
Towards a Closed-Loop Automation for
Service Assurance with the DXAGENT

Korian Edeline, Thomas Carlisi, Justin Iurman,
Benoît Claise, Benoit Donnet

1

Recherches fiancées par la Région Wallonne
via le projet CyberExcellence, sous le numéro 2110186

Network Softwarization- Tübingen - April 2022 - Justin Iurman

Agenda

• Motivations
• DXAGENT
• Evaluation
• Conclusion

2

Network Softwarization- Tübingen - April 2022 - Justin Iurman

Agenda

3

• Motivations
• DXAGENT
• Evaluation
• Conclusion

Network Softwarization- Tübingen - April 2022 - Justin Iurman

Motivations
• Applications are made of multiple micro-services

4

Network Softwarization- Tübingen - April 2022 - Justin Iurman

Motivations (2)
• Monitoring microservices is hard

5

• Ideally, we should be able to automatically respond
to incidents

- whatever the "microservices nightmare"

Network Softwarization- Tübingen - April 2022 - Justin Iurman

Agenda

6

• Motivations
• DXAGENT
• Evaluation
• Conclusion

Network Softwarization- Tübingen - April 2022 - Justin Iurman

Diagnostic Agent
• SAIN vs. DXAGENT

7

Tunnel Service

Peer1 Tunnel
Interface

Peer1 Physical
Interface

Peer1 Device

IP Connectivity

IS-IS Routing
Protocol

Peer2 Tunnel
Interface

Peer2 Physical
Interface

Peer2 Device

Fig. 1. Assurance graph – tunnel example [11].

Service Configuration Orchestrator

SAIN Orchestrator SAIN Collector

SAIN Agent

Monitored Entities

network service
instance configuration

feedback loop

configuration

health status

metric collection

Fig. 2. SAIN architecture.

II. SAIN

The Service Assurance for Intent-based Networking Archi-
tecture (SAIN) [11] is a generic architecture developed by the
IETF for assuring that service instances are running correctly.
In particular, it allows to answer where is the fault when a ser-
vice degrades, focusing on the symptoms and the root cause.
Further, when a network component fails, it helps pointing
the impacted services. Those services are provided by SAIN
by, first, decomposing the problem into smaller components,
i.e., the subservices. An assurance graph (typically a directed
acyclic graph) is built to link those subservices in order to map
service intent. In particular, the root of the graph represents
the service to be assured, while the children represent the
subservices directly dependent on the service. The different
subservices are assured independently and a service health
score is possibly inferred.

Fig. 1 shows an example of assurance graph for a tunnel
service: the tunnel service depends on the two peer interfaces
of the tunnel but also on an IP connectivity that, itself, depends
on its routing protocol. We can add to this that the peers
interfaces depend on their physical interfaces, themselves
depending on the devices behind the interface.

One main principle of the SAIN architecture is to maintain
a correct assurance graph despite possible changes in services
or network conditions. The SAIN framework is then able to
highlight the problematic component in the graph when a
service is degraded. The hierarchy of assurance graph helps to
correlate a service degradation with the network root cause.

Fig. 2 illustrates the SAIN architecture. The Service Config-
uration Orchestrator is the system implementing the configu-

DXTOP DXWEB

shared memory GNMI EXPORTER

Input

Metrics

Rules
e.g., “Low Fan Speed”,
/node/bm/sensors/sensor,
Red, input_fanspeed<100

e.g., “rx_bytes, Net/Rate/Rx”

e.g., IOAM, OWAMP, /proc, netlinkinput.csv

metrics.csv

rules.csv

Fig. 3. DXAGENT architecture.

rations to perform the service setup (i.e., it is an intent-based
system). The SAIN Orchestrator retrieves the configurations
of service instances and, then, convert them into an assurance
graph. The SAIN Agent allows one to communicate with one
or several devices (possibly also with another agent) in order
to build the assurance graph by performing the necessary
computations. An Agent also interact with monitored entities
to retrieve metrics that will be later used to compute the health
score. Finally, the SAIN collector retrieves the agents output
to display it in a user friendly form.

In this paper, we propose what is, to the best of our
knowledge, the very first open source implementation of a
SAIN Agent called Diagnostic Agent (DXAGENT) [12].

III. DXAGENT

This section describes our implementation of the DXA-
GENT, as a SAIN Agent. It first provides the general overview
of the DXAGENT (Sec. III-A) and, then, focuses on two
particular telemetry data collection implementations: IOAM
(Sec. III-B) and OWAMP (Sec. III-C).

A. General Overview
The Diagnostic Agent (DXAGENT) is a SAIN Agent im-

plementation in charge of computing the health scores by
monitoring the devices useful to a service. The DXAGENT
has been developed in Python and is freely available [16]. The
overall architecture of the DXAGENT is illustrated in Fig. 3.

The DXAGENT operations are divided in three steps. First,
the DXAGENT retrieves input from multiple sources. This cor-
responds to the Input module on Fig. 3. The data is collected
directly on either the physical or virtual machine on which
the DXAGENT is run but through telemetry measurements for
VPP [17] and IOAM [14], [15] (see Sec. III-B and III-C). The
data taken into account can be the number of packets received
on an interface, the temperature of the computer components,
the CPU usage, the current idle or sleeping process number,
but also VirtualBox VMs and VPP [17] data. The Input

module relies on a scheduler for harvesting data at a certain
pace. By default, the Input module scheduler retrieves data
every three seconds but this can be tuned according to needs
and to a balance between data accuracy and device load. The
file input.csv provides information on the type of data to
collect and where it is available. With respect to the SAIN

Tunnel Service

Peer1 Tunnel
Interface

Peer1 Physical
Interface

Peer1 Device

IP Connectivity

IS-IS Routing
Protocol

Peer2 Tunnel
Interface

Peer2 Physical
Interface

Peer2 Device

Fig. 1. Assurance graph – tunnel example [11].

Service Configuration Orchestrator

SAIN Orchestrator SAIN Collector

SAIN Agent

Monitored Entities

network service
instance configuration

feedback loop

configuration

health status

metric collection

Fig. 2. SAIN architecture.

II. SAIN

The Service Assurance for Intent-based Networking Archi-
tecture (SAIN) [11] is a generic architecture developed by the
IETF for assuring that service instances are running correctly.
In particular, it allows to answer where is the fault when a ser-
vice degrades, focusing on the symptoms and the root cause.
Further, when a network component fails, it helps pointing
the impacted services. Those services are provided by SAIN
by, first, decomposing the problem into smaller components,
i.e., the subservices. An assurance graph (typically a directed
acyclic graph) is built to link those subservices in order to map
service intent. In particular, the root of the graph represents
the service to be assured, while the children represent the
subservices directly dependent on the service. The different
subservices are assured independently and a service health
score is possibly inferred.

Fig. 1 shows an example of assurance graph for a tunnel
service: the tunnel service depends on the two peer interfaces
of the tunnel but also on an IP connectivity that, itself, depends
on its routing protocol. We can add to this that the peers
interfaces depend on their physical interfaces, themselves
depending on the devices behind the interface.

One main principle of the SAIN architecture is to maintain
a correct assurance graph despite possible changes in services
or network conditions. The SAIN framework is then able to
highlight the problematic component in the graph when a
service is degraded. The hierarchy of assurance graph helps to
correlate a service degradation with the network root cause.

Fig. 2 illustrates the SAIN architecture. The Service Config-
uration Orchestrator is the system implementing the configu-

DXTOP DXWEB

shared memory GNMI EXPORTER

Input

Metrics

Rules
e.g., “Low Fan Speed”,
/node/bm/sensors/sensor,
Red, input_fanspeed<100

e.g., “rx_bytes, Net/Rate/Rx”

e.g., IOAM, OWAMP, /proc, netlinkinput.csv

metrics.csv

rules.csv

Fig. 3. DXAGENT architecture.

rations to perform the service setup (i.e., it is an intent-based
system). The SAIN Orchestrator retrieves the configurations
of service instances and, then, convert them into an assurance
graph. The SAIN Agent allows one to communicate with one
or several devices (possibly also with another agent) in order
to build the assurance graph by performing the necessary
computations. An Agent also interact with monitored entities
to retrieve metrics that will be later used to compute the health
score. Finally, the SAIN collector retrieves the agents output
to display it in a user friendly form.

In this paper, we propose what is, to the best of our
knowledge, the very first open source implementation of a
SAIN Agent called Diagnostic Agent (DXAGENT) [12].

III. DXAGENT

This section describes our implementation of the DXA-
GENT, as a SAIN Agent. It first provides the general overview
of the DXAGENT (Sec. III-A) and, then, focuses on two
particular telemetry data collection implementations: IOAM
(Sec. III-B) and OWAMP (Sec. III-C).

A. General Overview
The Diagnostic Agent (DXAGENT) is a SAIN Agent im-

plementation in charge of computing the health scores by
monitoring the devices useful to a service. The DXAGENT
has been developed in Python and is freely available [16]. The
overall architecture of the DXAGENT is illustrated in Fig. 3.

The DXAGENT operations are divided in three steps. First,
the DXAGENT retrieves input from multiple sources. This cor-
responds to the Input module on Fig. 3. The data is collected
directly on either the physical or virtual machine on which
the DXAGENT is run but through telemetry measurements for
VPP [17] and IOAM [14], [15] (see Sec. III-B and III-C). The
data taken into account can be the number of packets received
on an interface, the temperature of the computer components,
the CPU usage, the current idle or sleeping process number,
but also VirtualBox VMs and VPP [17] data. The Input

module relies on a scheduler for harvesting data at a certain
pace. By default, the Input module scheduler retrieves data
every three seconds but this can be tuned according to needs
and to a balance between data accuracy and device load. The
file input.csv provides information on the type of data to
collect and where it is available. With respect to the SAIN

Network Softwarization- Tübingen - April 2022 - Justin Iurman

Diagnostic Agent (2)
• DXTOP

8

Network Softwarization- Tübingen - April 2022 - Justin Iurman

Diagnostic Agent (3)
• DXWEB

9

Network Softwarization- Tübingen - April 2022 - Justin Iurman

Agenda

10

• Motivations
• DXAGENT
• Evaluation
• Conclusion

Network Softwarization- Tübingen - April 2022 - Justin Iurman

Evaluation
• Video streaming service
• Intent

- connection between the server and R3
- outgoing packets go through a different path than

incoming packets
- one-way delay does not exceed 50ms

11

Agent use gNMI [23] (gRPC Network Management

Interface), i.e., a gRPC [10] wrapper for network-related
stuff such as telemetry streaming. Once a connection is estab-
lished between an IOAM agent and the DXAGENT, the latter
fetches IOAM data every 10 seconds (it is totally tunable and
can be changed), and so for each IOAM Agent it is connected
to. The DXAGENT finally gathers and enhances the network
health report with IOAM data freshly collected.

C. OWAMP

The DXAGENT also includes an implementation of the One-
Way Active Measurement protocol (OWAMP) [13]. OWAMP
relies on a client/server architecture. While the protocol allows
for many possibilities, the OWAMP implementation [24] can
only measure the link between the client and the server. In
particular, we focus on the server and the client implement-
ing the ping utility. Doing so, one is now able to retrieve
information about link characteristics (delay, loss, etc) at any
time. OWAMP offers the possibility to ping a list of hosts on a
recurring basis. This is achieved thanks to a tunable scheduler
that is in charge of pinging every address of the list at a certain
pace (e.g., one ping every 20 seconds).

We have developed a Python wrapper for integrating
OWAMP into the DXAGENT [16]. The data retrieval is done by
means of a file that will contain the ping OWAMP information.
The callback function, contained in the DXAGENT, sent to
the OWAMP scheduler will ask the scheduler to start writing
the output to a file (one file per different addresses to ping).3
In this way, when an input retrieval is scheduled by the
DXAGENT, it is enough to read this file. Doing so, it is not
necessary to synchronize both schedulers. Using any other
method, such as shared memory or message passing, would
not only complicate the procedure by adding synchronization
concerns, but would be inconsistent with the way DXAGENT
works.

IV. USE CASES

In this section, we develop several use cases demonstrating
how the integration of OWAMP with the DXAGENT works and
how useful it can be. Sec. IV-A discusses our experimental
methodology while Sec. IV-B illustrates our results.

A. Methodology
We place ourselves in the context of a small network

infrastructure offering, for instance, a video streaming service
to its customers. The infrastructure, illustrated in Fig. 5 is an
intent-based networking architecture and the streaming service
has been set up using an intent. Our objective is to show that
the DXAGENT can observe if an intent drift is present or about
to appear by analyzing the network continuously.

In Fig. 5, the server (that could encompass a complete data
center infrastructure) hosts the DXAGENT. It is thus from the
server that measurements will be initiated and retrieved. Also,

3It is worth noticing this writing process is atomic, i.e., writing takes place
in a temporary file and when the writing is finished, the temporary file is
renamed by the file one wants to overwrite.

Video streaming infrastructure

Server

R1

R2

R3

Internet ...

Clients

Fig. 5. Streaming service topology. The server runs the DXAGENT while
the OWAMP server is running at R3. Green arrows refer to server incoming
packets. Red arrows refer to server outgoing packets.

Fig. 6. Delay observation scenario. The whole experiment lasts 300. Router
Rx refers to router R1 or R2, depending on traffic direction.

the OWAMP server is running at router R3 to analyze the traffic
between this router and the server.

The intent that was proposed for the streaming video service
is the following: “One wants a connection between the server
and R3 such that outgoing packets go through a different path
than incoming packets and the one-way delay (whatever the
direction) does not exceed 50 ms”. This intent explains why
outgoing traffic (red arrows on Fig. 5) goes through R1, while
incoming traffic (green arrows on Fig. 5) goes through R2.

It is worth noticing that the intent shows a delay requirement
only in the direction of packets leaving the server. This
makes sense because the service provider wants to ensure that
video packets are received quickly while the delay for client
acknowledgment is potentially less important.

Finally, the OWAMP scheduler has been setup to three
seconds, the packet size to 100 bytes, and the timeout to
0.5sec. The DXAGENT scheduler (i.e., the rate at which it
updates its metrics) has been setup to the default value (i.e.,
three seconds). Finally, the OWAMP and DXAGENT scheduler,
while they share the same value, are not synchronized and
work independently of each other.

B. Results
We consider three scenarios to illustrate the benefit of

considering the DXAGENT with OWAMP. Sec. IV-B1 provides
a scenario in which the DXAGENT observes and reacts to
delays on paths. Sec. IV-B2 discusses a scenario in which
packets are duplicated and reordered. Sec. IV-B3 focuses on
link failure discovery.

1) Observing Delay: The first scenario aims at demonstrat-
ing that the DXAGENT reacts well to delay changes. This
scenario is inspired by the intent used to build the streaming
video infrastructure, i.e., outgoing one-way delay (whatever
the direction) should not exceed 50 ms. The experiment
scenario is provided in Fig. 6. States 1 and 7 are initial
states in which the one-way delay between the server and R3

(whatever the direction) is 2ms. States 2, 4, and 6 correspond
to a situation in which the one-way delay is replaced by 50ms
in both directions. Finally, States 3 and 4 refer to strongly
degraded situations in which the one-delay is 100ms in both

Network Softwarization- Tübingen - April 2022 - Justin Iurman

Evaluation (2)
• Duplicates and reordering scenario

12

� � � ��

Network Softwarization- Tübingen - April 2022 - Justin Iurman

Evaluation (3)
• Link failure scenario

13

� �

� � �

� �

����V

Network Softwarization- Tübingen - April 2022 - Justin Iurman

Agenda

14

• Motivations
• DXAGENT
• Evaluation
• Conclusion

Network Softwarization- Tübingen - April 2022 - Justin Iurman

Conclusion

• Working prototype
- still lots of work to do

✓ more automation
✓ automatic respond to issues
✓ integrate Cross-Layer Telemetry

‣ J. Iurman, F. Brockners, B. Donnet. Towards Cross-Layer
Telemetry. In Proc. ACM/IRTF Applied Networking Research
Workshop (ANRW). July 2021.

• Additional info
- https://github.com/Advanced-Observability
- justin.iurman@uliege.be

15

https://github.com/Advanced-Observability

