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Abstract

Quantization of magnetic flux in a superconducting loop is a cornerstone effect in the theory of
superconductivity. In Josephson junctions this leads to the existence of the Josephson vortices
carrying one quantum Φ0 of magnetic flux. These vortices are called fluxons. By using π Josephson
junctions or creating discontinuities of the phase artificially, we are able to create and study
Josephson semifluxons or even arbitrary fractional Josephson vortices.

In this work I introduce and review π, 0-π and 0-κ Josephson junctions, where such vortices
appear, and present technological developments of the last decade as well as experimental issues.
By using 0-π Josephson junctions one can construct a ϕ junction, which can be used either as an
eternal phase battery providing the phase 0 < ϕ < π to a superconducting circuit or as Josephson
junction with magnetic field tunable current-phase relation. Further, I present the physics of
fractional Josephson vortices, which is very different from the physics of integer vortices, namely,
the ground states of a single vortex and of various vortex molecules; reconfiguration of fractional
vortex molecules by using an external current; readout of vortex molecule states; the oscillatory
modes of a single fractional vortex and of vortex molecules and crystals. Finally, in spite of rather
large size of ∼ 100μm, the fractional vortices exhibit macroscopic quantum effects — they can
tunnel quantum mechanically and are predicted to allow a quantum mechanical superposition of
the vortex and the antivortex.
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Preface

After defending my Ph.D. degree in Moscow in 1997, my research activity was concentrated along
several main directions related to the physics of Josephson junctions (JJs):

1. Fluxon dynamics in stacked JJs. Stacks of coupled long Josephson junctions (LJJs)
have attracted a lot of attention in the mid 1990s because of the discovery of the intrinsic
Josephson effect [KSKM92,KM94] and a possibility to build a stack of coherently operating
(sub)-THz oscillators. The investigation of stacked LJJ was the main topic of my Ph.D.
dissertation [Gol97]. After defending the Ph.D. degree this research lead to several interesting
results. One of my main contributions is the discovery of the Cherenkov radiation by a fast
moving Josephson vortex [GWTU98,GWU00,UGH+99] and the investigation of associated
effects [KYG+99], e.g., bunching of fluxons by means of Cherenkov radiation [GMU00].
Another important work is the experimental demonstration and explanation of “current
locking” within the inductive coupling model [GU99]. I also observed in-phase zero-field
steps [GNKU98], coupling of two LJJs in various modes [GU00], and other effects. Since I
am not active in this field, I will not mention this activity below.

2. Josephson ratchets. Advantages of Josephson junction based ratchets are that: (I) di-
rected motion results in an average dc voltage which is easily detected experimentally; (II)
Josephson junctions are very fast devices which can operate (capture and rectify noise) in
a broad frequency range from dc to ∼ 100GHz, capturing a lot of spectral energy; (III) by
varying junction design and bath temperature both overdamped and underdamped regimes
are accessible; and (IV) one can operate Josephson ratchets in the quantum regime.

Focusing on Josephson vortex (fluxon) ratchets, we proposed several techniques to create
an asymmetric periodic potential in a long Josephson junction [GSK01]: by LJJ width
modulation, by bending the LJJ and by injecting auxiliary current with zero spatial average.
The last technique proved to be very successful and we recently have demonstrated Josephson
vortex (fluxon) ratchets with record figures of merit [BGN+05,KIS+12].

This field is still of great interest as there are many questions to be investigated. For example,
can one rectify (almost) white noise, i.e., a white noise with a cut off frequency? Although
I am active in this field, I will not focus on this results in this habilitation.

3. Anomalous proximity effect in High-Tc superconductors. During my time with Oxxel
GmbH we have made an important contribution to the clarification of a controversial issue
of “giant/anomalous proximity effect” in cuprate superconductors. This became possible
because of the atomically smooth interfaces that we were able to make using our Molecular
Beam Epitaxy (MBE) machine [BLV+03,BLV+04]. Since I am not active in this field, I will
not mention this activity below.

4. Fractional flux quanta. My main activity during the last few years is experimental and
theoretical investigation of fractional flux quanta, i.e., Josephson vortices that carry half, or
even any arbitrary fraction, of the magnetic flux quantum Φ0. This is the main topic of this
habilitation.
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This habilitation is written in cumulative form, i.e., it consists of an overview of the main results
obtained by me and a set of relevant publications, submitted as habilitation thesis and attached
at the end.

There are two lists of references in this work. First, it is the list of papers that constitute this
habilitation. They are referenced using arabic numbers and listed in the section “Publications
brought to habilitation” starting from the page 9. All other references (including my works not
related to this habilitation) use author-year notation. The list starts on page 55.

This text is organized as follows. On page 7 a short summary of the work is given. The list of the
works that constitute this habilitation can be found on page 9 followed by the discussion of my
contribution on page 11 and of my group on page 12. In chapter 1 the basics, such as introduction
to π and 0-π Josephson junctions, π SQUIDs are presented. Some of my works are references here
already. The core of the work, presented in chapter 2, discusses the physics of fractional vortices:
ground states in different systems, preparation and read-out of states, eigenmodes, dynamics, and
finally macroscopic quantum effects. The main body of my works is cited here. In the text I focus
on the concepts and give only some examples from experiments. Chapter 3 concludes the work. It
presents the current status of research, unsolved problems and outlines the perspectives. Finally,
at the end of this work one finds all my papers relevant to this habilitation attached.
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Introduction

Since its discovery in 1911 superconductivity proved to be an exciting field of scientific research
linking advances in material science with new concepts in quantum physics. The number of Nobel
prizes1 given in the field of superconductivity is probably larger than in any other field. Nowadays
superconducting systems are routinely used in a broad spectrum of applications ranging from
medicine to space research. New superconducting materials with unusual properties are still being
discovered. In spite of numerous advances, the mechanism of superconductivity in some materials
in not fully understood and active research in this field delivers some amazing results (e.g. π
Josephson junctions). Since the beginning of the century investigation of controllable macroscopic
quantum systems based on superconductors and their coherent interaction e.g. with light is at the
forefront of research.

Superconductivity itself is a macroscopic quantum phenomenon. The existence of macroscopic
wave function Ψ(r), which describes coherent behavior of all electrons in the superconducting
sample, is a fact of vital importance. As any complex function it can be written in general form
as

Ψ(r) = |Ψ(r)|eiθ(r),
where θ(r) is a phase. It is clear that Ψ(r) and other derived quantities are 2π periodic functions
of θ(r). In complex, not single connected geometries, e.g., in a superconducting loop or hole, the
phase may advance from θ(r0) to θ(r0)+2πn, where n is integer, as one goes around the loop and
arrives to the starting point r0. Note, there is no discontinuity of Ψ(r), i.e., of physical properties,
anywhere. This advance of the phase by 2πn results in a quantization of magnetic flux Φ = nΦ0

with the flux quantum Φ0 = h/2e ≈ 2.07 × 10−15 Wb, which is a combination of fundamental
constants: h is the Plank constant and e is the electron charge. Qualitatively, one can have the
following picture in mind. The gradient of θ(r) induces the current in the loop, which generates
magnetic field with total flux Φ = nΦ0 threading the loop. Abrikosov vortices of supercurrent2

existing in type-II superconductors also carry one flux quantum. Each vortex is essentially the
superconducting loop around the tiny normal region. After discovery of Josephson effect3 it turned
out that Josepshon vortices existing in long Josephson junctions also carry one flux quantum Φ0.

The lowest energy of the superconducting loop described above is achieved when no flux is trapped
n = 0 and circulating supercurrent is zero. One can also include one (or more) Josephson junctions
in such a loop to obtain a Superconducting QUantum Interference Device (SQUID). If those
Josephson junctions are conventional junctions with a phase drop φ = θ2 − θ1 = 0 in the ground
state (when no supercurrent flows through it), nothing special happens with the ground state of the
loop. By using unconventional superconductors or superconductor-ferromagnet hybrid structures
one can fabricate a Josephson junctions with a phase drop of π in the ground state. So, if one
instead uses the loop with one (or odd number of) such π junctions, the loop is frustrated – to
provide a total phase advance of 0 or 2π around the loop the supercurrent must flow around the
loop clockwise or counterclockwise. Since the total phase difference created by this current is only
±π — twice smaller by absolute value than in a loop without π JJ — the magnetic flux generated

1See Nobel Prizes 1913, 1962, 1972, 1973, 1987, 2003 at http://www.nobelprize.org
2Nobel prize 2003 given to Alexei A. Abrikosov, Vitaly L. Ginzburg, Anthony J. Leggett
3Nobel prize given in 1973 to L. Esaki, I. Giaever and B. D. Josephson
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by this current in the loop is equal to ±Φ0/2 — a half flux quantum.

Similar to the case of Josephson vortices carrying one flux quantum ±Φ0 (fluxons) in long Joseph-
son junctions, one can create and make experiments with Josephson semifluxons in long Josephson
junctions consisting of 0 and π segments. Today we are even able to create not only semiflux-
ons, but the vortices that carry an arbitrary fraction of the flux quantum Φ0, i.e., they are not
quantized at all.

Such fractional vortices are very interesting objects and behave very differently from well known
fluxons. This Habilitation summarizes my research on fractional vortex physics and also gives a
reasonable overview of the works done by other groups. During one decade since the experimental
discovery of semifluxons and later on of fractional vortices, their classical nonlinear physics is well
understood. We are now able to create, manipulate, and readout the states of single vortices
and molecules consisting of several fractional vortices; excite eigenmodes and make spectroscopy.
The very latest achievement is that those unquantized fractional vortices nevertheless show a
macroscopic quantum behavior. In particular, we observed a macroscopic quantum tunneling of
a fractional vortex through a pinning barrier — quite an impressive result for an object that is
∼ 100μm long.
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[18] Ch. Gürlich, E. Goldobin, R. Straub, D. Doenitz, Ariando, H.-J. H. Smilde, H. Hilgenkamp,
R. Kleiner, and D. Koelle. Imaging of order parameter induced π phase shifts in cuprate super-
conductors by low-temperature scanning electron microscopy. Phys. Rev. Lett., 103(6):067011,
2009.
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Description of my own contribution

The investigation of semifluxons was started by me in the work [1] were I derived analytically the
shape of a semifluxon and wrote a numerical code to confirm the analytical formulas numerically.
Further in the work [2] I extended the numerical simulation code and performed extensive numer-
ical simulation of different (re)arrangements of semifluxons. In the work [3] I made the statement
of the problem. Most of analytical derivations were done by A. Zenchuk, while I was checking
analytical results numerically and wrote the manuscript.

In the experimental work [4] I designed the samples, measured them together with T. Gaber,
evaluated the results and wrote a manuscript together with other co-authors. In the following
publication [5] T. Gaber invested a great deal of time investigating experimentally and numerically
the effect of the finite injector size. I suggested several ideas how the finite injector size can be
taken into account and wrote some simple analytical formulas that describe limiting cases.

In the numerical work [6] I was making numerical simulations together with N. Stefanakis who
for the first time noticed the difference in dynamics of fluxons and semifluxons and proposed to
investigate their interaction.

Back in 2003 I suggested to fabricate π and 0-π SIFS LJJs with high critical current density using
a step-like thickness of the F-layer. M. Weides started his Ph.D. in FZ-Jülich to pursue this goal.
The idea was successfully realized in the works [7] (separate 0 and π JJs) and [8–10] (0-π JJs).
The samples were fabricated by M. Weides, while the measurements were done by M. Kemmler,
J. Pfeiffer and me. I was also participating in designing the samples, analyzing obtained results
and writing the paper.

In experimental works [11–14] I proposed the idea of experiment, participated in the samples
design, evaluated obtained data and participated in writing the manuscript. The measurements
were done by K. Buckenmaier and T. Gaber [11,12]; U. Kienzle, K. Buckenmaier and T. Gaber [14]
and A. Dewes [13].

In a series of three theoretical works devoted to arbitrary fractional vortices [15–17] I was making
analytical calculations (together with H. Susanto in [16, 17]), extensive numerical simulations
in [15, 16], analysis of the results and preparation of the manuscript.

In two experimental works [18,19] using Low Temperature Scanning Electron Microscop (LTSEM)
the experiment was performed by Ch. Gürlich, S. Scharinger, D. Dönitz using the samples fabri-
cated by M. Weides [18,19] and by Ariando and H.-J. Smilde [18]. I analyzed experimental results,
participated in fine tuning of experimental setup, made numerical simulations and participated in
preparation of the manuscript. In a related work [20] I, together with R. Mints and R. Kleiner,
suggested a model which allows to interpret our experimental observations, proposed the ideas for
the experiment and prepared the manuscript.

In two theoretical paper about quantum properties of fractional vortices [21, 22] I formulated the
problem, K. Vogel and O. Crasser derived the analytical formulas following discussion with T.
Kato. Then I made numerical estimations (analytics was not possible up to the final result) to
obtain final results and participated in preparation of the manuscript.

Lately, in the theoretical papers [23, 24] I derived analytically and also checked numerically the
behavior of fractional vortices in LJJs with a second harmonic in the current-phase relation (CPR).
I also wrote the manuscript where I discussed the possibility to observe the second harmonic
experimentally and tune the CPR (including the ground state) by the applied magnetic field.

Finally, in experimental paper [25] I proposed the idea of experiment, participated in the samples
design, evaluated obtained data and participated in writing the manuscript. The measurements
were done by U. Kienzle, K. Buckenmaier, T. Gaber and H. Sickinger. The samples were fabricated
by J. M. Meckbach, Ch. Kaiser and K. Ilin.
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Chapter 1

Basics

The supercurrent Is through a conventional Josephson junction (JJ) is given by

Is = Ic sin(φ), (1.1)

where φ is the phase difference of the superconducting wave functions of the two electrodes, i.e.
the Josephson phase [Jos62]. The critical current Ic is the maximum supercurrent that can flow
through the JJ. In experiment one usually applies some current through the JJ and the junction
reacts by changing the Josephson phase. From the above formula it is clear that the phase
φ = arcsin(I/Ic), where I is the applied (super)current.

Already in the original paper of Josephson [Jos62] it was predicted that Eq. (1.1) is the simplest
relation that links the (super)current and the Josephson phase. Generally speaking, a current-
phase relation (CPR) may deviate from a simple sinusoidal form (1.1), e.g., can have second
harmonic component ∼ sin(2φ), be linear js ∝ φ or even may have a more unusual shape. The
CPR for a given type of the Josephson junction can be derived using a microscopic theory. For
the time being we restrict ourselves with the CPR given by Eq. (1.1).

Since the phase is 2π-periodic, i.e. φ and φ + 2πn are physically equivalent, without loosing
generality, we restrict the discussion below to the interval 0 ≤ φ < 2π.

When no current (I = 0) is passing through the JJ, the JJ is in the ground state, the supercon-
ducting condensate in both electrodes establish a coherence with the phase difference (Josephson
phase) across the JJ equal to zero (φ = 0). The attentive reader may notice, that according to
Eq. (1.1) the phase can also be φ = π, also resulting in no current through the JJ.

To understand which state is realized in practice, one should introduce the notion of a Josephson
energy U(φ). The Josephson energy is a potential energy associated with the Josephson phase φ
or with the supercurrent js flowing through the JJ. Similar to the case of an inductance which
accumulates a magnetic energy when the current flows through it, a Josephson junction accumu-
lates the Josephson energy when a supercurrent flows. In the general case, the Josephson energy
is just an integral of the CPR

U(φ) = Φ0

∫
Is(φ) dφ. (1.2)

In the simplest case of a sinusoidal CPR (1.1), the Josephson energy is

U(φ) = EJ (1− cosφ), (1.3)

where EJ = IcΦ0/2π defines the typical scale of the Josephson energy and an integration constant
was chosen so that U(0) = 0 for convenience.

Using Eq. (1.3) one calculates that the state with φ = π has U(π) = 2EJ and corresponds to the
energy maximum and, therefore, is unstable. The state φ = 0 corresponds to the Josephson energy
minimum and is a stable ground state.
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1.1 π Josephson junctions

In certain cases one may obtain a JJ where the critical current is negative (Ic < 0). In this case
the first Josephson relation becomes

Is = −|Ic| sin(φ) = |Ic| sin(φ+ π) (1.4)

with the Josephson energy

U(φ) =
Φ0|Ic|
2π

(1 + cosφ) = EJ(1 + cosφ). (1.5)

Obviously, the ground state of such a JJ is φ = π and corresponds to the Josephson energy
minimum, while the conventional state φ = 0 is unstable and corresponds to the Josephson energy
maximum. Such a JJ with φ = π in the ground state is called π Josephson junction.

Figure 1.1: π JJ shorted by a superconducting wire (inductance). One can consider it as a single
JJ SQUID (rf SQUID) with a π JJ.

A π JJ has quite unusual properties. For example, if one connects (shorts) the superconducting
electrodes with an inductance L (e.g. superconducting wire), as shown in Fig. 1.1, one may expect
a supercurrent circulating in the loop. Naively, recalling that the phase drop across the inductance
is given by φL = LI · 2π/Φ0, the supercurrent is given by I = φLΦ0/(2πL) = π · Φ0/(2πL). The
reader may notice that for a very small inductance L → 0, the supercurrent I → ∞, which
is unphysical. In fact, the current flowing through the inductance also flows through the π JJ.
According to Eq. (1.4) this shifts the phase off from φ = π, which decreases the current. The
self-consistent calculations are given below.

Qualitatively, the supercurrent may indeed circulate if the inductance L is large enough. This state
is degenerate, i.e. the current through the JJ and through the inductance can circulate clockwise
or counterclockwise, corresponding to the initial phase (without inductive load) equal to +π or
−π. This supercurrent is spontaneous and belongs to the ground state of the system. It induces a
magnetic field, which can be detected experimentally. The magnetic flux passing through the loop
will have a value from 0 to a half of the magnetic flux quantum, i.e. from 0 to Φ0/2, depending
on the value of inductance L.

Let us make a more detailed analysis of the circuit shown in Fig. 1.1. The current through the
junction is given by

I = −|Ic| sinφ. (1.6)

The Kirchhoff equation for the phases around the loop gives

φ+ φL = φ+ LI
2π

Φ0
= 0, (1.7)

where we assumed that there is no trapped flux in the loop.

These two Eqs. are for two unknowns I and φ. Excluding I we get the equation for the ground
state phase φ:

φ = βL sin(φ), (1.8)
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where we introduced the “normalized” SQUID inductance

βL =
2π

Φ0
LIc. (1.9)

Figure 1.2: Graphical solution of Eq. (1.8). The l.h.s. is shown by straight solid line, the r.h.s. is
shown as other line types for different values of βL.

Equation (1.8) is a transcendental equation and cannon be solved analytically. Solving Eq. (1.8)
graphically, as shown in Fig. 1.2, one sees that if βL < 1 (small inductance) the only solution of
(1.8) is φ = 0. Therefore I = 0. When βL > 1 a new non-trivial solution φ0 �= 0 appears. It
is shown in Fig. 1.2 by dots at the intersection of the I = φ line and the I = βL sin(φ) curve.
One can notice that for βL → ∞, there are many intersections, i.e. many possible states of
our single π JJ SQUID. In this limit φ0 approaches π. For large βL and not very large φ0, i.e.,
π(2n+ 1)− φ0 	 π/2, one can approximate the ground state solution as

φ0 ≈ π(2n+ 1)
βL

βL + 1
. (1.10)

One can also clarify the situation using energy arguments. The total energy of the π JJ SQUID
is given by

E = EL(I) + EJ (φ) =
LI2

2
+ EJ (1 + cosφ) , (1.11)

where the sign +, instead of usual −, in front of the cos()-function says that we are dealing with
a π JJ. Making use of Eq. (1.7), we express I and substitute it into Eq. (1.11). After trivial
transformations we obtain

E(φ) = EJ

[
φ2

2βL
+ (1 + cosφ)

]
. (1.12)

The plots of E(φ) for different values of βL are shown in Fig. 1.3. For βL ≤ 1 there is only one
energy minimum at φ = 0, corresponding to the ground state of the system. At βL > 1 the
side minima appear, while the state φ = 0 turns into an energy maximum. For very large βL,
see Fig. 1.3(b), there are several energy minima, situated close to the points φ = (2n + 1)π, see
Eq. (1.10), but only φ0 ≈ ±π is the true degenerate ground state of the π JJ SQUID.

Note that, to find all minima of the potential numerically one has to solve the problem dE/dφ = 0
for φ, i.e. again the Eq. (1.8). Solving it, one will find a set of φ values corresponding to both
the minima and the maxima of the potential, i.e. the stable and unstable solutions, as shown by
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Figure 1.3: The plots of E(φ) for different values of βL. (a) demonstrate the emergence of a
ground state with φ0 �= 0 for βL > 1. (b) the behavior of energy at very large βL.

the open and filled circles in Fig. 1.2 and 1.3. That is, each found solution should be checked for
stability, e.g. for having d2E/dφ2 > 0. This corresponds to the potential minimum and positive
slope of Is(φ) at the intersection points in Fig. 1.2.

Thus, a π JJ can be used as a “phase battery”, pushing the supercurrent through the circuit
connected to it. Similar to usual voltage batteries, the phase battery has finite loading capabilities.
Given the inductance of the load L, the battery is able to supply supercurrent if its |Ic| > Φ0/(2πL).
If |Ic| 
 Φ0/(2πL), then the battery will support a phase almost equal to π or some lower phase
otherwise. The phase battery does not discharge as no energy is dissipated in the superconducting
circuit in the regime described above.

1.1.1 Technologies and physical principles

Author’s contributions: [7]

In Sec. 1.1 we have not mentioned how one can construct a π JJ. In fact, there are several physical
effects that a π JJ can be based on.

1. Tunnel JJ with spin flipping impurities in the barrier. Consider a tunnel S|I|S
Josephson junction with ferromagnetic impurities in I layer (ferromagnetic insulator). We
denote such a JJ as S|FI|S. If one calculates the effect of spin flipping impurities on the
Josephson tunneling supercurrent in the framework of the Anderson model [And61], one
arrives to the result [Kul66] that

Ic ∝ 〈|Tn|2〉 − 〈|Ts|2〉
〈|Tn|2〉+ 〈|Ts|2〉 , (1.13)

where 〈|Ts|2〉 and 〈|Tn|2〉 are the angle averaged transmission probabilities with and without
spin flipping, accordingly. It is obvious from Eq. (1.13) that Ic may become negative when the
spin flipping tunneling dominates. This limit was not discussed in the original work [Kul66].
The word “π junction” first appeared in Ref. [BKS77] where the consequences of having
a negative critical current due to Eq. (1.13) were analyzed for the first time. The first
implementation of a S|FI|S π JJ was reported [VGG+06].
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π

Figure 1.4: An example of experimental dependence Ic(dF ) measured using a set of samples
fabricated in the same technological run with a gradient in thickness dF across the wafer. Adapted
from Ref. [7].

Recently, there was also a proposal to use a “native” ferromagnetic insulator such as La2BaCuO5

as a Josephson barrier. In such a material the spin up and spin down conduction bands are
completely separated so that one of them is 100% filled and the other is empty. The chemical
potential lays in between the spin subbands, resulting in a 100% spin polarized insulator.
Due to the specific energy band structure, the electrons tunneling from one superconductor
to another through such a barrier experience a phase shift of π if they tunnel through an
odd number of atomic layers (unit cells). [KAT+10]

2. Ferromagnetic Josephson junctions. Consider a Josephson junction with ferromagnetic
Josephson barrier, e.g., the multi-layer structures Superconductor-Ferromagnet-Superconductor
(S|F|S) or Superconductor-Insulator-Ferromagnet-Superconductor (S|I|F|S). In such struc-
tures the superconducting order parameter inside the F-layer oscillates in the direction per-
pendicular to the JJ plane. As a result, for certain thicknesses of the F-layer and tempera-
tures, the order parameter may become +1 at one at one superconducting electrode and −1
at the other superconducting electrode. In this situation one gets a π Josephson junction.
Note that inside the F-layer a competition of different solutions takes place and the one with
the lower energy wins. Ferromagnetic π junction were fabricated by several groups:

• S|F|S JJs [ROR+01,BTKP02,BBA+04];

• S|I|F|S JJs [KAL+02] [7].

As an example in Fig. 1.4 one can see the dependence Ic(dF ) measured in our group exper-
imentally.

3. JJs with unconventional order parameter symmetry. Novel superconductors, no-
tably high temperature cuprate superconductors, have an anisotropic superconducting order
parameter which can change its sign depending on the direction. In particular, the so-called
d-wave order parameter has a value of +1 if one looks along the crystal axis a (or b) and
−1 if one looks along the crystal axis b (or a). If one looks along the ab direction (45 ◦

between a and b) the order parameter vanishes. By making Josephson junctions between
d-wave superconducting films with different orientation or between d-wave and conventional
isotropic s-wave superconductor, one can get a phase shift of π. Nowadays there are several
realizations and proposals of π JJs of this type:

• tri-crystal grain boundary JJs [TK00];
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• tetra-crystal grain boundary JJs [CSB+02,CEM+03];

• d-wave/s-wave ramp zigzag JJs [VH95,SAB+02,ADS+05,HAS+03];

• tilt-twist grain boundary JJs usually fabricated using biepitaxy [LTR+02, TKLG03,
LJB+06,SRC+10];

• p-wave based JJs [GL86,GLB87];

• “geometric” π junctions [GIS07].

4. Non-equilibrium Josephson junctions. Superconductor-NormalMetal-Superconductor
(SNS) Josephson junctions with a nonequlibrium electron distribution in the N-layer, which
can be created by the external current injection [BMWK99,HPH+02].

5. Superconductor-QuantumDot-Superconductor JJ. The operation of a Superconductor-
QuantumDot-Superconductor (S|Q|S, S|QD|S, S•S) JJs is conceptually similar to the usual
SIS JJs with the spin flipping ferromagnetic impurities in the I-barrier, but one speaks about
one conduction channel only. As a quantum dot one usually uses a single wall carbon nano-
tube (SWCNT) or a semiconducting nanotube, both of which have only a single conduction
channel. The flow of supercurrent through a S|CNT|S (CNT is proximized by S) was shown
experimentally [KDK+99, JHvDK06, PGRS08]. A tunable supercurrent through the semi-
conducting nano-wire was demonstrated [DvDR+05]. The S|CNT|S JJs, tunable between
the 0 and the π state by a gate voltage, were demonstrated [CWB+06,JNGR+07].

6. A superfluid 3He Josephson junction may also be made such that it possesses a phase
π in the ground state [MSB+99].

1.1.2 Historical developments

Theoretically, the possibility to have π JJs was discussed for the first time in 1977 by Bulaevskii
et al. [BKS77], who considered a JJ with paramagnetic scattering in the barrier. Almost one
decade later the possibility of having a π JJs was discussed in the context of heavy fermion p-wave
superconductors [GL86,GLB87].

Experimentally, the first π JJ was a corner JJ made of YBCO (d-wave) and Pb (s-wave) supercon-
ductors [VH95]. The π JJs based on ferromagnetic barrier were first fabricated and investigated
only a decade later [ROR+01].

1.2 Applications of π Josephson junctions

There is a number of proposals how π JJs can revolutionarize existing and contribute to emerging
technologies. One obvious application is to use π JJs as a “phase battery”, which will provide
a phase close to π. In some circuits such phase batteries will allow to decrease the number (or
completely get rid) of the bias lines. In quantum circuits, which should be decoupled from the
environment, intrinsic bias may drastically reduce the decoherence figures. For many applications
one has to use 0 and π JJs fabricated on the same chip during the same technological run. This
can make the technology somewhat more complicated. For example, in the case of d-wave/s-wave
ramp zigzag junctions, there are no such complications, but in case of S|F|S, S|I|F|S or S|FI|S
technologies one has to add at least one additional technological step. Below we discuss several
applications of π JJs in details.

• Digital superconducting circuits such as RSFQ [LS91], potentially have very high speed
of operation (sub-THz clock frequencies) and very low power consumption in the JJ per
switching event. The problem is that approximately every second JJ should be dc biased by
a current of the order of the critical current of the junction. Usually, one employs a bias bus
with voltage Vbias, which is connected with all bias points through bias resistors. It turns
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out that the power dissipated by these bias resistors is by several orders of magnitude larger
than the power dissipated by the JJs during switching events. Thus, a reduction or removal
of the bias lines is very desirable.

There were several proposals how to use π JJs in RSFQ circuits. These proposals can be
conceptually separated into two categories: active π JJs and passive π JJs. Under active we
mean π JJs that are (temporarily) switching to the voltage state during operation. Passive
π JJs always stay in the superconducting state, i.e. they really work as a phase battery.

The use of active π JJs in RSFQ circuits was suggested and recently implemented [OAM+06]
using a YBa2Cu3O7-Nb (d-wave/s-wave) ramp zigzag 0-π JJs technology. A simple circuit
consisting of a DC-to-SFQ converter, a Josephson transmission line, a T-flip-flop and a SFQ-
to-DC converter had smaller number of bias lines, larger margins and allows for a symmetric
design of the cells avoiding time consuming numerical optimization of the working point
with maximum margins. Requirements to π JJs that are supposed to be used as active
elements are the same as to 0 JJs: similar Ic, similar resistance R and similar characteristic
voltage Vc = IcR. Vc defines an upper limit for the operating frequency (∼ Φ0Vc) of such
RSFQ circuits. Among all π JJ technologies the d-wave/s-wave ramp zigzag technology and
the S|I|F|S technology [8, 9] provide 0 and π JJs with similar parameters. Similar results
can be, in principle, obtained using grain boundary JJs, but one usually can have only few
(1,2,3) grain boundaries on each crystal, thus strongly limiting topologically the freedom of
the circuit design.

In another approach π JJs are used as passive phase shifters [UK03,KBM+10,FOB+10]. This
allows not only to self bias the circuit but also to use π JJs instead of geometric inductances,
thus, drastically decreasing the geometrical sizes of every RSFQ cell. The only requirement
for a π JJ used passively is that they should have a rather high critical current and do not
switch into the resistive state during operation. The authors also claim that IcRn should be
similar to that of active JJs, so that the π shifter is able to follow the dynamics of the circuit
and keep the phase difference even during fast changes of the phase. In terms of technology,
the successful implementation of a qubit [FOB+10] and RSFQ T-flip-flop [KBM+10] based
on SFS π JJ was reported.

• Complementary circuits similar to CMOS semiconducting circuits were proposed [TGB97,
TB97,TB98]. The idea is that having complementary 0 and π JJs, one can build supercon-
ducting electronic circuits with symmetric layout and large margins. The main requirements
here is to either have 0 and π JJs with the same parameters such as Ic, damping, etc. or
use high Ic π JJs simply as phase shifters.

1.3 0-π Josephson junctions

The ground state of a 0 JJ is φ = 0, while the ground state of π JJ corresponds to φ = π. What
will happen if one connects two such junctions in parallel, as shown in Fig. 1.5? In particular,
what will be the ground state of such a system? Let us consider two cases depicted in Fig. 1.5a
and b.

1.3.1 0-π dc SQUID

The first case, shown in Fig. 1.5a, corresponds to two point-like JJs in a loop with inductance L.
This is nothing else as a two JJ SQUID (aka dc SQUID) where one of the JJs is a π JJ.

The potential energy of such a π dc SQUID can be written as

U = − cos(μ0)−RI cos(μπ) +
1

2βL0
[μ0 − μπ + 2πf ] , (1.14)
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Figure 1.5: Two qualitatively similar systems: (a) a π dc SQUID with one 0 JJ and one π JJ and
(b) a 0-π JJ. A 0-π JJ (b) can be considered as a π dc SQUID with zero loop area and extended
(long), rather than point-like, JJs.

where U is normalized to the Josephson energy of the 0 JJ, EJ0 = Ic0Φ0/2π. The SQUID
parameter βL0 = 2πIc0L/Φ0. The parameter RI = Icπ/Ic0 (|RI | ≤ 1) describes the ratio of critical
currents (while |RI | describes the ratio of Josephson energies). The parameter f in Eq. (1.14)
is a frustration (normalized applied magnetic field). Note that the phases μ0 and μπ are not
independent. They are linked by the common current that flows through both junctions (the bias
current is assumed to be zero). For |RI | ≤ 1 the good phase variable turns out to be μπ, so that
μ0 can be expressed as

μ01 = − arcsin[RI sin(μπ)]; (1.15)

μ02 = +arcsin[RI sin(μπ)]− π. (1.16)

For further discussion, only μ01 is relevant and corresponds to the ground state of the system. To
study the ground state, we further assume f = 0 and focus, first, on the simplest case RI = −1.
The plots U(μπ) for different values of βL0 are shown in Fig. 1.6.

Figure 1.6: The energy of the π dc SQUID as a function of μπ. The values of the phase μ01(μπ)
(1.15) are shown as well.

One can see that for |μπ| < +π/2, the energy U(μπ) is constant, μ01 = μπ, so that no currents
are circulating. For |μπ| > +π/2 an energy minimum is visible. Its position μmin

π and depth
U(μmin

π ) depends on βL0. As one can see, the phases of the JJs are not equal, which corresponds
to a spontaneous supercurrent which circulates in the SQUID loop. For minima at ±μmin

π this
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supercurrent has opposite directions (clockwise or counterclockwise). It also produces spontaneous
magnetic flux, which is equal to

Φ =
Φ0

2π
[μ01(μ

min
π )− μmin

π ] =
Φ0

2π
[π − 2μmin

π ], (1.17)

where we took into account that in the region μπ > π/2, μ01 = π − μπ, cf., Eq. (1.15). To find
the value of μmin

π for given βL0 one has to solve the following transcendental equation

βL0 sinμπ = 2μπ − π, (1.18)

for μπ. The result is presented in Fig. 1.7(a) together with two analytical approximations

Figure 1.7: (a) The solution of the transcendental Eq. (1.18) μmin
π (βL0) (solid line) together with

two approximations given by Eqs. (1.19) (dotted line) and (1.20) (dashed line). (b) The value
of spontaneous flux Φ(βL0) (solid line) as well as analytical approximations given by Eqs. (1.21)
(dotted line) and (1.22) (dashed line).

μmin
π ≈ π + βL0

2
, βL0 	 1; (1.19)

μmin
π ≈ π

βL0 + 1

βL0 + 2
, βL0 
 1. (1.20)

As one can see, Eq. (1.20) describes the behavior of μmin
π (βL0) rather accurately in the whole range

of βL0 and even gives the right value at βL0 = 0.

The values of spontaneous flux Φ(βL0) calculated from μmin
π (βL0) using Eq. (1.17) are shown in

Fig. 1.7(b). The corresponding approximations

Φ = ±Φ0

2π
βL0, βL0 	 1; (1.21)

Φ = ±Φ0

2π

πβL0

βL0 + 2
, βL0 
 1, (1.22)

are also shown in Fig. 1.7(b). One can see that in the case of a perfectly symmetric π dc SQUID the
ground state is degenerate and corresponds to a spontaneously circulating supercurrent inducing
a spontaneous magnetic flux with the value between 0 and Φ0/2 depending on inductance of the
SQUID βL0. Note, that in contrast to a π SQUID with a single JJ, considered in the Sec. 1.1, the
circulating supercurrents are always flowing regardless of the value of inductance.
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1.3.2 0-π long Josephson junctions

Fig. 1.5b shows the so-called 0-π long Josephson junction (LJJ). It is a LJJ which consists of
different parts having the properties of 0 and of π JJs, if taken separately.

Below, we use the name 0-π LJJ (a) to speak, in general, about a LJJ with several 0 and π parts
and (b) to denote the particular case shown in Fig. 1.5b. When necessary we will use notations
like 0-π-0 LJJ or 0-π-0-π LJJ, but in general all such junctions will be called 0-π LJJs.

It is clear that the two parts of the structure shown in Fig. 1.5b should somehow agree what will
be the ground state of the whole system. It turns out that if the JJ is long enough, the phase far
in the 0 region will be zero. Far in the π region it will be π, and it will change smoothly between
0 and π in the vicinity of the 0-π boundary, as shown in Fig. 2.3a. Such a spatial variation of the
phase in the ground state implies the presence of the local magnetic field B ∝ dμ(x)/dx, i.e.,
localized in the vicinity of the 0-π boundary. The total flux associated with this magnetic field is
equal to the half of the magnetic flux quantum Φ0 ≈ 2.07×10−15Wb. Such a semifluxon is pinned
at the 0-π boundary and corresponds to the ground state of the system. Further, if one looks at
the Josephson supercurrent distribution in the vicinity of the 0-π boundary (∝ jc(x) sin φ), one
finds that the Josephson current flows in different directions in these 0 and π parts. Since we
are investigating the ground state and do not supply any external bias, this currents should close
somehow. In fact, they form a vortex of supercurrent circulating around the 0-π boundary in the
clockwise direction, as shown on the sketch in Fig. 1.5.

In principle the +π and −π ground states of the π part are equivalent because the phase is defined
mod2π. However, in 0-π LJJ this makes an important difference. If the phase changes along the
LJJ not from 0 to +π, but from 0 to −π, then the one gets an antisemifluxon, carrying the flux
−Φ0/2, and having the supercurrent circulating around 0-π boundary counterclockwise.

Thus, a semifluxon is a Josephson vortex pinned at the 0-π boundary. It forms the generate
ground state of the system with two possible polarities of the magnetic flux ±Φ0/2, corresponding
to clockwise or counterclockwise circulation of the supercurrent around the 0-π boundary. In
this sense, it resembles a classical spin or any other two-state system and we will often use spin
notations ↑ and ↓ to denote two different polarities of the semifluxon.

1.3.3 0-π Josephson junction technologies

Author’s contributions: [4, 8–10,18, 19, 26, 27]

Some technologies that can be used to fabricate π JJs can also be used to fabricate 0-π LJJs, e.g.,
SFS or SIFS technologies. However, there are technologies, e.g., JJs based on d-wave supercon-
ductors, that allow only to fabricate 0 and π JJs, but not a π JJ alone. Other technologies, e.g.,
non-equilibrium SNS or quantum dot based JJs, allow to fabricate single π JJs or, may be, 0-π
SQUIDs or arrays, but do not allow to fabricate a continuous LJJ with uniform parameters. In
principle, one could always fabricate a JJ array in the continuous limit (having small discreteness
parameter, i.e., the loop inductance), but then one should tune each of a few dozens of junctions
separately, which seems not very feasible.

Below we present several technologies which, nowadays, are the most relevant for the fabrication
of 0-π LJJs.

1. JJs with unconventional order parameter symmetry. Most of the technologies based
on unconventional order parameter symmetry described in sec. 1.1.1 on p. 17, except “ge-
ometric” π junction, can be used to fabricate 0-π JJs. The physical principle is the same:
due to d-wave order parameter symmetry, there is a π-phase shift between electrons with
perpendicular momenta. The known technologies are:

• tri-crystal grain boundary JJs [TK00];

• d-wave/s-wave corner JJs [VH95] or ramp zigzag JJs [SAB+02,ADS+05,HAS+03] [18];
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• YBa2Cu3O7 grain boundary JJs fabricated using biepitaxy on CeO2 as a seed layer
[CBP+10,CKB+10];

Within this work images of supercurrent distribution in YBa2Cu3O7-Nb and Nd2−yCeyCuOx-
Nb ramp zigzag JJs were obtained using LTSEM [18]. These images clearly show a Josephson
current counterflow in neighboring facets in zero magnetic field. The Ic(H) dependence in
such 0-π JJs is clearly not Fraunhofer-like, exhibiting main maxima at finite magnetic field
and low Ic(0) [18] [SAB

+02,ADS+05].

2. Ferromagnetic Josephson junctions. The SFS or SIFS technology described in sec. 1.1.1
on p. 17 can also be used to fabricate 0-π LJJs. For this, one should vary the thickness of
the ferromagnet barrier in a step-wise manner so that the parts with the thickness dF1 will
correspond to a 0 JJ, while the parts with dF2 to a π JJ. Usually, one also would like to have
almost equal critical currents of the 0 and π parts, which requires precise control of dF on
the level below 1 nm over both thicknesses. Such 0-π JJs were fabricated already by several
groups:

• SFS JJs [DRAK+05,FVHB+06] were, in fact, obtained by chance. The step in F-layer
was formed because of misalignment during the fabrication process.

• 0, π and 0-π JJs based on SIFS technology were fabricated intentionally [8,9] and show
the best parameters among ferromagnetic 0-π JJs.

• One can also use the S|FI|S technology [VGG+06], again with a step-like thickness of
the FI layer, but this was not demonstrated yet.

Within this work were able to fabricate the SIFS 0-π JJs of various (complicated) shapes:
rectangular 0, π, 0-π, 0-π-0 and 20 × (0 - π)0-π- JJs; annular 0-π JJ’ disk-shaped 0-π JJs.
The Josephson current density in these devices was imaged using LTSEM at different applied
magnetic fields and a good agreement with the theory was found [19].

Since LTSEM measurements are very time-consuming, in practice, the fastest way to char-
acterize just fabricated 0-π JJs is to measure their Ic(H) dependence. When the magnetic
field H is applied in the plane of the JJ perpendicular to the 0-π boundary (the step in
F-layer) the Ic(H) dependence is Fraunhofer-like, while, by applying the field H along the
0-π boundary, the Ic(H) dependence has a minimum near H = 0 and two main maxima
at finite field [10]. Also, it is very useful to have reference 0 (with dF = dF1) and π (with
dF = dF2) JJs that are fabricated during the same run and have the same geometry as 0-π
JJ. The comparison of Ic(H) dependences of all three JJs allows to extract parameters just
as critical densities jc,0 and jc,π in 0 and π parts of 0-π JJ. As an example, in Fig. 1.8 the
Ic(H) dependences for 0, for π and for 0-π JJs are shown. In general, it is very difficult
to fabricate SFS or SIFS 0-π JJ with jc,0 = jc,π. Often one may change jc’s within some
limits by changing the temperature, cf., Fig. 1.8(a) and (b). In addition, the multi-domain
F-layer may have different net remanent magnetization in 0 and π parts. The effects of these
asymmetries on Ic(H) dependence in SIFS 0-π JJs was studied by us in several works [26,27]

3. Artificial 0-π Josephson junctions. One can create a 0-π LJJ artificially using a pair of
current injectors [4]. For this one can use the widely available Nb-AlOx-Nb technology, which
in addition provides a broad range of jc and exponentially low damping at low temperatures
so that one can even observe macroscopic quantum effects. The samples can be ordered from
commercial suppliers such as Hypres. [Hyp]

4. Phase shift created by an Abrikosov vortex situated close to the Josephson
barrier. If a single Abrikosov vortex is situated (pinned) close to the Josephson barrier
and parallel to it, it will cause a phase gradient along the Josephson barrier. Since the total
phase twist around the Abrikosov vortex is 2π, one can induce a phase difference of π or
less along the Josephson barrier. The phase difference depends on the length of the LJJ and
the distance between the Josephson barrier and the Abrikosov vortex. In the case when the
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Figure 1.8: An example of Ic(H) dependences for 0, for π and for 0-π JJ at two different tem-
peratures. The Ic(H) dependence for a 0-π JJ has a characteristic minimum near zero magnetic
field H . One can also observe that the critical currents of the 0 and π facets can be made equal
by varying the temperature. Adapted from Ref. [8]

Abrikosov vortex is pinned very close to the barrier, the phase difference is almost π and the
Josephson phase changes from φ to φ+ π in the λL-vicinity of the Abrikosov vortex, where
λL is the London penetration depth. The original theoretical proposal [AG84] was realized
only recently in nano-junctions, fabricated using FIB [GRK10].

1.3.4 Applications of 0-π Josephson junctions

In addition to applications discussed in Sec. 1.2 where single 0 and π JJs are needed, the 0-π
JJs are used are used to investigate the order parameter symmetry in novel superconductors. For
example, the d-wave order parameter in cuprate superconductors was established in a series of
works on corner JJs [VH95], tri-crystals [TK00, KCK00,TK02, KTM99, KTR+96, SYI02], tetra-
crystals [CSB+02,CEM+03], ramp [SAB+02,ADS+05,KTA+06] JJs.

The other application are based on spontaneously arising semifluxons. They will discussed in
Sec. 2.7 after the discussion of the physics of fractional Josephson vortices.
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Chapter 2

Physics of fractional vortices

2.1 Model

Author’s contributions: [1, 4]

The model which describes the dynamics of the Josephson phase in 0-π LJJs was derived in
different contexts. First, it was derived for a LJJ consisting of two parts: one with a dominant
spin-flip Josephson tunneling resulting in jc < 0, and another part with dominant normal tunneling
with jc > 0 [BKS78]. Then the same model was introduced to describe JJs based on d-wave
superconductors [XMT95,KCK00,KBM95]. In comparison with the previous cases that considered
some particular (mostly static) cases, we have derived the full dynamical perturbed sine-Gordon
equation in the context of d-wave/s-wave LJJs [1]. The same equations were also derived to
describe the pinning effect of an Abrikosov vortex on the fluxon dynamics in LJJ [AG84]. In any
case, the perturbed sine-Gordon equation is the same for all types of LJJs, but it can be written
in different forms.

In essence one can use two main approaches. First approach is natural when one starts from
the fact that the critical current jc(x) is coordinate dependent. In this case, one can derive the
following obvious generalization of the usual sine-Gordon equation

μxx − μtt − j̃c(x) sin(μ) = αμt − γ(x). (2.1)

Here the Josephson phase is denoted as μ(x, t) and j̃c(x) = jc(x)/jc0 is the normalized critical
current density which changes along the LJJ, jc0 > 0 is the “typical” current density. The
coordinate x is normalized to the Josephson penetration depth

λJ =

√
Φ0

2πμ0d′jc0
, (2.2)

where μ0d
′ is the inductance of a square of the superconducting films forming the JJ. The time t

is normalized to the inverse plasma frequency 1/ωp, where

ωp =

√
2πjc
Φ0c

. (2.3)

Here c is the specific capacitance between electrodes forming the JJ. The subscripts x and t in
Eq. (2.1) denote the partial derivatives with respect to coordinate x and time t, the dimensionless
damping coefficient α ≡ 1/

√
βc, and βc is the McCumber-Stewart parameter [Lik86]. The function

jc(x)/jc0 in the simplest case of a 0-π LJJ with the 0-π boundary at x = 0 and equal by (absolute
value) critical current densities in 0 and π parts is given by jc(x)/jc0 = sgn(x).

The second approach is more appropriate for the d-wave based JJs where the phase shift of π
takes place not inside the junction itself, but inside the d-wave superconductor, so that the whole
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Josephson junction can be considered as a 0 JJ. In this case, again assuming equal critical current
densities for all facets, one arrives to the following perturbed sine-Gordon equation [1]:

φxx − φtt − sin(φ) = αφt − γ(x) + θxx(x), (2.4)

where φ(x, t) denotes the Josephson phase across the junction. The function θ(x) describes the
positions of the 0-π boundaries and can be written as

θ(x) = π

N∑
k=1

σkH(x− xk), (2.5)

where σk = ±1 defines the direction of the k-th phase jump. The sum is over all N 0-π boundaries
located at x = xk. H(x) is the Heaviside step function. Note that since the phase is 2π periodic
the direction σk of jumps is not important. So, to describe a 0-π-0-π-0-π-. . . LJJ one can take
θ(x) either changing stepwise as 0, π, 0, π, . . . or 0, π, 2π, 3π, . . .

It is clear from Eq. (2.4) that if θ(x) has π jumps at x = xk, then the solution φ(x, t) will also have
π jumps at x = xk. Therefore, xk are often called a phase discontinuity points in the literature.

Since θ(x) is a sum of steps at different xk, θx(x) is a sum of δ-functions centered at different xk,
and θxx(x) is a derivative of delta functions, i.e. a sum of −δ(x− xk)/(x− xk) functions. It may
be quite cumbersome to solve an equation with such terms, especially numerically. To simplify
the analysis, it is convenient to present the phase φ as a sum of two components: the continuous
one μ(x) and the jumps θ(x) (2.5), i.e.,

φ(x, t) = μ(x, t) + θ(x). (2.6)

Rewriting Eq. (2.4) in terms of μ(x, t) we get rid of singular terms:

μxx − μtt − sin(μ) cos(θ)︸ ︷︷ ︸
±1

= αμt − γ(x). (2.7)

It is rather interesting that this is just the usual perturbed sine-Gordon equation (2.1), but the
sign of sin(μ) changes from facet to facet. This means that every second facet can be considered
as having a negative critical current −1 (in normalized units) instead of +1.

Finally, what is the “real” phase, φ or μ? It depends on the particular JJ type. In d-wave 0-π
JJs the φ is the real phase. In SFS-like JJs the real phase is μ. Since one can easily transform
Eq. (2.4) into Eq. (2.1) and vice versa using Eq. (2.6) we will use both equations, depending on
convenience.

For completeness we give here also the expression for the normalized energy, which, in the presence
of phase discontinuities, looks as follows

E =

∫ L

0

⎡
⎢⎢⎣ μ2

t

2︸︷︷︸
kin.(cap.)

+
μ2
x

2︸︷︷︸
pot.(ind.)

+ {1− cos[μ+ θ(x)]}︸ ︷︷ ︸
pot.(Josephson)

⎤
⎥⎥⎦ dx. (2.8)

The energy is given in units of EJ = jcwλJΦ0/2π.

2.1.1 Artificial phase discontinuities

Author’s contributions: [4, 5]

Is it possible to create a 0-π LJJ (LJJ with π discontinuity) using a conventional LJJ? The
information about the position of discontinuities in 0-π LJJ is contained in the θxx(x) term. If
θ(x) is a set of steps, then θx(x) is a set of δ-functions, and θxx(x) is a set of −δ(x− xk)/(x− xk)
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Figure 2.1: θ(x), θx(x) and θxx(x) and its approximation γθ(x) by two rectangular pulses of the
width Δw and amplitude π/Δw2 [4].

singularities as shown in Fig. 2.1(a)–(c). If we do not have initially the θxx term in Eq. (2.4),
we can substitute its effect by introducing an additional bias current γθ(x) = θxx(x). To mimic
one π discontinuity the γθ(x) profile should be the one shown in Fig. 2.1(c). For practical use,
one can approximate it by the profile shown in Fig. 2.1(d). Such a bias profile can be created
by two current injectors of width Δw situated at a distance Δx from each other. The current of
the amplitude Iinj = πIcλJ/(Δw+Δx) flowing from one injector to another (not through the JJ,
but rather only through a tiny part between injectors within the top or bottom superconducting
electrode) should create a π discontinuity of the Josephson phase. Thus one can create an artificial
0-π LJJ provided that the width of the whole injector construction 2Δw +Δx	 λJ .

Note that passing different currents, one can create arbitrary κ discontinuities (κ ∝ Iinj) instead
of a π discontinuity, and study arbitrary fractional vortices [2]. This concept was suggested by
the author [1] and can be used in the LJJ of any geometry (linear or annular). In a sense, it is a
generalization of the idea published a few month earlier [Ust02] to use a pair of current injectors to
insert a fluxon (2π-discontinuity) in an annular LJJ. Fractional vortices sitting at a κ discontinuity
are discussed in Sec. 2.2.3

In conventional LJJs the phase φ = μ is continuous for Iinj = 0. When we increase Iinj the phase φ
develops a jump κ ∝ Iinj in the vicinity of x = xinj. In practice, instead of a jump we have a rapid
increase of the phase from some φ to φ+ κ over a small but finite distance Δx+2Δw. Physically
this means that by passing a rather large current through a piece of the top electrode between two
injectors we “twist” the phase φ by κ over this small distance, i.e., we insert a squeezed magnetic
flux equal to κΦ0/(2π) into a small distance between injectors. The junction may react on the
appearance of such a “discontinuity” by forming a solution φ(x) [or μ(x)] which changes on the
characteristic length λJ outside the injector area, and corresponds, e.g., to the formation of a
fractional Josephson vortex. This technique was suggested already in our first work [1] and then
successfully used to investigate various properties of fractional Josephson vortices [4, 11–13].

In the experiment the injectors are never ideal due to technological constraints: they have finite
width, and the current flowing from one injector to the other has essentially a 2D distribution.
Therefore one has to calibrate the injectors to know the value of injector current needed to create
a π discontinuity. The calibration technique for linear LJJ was suggested by us [4]. It is based on
measuring the dependence of the critical current Ic of the LJJ on the current through the injectors
Iinj, and comparing the obtained Ic(Iinj) dependence with the Ic(κ) dependence calculated theo-
retically. It turns out that the Ic(κ) dependence in a linear 0-κ LJJ, has minima at κ = ±π [4,5].
Thus, by measuring the value of Iinj corresponding to the first minimum of the Ic(Iinj) depen-
dence we get the calibration coefficient Iinj/κ. Similarly, one can note that the Ic(κ) dependence
is 2π periodic in κ, therefore one period ΔIinj of the measured Ic(Iinj) dependence corresponds to
κ = 2π. A typical experimentally measured Ic(Iinj) dependence is shown in Fig. 2.2. The value of
Iinj ≈ 13mA corresponds to κ = ±π.
A similar procedure can be carried out for an annular LJJ. In this case the Ic(κ) dependence has
a form of Fraunhofer pattern with the first minimum at κ = 2π [15] [MU04].
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Figure 2.2: Experimentally measured dependence Ic(Iinj) (solid symbols) and the height Imax(Iinj)
of the first half-integer zero field step typical for a linear LJJ with finite injector size. Adapted
from Ref. [4].

2.2 Ground states

The analysis of the ground states reduces to solving the static version of the sine-Gordon Eq. (2.1)
with γ = 0, i.e.,

μxx = j̃c(x) sin(μ), (2.9)

where j̃c(x) = jc(x)/jc0 is the normalized critical current density.

2.2.1 0-π long Josephson junction with a single discontinuity. Semi-
fluxon

Author’s contributions: [1, 2]

First, consider the simplest situation — an infinitely long JJ with the 0 part for x < 0 and the
π part for x > 0, with equal absolute value of the critical currents in the 0 and π parts, i.e.,
|j0c | = |jπc | = jc0 or j̃c(x) = sgn(x). In this case, the solution of Eq. (2.9), satisfying natural
boundary conditions μ(−∞) = 0 and μ(+∞) = ±π, is [1]

μ(x) = ±4 arctan (Gex) , x < 0; (2.10a)

μ(x) = ±4 arctan
1− Ge−x

1 + Ge−x

= ±π ∓ 4 arctan
(Ge−x

)
, x > 0, (2.10b)

where G = tan(π/8) =
√
2 − 1 ≈ 0.414. Since the phase is 2π periodic, μ(+∞) = +π and

μ(+∞) = −π are equivalent, but lead to two different solutions, if one starts from μ(−∞) = 0.
The solution (2.10) given in terms of the phase φ(x) can be written in a more compact form as

φ(x) = ∓4sign(x) arctan
(
Ge−|x|

)
. (2.11)

This solution (with + sign) is shown in Fig. 2.3a. The magnetic field profile is given by μx(x),
i.e.,

μx(x) =
±2

cosh(|x| − lnG) . (2.12)
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Figure 2.3: Comparison of fluxon and semifluxon shapes. (a) The behavior of the phase φ(x)
and of μ(x). (b) Magnetic field profile μx(x). (c) Supercurrent profile sin(φ) = μxx(x).

The field in the center of the semi-fluxon is

μx(0) =
±2

cosh lnG =
±4

G + 1
G

= ±
√
2, (2.13)

cf., the field h = μx in the center of a fluxon is equal to 2 in normalized units. The normalized
magnetic field h is defined as h = 2H/Hp, where Hp = Φ0/(πΛλJ ) is the penetration field. The
magnetic field profile is shown in Fig. 2.3b. If one calculates the total flux localized at 0-π boundary
by integrating the magnetic field over x from −∞ to +∞, one gets π (or Φ0/2 in physical units),
i.e., half of the flux quantum. Therefore, this localized magnetic field is called a semifluxon.

The supercurrent density corresponding to a semifluxon can be calculated as

sin(φ) = μxx = ∓2 sgn(x)
sinh(|x| − lnG)
cosh2(|x| − lnG) , (2.14)

and is shown in Fig. 2.3c. One can see that the supercurrent flows through the 0 and π parts of
the Josephson barrier in opposite directions. Since we are analyzing the ground state, there is no
external bias current applied. Thus the Josephson currents should close somehow. They close by
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flowing along the top and bottom electrodes of the LJJ in x direction. As a result a vortex of
supercurrent circulating around 0-π boundary is formed. This is a Josephson vortex which has
extensions of the order of λJ in x direction and of the order of λL in z direction.

The ± sign in expressions (2.10)–(2.14) corresponds to two possible solutions: to a semifluxon and
to an antisemifluxon. The antisemifluxon has negative sign of the localized magnetic field and
supercurrents circulating counterclockwise rather than clockwise.

The energy of a(n) (anti)semifluxon can be calculated by substituting expression (2.10) into
Eq. (2.8) to obtain ESF = 8 − 4

√
2 ≈ 2.343, which is the same for both the semifluxon and

the antisemifluxon. Thus, the semifluxon and antisemifluxon form a degenerate ground state of
the system. For comparison the energy of a fluxon is EF = 8. The energy per unit of LJJ length
of a trivial flat phase solution μ(x) = 0 is 0.0 in the 0 part and is 2.0 in the π part. For μ(x) = π
it is 2.0 in the 0 part and it is 0.0 in the π part. Thus, having a symmetric 0-π LJJ of the length
L 
 1, the energy of any flat phase solution E0 = Eπ = L 
 1, which is much larger than the
semifluxon energy.

To summarize, a(n) (anti)semifluxon is a Josephson vortex pinned at the 0-π boundary. It forms a
degenerate ground state with two possible polarities of the magnetic flux ±Φ0/2 corresponding to
clockwise or counterclockwise circulation of supercurrent around the 0-π boundary. In this sense,
it reminds a classical spin or any other two-state system and we will often use spin notations ↑
and ↓ to denote the two different polarities of the semifluxon.

In a real experiment one never has infinite LJJs and the values of critical current densities are
not exactly equal, i.e., j0c �= jπc . The main question which should be answered: what is the
ground state of such a LJJ? Will it contain spontaneous magnetic flux in the ground state? The
ground state diagram can be calculated and consists of three regions corresponding to the ground
state μ = 0, to the state μ = π and to the non-trivial μ(x) profile. The first two states have
flat (constant) phase and, therefore, magnetic field μx(x) = 0, i.e. they are fluxless. The third
one, is associated with some spontaneous magnetic flux, which depends on the LJJ length L and
asymmetry jπc /j

0
c [BKS78,KMS97].

2.2.2 Semifluxon molecules and crystals.

Author’s contributions: [2, 3]

Figure 2.4: Sketch of a 0-π-0 LJJ with (a) AFM ordered semifluxons, state ↑↓ and (b) FM ordered
semifluxons, state ↑↑.

The next simplest configuration is the 0-π-0 LJJ shown in Fig. 2.4. The LJJ is assumed be of
infinite length, while the length of π part in the middle is a, thus θ(x) = π if |x| < a/2 and θ(x) = 0
otherwise. The possible static solutions are: μ(x) = 0 (φ(x) = θ(x)), μ(x) = π (φ(x) = π + θ(x))
and two semifluxons, each sitting at one of the 0-π boundaries, i.e., the states ↓↓, ↑↑, ↓↑, ↑↓.
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Obviously, the energy of the ferromagnetic states ↓↓ and ↑↑ is the same. The same is valid for the
antiferromagnetic states ↓↑, ↑↓. It also can be shown that the energy of the FM states is larger
than the energy of the AFM states. Thus, in the ground state, the flat phase state μ = 0 with
E = 2a competes with the AFM semifluxon states. It turns out [2, 3] [KI97] that for a < π/2 the
flat phase state μ = 0 is the ground state, while for a > π/2 the ground state is a degenerate AFM
state of two semifluxons.

Figure 2.5: The potential energy of various static states as a function of the distance a between
0-π boundaries (length of the π region). The crossover point between the AFM state ↑↓, and the
flat phase state μ = 0 is at a = ac = π/2. The energies of FM and AFM states were calculated by
solving the sine-Gordon Eq. (2.1) numerically to obtain a static solution μ(x) and then substituting
it into Eq. (2.8). Dotted lines show energies calculated using a simple linear superposition of two
semifluxons, Eq. (2.10) with arguments x± a/2 instead of x, substituted into Eq. (2.8).

The energies of various static solutions as a function of a are shown in Fig. 2.5. Clearly, at a→ ∞
the energies of both FM and AFM states are just equal to 2ESF as semifluxons do not interact. At
small a the shape and the energy of FM state approaches the shape and the energy of an integer
fluxon EF = 8. The energy of AFM state decreases as a decreases because semifluxons partially
cancel each other. Note that the AFM line ends at a = π/2, which actually means that the AFM
solution smoothly collapses into the μ = 0 state, i.e., ceases to exist at a = π/2. At a < π/2 the
ground state is a flat phase state μ(x) = 0, which has an energy Ep = 2a. The flat phase state is
continuously connected with AFM state at a = π/2.

The analysis of ground states was extended to the case of a LJJ with many 0-π regions numerically
[2] and analytically [3]. In these works a LJJ of finite length with many facets of the same length a
and edge facets of different length b was considered. The critical current density was assumed to be
the same (by absolute value) along the whole JJ. It was found that the LJJ with the odd number
of 0-π boundaries always has a ground state with some fractional flux. If the LJJ has an even
number of 0-π boundaries, there is a crossover distance ac such that for a < ac the ground state
is fluxless, while for a > ac the ground state corresponds to an AFM ordered array of fractional

magnetic flux localized at the 0-π boundaries. The values of a
(N)
c (b) as a function of facet number

and the edge facet size was calculated and is shown in Fig. 4 of Ref. [3]. The general tendency
in the behavior of ac is the following. First, the critical facet size ac decreases with N . Second,
the ac(b) dependence is non monotonous, having a sharp zero at b = a/2. Thus, if the edge facets
are twice smaller than the inner facets, the ground state of such a 0-π LJJ will always contain a
fractional flux.

2.2.3 0-κ long Josephson junction with one discontinuity

Author’s contributions: [15]

31



The ground state analysis described above was generalized to the case of 0-κ, 0-κ-0 and 0-κ-2κ
LJJs with arbitrary values of κ between 0 and 2π [15, 16]. In this case, any static solution is a
solution of the following equation

μxx = sin[μ+ θ(x)], (2.15)

where θ(x) jumps between 0, κ, 2κ, etc.

Figure 2.6: Two types of fractional vortices pinned at a κ = π/2 discontinuity. (a)–(c) show the
phase, the magnetic field and supercurrents of a direct vortex with topological charge ℘ = −κ.
(d)–(f) show the corresponding dependences for complementary vortex with ℘ = 2π − κ.

In the case of infinite LJJ, one κ discontinuity of the phase φ(x) at x = 0, results in a phase
bending in the λJ vicinity of x = 0, so that at x→ ±∞ the phase φ(x) → 0, as shown in Fig. 2.6a.
The phase μ(x) bends smoothly from μ(−∞) = 0 to μ(+∞) = −κ. Bending of the phase results in
the appearance of the localized magnetic field μx(x) and supercurrents sinφ(x) = sin[μ(x)+θ(x)],
circulating around the κ discontinuity, see Fig. 2.6b,c. The topological charge ℘ of such a vortex
is equal to −κ. Thus, the total magnetic flux carried by it is Φ = Φ0℘/2π = −Φ0κ/2π.

In fact, the possibility described above is not the only one. Because of the 2π periodicity of the
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Josephson phase, one may have solutions φ(x) that have φ(+∞) = 2πk, where k is an integer.
It turns out that one can construct only four such solutions of Eq. (2.15) with k = 2, 1, 0,−1, if
0 < κ < 2π. It turns out that two of them with k = 2,−1 have the topological charge larger than
2π and are unstable. The other two are a direct vortex, described above, and a complementary
vortex with topological charge −κ+2π. A complementary vortex is shown in Fig. 2.6d–f. One can
see that, in comparison with a direct vortex, it carries magnetic flux of the opposite sign and has
a supercurrent circulating in the opposite direction. Also, direct and complementary vortices are
not mirror symmetric as semifluxon and antisemifluxon. Only in the case κ = π a direct vortex
turns into antisemifluxon and the complementary one into a semifluxon.

Note that for |κ| < π the direct vortex is “lighter”, i.e., it carries less flux and has lower energy
than a complementary one, which is “heavier”. For π < |κ| < 2π it is vice versa. In any case both
vortices are stable for any |κ| < 2π. In principle, as a result of some perturbation or manipulation,
a heavy vortex may emit a(n) (anti)fluxon and turn into a light vortex provided the fluxon can
leave the vicinity of vortex, e.g. through the edges of LJJ or being reabsorbed or pinned by other
fractional vortices.

The energy of a direct κ vortex is given by a very simple expression [15]

U(κ) = 16 sin2
κ

8
. (2.16)

2.2.4 Fractional vortex molecules

Author’s contributions: [15]

The ground states in 0-κ-0 and 0-κ-2κ LJJs of infinite length were analyzed in Ref. [15]. Note,
that if κ �= π, these two configurations are not equivalent. Further, if the distance a between two
discontinuities is large enough (larger than all crossover distances, roughly about 2λJ , see below),
then one may have either direct or complementary vortex sitting at each discontinuity. Thus, one
ends up with the following possible ground state configurations.

For (+κ,−κ) discontinuities with 0 < κ < 2π, i.e., a 0-κ-0 LJJ, we may have the following
possibilities.

• Symmetric AFM state, i.e., two direct vortices (−κ,+κ) or two complementary ones (−κ+
2π,+κ− 2π), denoted as states �� and ��, see Fig. 2d in Ref. [15]. These two states are not
stable in the whole range of 0 < κ < 2π. Close to κ = π both states coexist, but closer
to κ = 0 or κ = π only one of them is stable. Moreover, if a < π/2λJ , there is a smooth
transition between these two states via the flat phase state, see Fig. 3 in Ref. [15].

• Asymmetric FM state, i.e., one direct and one complementary vortex in (−κ,+κ − 2π) or
(−κ+2π,+κ) degenerate configurations. These states are denoted as �� and ��, respectively,
see Fig. 2c in Ref. [15]. Both of them are stable in the whole range 0 < κ < 2π.

For (+κ,+κ) discontinuities with 0 < κ < 2π), i.e.. 0-κ-2κ LJJ, we may have the following
possibilities.

• Symmetric FM state with direct (−κ,−κ) or complementary (−κ + 2π,−κ + 2π) vortices
also denoted as �� or ��, see Fig. 2b in Ref. [15]. Symmetric FM states are not stable in the
whole range of κ: (−κ,−κ) =�� is stable for 0 < κ < κ��c (a) = κ��c (a), see Fig. 5a in Ref. [15],
while (−κ+ 2π,−κ+ 2π) =�� is stable for 2π − κ��c (a) = 2π − κ��c (a) < κ < 2π.

• Asymmetric AFM state with one direct and one complementary vortex forming 2-fold de-
generate ground state, i.e., (−κ,−κ+2π) and (−κ+2π,−κ) denoted as �� and ��, see Fig. 2a
in Ref. [15]. Both states are stable for the whole range of 0 < κ < 2π. If the distance a
between discontinuities is smaller than some a��c = a��c , the phase and magnetic field profiles
become symmetric with respect to the middle point of the κ part, as shown in Fig. 4 of
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Ref. [15]. As a��c = a��c are weak functions of κ, one can make transitions to/from such a
symmetric or collective state, by changing κ ∝ Iinj electronically during experiment.

Energies of different fractional vortex molecules as a function of κ are shown in Fig. 6 of Ref. [15].
Transitions between different static configurations upon varying κ are summarized in Fig. 7 of
Ref. [15].

2.3 Preparation and readout of vortex states

In order to use semifluxons or fractional Josephson vortices one should be able to perform at least
trivial manipulations with them, e.g. set required polarity, using external currents or magnetic
fields. One should also be able to read out an unknown state or polarity of a semifluxon. Below
we discuss several techniques to do this, mainly focusing on semifluxons. The generalization to
the case of arbitrary fractional vortices may easily be done if necessary.

2.3.1 Manipulation of states by the bias current

Author’s contributions: [2, 13]

Consider a (formally infinite) 0-π LJJ with the semifluxon in the ground state. If we apply a small
positive bias current γ, it exerts a Lorenz force acting on a semifluxon trying to push it to the left.
Since the vortex is pinned at the phase discontinuity, it can only deform a little, but not move.
If the bias current exceeds the critical value of γ = 2/π, the Lorenz force becomes so strong that
it tears off a single fluxon (2π vortex), which accelerates and leaves the vicinity of a discontinuity
point. Due to flux conservation, we now have a antisemifluxon localized at the discontinuity point.
The bias current acts on it, but exerts the Lorenz force in the opposite direction (to the right).
Since the bias is still overcritical, it tears off a whole single antifluxon (−2π vortex), which also
moves away, leaving us with a single semifluxon like in the beginning. Obviously this cycle repeats
again and again, flipping the semifluxon between up and down states and emitting fluxons to the
left and antifluxons to the right. In this way the junction switches to the voltage state. This
mechanism was observed numerically by several authors, but was described in details in Ref. [2].
Thus, the critical current of a 0-π LJJ is not equal to Ic0 = jcwL, but only Ic0 · 2/π ≈ 0.635Ic0.
See Sec. 2.3.2 for more details.

In a 0-π-0 LJJ with the length of the π part a > ac = π/2, the AFM molecule ↑↓ or ↓↑ is formed
in the ground state. If one applies a dc bias current γ such that Lorenz force pushes semifluxons
towards each other, at some bias current γRE the two vortices simultaneously flip and change the
polarity, i.e. [2],

↑↓γ=γRE−→ ↓↑ . (2.17)

The value of γRE ≈ 0.08 for a = 2 and L = ∞. The flipping process, during which one flux
quantum is transferred from one semifluxon to the other, takes only few plasma periods. The
semifluxons in the new AFM molecule have such polarities that the molecule is stretched by the
Lorenz force. If one increases the bias current further above γc(a), the Lorenz force gets so strong
that it tears off one fluxon and one antifluxon from the right and from the left ends of a molecule
and the junction switches to the non-zero voltage state, similar to the case of a single semifluxon.
If, on the other hand, one will not exceed γc(a), but will decrease the bias down to −γRE, the
reverse rearrangement will take place

↓↑γ=−γRE−→ ↑↓ . (2.18)

Thus, still being in the zero voltage state one can switch the molecule between the states ↑↓ and
↓↑ by applying a small positive or negative bias current |γRE(a)| < |γc(a)|. Obviously both γRE(a)
and γc(a) depend on a. For large a, say above 5λJ , the semifluxons in a molecule almost do not
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see each other, so γc → 2π and γRE → γc, i.e., it will be impossible to rearrange in practice. In
the other extreme case, a < π/2λJ , the ground state is a flat phase state so, formally, γRE = 0
— the domain of bi-stability vanishes. Thus, the optimum distance a for manipulations with an
AFM molecule of two semifluxons is about 2 . . . 4λJ . Such a rearrangement ↑↓↔↓↑ was recently
demonstrated experimentally in a 0-π-0 LJJ of L = 7.2λJ with a = 2.4λJ [13].

In Ref. [2] it was also shown that similar rearrangements can be organized in a longer chain of
semifluxons. In this case, the rearrangement takes place in several steps from a perfect AFM state
to the completely polarized state. For example, for 12 semifluxons

↑↓↑↓↑↓↑↓↑↓↑↓γ=+0.14−→ ↓↓↓↓↓↑↓↑↑↑↑↑γ=+0.31−→
↓↓↓↓↓↓↑↑↑↑↑↑γ=+0.12−→ ↓↓↓↓↓↑↓↑↑↑↑↑γ=+0.00−→
↓↓↑↓↓↑↓↑↑↓↑↑γ=−0.05−→ ↑↑↓↑↓↑↓↑↓↑↓↓γ=−0.18−→
↑↑↑↑↑↓↑↓↓↓↓↓γ=−0.31−→ ↑↑↑↑↑↑↓↓↓↓↓↓ (2.19)

with γc = +0.47 from the state ↓↓↓↓↓↓↑↑↑↑↑↑. We also checked that the situation is symmetric,
i.e., γc = −0.47 from the state ↑↑↑↑↑↑↓↓↓↓↓↓. If we start from the state ↓↓↑↓↓↑↓↑↑↓↑↑ at γ = 0
obtained in (2.19), and increase γ, we get some new states which we have not seen before [2]:

↓↓↑↓↓↑↓↑↑↓↑↑γ=+0.12−→ ↓↓↓↑↓↑↓↑↓↑↑↑γ=+0.19−→ ↓↓↓↓↓↓↑↑↑↑↑↑

Interesting enough, similar rearrangements are possible even when the initial state at γ = 0 is flat.
For example, for 6 semifluxons separated by the distance a = 1 we get

------
γ>+0.00−→ ↓↑↓↑↓↑γ=+0.37−→ ↓↓ -- ↑↑ (2.20)

with γc = 0.48 from the state ↓↓--↑↑.
Experimentally, manipulation the flipping between ↑↓ and ↓↑ controlled by bias current was re-
ported by us [13] and is presented in detail in Sec. 2.3.3

2.3.2 Ic(H) and Ic(Iinj) as a tool to study semifluxon states

Ic(H) dependence in 0-π LJJ

In a conventional LJJ the behavior of maximum supercurrent as a function of magnetic field,
further denoted as Ic(H), is a good characterization tool, which gives information about the uni-
formity of the LJJ and about the presence of a background magnetic field or parasitic trapped
magnetic flux. The Ic(H) in 0-π LJJ can give even more information, in particular about semi-
fluxon states, and is invaluable tool for characterization of 0-π LJJ and determination of its internal
flux states. The Ic(H) dependence in a 0-π LJJ was studied in several works. In the following it
is assumed that the magnetic field is applied in the plane of the junction along its y direction, i.e.,
perpendicular the junction length L (x direction).

For the short 0-π LJJ it was shown [VH95,KMS97] that

Ic(H) = Ic0

∣∣∣∣sin2(πΦ/2Φ0)

πΦ/2Φ0

∣∣∣∣ , (2.21)

where Ic0 = jcLw is the intrinsic critical current of the junction, L is the junction length and w is
width, while Φ = HLΛ is the flux threading the effective LJJ area, Λ being the effective magnetic
thickness of the LJJ. In comparison with the Fraunhofer dependence, the dependence (2.21) has a
cusp-like minimum at H = 0 (Φ = 0). The formula (2.21) was generalized to the case of a 0-π-0-π-
. . . LJJ with many facets, but still in the short limit [SAB+02]. Comparison with experiments on
YBa2Cu3O7-Nb and Nd2−yCeyCuOx-Nb ramp zigzag junctions having between 8 and 40 facets
shows good qualitative agreement between experiment and derived formula. [SAB+02,ADS+05]
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For an infinitely long (L = ∞) 0-π LJJ, the shape of Ic(H) dependence was predicted by several
authors [XMT95,KMS97,Laz04]. Since uniform magnetic field penetrates from the edges (i.e. far
from 0-π boundary with a semifluxon), it is predicted to be similar to the usual Ic(H) pattern
of a 0 LJJ at least for the case when no fluxons have penetrated inside the LJJ yet [XMT95]. A
Ic(H) dependence for 0 LJJ at small fields has a triangular shape

I0c (H,∞) = Ic0

(
1− H

Hc1

)
, H < Hc1, (2.22)

where Hc1 is a penetration field. It turns out that one should also take into account that if the
uniform bias current exceeds the depinning current of a semifluxon (2/π)Ic0, then the junction
switches to the resistive state [2, 3] — the argument which was missed in Ref. [XMT95]. Thus,
Ic(H) looks like a pattern (2.22) cut off from the top at (2/π)Ic0:

I0-πc (H,∞) = Ic0 max

[(
1− H

Hc1

)
,
2

π

]
, H < Hc1. (2.23)

For intermediate LJJ length one observes a smooth transition from the curve (2.21) to (2.23),
qualitatively similar for inline [KMS97] and overlap [Laz04] geometry.

Recently, a detailed analysis of stability boundaries of different solutions was performed [AB07].
This analysis provided several important statements.

• One can observe a hysteresis between different branches of the Ic(H) dependence, e.g., a
semifluxon branch and antisemifluxon branch. The experimental observation of a hysteresis
at least around the intersection point of these branches, is an evidence of a bi-stable solution,
i.e. existence of semifluxons of two polarities.

• In addition to symmetric states such as ↑, ⇑↑⇑, ⇑⇑↑⇑⇑, etc., one can have asymmetric states,
such as ⇑↑, ⇑⇑↑, ⇑⇑↑⇑, etc even in an absolutely symmetric LJJ. Such asymmetric fluxon
states manifest themselves as rather flat branches on the Ic(H) dependence that appear
between side maxima of Ic(H). In an asymmetric 0-π LJJ such flat branches are more
pronounced on one of the sides (in H) of the Ic(H) dependence.

• the Ic(H) dependence can give information about asymmetries of 0-π LJJ. For example, in
a perfectly symmetric 0-π LJJ of a given length l, the central minimum is located at H = 0,
and has a critical current Ic(0, l) which is a known, numerically calculated function of l. The
first side maxima have the amplitude ≈ 0.72Ic0 [VH95,KMS97,SAB+02]. If one considers an
asymmetric LJJ, e.g., with jπc /j

0
c �= 1 as a measure of asymmetry, one will find out that the

central minimum is situated at H �= 0, has different Ic, and the first side maxima amplitudes
are not equal. By determining these parameters from experimental Ic(H) curves one may be
able to recover the parameters of the 0-π LJJ and, in particular, determine the asymmetry
between 0 and π parts.

Ic(Iinj) dependence

Author’s contributions: [4–6]

The dependence of the critical current on the value of discontinuity κ (in experiment on the injector
current amplitude Iinj) plays an important role for injector calibration, for manipulation of the
fluxon states, for understanding critical currents and pinning in 0-κ LJJs.

For a linear 0-π LJJ with one discontinuity in the center the Ic(Iinj) dependence was for the
first time derived to perform an injector calibration [4, 5]. For l 	 1 and l 
 1 the Ic(Iinj)
dependence can be presented in analytical form. For l ∼ 1 one should calculate γc(κ) numerically.
The dependence is 2π periodic in κ and exhibits a cusp-like minimum at κ = π. The branch
with κ ∈ [−π, π] corresponds to a direct −κ vortex sitting at the +κ discontinuity. For κ > 0
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this vortex has a negative flux −Φ0κ/2π (vorticity −κ), while for κ < 0 this flux is positive.
The branch with κ ∈ [π, 3π] corresponds to a complementary κ − 2π vortex sitting at the +κ
discontinuity. For κ < 2π its flux is negative, for κ > 2π it is positive. For κ = 2π the flux is zero
— a 2π discontinuity is equivalent to no discontinuity (in a linear LJJ, where extra fluxons can
be created and emitted).

If one measures a Ic(Iinj) dependence in experiment, the position of the first cusp-like minimum
will determine the value of Iinj needed to create κ = π discontinuity. Note, that in experiment, due
to the finite size of the injectors, the Ic(Iinj) dependence deviates a bit from the shape predicted
theoretically, e.g. the critical current in the maxima number n = ±1 is lower than for n = 0. Such
deviations are rather well understood [5].

For a linear LJJ with two (+κ,−κ) discontinuities placed at a distance a from each other sym-
metrically with respect to the junction length the Ic(κ) dependence was used to calibrate injectors
in a semifluxon molecule rearrangement experiment [13]. Here the Ic(κ) dependence is also 2π
periodic, but skewed so that the cusp-like minimum, in general, does not correspond to κ = ±π.
In this case, one can find Iπinjby measuring both positive Ic+(Iinj) and negative Ic−(Iinj) critical
currents and plotting their absolute values |Ic±(Iinj)| on the same plot. Then, the intersection
points in the vicinity of the first minima will give the value of Iπinj.

For annular 0-π LJJ with one discontinuity point, the Ic(κ) dependence turns out to be the well
known Fraunhofer pattern with the first minimum at κ = 2π [6] [MU04]. Imagine that at κ = 0
the phase φ(x) = 0. As κ grows from 0, a fractional −κ vortex is induced to compensate a +κ
discontinuity. At κ = 2π this vortex is an antifluxon which can detach from a discontinuity and
move to some other location inside the ALJJ. If one applies an infinitesimally small bias current,
it exerts a Lorenz force on an antifluxon, the antifluxon starts moving, producing nonzero average
voltage across the ALJJ. Thus the critical current is zero. This technique was initially suggested
to controllably insert an integer fluxon into an ALJJ [Ust02,MU04], but obviously can be used to
create an arbitrary phase discontinuity κ and study direct and complementary vortices sitting at
it, just like in the linear LJJ above. The only difference between the linear and annular cases is
that in the annular case the total topological charge is conserved, so that κ = 3π is not equivalent
to κ = π, but equivalent to κ = π plus a 2π fluxon situated somewhere in the junction.

It turns out that pinning of fluxons by fractional vortices completely follows from the Fraunhofer
Ic(κ) dependence [6]. In fact, the central lobe of this dependence with −2π < κ < +2π gives a
depinning current of a fractional vortex with the topological charge −κ. The first order side lobes
with 2π < |κ| < 4π correspond to the (de)pinning of a fluxon or antifluxon pinned by a fractional
vortex of the same polarity with the topological charge ±(|κ| − 2π). The second order side lobes
with 4π < |κ| < 6π correspond to the (de)pinning of two fluxons or two antifluxons by a fractional
vortex with the topological charge ±(|κ| − 4π), and so on [6].

2.3.3 SQUID readout (non-destructive)

Author’s contributions: [13]

The most direct way to monitor the semifluxon (molecule) states is to measure magnetic flux
localized in the vicinity of a phase discontinuity or 0-π boundary, e.g., using a dc SQUID. The
flux sensitivity of a typical SQUID can easily be ∼ 10−3Φ0, so that it is enough to detect fluxes
∼ Φ0/2 even if the flux coupling is of the order of 1 . . . 10%. In a series of pioneering works,
the dc SQUID was put on the tip of a SQUID microscope and was moved above the surface of
the sample to measure local magnetic fields. In this way the first images of semifluxons were
obtained [KTM99,HAS+03,KTA+05]. In these works, the magnetic field of the semifluxons was
directed perpendicular to the surface of the sample and was detected by the SQUID loop situated
in the plane of the sample. In the case of SFS/SIFS 0-π LJJs or SIS LJJs with artificial phase
discontinuities, the magnetic field of a semifluxon is directed in-plane (and then closes out of plane)
so that interpretation of images will require some efforts. The disadvantage of this technique is
that one needs a rather unique low temperature scanning SQUID microscope which exists only in
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few labs in the world.

Another possibility is to fabricate the SQUIDs directly on-chip together with the 0-π LJJ: one
SQUID next to each 0-π boundary. The geometry should provide reasonable coupling of the order
of 1 . . . 10% between the flux of a semifluxon and the SQUID loop. Usually this is achieved using
a specially designed pick up loop. The advantages of on-chip SQUIDs are the following. First,
the SQUIDs can be fabricated using the same JJ process as for 0-π LJJs. Second, one can design
coupling loops for any direction of semifluxon field. The disadvantage is that one can detect only
the total flux contained in a semifluxon, but not its spatial profile. Thus, on-chip SQUIDs are
more useful in digital electronic devices to detect switching between different semifluxon states,
e.g., as described in Sec. 2.3.1.

Figure 2.7: (Left) Sketch of the LJJ and an optical picture of the sample used for manipulation
and read-out of two-semifluxon molecule states. (Right) V (I) curve (a) and fluxes Φexp

L (I) (b)
and Φexp

R (I) (b) detected by the left and the right SQUIDs, accordingly. Numerically simulated
flux dependences Φsim

L (I) (b) and Φsim
R (I) (b) are shown also. Adapted from Ref. [13]

Recently we have demonstrated an on-chip SQUID readout of two-semifluxon molecule states,
which could be controllable manipulated between ↑↓ and ↓↑ states by applying under-critical bias
current [13]. In Fig. 2.7 one can see the setup used for this experiment as well as main experimental
results. On the top of the picture one sees a LJJ equipped with a pair of current injectors to create
0-π-0 LJJ electronically and arrive to one of the states ↑↓ or ↓↑. The critical current of the IVC
in Fig. 2.7(a) corresponds to a depinning of the molecule. If one sweeps the bias current I back
and forth with the amplitude not exceeding Ic(Iinj), one sees no voltage on the IVC, but the state
of both readout SQUIDs changes at I ≈ ±0.36mA, corresponding to the rearrangement between
the states ↑↓ and ↓↑. This technique was also used to map the bistability boundary of a molecule
consisting of arbitrary fractional vortices [13] and can also be used in quantum domain.
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2.3.4 Test fluxon readout (destructive)

Another possibility to read out an unknown state of a single semifluxon is to inject an integer
fluxon of known polarity and observe the result of their interaction. As an example, consider a
semifluxon of unknown polarity. The polarity can be positive like in Fig. 2.8a or negative like in
Fig. 2.8b. To determine it, we inject a single fluxon of positive polarity somewhere to the left from
semifluxon. This injection can be done using injectors or using an RSFQ-like circuit (DC-SFQ
converter). Then we increase the bias current slowly. The semifluxon stays pinned, but the fluxon
moves to the right and interacts with the semifluxon.

If both the fluxon and the semifluxon are of the same polarity, as shown in Fig. 2.8a, they repel
each other so that the fluxon sticks being pinned by a semifluxon. Only when the bias current
exceeds the depinning current of (2/3π)Ic0 ≈ 0.21Ic0 the fluxon depins and passes through, as
indicated in Fig. 2.8a. In an annular LJJ this will be detected as a voltage due to fluxon motion
around the annulus. In a linear LJJ one can attach a RSFQ fluxon detection circuit (SFQ-DC
converter) to the right hand side of the LJJ.

If the fluxon and the semifluxon have opposite polarities as shown in Fig. 2.8b, they simply
annihilate, resulting an semifluxon pinned at the 0-π boundary, see Fig. 2.8b. Further increase of
the bias will depin the semifluxon and produce a voltage only when the bias exceeds (2/π)Ic0 ≈
0.63Ic0.

Thus, by injecting a test fluxon of known polarity at I = 0 and measuring the critical current of
the LJJ, we get two possible values (corresponding to two semifluxon states), which differ from
each other as much as three times. Although this method looks rather simple in case of a single
semifluxon, it is quite complicated to use it to readout the states of a semifluxon molecule. In the
best case, one can only readout the total number of fluxons or antifluxons in a molecule, but not
their mutual position.

Figure 2.8: Schematic demonstration of readout of unknown semifluxon state using a test fluxon
of positive polarity. The interaction of test fluxon with (a) positive and (b) negative semifluxon
are shown.

2.4 Eigenmodes of fractional vortices

In Sec. 2.2 we have considered several fractional vortex configurations which are solutions of
the static sine-Gordon equation. Actually, the stability of each such solution should be checked
separately. Moreover, the stability analysis will allow to find eigenfrequencies of vortex oscillations
around equilibrium. The stability analysis is performed following the standard procedure. First,
we take any static solution μs(x) (obtained numerically or analytically) which we would like to
investigate. Then, we suppose that it is perturbed due to thermal fluctuations or other external
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influences so that the phase in the LJJ is given by

μ(x, t) = μs(x) + ε(x, t) = μs(x) + ε(x)eλt (2.24)

which should be a new solution of sine-Gordon equation. Here we assume that the perturbation
ε(x, t) has some spatial profile ε(x), while its amplitude increases [Re(λ) > 0] or decreases [Re(λ) <
0] exponentially and may also oscillate [if Im(λ) �= 0]. Substituting the expression (2.24) into the
sine-Gordon Eq. (2.1), we obtain the equation for perturbation

εxx − jc(x) cos[μ0(x)]ε = Λε. (2.25)

Assuming that α is not a function of x, we have introduced a new eigenvalue variable Λ instead
of λ:

Λ = λ2 + αλ. (2.26)

If we will be able to find a spectrum Λi of Λ in Eq. (2.25), the corresponding λi are given by

λ±i =
−α±√

α2 + 4Λi

2
. (2.27)

Note that a pair of complex conjugate λ±i or a pair of real λ±i may correspond to one Λi. If
there is at least one Λn > 0, then λ+n > 0 and the system is unstable. On the other hand, if
all Λi < −α2/4, then all λ±i are complex conjugate with Re(λi) = −α/2 < 0 and the system is
stable. In the last case, when some of the Λi lay in the interval −α2/4 < Λi < 0 and the others
have Λ < −α2/4, λ±i are two real negative eigenvalues and the system is stable again. Thus, we
conclude that the system is stable if all Λi < 0, and the damping α does not affect stability of
our system. What damping does affect is the presence and the number of the eigenfrequencies
ω0,i = | Im(λi)|. If some of the Λi lay in the interval −α2/4 < Λi < 0, then the system will have
no eigenfrequencies corresponding to these Λi in the presence of damping, but if the damping is
switched off, eigenfrequencies will appear.

To solve Eq. (2.25) numerically we discretize it along x with the uniform step Δx. Then the
eigenvalue problem (2.25) can be written in a matrix form

A · ε = Λε, (2.28)

where ε is an N -dimensional vector with the components εi = ε(xi) and A is an N ×N matrix,
where N = L/dx can be rather large. Practically tractable sizes are of the order 4000× 4000. To
solve the eigenvalue problem (2.28) we can use several standard numerical approaches depending
on the content of the matrix (tri-diagonal, symmetric or general). As a result one obtains a vector
of eigenvalues Λ, which contains N complex values.

2.4.1 Stability and eigenfrequencies of different vortex states

Author’s contributions: [11, 12, 16, 25]

Using the approach outlined above one can investigate the stability of various static solutions of
Eq. (2.1). A phase of a single fractional ℘ vortex sitting at x0 = 0 in an infinite LJJ is given
by [15]

μ0(x) =

{
φ0(x− x0), x < 0,

℘− φ0(−x− x0), x > 0,
, (2.29)

where φ0(x) is a soliton (fluxon) solution

φ0(x) = 4 arctan ex, (2.30)

and
x0 = − ln tan

℘

8
> 0. (2.31)
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The stability analysis in this case can be done analytically. It turns out that all eigenvalues have
Re(λ) < 0 , i.e., the fractional vortex solution is stable. The imaginary parts Im(λi) = ωi define
a set of eigenfrequencies. This set consists of a single discrete eigenfrequency 0 < ω0(℘) < ωp and
a continuous spectrum of frequencies ω > ωp. At α = 0 the lowest eigenfrequency is given by [16]

ω0(℘) =

√
1

2
cos

℘

4

(
cos

℘

4
+

√
4− 3 cos2

℘

4

)
. (2.32)

This frequency corresponds to a wave vector k = 0 of the oscillating wave i.e. to a standing
wave. The eigenfunction ε(x) corresponding to this lowest eigenvalue, according to the Sturm-
Liouville theorem, has no zeros. Thus, a fractional Josephson vortex with the topological charge
−2π < ℘ < 2π has a localized eigenmode with the eigenfrequency ω0 given by Eq. (2.32), see also
Fig. 1 of Ref. [16]. At ℘ → ±2π the eigenfrequency ω0(℘) → 0, indicating an instability at the
point ℘ = 2π when a fractional vortex turns into fluxon, which detaches from the discontinuity
point and may freely travel along the LJJ away from the discontinuity point.

Formally, one can also have more heavy vortices, with topological charge |℘| > 2π, sitting at κ
discontinuity as a solution of the static sine-Gordon equation. For example, if 0 < κ < 2π, these
are ℘ = κ+ 2π (positive) and ℘ = κ− 4π (negative) vortices. In case κ = π they will correspond
to the magnetic flux ± 3

2Φ0. The magnetic field profile inside such heavy vortices has a minimum
at the center and then two side maxima. Stability analysis shows that such heavy vortices are
unstable [16]. They emit a single (anti-)fluxon and downgrade to a smaller fractional vortex, which
is stable. One can also see that this decay process is possible by analyzing the energies of initial
and final states using Eq. (2.16). [15]

Figure 2.9: Two lowest eigenfrequencies for (a) AFM and (b) FM molecule of two coupled semiflux-
ons as a function of the distance a between them. The 0-π-0 LJJ used for numerical calculations
has the length L = 40λJ to emulate an infinite LJJ.

The stability and eigenfrequencies of fractional vortex molecules was also investigated [16]. In this
case, analytic approach is rather difficult and one has to use numerics. In the case of two-vortex
molecules, the eigenfrequency of individual vortices split as the coupling between the vortices
increases (distance a decreases) – just like for two coupled oscillators. As an example, in Fig. 2.9
we present two lowest eigenfrequencies (localized modes) of a AFM- and FM-ordered semifluxon
molecules as a function of the distance a between semifluxons.

In the case of AFM molecule, the eigenfrequencies are equal to the ω0 of a single semifluxon when
the distance a is large. If a becomes smaller the eigenfrequency splits into ω+ and ω− corresponding
to in-phase and out-of-phase oscillations of magnetic flux of two vortices. At a = ac = (π/2)λJ the
splitting is as large as the plasma gap: ω− → 0, indicating an instability of the AFM configuration;
the second eigenmode ω+ joins the plasma band at a = ac. For a < ac, only a flat phase solution
μ0 = 0 exists and is stable. It has only a single eigenfrequency within the gap. Note also that if
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one now increases a the flat phase state becomes unstable at the same value of a = ac.

For a FM molecule the situation is similar, but no structural rearrangement occurs at a = ac as
FM state is stable for any a. In this case the in-phase mode frequency ω+ < ω−. At a→ 0, where
two semifluxons almost form a fluxon, ω+ → 0 indicating that a fluxon may depin and move away,
i.e., a structural rearrangement takes place.

The eigenfrequencies of various fractional vortex molecules were investigated as a function of κ for
different a [16]. The general behavior is quite universal. The eigenfrequencies split as the coupling
between vortices increases. Lowest eigenfrequency touches zero at the point of instability of the
current state.

The value of eigenfrequency also depends on the value of the bias current γ. Although γ does
not explicitly present in Eq. (2.25), it changes μ0(x). The dependence of ω0(γ) is not known
analytically, but numerical calculations show that ω0(γ) decreases as γ increases reaching 0 at the
critical or rearrangement current. For a single fractional vortex in infinite 0-π LJJ this dependence
can be well approximated by the formula

ω0(℘, γ) ≈ ω0(℘, 0)
4

√
1−

(
γ

γc(κ)

)2

, (2.33)

where

γc(℘) =
Ic(℘)

Ic0
=
Ic(℘)

jcwL
=

sin(℘/2)

℘/2
, |℘| ≤ 2π (2.34)

is the normalized critical current of the junction (depinning current of the fractional vortex) at
given κ [NLC02,MU04] [6]. Approximation (2.33) differs from the exact numerical solution by
only few percent [except for γ → γc(℘)], and follows the same functional dependence as the plasma
frequency of a small JJ [FD74,DMEC84]

ωp(γ) = ωp0
4
√
1− γ2, (2.35)

i.e., the Eq. (2.33) is exact for κ = 0. It can serve as a guide for planning and performing the
experiment.

Figure 2.10: Summary of experimentally obtained eigenfrequencies ω0(γ) for different values of
℘ ∝ −κ (symbols). The lines show the corresponding ω0(γ) dependences obtained numerically.
Adapted from Ref. [11].

Experimentally the eigenfrequency spectroscopy for a single fractional vortex in an annular LJJ
with artificial phase discontinuities was performed as a function of discontinuity κ and bias current
γ [11, 12]. The result can be seen in Fig. 2.10. The measurements were performed at T = 4.2K
by using a resonant escape technique. The annular geometry was chosen to have a possibility
to measure vortices with the topological charge ℘ > π. In linear LJJs such vortices can emit a
flux and turn into more lighter ℘ − 2π vortex after the first measurement. As can be seen in
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Figure 2.11: Example of experimental data (symbols) that show a splitting of the eigenfrequency
of a single vortex into a two modes, ω+ and ω− in a molecule consisting of two fractional vor-
tices oriented (a) ferromagnetically and (b) antiferromagnetically. The lines show the ω±(κ, γ)
dependences expected from the theory. Adapted from Ref. [25].

Fig. 2.10, the eigenfrequencies obtained experimentally are in good agreement with the theoretical
predictions [11].

Recently our group reported the results on spectroscopy of a fractional vortex molecule in annular
LJJs [25]. The splitting of eigenfrequencies to the in-phase and out-of-phase modes due to vortex-
vortex coupling was observed. The splitting is larger for smaller vortex-vortex distance (stronger
coupling). We also demonstrated that the modes split in different ways in the FM and AFM
molecule in accord with numerical simulations.

2.4.2 Tunable plasmonic crystals

Author’s contributions: [17]

We have seen above that in a molecule consisting of two fractional vortices the eigenfrequency ω0

splits into ω± corresponding to the in-phase and out-of-phase modes. If one takes three coupled
vortices, one sees splitting into three modes with three different frequencies. One can also built a
chain of N coupled fractional vortices — a fractional vortex crystal — and observe splitting into
N modes. When N → ∞, these N eigenfrequencies form a frequency band within the plasma gap.
As with a single eigenfrequency, the position of this band depends on parameters of the system:
distance a between vortices, topological charge of the vortex ℘, and the value of the bias current.
Very general arguments suggest that this band gets broader for smaller a (larger coupling) and
shifts to lower frequencies with |℘| and γ.
This problem was investigated numerically assuming N = ∞ [17]. In this case, one employs a
Bloch (Floquet) theorem to find whether particular frequency belongs to the spectrum. It was
shown that one can control the spectrum at the design stage by properly choosing the distance a
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between the phase discontinuities as well as at run-time, by changing the value of κ ∝ Iinj (in LJJ
with artificial discontinuities) or the bias current γ. Also, each band configuration as a function
of (a, κ, γ) in addition depends on the state of the vortex crystal. For example, it can be FM
state ↑↑↑↑ . . . ↑↑↑↑, AFM state ↑↓↑↓ . . . ↑↓↑↓, polarized state ↑↑↑↑ . . . ↓↓↓↓, or something more
complex, e.g., ↑↓↓↑ . . . ↓↓↓↑. Transitions between such states of a crystal can be controlled by
magnetic field or by bias current exceeding the rearrangement current, see Sec. 2.3.1.

2.5 Semifluxon dynamics

Author’s contributions: [4, 10]

2.5.1 Zero field steps

In conventional LJJ zero field steps (ZFS) appear on the McCumber branch of the IVC, and
correspond to the motion of one of more fluxons back and forth along LJJ [FD73,PW84]. Normally
one can observe several steps with asymptotic voltages given by

V ZFS
n =

Φ0c̄0
L

n. (2.36)

The n-th ZFS corresponds to n fluxons moving inside the LJJ. Upon reflection at the edges each
fluxon changes its polarity. Thus it moves as a fluxon from the left edge to the right one and then
as antifluxon from the right edge to the left one.

It was noticed already in earlier works [Ste02] that the IVC of a 0-π LJJ also contains some steps
which look similar to ZFSs. They are well visible only in the LJJ with L of the order of few λJ and
their asymptotic voltages formally corresponds to half integer n in Eq. (2.36). Therefore, these
steps are often called half-integer ZFS.

The mechanism responsible for the appearance of half-integer ZFSs, was described by us [2,4]. In
essence, the semifluxon sitting in the center of a 0-π LJJ permanently flips under the action of the
bias current. This flipping can be interpreted as rearrangements ↑↓→↓↑ between the semifluxon
and its images outside the LJJ. Such rearrangements alternate between the right and left edges of
the LJJ. One flux quantum per flipping is transferred through the corresponding LJJ edge. For
comparison, in classical ZFSs two flux quanta are transferred per reflection. Assuming that the
maximum velocity of the flux transfer is equal to the Swihart velocity c̄0, we immediately explain
twice small asymptotic voltage of half-integer ZFS. Also, since the image plays a crucial role here,
it is clear that the effect will take place in a 0-π LJJ of moderate length of few λJ .

In some sense, this steps can also be considered as classical Fiske steps induced by a non uniform
magnetic field. Since in 0-π LJJ the phases at the edges are roughly differ by π, one can treat this
as non-uniformly applied magnetic field. This approach, valid for relatively short 0-π LJJ, was put
forward recently [NSAN06] and the expressions for “Fiske” step heights as a function of applied
magnetic field were obtained. Indeed, the step at V FS

1 = V ZFS
1/2 = Φ0c̄0/2L has its maximum

amplitude at zero field. Higher order steps are in fact some mixtures of ZFSs an Fiske steps: they
have non-zero amplitude at H = 0, but this amplitude grows with |H |.
Half-integer ZFSs were observed by us in several experiments. First, they were observed in a 0-π
LJJ with artificially created discontinuity [4]. Then, the whole series of half-integer ZFSs were
also observed in SIFS 0-π LJJs and their magnetic field dependence was measured [10]. As an
example, in Fig. 2.12 one can see the IVCs with half-integer ZFS and the dependence of its height
on magnetic field.

The theoretical description employing a Fiske-step-like ansatz [NSAN06] is only valid for relatively
short 0-π LJJ. Numerical simulations show that in a 0-π LJJ of L = 3λJ , one may observe a fine
structure of each step, corresponding to the different modes of flux motion. For example, the step
with n = 3/2 consists of two sub-branches. The one close to the McCumber branch (lower bias) has
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Figure 2.12: (a) A set of IVCs measured at different temperatures and at zero applied magnetic
fields. One can see that as the damping decreases with temperature, a half-integer ZFS appears.
(b) Measured dependence of the height Im(H) of the half-integer ZFS and of the critical current
Ic(H) for comparison. Adapted from Ref. [10].

higher voltage and standing-wave-like dynamics (flux motion at regular spatial intervals). The sub-
branch at higher bias current has smaller voltage (larger damping) and dynamics corresponding
to a bunched motion of three semifluxons.

2.5.2 Fiske steps

When a magnetic field is applied to a conventional LJJ, one can observe Fiske steps on the IVC
of a LJJ. These steps are related to the resonance between the moving chain of fluxons (flux flow)
and standing electromagnetic waves (cavity modes) with different mode number n. The same
mechanism is also present in 0-π LJJs. The asymptotic voltage of the Fiske steps in any case is
given by

V FS
n =

Φ0c̄0
2L

n. (2.37)

To obtain the n-th step height and its dependence on magnetic field and other 0-π LJJ parameters,
one can use a standard approach. Assuming the phase ansatz in a form

μ = hx− ωt+ ϕ(x, t), (2.38)

where the first and the second term describe uniform advance of the phase, while the standing
wave term ϕ(x, t) is given by

ϕ(x, t) =

∞∑
n=0

an cos
nπx

L
cosωt+

∞∑
n=0

bn cos
nπx

L
sinωt, (2.39)

one derives expressions for the step height [NSAN06]. This approach is valid for relatively short
0-π LJJ and describes the height of ZFSs, FSs and their mixtures. Recently, the magnetic field
modulation of the height of the first five Fiske step’s in a SIFS 0-π LJJ of length L = 330μm ≈
0.7λJ was measured experimentally [10] and good agreement with the theory [NSAN06] was found.
An example of experimental results can be seen in Fig. 2.13
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Figure 2.13: (a) A set of IVCs measured at different applied magnetic fields. (b) Measured
dependence of the height Im(H) of different steps on magnetic field. Adapted from Ref. [10].

2.5.3 Shapiro steps

Although there is a number of works that present Shapiro step data on 0-π LJJs, it is quite tricky
to deduce a reliable conclusion about the origin of these steps.

First, in a short (point-like), overdamped (βc = 0) conventional 0 JJ with sinusoidal CPR one
observes only integer Shapiro steps on the IVC of a JJ. The voltages of Shapiro steps are given by

V SH
n =

Φ0

2π
ωexn = Φ0fexn, (2.40)

where ωex = 2πfex is the frequency of external irradiation.

If one investigates a 0-π JJ, the half-integer Shapiro steps are predicted to appear. However, half
integer Shapiro steps also appear if the JJ is not short, and when βc is finite. They also appear
if the CPR is not sinusoidal. In fact, the physics of a short 0-π JJ can be reduced to an effective
model of a point-like JJ having a negative second harmonic in the CPR [Min98].

Up to now, the height of Shapiro steps was measured as function of temperature in the vicinity
of a 0-π crossover temperature for SFS 0-π JJ [FVHB+06]. It was shown that the half integer
Shapiro steps appear in the vicinity of a 0-π crossover. It is not yet clear, whether this steps can be
attributed to (a) 0-π JJ as designed or (b) to a multiple and random 0-π junctions due to roughness
or (c) due to always present intrinsic second harmonic in the CPR which becomes dominant at the
crossover point as the first harmonic vanishes. Moreover, in the simplest model [23] one cannot
distinguish between the positive and the negative second harmonic in the CPR – only the absolute
value enters in the formula for Shapiro step height. A more elaborated model taking into account
damping term, seems to provide a way to make this distinction [KKK+06a,KKK+06b]

2.6 Macroscopic quantum effects

Although superconductivity and Josephson effect are essentially quantum phenomena, at the end,
the dynamics of the Josephson phase is described by a classical Eq. (2.1) or (2.4). These equations
are the mean field equations that do not take into account thermal or quantum fluctuations.

For a point-like JJ the effect of these fluctuations is investigated already for several decades
[MDC87,CCD+88,WLC+03]. For example, classical equations predict that the JJ stays in the
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Figure 2.14: The width σ of the escape histogram as a function of temperature measured for
different values of the discontinuity κ ∝ Iinj. One clearly sees the saturation of σ(T ) around
σmin ≈ 75 nA for T < T ∗ — a thermal-activation-to-quantum-tunneling crossover temperature.
The measurements are done in persistent mode (frozen value of Iinj ∝ κ). For this particular
sample the dependence σmin(κ) is expected to be very weak.

superconducting state if one sweeps the bias current I from zero to Ic. In reality, the JJ switches
to a finite voltage state already at I � Ic because of fluctuations. One can consider the escape of
the phase as an escape of a particle from a pre-critically tilted washboard potential. It is clear that
when the barrier ΔU , which prevents the particle from escaping, gets small at I → Ic, the particle
may be thermally excited over the barrier, if ΔU � kBT . In the same time, the particle may
tunnel quantum mechanically through the barrier, if ΔU � �ωp. In experiment, one can measure
the critical current of the JJ statistical number of times (say, 10000) and plot a critical current
distribution histogram. Clear enough, the width of this histogram is related to the intensity of the
fluctuations. If one measures the width of the histogram σ as a function of temperature T , one
first observes a decrease of the width with decreasing temperature in the regime when the thermal
fluctuations dominate. Below some temperature Tx the width of the histogram will not decrease
any longer, indicating that we have entered a regime where the quantum fluctuations dominate in
the escape process.

When this research has started, it was not quite clear whether quantum mechanics is valid for such
a macroscopic variable as the Josephson phase. Nowadays the quantum mechanical features were
observed in many experiments with JJs. This gives rise to a new field of macroscopic quantum
effects that find immediate application, e.g., as qubits. In the area of Josephson physics, several
systems such as charge qubit, flux qubit and phase qubits were implemented and tested. All of
them are based on the quantum mechanical behavior of the charge, magnetic flux and Josephson
phase in corresponding systems [MSS01]. Although it is commonly believed that one indeed
observes quantum mechanical properties some authors point out that many experimental results
(especially with microwaves applied) can be interpreted on a pure classical basis taking into account
nonlinearity and thermal noise [GJC05, CZHB08, GJMCB10]. Interestingly, the observation of
Rabi-oscillations at temperatures ∼ 800mK, i.e., well above the classical-to-quantum crossover
temperature, was reported [LLA+07].

In our group experiments on observation of macroscopic quantum effects are in progress. The
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transition from thermal activation regime to MQT was observed as a saturation of the escape
histogram width σ at σmin. The measurements were performed using annular LJJ equipped with
injectors, which allowed to measure σ(κ) curves for different fractional vortices (different κ). The
biggest challenge was decreasing the injector current noise which resulted in increase of σmin with
κ ∝ Iinj. This was finally achieved by using persistent mode in injector circuitry: after applying
the desired injector current, it was frozen in a superconducting loop. In this way we were able
to obtain the σmin(κ) dependence that qualitatively agrees with the theory. As an example, in
Fig. 2.14 one can see σ(T ) experimentally measured for different κ set using persistent mode. These
results are not yet published and are subject of ongoing SFB/TRR-21. Further experiments in
the quantum domain, e.g., on a microwave enhanced escape, showing energy level quantization
are now in progress.

2.6.1 Single semifluxon

Author’s contributions: [14, 22]

As we know from Sec. 2.2.1, a single semifluxon corresponds to a ground state of the phase in a
long 0-π JJ. This ground state is doubly degenerate, corresponding to semifluxon (state ↑) and
antisemifluxon (state ↓). The question, which naturally arises, is: can one observe a coherent
superposition of both states, i.e. something like

|ψ〉 = α |↑〉+ β |↓〉 ? (2.41)

It turns out [21] that in a relatively long (L � λJ ) 0-π LJJ the energy barrier separating two
states is rather large, ∼ EJ . Thus, the states like (2.41) are impossible and a single semifluxon is
always classical. The only chance to bring a 0-π JJ in the quantum regime is to make it short.
On the other hand, when it is short the flux Φ carried by “semifluxons” decreases proportionally
to L2, i.e.

Φ = Φ0
L2

8πλ2J
, L	 λJ . (2.42)

Detailed calculations show that one can map the phase φ(x, t) dynamics to a dynamics of a point
like particle moving in a periodic potential. It is equivalent to a quantum dynamics of the phase
in a Josephson junction with CPR js = jc sin(2φ). The height of the potential barrier depends
on the JJ length and, for typical experimental parameters, one can reach quantum regime for
L � 0.17λJ with Tx ∼ 35mK. Nevertheless, it seems that this approach is not very promising for
qubit realization as one still has a rather bad two-level system — the lowest two levels are not well
separated from the other states. Therefore, preparation, manipulation and readout will inevitably
result in a leakage of the probability into higher states, i.e. in not exact quantum operation and
decoherence.

2.6.2 Molecule of two AFM-ordered semifluxons

Author’s contributions: [21]

Much better results can, in principle, be obtained using a two-semifluxon molecule in 0-π-0 LJJ.
Here, the LJJ is supposed to be infinitely long, while the length of the π part (the distance between
semifluxons) is equal to a. To have AFM ground state we must have a > ac = (π/2)λJ . This
AFM ground state is double degenerate, being either in the |↑↓〉 state or in the |↓↑〉 state. Here
the aim is to obtain the state

|ψ〉 = α |↑↓〉+ β |↓↑〉 . (2.43)

We have developed a quantum theory of such a molecule by mapping a quantum field dynamics
to the dynamics of a single particle moving in a double well potential [21]. The potential U(B)
is a function of collective coordinate B (dimensionless). For a exceeding ac by few percent of λJ ,
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this particle has an extremely small inertial mass m ∼ 10−4meλ
2
J , where me is the electron mass.

Note, that since collective coordinate is dimensionless, the “mass” is measured in kg ·m2 and can
be interpreted as a moment of inertia. This mass is much smaller that of a single electron moving
around the orbit with the radius λJ . Such a small mass is hint that the quantum effects will
dominate.

In fact, it was found [21] that to be in the quantum regime one has to choose the distance a very
carefully. Namely, if a = ac + δa, δa should be smaller than 0.02λJ . For a = ac + 0.01λJ and
typical parameters the crossover temperature was estimated to be around 100mK — a typical
value for JJ based qubits.

The requirements imposed on a are very demanding in terms of fabrication. Moreover, the energy
barrier separating both states is defined by a and is not tunable. Recently we suggested to use
asymmetric AFM molecules of two arbitrary fractional vortices with topological charges (−κ,−κ+
2π) or (−κ + 2π,−κ) in a 0-κ-2κ LJJ. By changing κ electronically, one can vary the crossover
distance ac(κ). ac(κ) is a weak function of κ such as ac(π) = π/2, while ac(0) = ac(2π) ≈
1.8. Thus, one should fabricate 0-κ-2κ LJJ with a = 1.57 . . .1.8λJ (14% tolerance) and then
electronically bring it as close to the crossover point as needed, i.e. to make the barrier as low as
needed.

Figure 2.15: The dependence of the normalized energy barrier u/E′
J on κ for three different lengths

of the annular LJJ. The symbols show experimental data (energy barrier extracted from the escape
histogram). The white line shows the prediction of the theory [22], which is valid for infinite LJJ
and κ �	 1. One can see that the experimental data are indeed in accord with the theory in the
region of its validity. Dashed lines show the prediction of a model of a point-like JJ with the
Ic equal to the Ic(Iinj) of the annular LJJ under investigation. Indeed, a short LJJ (a) can be
described quite well by this simple model. Finally, the solid line shows the u(κ)/E′

J dependence
calculated numerically as the difference between energy-minimum and energy-maximum solutions.
One can notice a characteristic bell-shaped bending of the curve for a longer JJ and good agreement
between experimental and numerical results. Adapted from Ref. [14].

Recently, manipulation and readout of the AFM molecule states was tested in the classical domain
[13] and later can be used to prepare and read out the states of the qubit. Up to now only
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MQT [KI97] [22] and MQC [21] were theoretically investigated. The observation of a thermal
escape of a fractional vortex was reported recently by us [14]. The thermal escape of fractional
vortices was investigated in the temperature range from 4.2K down to 300mK and shows a non-
trivial ℘ dependence, see Fig. 2.15. It is in good agreement with theory [22] in the limit where the
theory is valid (large L and |℘|) and also agrees well with numerical simulations for moderate L.
We have found that for short junctions L � 5, the escape process takes place like in a point like
JJ. For longer L a transition to vortex activation occurs. In latter case, the phase string bends
over the barrier near the vortex and then pulls the rest of the phase string.

The experiments on MQT of fractional vortices are currently in progress.

2.7 Possible Applications of fractional vortices and 0-π Joseph-
son junctions

Author’s contributions: [17, 20, 23, 24]

• As described above, a single fractional vortex has an eigenfrequency, which depends, in par-
ticular, on the topological charge ℘ of the vortex and on the value of applied bias current
γ. If we construct a molecule of two coupled vortices, the eigenfrequency will split, and the
molecule will have two eigenfrequencies corresponding to in-phase and out-of-phase oscilla-
tions. The coupling strength (the distance between vortices) affects the splitting. Further,
if one couples 3, 4, . . . , N vortices, one gets 3, 4, . . . , N eigenfrequencies. For large N these
eigenmodes are very dense and form frequency band, similar to the electronic energy band
in solids which and made up from single electron levels in atom. This frequency bands (and
the gaps between them) depend on coupling (distance a between vortices) and can be tuned
electronically during experiment by changing the value of discontinuity κ and the bias cur-
rent γ. Thus, one can construct a tunable plasmonic fractional vortex crystal, which can be
used as filter in the frequency range up to few hundreds GHz (limited by plasma frequency
of JJ) [17].

• 0-π LJJs that possesses a degenerate ground state with spontaneous magnetic flux, can be
used to build various devices for information storage and processing. Also, one can create
huge arrays of artificial semifluxons (spins) and study collective phenomena such as formation
of local/global order/disorder during the second order phase transitions [HAS+03]. This is
especially interesting for frustrated systems of different geometries [KTA+05].

• One can also think about using fractional vortices or fractional vortex molecules as qubits.
Theoretical estimations show that it is possible to arrive into quantum realm using a com-
mercial 20mK refrigerator and setup, routinely used by several groups for experiments on
superconducting qubits. It is difficult to say at the moment whether a semifluxon based
qubit will have any advantages over more simple systems like phase or flux qubits that may
also be based on π JJs. But it will certainly look more robust than the fluxon based qubit
proposed earlier since one makes manipulations between two ground states, while the fluxon
is an excited state and needs additional topological protection.

• Arrays of 0-π-0-π-. . . segments of the lengths a0, aπ � λJ and with |j0c | ≈ |jπc | were proposed
as a system, which allows to create an effective ϕ JJ, i.e., JJ, which has a phase drop φ = ±ϕ
in the ground state. A ϕ JJ is a natural generalization of a π JJ and can be used (a) to
provide an arbitrary phase bias and (b) as a bistable system in the classical and the quantum
domain. The physics of ϕ JJ was investigated in detail by us [23]. In particular, we have
predicted a number of unusual properties such as: two critical currents (and two Ic(H)
branches), corresponding to the escape of the phase from −ϕ and +ϕ state; two different
plasma modes; unusual field penetration (two different λJ ’s for left and right edge of JJ); and,
finally, two fractional Josephson vortices that are solitons of a double-sine-Gordon equation.
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Recently we analyzed only one period of . . .-0-π-0-π-. . . array, i.e., simple 0-π JJ in magnetic
field. If, similar to the original works [Min98,BK03], one derives the equation for the spatially
averaged phase ψ one obtains the CPR of the form [24]

Is = 〈Ic〉 [sin(ψ) + Γ0 sin(2ψ) + Γhh cos(ψ)] , (2.44)

where Γ0 < 0 and Γh are constants that depend on parameters of he sample such as jc,0,
jc,π, L0, Lπ. The CPR (2.44) is remarkable. First, if Γ0 < − 1

2 , at zero magnetic field h = 0
it correspond to ϕ JJ. Second, this CPR contains a term ∝ cos(ψ), which is very unusual.
Usually one has only harmonics of sine, i.e., sin(nψ). Third, the amplitude of this cos(ψ)
term is proportional to the applied magnetic field, i.e., it is tunable electronically during
experiment. The idea is realized experimentally by us [manuscript is submitted].

• Recent experiments with arrays of 0-π-0-π-. . . segments showed that they are very sensitive to
the non-uniformities of magnetic field and can be used as sensors [20]. If the field is uniform,
at certain value one achieves the resonance between the period of supercurrent oscillations
and the period of the array. This results in a sharp peak in the Ic(H) dependence. For
a non-uniform field, the periods of phase oscillation and of facets cannot not match along
the whole array, so the main peak on Ic(H) dependence is suppressed and rather large side
peaks appear [20].
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Chapter 3

Conclusions and outlook

3.1 Conclusions

As a results of theoretical, experimental and technological efforts made by our and other groups
during the last decade substantial advances in technology and physics were achieved. While at
the beginning of this work only 0-π JJs based on d-wave superconductors were available, at the
moment the SIFS 0-π JJ technology is developed to the mature state. The supercurrent injector
technology allows to create electronically tunable κ discontinuities of the phase, i.e., 0-κ JJs that
allow to study arbitrary fractional vortices and their molecules.

A series of theoretical papers [1–3, 6, 15–17, 21–24] and the following successful experiments [4, 5,
7–14,18, 19] allow to claim that the classical physics of the fractional vortices is well understood.
At the present moment our research is focused on the investigation of multi-vortex systems in the
classical domain and on the macroscopic quantum effects.

3.2 Outlook

For nearest future the attention will be most probably focused on the exploration of quantum
properties of fractional vortex matter: MQT of a fractional vortex, energy level quantization in the
precritical state, coherent superposition of two-semifluxon molecule states, manipulation of states,
etc.. Our group also proposed a qubit based on a two-semifluxon molecule. Using an the states
(−κ, 2π − κ) and (−κ, 2π − κ) of arbitrary fractional vortices pinned at (+κ,+κ) discontinuities
instead of ±(−π,+π) semifluxon states, will allow to tune the energy barrier between the vortices
and achieve full control of the qubit.
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