λi. (C.49)

Proof of Proposition 6.5. Since H is a real symmetric matrix, it has a
system of orthonormal eigenvectors and can be written as

H = ∑
i

λiv(i)(v(i))T. (C.50)

With that we find

‖H‖∞,1 = max
‖θ‖∞≤1

‖Hθ‖1 = max
‖θ‖∞≤1

∥∥∥∥∥∑i
λi(θ

Tv(i))v(i)
∥∥∥∥∥

1

≤ max
‖θ‖∞≤1

∑
i
|λi| |θTv(i)|︸ ︷︷ ︸

≤‖v(i)‖1

‖v(i)‖1 ≤∑
i
|λi| ‖v(i)‖2

1.
(C.51)

130 noise-aware stochastic optimization

Proof of Eq. (6.22). The fact that ‖ω‖∞ ≤ ‖ω‖2 ≤ ‖ω‖1 implies

L2 = sup
θ 6=θ′

‖∇ f (θ′)−∇ f (θ)‖2

‖θ′ − θ‖2
≤ sup

θ 6=θ′

‖∇ f (θ′)−∇ f (θ)‖1

‖θ′ − θ‖∞
= L∞.

(C.52)
Conversely, using 1√

d
‖ω‖1 ≤ ‖ω‖2 ≤

√
d‖ω‖∞

L∞ = sup
θ 6=θ′

‖∇ f (θ′)−∇ f (θ)‖1

‖θ′ − θ‖∞
≤ sup

θ 6=θ′

√
d‖∇ f (θ′)−∇ f (θ)‖2

1√
d
‖θ′ − θ‖2

= dL2.

(C.53)

Proof of Proposition 6.6. First inequality: First, let l̂1, . . . , l̂d ≥ 0 be the
minimizer in the definition of Lsep. For any ω with ‖ω‖∞ ≤ 1, we
have

ωTHω ≤ ωT diag(l̂1, . . . , l̂d)ω = ∑
i

l̂iω2
i ≤∑

i
l̂i. (C.54)

Next, we rewrite the definition of L∞ as

L∞ = max
‖θ‖∞ ,‖θ′‖∞≤1

θTHθ′. (C.55)

and let (θ̂, θ̂′) be the maximizer. Then due to H being psd, we have

0 ≤ (θ̂ − θ̂′)TH(θ̂ − θ̂′) = θ̂THθ̂ − 2θ̂THθ̂′ + θ̂′
T

Hθ̂′ ≤ 2 ∑
i

l̂i − 2θ̂THθ̂′,

(C.56)

where the last inequality is due to Eq. (C.54) applied to θ̂ and θ̂′.
This proves the assertion, since ∑i l̂i = Lsep and θ̂THθ̂′ = L∞ by
definition.

Second inequality: We set li = ∑j |Hij| and denote L = diag(l1, . . . , ld).
Then

[L−H]ii ≥ ∑
j 6=i
|Hij| (C.57)

∑
j 6=i
|[L−H]ij| = ∑

j 6=i
|Hij| (C.58)

making L − H diagonally dominant with non-negative diagonal
elements, hence positive semi-definite. Therefore, L is admissible in
the definition of Lsep. Now,

∑
i

li = ∑
i,j
|Hij| =

(
∑i |Hii|
∑i,j |Hij|

)−1

∑
i

λi, (C.59)

where we used ∑i |Hii| = ∑i Hii = ∑i λi.

C.5.3 Proofs for Appendix C.1

Proof of Proposition C.1. First note that

‖H‖B∞,1
def
= max
‖θ‖B∞≤1

‖Hθ‖B1 = max
‖θ‖B∞≤1

∑
B∈B
‖[Hθ]B‖2 = max

‖θ‖B∞≤1
∑

B∈B

∥∥∥∥∥ ∑
B′∈B

HBB′θB′

∥∥∥∥∥
2

≤ max
‖θ‖B∞≤1

∑
B,B′∈B

‖HBB′θB′‖2 ≤ ∑
B,B′∈B

max
ω∈R|B′ | ,‖ω‖2≤1

‖HBB′ω‖2 = ∑
B,B′∈B

‖HBB′‖2

(C.60)

appendix to chapter 6 131

Recall that the diagonal blocks HBB are positive definite since H is
positive definite and thus ‖HBB‖2 = λmax(HBB) and

‖H‖B∞,1 ≤ ∑
BB′
‖HBB′‖2 =

∑BB′ ‖HBB′‖2

∑B ‖HBB‖2
∑
B

λmax(HBB) = ρBdiag(H)−1 ∑
B

λmax(HBB).

(C.61)

Proof of Proposition C.2. Lemma 6.2 gives

‖∇ ft‖2
∗ ≤ 2L(ft − ft+1) (C.62)

Rearranging and summing for t = 0, . . . , T − 1 yields

1
T

T−1

∑
t=0
‖∇ ft‖2

∗ ≤
2L
T

T−1

∑
t=0

(ft − ft+1) =
2L(f0 − fT)

T
≤ 2L(f0 − f ?)

T
.

(C.63)

Proof of Proposition C.3. Combining Lemma 6.2 and the PL condi-
tion gives

ft+1 ≤ ft −
1

2L
‖∇ ft‖2

∗ ≤ ft −
µ

L
(ft − f ?). (C.64)

Subtracting f ? from both sides and iterating backwards yields the
statement.

C.5.4 Proofs for Appendix C.3

We first prove Proposition C.4.

Proof of Proposition C.4. By Lemma 6.1 we have

ft+1 ≤ ft −
αt

L‖∇ ft‖∗
〈∇ ft,∇ f ‖·‖t 〉+

α2
t

2L‖∇ ft‖2∗
‖∇ f ‖·‖t ‖2 (C.65)

By Lemma C.2, we have 〈∇ ft,∇ f ‖·‖t 〉 = ‖∇ f ‖·‖t ‖2 = ‖∇ ft‖2∗, which
yields

ft+1 ≤ ft −
1
L

(
αt‖∇ ft‖∗ −

α2
t

2

)
. (C.66)

With a telescopic sum, we get

f0 − f ? ≥ f0 − fT =
T−1

∑
t=0

(ft − ft+1) ≥
1
L

T−1

∑
t=0

αt‖∇ ft‖∗ −
1

2L

T−1

∑
t=0

α2
t

(C.67)
Now with αt = 1/

√
t + 1 ≥ 1/

√
T, we have

L(f0 − f ?) ≥ 1√
T

T−1

∑
t=0
‖∇ ft‖∗ −

1
2

T−1

∑
t=0

1
t + 1

︸ ︷︷ ︸
≤log(T+1)

(C.68)

and thus

1
T

T−1

∑
t=0
‖∇ ft‖∗ ≤

L(f0 − f ?)√
T

+
log(T + 1)

2
√

T
(C.69)

132 noise-aware stochastic optimization

We now proceed to the proofs for Subsection C.3.2 about the
relaxed smoothness assumption. All proofs are closely following
the ones given for the Euclidean norm in Zhang et al. [2019a].

To prove Lemma C.1, we first need the following Lemma, which
allows us to control the growth of the gradient norm in the vicinity
of a point θ ∈ Rd.

Lemma C.3. Assume Eq. (C.24) holds and let θ, θ′ with ‖θ′ − θ‖ ≤ 1
L(1) .

Then

‖∇ f (θ′)‖∗ ≤ 4

(
L(0)

L(1)
+ ‖∇ f (θ)‖∗

)
. (C.70)

Proof. Define θ(τ) = θ + τ(θ′ − θ) as well as g(τ) = ∇ f (θ(τ)) with
g′(τ) = ∇2 f (θ(τ))(θ′ − θ). Then

‖∇ f (θ(t))‖∗ =
∥∥∥∥∇ f (θ) +

∫ t

0
g′(τ)dτ

∥∥∥∥
∗

≤ ‖∇ f (θ)‖∗ +
∫ t

0
‖g′(τ)‖∗ dτ

= ‖∇ f (θ)‖∗ +
∫ t

0
‖∇2 f (θ(τ))(θ′ − θ)‖∗ dτ

(C.43)
≤ ‖∇ f (θ)‖∗ + ‖(θ′ − θ)‖︸ ︷︷ ︸

≤1/L(1)

∫ t

0
‖∇2 f (θ(τ))‖︸ ︷︷ ︸

≤L(0)+L(1)‖∇ f (θ(τ))‖∗ (C.24)

dτ

≤ ‖∇ f (θ)‖∗ +
1

L(1)

∫ t

0
L(0) + L(1)‖∇ f (θ(τ))‖∗ dτ

= ‖∇ f (θ)‖∗ + t
L(0)

L(1)
+
∫ t

0
‖∇ f (θ(τ))‖∗ dτ

(C.71)

Applying the integral form of Groenwall’s inequality2 yields 2 Groenwall’s inequality says that if
u(t) ≤ α(t) +

∫ t
t0

β(τ)u(τ)dτ for
continuous u and β, then

u(t) ≤ α(t)+
∫ t

t0
α(τ)β(τ) exp

(∫ t

τ
β(r)dr

)
dτ.

(C.72)
We apply it here with u(t) =
‖∇ f (θ(t))‖∗ and α(t) = ‖∇ f (θ)‖∗ +
tL(0)/L(1) and β(τ) ≡ 1.

‖∇ f (θ(t))‖∗ ≤ ‖∇ f (θ)‖∗+ t
L(0)

L(1)
+
∫ t

0

(
‖∇ f (θ)‖∗ + τ

L(0)

L(1)

)
exp(t− τ)dτ.

(C.73)
We now specialize to t = 1 and upper-bound the integrand

‖∇ f (θ′)‖∗ = ‖∇ f (θ(1))‖∗

≤ ‖∇ f (θ)‖∗ +
L(0)

L(1)
+
∫ 1

0

‖∇ f (θ)‖∗ + τ︸︷︷︸

≤1

L(0)

L(1)

 exp(1− τ)︸ ︷︷ ︸
≤exp(1)<3

dτ

≤ ‖∇ f (θ)‖∗ +
L(0)

L(1)
+ 3

(
‖∇ f (θ)‖∗ +

L(0)

L(1)

) ∫ 1

0
dτ

= 4

(
L(0)

L(1)
+ ‖∇ f (θ)‖∗

)
.

(C.74)

We can now approach the proof of Lemma C.1.

Proof of Lemma C.1. According to Taylor’s theorem we have

f (θ′) = f (θ) + 〈∇ f (θ), θ′ − θ〉+ 1
2
〈θ′ − θ,∇2 f (ξ)(θ′ − θ)〉 (C.75)

appendix to chapter 6 133

with some ξ ∈ {θ + τ(θ′ − θ) | τ ∈ [0, 1]}. We can bound the
quadratic term as

〈θ′ − θ,∇2 f (ξ)(θ′ − θ)〉
(C.28)
≤ ‖θ′ − θ‖‖∇2 f (ξ)(θ′ − θ)‖∗

(C.43)
≤ ‖θ′ − θ‖2‖∇2 f (ξ)‖

(C.24)
≤ (L(0) + L(1)‖∇ f (ξ)‖∗)‖θ′ − θ‖2.

(C.76)

The first inequality is by definition of the dual norm (see Lemma C.2).
The second inequality is by construction of the induced matrix
norm. The final inequality uses the relaxed smoothness assumption
(Eq. C.24).

Next, since ‖θ′ − θ‖ ≤ 1/L(1) by assumption of Lemma C.1, we
know ‖ξ − θ‖ ≤ 1

L(1) . Lemma C.3 thus gives us

‖∇ f (ξ)‖∗ ≤ 4

(
L(0)

L(1)
+ ‖∇ f (θ)‖∗

)
. (C.77)

Plugging this back into Eq. (C.76) yields

〈θ′ − θ,∇2 f (ξ)(θ′ − θ)〉 ≤ (5L(0) + 4L(1)‖∇ f (θ)‖∗)‖θ′ − θ‖2. (C.78)

Using that in Eq. (C.75) proves the assertion.

Finally, we prove Theorem C.2

Proof of Theorem C.2. Using Lemma C.1 with θ = θt and θ′ = θt+1 =

θt − ηt∇ f ‖·‖t yields

ft+1 ≤ ft − ηt〈∇ ft,∇ f ‖·‖t 〉+
η2

t
2
(5L(0) + 4L(1)‖∇ ft‖∗)‖∇ f ‖·‖t ‖2.

(C.79)
Recall from Lemma C.2 that 〈z, z‖·‖〉 = ‖z‖·‖‖2 = ‖z‖2∗ and, hence,

ft+1 ≤ ft − ηt〈∇ ft,∇ f ‖·‖t 〉+
η2

t
2
(5L(0) + 4L(1)‖∇ ft‖∗)‖∇ f ‖·‖t ‖2

= ft −
(

ηt −
η2

t
2
(5L(0) + 4L(1)‖∇ ft‖∗)

)
‖∇ ft‖2

∗

= ft −
‖∇ ft‖2∗

2(5L(0) + 4L(1)‖∇ ft‖∗)
.

(C.80)

If ε ≤ ‖∇ ft‖∗ ≤ L(0)/L(1), we get

ft+1 ≤ ft −
ε2

18L(0)
(C.81)

134 noise-aware stochastic optimization

If ‖∇ ft‖∗ ≥ L(0)/L(1), we get

ft+1 ≤ ft −
‖∇ ft‖2∗

2(5L(0) + 4L(1)‖∇ ft‖∗)

= ft −
‖∇ ft‖∗

10L(0)/‖∇ ft‖∗ + 8L(1)

≤ ft −
‖∇ ft‖∗
18L(1)

≤ ft −
L(0)

18(L(1))2

(C.82)

Hence,

ft+1 ≤ ft −min

{
L(0)

18(L(1))2
,

ε2

18L(0)

}
. (C.83)

Now assume that we have T iterations with ‖∇ ft‖∗ ≥ ε. Then

f0 − f ? ≥ f0 − fT =
T−1

∑
t=0

(ft − ft+1) ≥ T min

{
L(0)

18(L(1))2
,

ε2

18L(0)

}
.

(C.84)
Rearranging yields

T ≤ 18
f0 − f ?

min
{

L(0)

(L(1))2 , ε2

L(0)

} = 18(f0 − f ?)max

(
L(0)

ε2 ,
(L(1))2

L(0)

)
.

(C.85)

D
Appendix to Chapter 7

§D.1: Details on Natural Gradient Descent provides additional expo-
sition on the natural gradient and the generalized Gauss-Newton;
its relation to distances in probability distribution space (§D.1.1),
the expression of the Fisher for common loss functions (§D.1.2) and
the view of the generalized Gauss-Newton as a linearization of the
model (§D.1.3).

§D.2: Proofs provides proof of the propositions and statements
skipped in the main paper; the relation between the expected Hes-
sian and expected outer product of gradients (Eq. 7.4), the equiva-
lence between the generalized Gauss-Newton (Prop. 7.1), and the
bound on the difference between the generalized Gauss-Newton
and the Hessian (Prop. 7.2).

§D.3: Experimental Details gives the necessary details to reproduce
our experiments.

§D.4: Additional Experimental Results shows the experiments on
different datasets.

D.1 Details on Natural Gradient Descent

We give an expanded version of the introduction to natural gradi-
ent descent provided in Section 7.3.1

D.1.1 Measuring Distance in Kullback-Leibler Divergence

Gradient descent minimizes the objective function by updating in
the “direction of steepest descent”. But what, precisely, is meant by
the direction of steepest descent? Consider the following definition,

lim
ε→0

1
ε
(arg minδ f (θ + δ)) s.t. d(θ, θ + δ) ≤ ε, (D.1)

where d(·, ·) is some distance function. We are looking for the up-
date step δ which minimizes f within an ε distance around θ, and
let the radius ε go to zero (to make δ finite, we have to divide by
ε). This definition makes clear that the direction of steepest descent

136 noise-aware stochastic optimization

is intrinsically tied to the geometry we impose on the parameter
space by the definition of the distance function. If we choose the
Euclidean distance d(θ, θ′) = ‖θ − θ′‖2, Eq. (D.1) reduces to the
(normalized) negative gradient.

Now, assume that θ parameterizes a statistical model pθ(z).
The parameter vector θ is not the main quantity of interest; the
distance between θ and θ′ would be better measured in terms of
distance between the distributions pθ and pθ′ . A common func-
tion to measure the difference between probability distributions
is the Kullback–Leibler (KL) divergence. If we choose d(θ, θ′) =

DKL (pθ′ ‖ pθ), the steepest descent direction becomes the natural
gradient, F(θ)−1∇R(θ), where

F(θ) = ∇2
θ′ DKL (pθ ‖ pθ′) |θ′=θ (D.2)

the Hessian of the KL divergence, is the Fisher information matrix of
the statistical model and

F(θ) = Epθ(z)

[
∇ log pθ(z)∇ log pθ(z)T

]

= Epθ(z)

[
−∇2 log pθ(z)

]
.

(D.3)

To see why, apply the chain rule on the log to split the equation in
terms of the Hessian and the outer product of the gradients of pθ

w.r.t. θ,

Epθ(z)

[
−∇2

θ log pθ(z)
]
= Epθ(z)

[
− 1

pθ(z)
∇2

θ pθ(z)
]

+ Epθ(z)

[
1

pθ(z)2∇θ pθ(z)∇θ pθ(z)T
]

.
(D.4)

The first term on the right-hand side is zero, since

Epθ(z)

[
− 1

pθ(z)
∇2

θ pθ(z)
]
= −

∫

z

1
pθ(z)

∇2
θ pθ(z)pθ(z)dz

=
∫

z
∇2

θ pθ(z)dz

= ∇2
θ

[∫
pθ(z)dz

]

︸ ︷︷ ︸
=1

= 0.

(D.5)

The second term is the expected outer-product of the gradients, as
∂θ log f (θ) = 1

f (θ)∂θ f (θ),

1
pθ(z)2∇θ pθ(z)∇θ pθ(z)T =

(
1

pθ(z)
∇θ pθ(z)

)(
1

pθ(z)
∇θ pθ(z)

)T

= ∇θ log pθ(z)∇θ log pθ(z)T.
(D.6)

The same technique also shows that if the empirical distribution
over the data is equal to the model distribution pθ(y| f (x, θ), then
the Fisher, empirical Fisher and Hessian are all equal.

appendix to chapter 7 137

D.1.2 The Fisher for Common Loss Functions

For a probabilistic conditional model of the form p(y| f (x, θ)) where
p is an exponential family distribution, the equivalence between the
Fisher and the generalized Gauss-Newton leads to a straightfor-
ward way to compute the Fisher without expectations, as

F(θ) = ∑
n
(Jθ f (xn, θ))T(∇2 log p(yn| f (xn, θ)))(Jθ f (xn, θ))

= ∑
n

JTn Hn Jn,
(D.7)

where Jn = Jθ f (xn, θ) and Hn = ∇2 log p(yn| f (xn, θ)) often has an
exploitable structure.

The squared-loss used in regression, 1
2 ∑n ‖yn − f (xn, θ)‖2, can

be cast in a probabilistic setting with a Gaussian distribution with
unit variance,

p(yn| f (xn, θ)) = N (yn; f (xn, θ), 1) ∝ exp
(
−1

2
‖yn − f (xn, θ)‖2

)
.

(D.8)
The Hessian of the negative log-likelihood w.r.t. f is then

∇2
f [− log p(yn| f)] = ∇2

f

[
− log exp

(
−1

2
‖yn − f ‖2

)]

= ∇2
f

[
1
2
‖yn − f ‖2

]
= 1.

(D.9)

And as the function f is scalar-valued, the Fisher reduces to an
outer-products of gradients,

F(θ) = ∑
n
∇θ f (xn, θ)∇θ f (xn, θ)T. (D.10)

We stress that this is different to the outer product of gradients of
the overall loss;

F(θ) 6= ∑
n
∇θ log p(yn| f (xn, θ))∇θ log p(yn| f (xn, θ))T. (D.11)

The cross-entropy loss used in C-class classification can be cast
as an exponential family distribution by using the softmax function
on the mapping f (xn, θ),

p(yn = c| f (xn, θ)) = [softmax(f)]c =
e fc

∑i e fi
= πc, (D.12)

The Hessian of the negative log-likelihood w.r.t. f is independent of
the class label c,

∇2
f (− log p(y = c| f)) = ∇2

f

[
− fc + log

(
∑

i
e fi

)]

= ∇2
f

[
log

(
∑

i
e fi

)]
.

(D.13)

138 noise-aware stochastic optimization

A close look at the partial derivatives shows that

∂2

∂ f 2
i

log

(
∑

c
e fc

)
=

e fi

(∑c e fc)
− e fi

2

(∑c e fc)2
, (D.14)

∂2

∂ fi∂ f j
log

(
∑

c
e fc

)
= − e fi e f j

(∑c e fc)2
, (D.15)

and the Hessian w.r.t. f can be written in terms of the vector of
predicted probabilities π as

∇2
f (− log p(y| f)) = diag(π)− ππT. (D.16)

Writing πn the vector of probabilities associated with the n-th sam-
ple, the Fisher becomes

F(θ) = ∑
n
[Jθ f (xn, θ)]T(diag(πn)− πnπT

n)[Jθ f (xn, θ)]. (D.17)

D.1.3 The Generalized Gauss-Newton as a Linear Approximation of
the Model

In Section 7.3.3, we mentioned that the generalized Gauss-Newton
with a split R(θ) = ∑n an(bn(θ)) can be interpreted as an approxi-
mation of R where the second-order information of an is conserved
but the second-order information of bn is ignored. To make this
connection explicit, see that if bn is a linear function, the Hessian
and the GGN are equal as the Hessian of bn w.r.t. to θ is zero,

∇2R(θ) = ∑
n
(Jθbn(θ))

T ∇2
ban(bn(θ)) (Jθbn(θ))

︸ ︷︷ ︸
GGN

+ ∑
n,m

[∇ban(bn(θ))]m∇2
θb(m)

n (θ)︸ ︷︷ ︸
=0

.
(D.18)

This corresponds to the Hessian of a local approximation of R
where the inner function b is linearized. We write the first-order
Taylor approximation of bn around θ as a function of θ′,

b̄n(θ, θ′) := bn(θ) + Jθbn(θ)(θ
′ − θ),

and approximate R(θ′) by replacing bn(θ′) by its linear approxima-
tion b̄n(θ, θ′). The generalized Gauss-Newton is the Hessian of this
approximation, evaluated at θ′ = θ,

G(θ) = ∇2
θ′ ∑

n
an(b̄n(θ, θ′))|θ′=θ

= ∑
n
(Jθbn(θ))

T∇2
ban(bn(θ)) (Jθbn(θ)).

(D.19)

D.2 Proofs

D.2.1 Proof of Propositon 7.1

In Section 7.3.4, Proposition 7.1, we stated that the Fisher and the
generalized Gauss-Newton are equivalent for the problems consid-
ered in the introduction;

appendix to chapter 7 139

Proposition 7.1 (Martens [2020], §9.2). If p(y| f) is an exponential fam-
ily distribution with natural parameters f ∈ F, then the Fisher information
matrix coincides with the GGN of the objective in Eq. (7.1) using the split

an(b) = − log p(yn|b), bn(θ) = f (xn, θ), (7.13)

and reads

F(θ) = G(θ) = −∑
n
[Jθ f (xn, θ)]T ∇2

f log p(yn| f (xn, θ)) [Jθ f (xn, θ)].

(7.14)

Proof. Plugging the split into the definition of the GGN (Eq. 7.10)
yields G(θ), so we only need to show that the Fisher coincides with
this GGN. By the chain rule, we have

∇θ log p(y| f (xn, θ)) = Jθ f (xn, θ)T∇ f log p(y| f (xn, θ)), (D.20)

and we can then apply the following steps.

F(θ) = ∑
n

Ey∼pθ(y|xn)

[
Jθ f (xn, θ)T∇ f log p(y| fn)∇ f log p(y| fn)

TJθ f (xn, θ)
]

,

(D.21)

= ∑
n

Jθ f (xn, θ)TEy∼pθ(y|xn)

[
∇ f log p(y| fn)∇ f log p(y| fn)

T
]

Jθ f (xn, θ),

(D.22)

= ∑
n

Jθ f (xn, θ)TEy∼pθ(y|xn)

[
−∇2

f log p(y| fn)
]

Jθ f (xn, θ),

(D.23)

Eq. (D.21) rewrites the Fisher using the chain rule, Eq. (D.22) take
the Jacobians out of the expectation as they do not depend on y
and Eq. (D.23) is due to the equivalence between the expected outer
product of gradients and expected Hessian shown in the last sec-
tion.

If p is an exponential family distribution with natural parameters
(a linear combination of) f , its log density has the form log p(y| f) =
fTT(y) − A(f) + log h(y) where T are the sufficient statistics, A
is the cumulant function, and h is the base measure. Its Hessian
w.r.t. f is independent of y. We can thus drop the expectation and
find

F(θ) = ∑
n

Jθ f (xn, θ)T∇2
f (− log p(yn| fn))Jθ f (xn, θ). (D.24)

D.2.2 Proof of Proposition 7.2

In §7.3.4, Prop. 7.2, we show that the difference between the Fisher
(or the GNN) and the Hessian can be bounded by the residuals and
the smoothness constant of the model f ;

140 noise-aware stochastic optimization

Proposition 7.2. Let R(θ) be defined as in Eq. (7.1) with F = RM. Denote
by f (m)

n the m-th component of f (xn, ·) : RD→ RM and assume each f (m)
n

is β-smooth. Let G(θ) be the GGN (Eq. 7.10). Then,

‖∇2R(θ)− G(θ)‖2
2 ≤ r(θ)β, (7.15)

where ‖ · ‖2 denotes the spectral norm for matrices and

r(θ)
def
=

N

∑
n=1
‖∇ f log p(yn| f (xn, θ))‖1. (7.16)

Proof. Dropping θ from the notation for brevity, the Hessian can be
expressed as

∇2R = G +
N

∑
n=1

M

∑
m=1

r(m)
n ∇2

θ f (m)
n , (D.25)

where

r(m)
n =

∂ log p(yn| f)
∂ f (m)

∣∣∣∣
f= fn(θ)

(D.26)

is the derivative of − log p(y| f) w.r.t. the m-th component of f ,
evaluated at f = fn(θ).

If all f (m)
n are β-smooth, their Hessians are bounded by −βI �

∇2
θ f (m)

n � βI and

−
∣∣∣∣∣∑n,m

r(m)
n

∣∣∣∣∣ βI � ∇2R− G �
∣∣∣∣∣∑n,m

r(m)
n

∣∣∣∣∣ βI. (D.27)

Pulling the absolute value inside the double sum gives the upper
bound

∣∣∣∣∣∑n,m
r(m)

n

∣∣∣∣∣ ≤∑
n

∑
m

∣∣∣∣∣
∂ log p(yn| f)

∂ f (m)

∣∣∣∣
f= fn(θ)

∣∣∣∣∣

= ∑
n
‖∇ f log p(yn| fn(θ))‖1

(D.28)

and the statement about the spectral norm (the largest singular
value of the matrix) follows.

D.3 Experimental Details

In contrast to the main text of the paper, which uses the sum for-
mulation of the loss function,

R(θ) = ∑
n

log p(yn| f (xn, θ)),

the implementation—and thus the reported step sizes and damping
parameters—apply to the average,

R(θ) =
1
N ∑

n
log p(yn| f (xn, θ)).

The Fisher and empirical Fisher are accordingly rescaled by a 1/N
factor.

appendix to chapter 7 141

D.3.1 Vector field of the empirical Fisher preconditioning

The problem used for Fig. 7.1 is a linear regression on N = 1000
samples from

xi ∼ Lognormal (0, 3/4) , εi ∼ N (0, 1), yi = 2 + 2xi + εi. (D.29)

To be visible and of a similar scale, the gradient, natural gradi-
ent and empirical Fisher-preconditioned gradient were relatively
rescaled by 1/3, 1 and 3, respectively. The trajectories of each
method is computed by running each update,

GD: θt+1 = θt − γ∇R(θt). (D.30)

NGD: θt+1 = θt − γ(F(θt) + λI)−1∇R(θt), (D.31)

EFGD: θt+1 = θt − γ(F̃(θt) + λI)−1∇R(θt), (D.32)

using a step size of γ = 10−4 and a damping parameter of λ = 10−8

to ensure stability for 50′000 iterations. The vector field is computed
using the same damping parameter. The starting points are

[
2 4.5

]
,

[
1 0

]
,

[
4.5 3

]
,

[
−0.5 3

]
.

D.3.2 EF as a Quadratic Approximation at the Minimum for Misspec-
ified Models

The problems are optimized using using the Scipy [Jones et al.,
2001] implementation of BFGS1. The quadratic approximation of 1 https://docs.scipy.org/doc/scipy/

reference/optimize.minimize-bfgs.

html
the loss function using the matrix M (the Fisher or empirical Fisher)
used is R(θ) ≈ 1

2 (θ − θ?)M(θ − θ?), for ‖θ − θ?‖2 = 1. The datasets
used for the logistic regression problem of Fig. 7.2 are described in
Table D.1.

Model p(x|y = 0) p(x|y = 1)

Correct model: N
([

1
1

]
,
[

2 0
0 2

])
N
([−1
−1

]
,
[

2 0
0 2

])

Misspecified (A): N
([

1.5
1.5

]
,
[

3 0
0 3

])
N
([−1.5
−1.5

]
,
[

1 0
0 1

])

Misspecified (B): N
([−1
−1

]
,
[

1.5 −0.9
−0.9 1.5

])
N
([

1
1

]
,
[

1.5 0.9
0.9 1.5

])

Table D.1: Logistic regression datasets
used for Fig. 7.2. For all datasets,
p(y = 0) = p(y = 1) = 1/2.

The dataset used for the linear regression problem in Fig. 7.2 is
described in Table D.2. All experiments used N = 1000 samples.

Model y ε

Correct model: y = x + ε ε ∼ N (0, 1)
Misspecified (A): y = x + ε ε ∼ N (0, 2)
Misspecified (B): y = x + 1

2 x2 + ε ε ∼ N (0, 1)

Table D.2: Linear regression datasets
used for Fig. 7.2. For all datasets,
x ∼ N (0, 1).

D.3.3 Preconditioning with the Empirical Fisher

The optimization experiment uses the update rules described in
§D.3.1 by Equations (D.30), (D.31), and (D.32), respectively.

Table D.3 describes the datasets used in the experiments. These
datasets are available at:

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html

142 noise-aware stochastic optimization

Dataset # Features # Samples Type Figure

a1a 1′605 123 Classification Fig. 7.3
BreastCancer 683 10 Classification Fig. 7.3
Boston Housing 506 13 Regression Fig. 7.3
Yacht Hydrodynamics 308 7 Regression Fig. D.1
Powerplant 9′568 4 Regression Fig. D.1
Wine 178 13 Regression Fig. D.1
Energy 768 8 Regression Fig. D.1

Table D.3: Datasets

• https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

binary.html#a1a

• https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

binary.html#breast-cancer

• https://scikit-learn.org/stable/modules/generated/sklearn.

datasets.load_boston.html

• https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics

• https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+

Power+Plant

• https://archive.ics.uci.edu/ml/datasets/Wine

• https://archive.ics.uci.edu/ml/datasets/Energy+efficiency

The step size and damping hyperparameters are selected by a
gridsearch, selecting for each optimizer the run with the minimal
loss after 100 iterations. The grid used is described in Table D.4 as a
log-space.

Parameter Grid

Step size γ logspace(start=-20, stop=10, num=241)

Damping λ logspace(start=-10, stop=10, num=41)

Table D.4: Grid used for the hyperpa-
rameter search for the optimization
experiments, in log10. The number of
samples to generate was selected as to
generate a smooth grid in base 10, e.g.,
100, 10.25, 10.5, 10.75, 101, 101.25, . . .Table D.5 shows the hyperparameters selected by the gridsearch.

The cosine similarity is computed between the gradient precon-
ditioned with the empirical Fisher and the Fisher, without damping,
at each step along the path taken by the empirical Fisher optimizer.

The problems are initialized at θ0 = 0 and run for 100 iterations.
This initialization is favorable to the empirical Fisher for the logistic
regression problems. Not only is it guaranteed to not be arbitrarily
wrong, but the empirical Fisher and the Fisher coincide when the
predicted probabilities are uniform. For the sigmoid activation of
the output of the linear mapping, σ(f), the gradient and Hessian
are

− ∂

∂ f
log p(y| f) = σ(f) − ∂2

∂ f 2 log p(y| f) = σ(f)(1− σ(f)). (D.33)

They coincide when σ(f) = 1
2 , at θ = 0, or when σ(f) ∈ {0, 1},

which require infinite weights.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a1a
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a1a
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#breast-cancer
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#breast-cancer
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics
https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
https://archive.ics.uci.edu/ml/datasets/Wine
https://archive.ics.uci.edu/ml/datasets/Energy+efficiency

appendix to chapter 7 143

Dataset Algorithm γ λ

Boston GD −5.250
NGD 0.125 −10.0
EFGD −1.250 −8.0

BreastCancer GD −5.125
NGD 0.125 −10.0
EFGD −1.250 −10.0

a1a GD 0.250
NGD 0.250 −10.0
EFGD −0.375 −8.0

Wine GD −5.625
NGD 0.000 −8.5
EFGD −1.375 −6.0

Energy GD −5.500
NGD 0.000 −7.5
EFGD 0.875 −3.0

Powerplant GD −5.750
NGD −0.625 −8.0
EFGD 3.375 −1.0

Yacht GD −1.500
NGD −0.750 −7.5
EFGD 1.625 −6.5

Table D.5: Selected hyperparameters,
given in log10.

D.4 Additional Experimental Results

Fig. D.1 repeats the experiment described in Fig. 7.3 (§7.4.3) on
additional linear regression problems. Those additional examples
show that the poor performance of empirical Fisher-preconditioned
updates compared to NGD is not isolated to the examples shown in
the main text.

10−1

L
o
ss

Wine

0 20 40 60 80 100
Iteration

-1

1

C
o
si

n
e

(N
G

D
,E

F
G

)

101

102

L
o
ss

Energy

0 20 40 60 80 100
Iteration

-1

1

C
o
si

n
e

(N
G

D
,E

F
G

)

103

L
o
ss

Powerplant

0 20 40 60 80 100
Iteration

-1

1

C
o
si

n
e

(N
G

D
,E

F
G

)

102

L
o
ss

Yacht

0 20 40 60 80 100
Iteration

-1

1

C
o
si

n
e

(N
G

D
,E

F
G

)

Figure D.1: Comparison of the Fisher
(NGD) and the empirical Fisher
(EFGD) as preconditioners on addi-
tional linear regression problems. The
second row shows the cosine similarity
between the EF-preconditioned gra-
dient and the natural gradient at each
step on the path taken by EFGD.

	Introduction
	Stochastic Optimization
	Towards Noise-Aware Algorithms
	Overview

	Preliminaries
	Machine Learning
	Mathematical Optimization

	Stochastic Optimization
	Problem Statement
	Stochastic Gradient Descent
	Stochastic Optimization for Deep Learning
	Estimating the Gradient Variance

	Variance-Based Step Size and Batch Size
	Bias-Variance Trade-Off in Stochastic Optimization
	Optimal Step Size and Batch Size
	The Case for Adaptive Batch Size Methods
	CABS—A Practical Adaptive Batch Size Method
	Conclusion

	Dissecting Adam
	Introduction
	Related Work
	Variance Adaptation
	Practical Implementation of M-SVAG
	Connection to Generalization
	Experiments
	Conclusion

	The Geometry of Sign Gradient Descent
	Introduction
	Smoothness and Steepest Descent
	Separable Smoothness and linf-Smoothness
	Understanding linf-Smoothness
	Gradient Descent vs Sign Gradient Descent
	Conclusion

	Natural Gradient Descent and the ``Empirical Fisher''
	Introduction
	Related Work
	Generalized Gauss-Newton and Natural Gradient Descent
	Critical Discussion of the Empirical Fisher
	Variance Adaptation
	Computational Aspects
	Conclusions

	Conclusion
	Summary
	Further Research

	Bibliography
	Appendix to Chapter 4
	Proofs
	Experimental Details

	Appendix to Chapter 5
	Experimental Details
	Mathematical Details
	Alternative Methods
	Minibatch Gradient Variance Estimates

	Appendix to Chapter 6
	Details on Steepest Descent
	Two-Dimensional Quadratic Example
	On Normalized Steepest Descent
	Experimental Details
	Proofs

	Appendix to Chapter 7
	Details on Natural Gradient Descent
	Proofs
	Experimental Details
	Additional Experimental Results

