

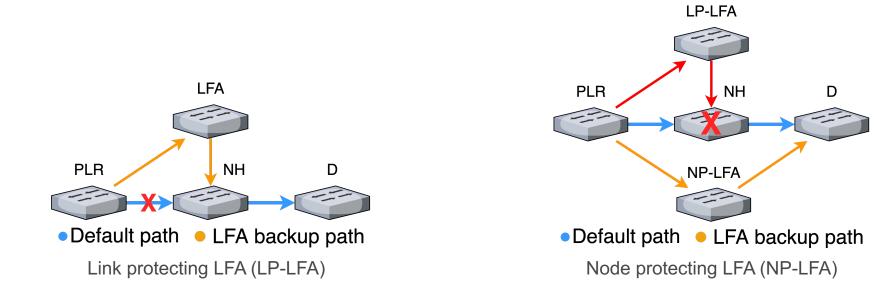
FACULTY OF SCIENCE Communication Networks

Robust LFA Protection for Software-Defined Networks (RoLPS)

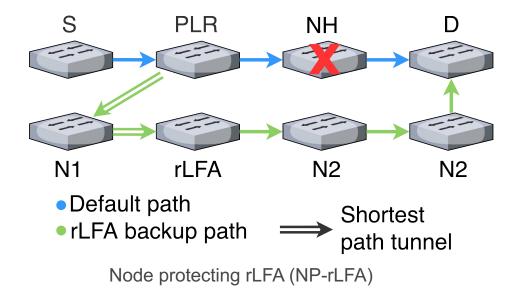
Daniel Merling, Steffen Lindner, Michael Menth

http://kn.inf.uni-tuebingen.de

Motivation

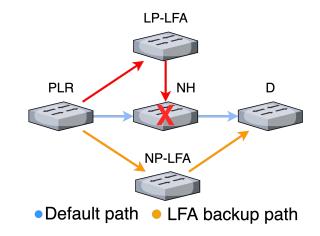

- ► LFAs: State of the Art
- Robust LFA Protection for Software-Defined Networks (RoLPS)
- Evaluation
- Hardware Prototype

- Packet forwarding in networks is disrupted when a next-hop becomes unreachable
 - Link failure
 - Node failure
- ► Upon failure detection, IGP or controller recomputes forwarding rules
 - Failure detection & computation takes time
- ► Fast Reroute (FRR) mechanisms are used in IP networks to quickly reroute packets
 - Pre-computed backup paths are used while forwarding entries are recomputed
- Desirable: FRR in SDN without controller interaction
 - High coverage
 - Limited forwarding table sizes in SDN forwarding devices

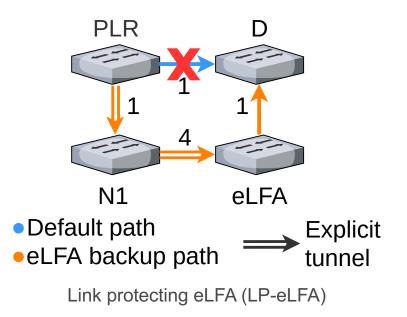


- ► Loop-free alternates (LFAs) are a well-known FRR method for IP networks
 - Traffic is sent to alternative next-hops without creating routing loops
- Two different protection levels
 - Link protection
 - Node protection

- Sometimes, no (LP/NP-)LFA is available for a given destination
- Remote LFAs (rLFAs) protect more destinations than LFAs
 - Based on shortest path tunnels to remote nodes



- Sometimes, even no (LP/NP-)rLFA is available for a given destination
- Topology-independent LFAs (TI-LFAs) leverage segment routing (SR)
 - Backup path is encoded as stack of forwarding actions in packet
 - Based on IPv6 (Srv6) or MPLS (SR-MPLS)



- (r)LFAs may create routing loops in failure scenarios
 - LP-LFAs in node failure cases
 - PLR might be a LP-LFA for its own LP-LFA
 - Double link failures
 - Single link and single node failure

- Robust LFA Protection for Software-Defined Networks (RoLPS)
 - Explicit LFAs
 - Advanced Loop Detection
 - LFA Ranking
- Explicit LFAs
 - Based on explicit tunnels, e.g., unique IP addresses
 - Uses rLFAs if available
 - Multipoint-to-point tunnels for less forwarding entries

Advanced Loop Detection

- Packets should be dropped if they are rerouted more than n times
- Requires only a counter in the packet header
- Implementable in Openflow & P4

LFA Ranking

- Controller classifies nodes for different PLRs into LP/NP-(e/r)LFAs
- LFAs can be ranked according to their
 - protection level
 - NP is better than LP
 - Complexity
 - Simple LFAs do not require tunneling / additional forwarding entries
 - eLFAs are most complex
- RoLPS ranks LFAs first according to their protection level

Rank	LFA Type
0	NP-LFA
1	NP-rLFA
2	NP-eLFA
3	LP-LFA
4	LP-rLFA
5	LP-eLFA

Table 1: Ranking of LFA types according to protection level and complexity. Preference is given to LFAs with lower rank number.

Protection Variants

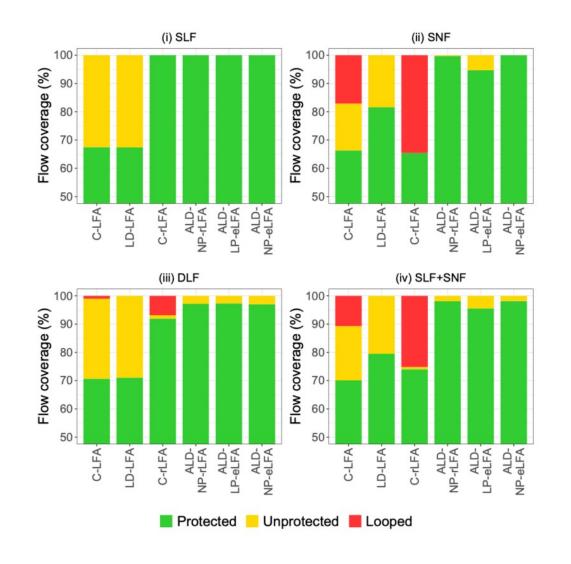
- Many different protection possibilities (loop detection, LP/NP, (e/r)LFAs)
- Naming scheme: {nLD, ALD}-{LP, NP}-{LFA, rLFA, eLFA}

Mechanism	C-LFA	C-rLFA	LD-LFA	ALD-NP-rLFA	ALD-LP-eLFA	ALD-NP-eLFA
	(nLD-LP-LFA)	(nLD-LP-rLFA)	(ALD-NP-LFA)			
Loop detection			•	•	•	•
Protection against all SLF		0		0	•	•
Protection against all SNF						•
Additional forwarding entries					•	•

Table 2: Properties of protection variants. Legend: o = only for unit link costs; $\bullet = independent of link costs.$

- Performance Evaluation of LFA-Based Protection
 - Evaluated on the Internet topology zoo
 - 205 wide area, commercial, research, and academic networks
- Metrics of interest
 - Protection coverage
 - Additional forwarding entries

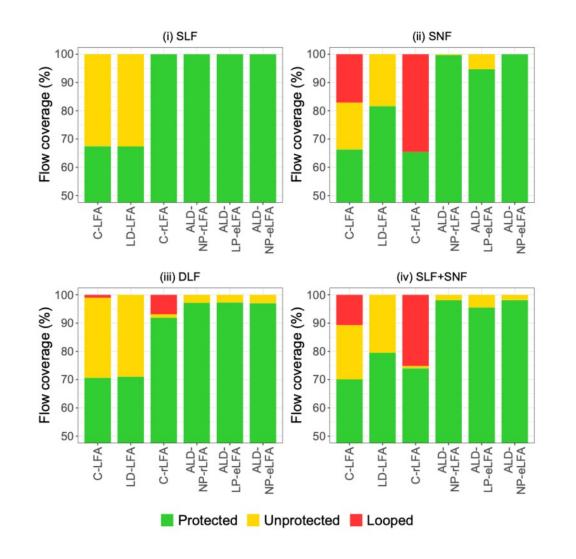
Performance Evaluation (II)


- Protected
 - Packet is successfully delivered
 - Packet is dropped to prevent a loop

Unprotected

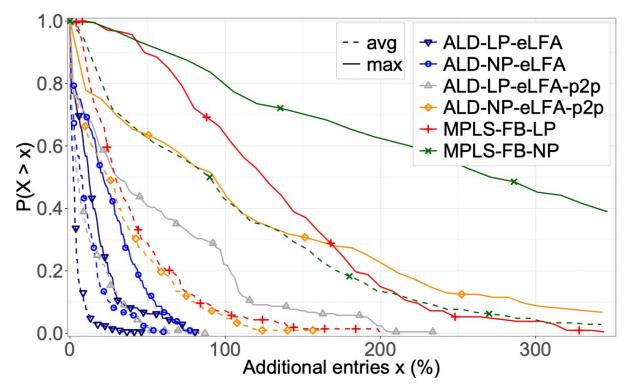
 Packet is dropped although the destination is reachable

Looped

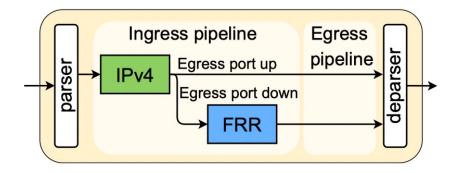

Microloop was caused by local rerouting

Performance Evaluation (II)

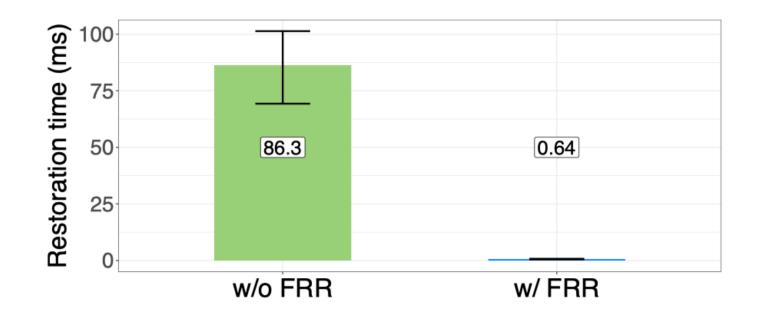
- Single Link Failure (SLF)
 - Simple LFAs (C-LFA, LD-LFA) can not cover all single link failures
 - (r/e)LFAs cover all single link failures
- Single Node Failure (SNF)
 - LP-LFAs (C-LFA, C-rLFA) may result in routing loops
 - Only ALD-NP-eLFA covers all destinations
- Dual Link Failure (DLF)
 - Variants without loop detection (C-LFA, C-rLFA) may result in microloops
 - Simple LFAs (C-LFA, LD-LFA) have lowest coverage
- Single Link + Single Node Failure (SLF + SNF)
 - LP-LFAs (C-LFA, C-rLFA) may result in routing loops


- Additional Forwarding Entries
 - LFAs and rLFAs are based on shortest paths \rightarrow no additional forwarding entries
 - eLFAs require additional forwarding entries
 - Compared to MPLS-facility-backups (MPLS-FB-{LP, NP})

- MPLS-FB-LP
 - 55% of networks have at least one node with 120% more additional entries
 - 8% of networks have more than 100% additional entries on average


► ALD-LP-eLFA

- No topology with a node that requires more than 80% additional entries
- 95% of networks require less than 15% additional entries on average


- ▶ We implemented ALD-(e/r)LFAs in P4 for the Tofino ASIC with up to 3.2 Tbit/s throughput
 - Tofino generates a special packet when ports are up/down
 - We store this information in registers to apply FRR

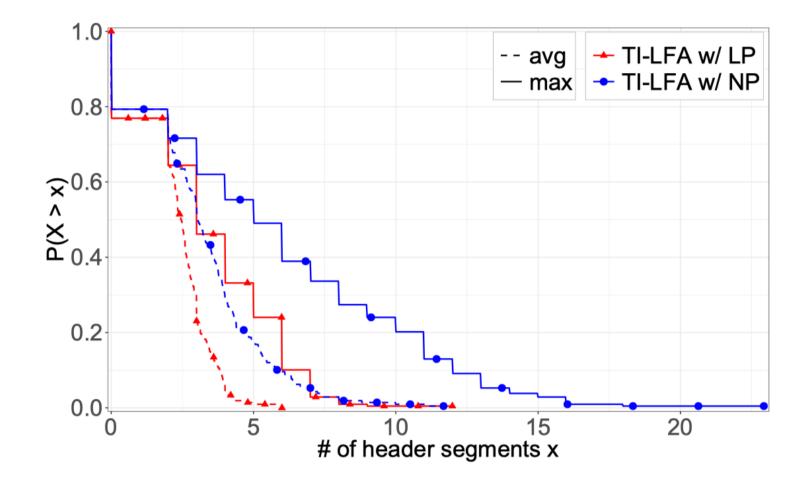
RoLPS based SDN controller

- Restoration time
 - Time until traffic is received after a failure
 - With and without FRR

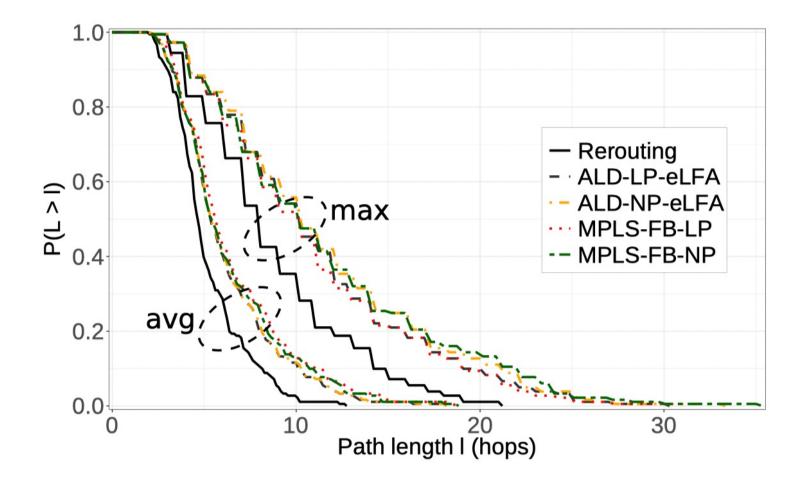
- RoLPS leverages (e/r)LFAs with advanced loop detection (ALD)
- Evaluation shows that existing (r)LFAs do not cover all destinations and may result in routing loops
- P4-based prototype that features RoLPS-based protection variants and runs at 100 Gbit/s
- Connectivity is restored in less than 1 ms

https://github.com/uni-tue-kn/p4-lfa

https://ieeexplore.ieee.org/document/9461214


Published @ TNSM (Special Section on Design and Management of Resilient Networks)

Steffen Lindner


University of Tuebingen Faculty of Science Department of Computer Science Chair of Communication Networks

