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Introduction

State Keeping in Data Planes

• State keeping is essential for many applications
• Registers (arrays) are unstructured memory areas accessible by indices

• may be fragmented in memory
• no matching support
• limited functionality

• In tables, structured state can be accessed by sophisticated key matching
• State is often kept by the control plane which decreases performance for state-heavy applications
• We implemented state keeping via tables directly in the data plane
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Introduction
Background

P4

• P4 [1] is a domain-specific language for SDN data planes
• In P4, registers are changeable within the data plane, tables only by the control plane

→ Updatable table entries would increase performance

→ We implemented this for the P4 software target t4p4s using a @__ref annotation

T4P4S

• t4p4s [10] is a hardware-indepent transpiler from P4 to C code linked with DPDK developed by ELTE
• The Data Plane Development Kit (DPDK) [2] is an open-source framework enabling fast packet processing in user

space
• DPDK performs Receive Side Scaling (RSS) to split traffic among several lcores/threads
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Introduction
Related Work

• The Portable NIC Architecture (PNA) [5] allows adding table entries on lookup misses
• Flexible match-action tables in Pensando SmartNICs [6, 8] allow table update via write-back table fields

• using target-specific annotations translated to externs
• no adaption of P4 language/compilers required

• FlowBlaze [7] allows state updates in programmable data planes relying on registers
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Table Updates
Digest - Current P4 Way

Data Plane Control
Plane

Match-Action

Parser

Deparser Tables

lookup

change

digest

Current State
• For changes in match-action tables, the data plane has

to send a digest to the control plane
• in t4p4s: the controller is a separate process, commu-

nication via a socket (low round-trip time (RTT))

• Controller requests data plane to update the table

→ Digest-based approach introduces overhead

→ Avoid the detour over the controller could improve per-
formance

Investigated Approaches
• Digest: introduces a sleep of 1 second
• Change method: close to original implementation, but

avoids detour
• uses original timing-based synchronization mechanism
• sleep time of 200 µs

• Pointer method: directly changes entries using their
pointers

• requires alternative synchronization mechanism
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Table Updates
Double-Buffering

lcore
active replica

. . .
lcore

active replica

Table Replica 1 Table Replica 2

Current State
• Lock-free double-buffering

• Changes are done to the currently passive replica
• Replicas are swapped
• Sleep between replica change of 200 µs
• Changes then promoted to now passive

• Pointer method not compatible
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Evaluation
Topology

LoadGen DuT10Gbit/s
▶
◀

▶
◀

Setup

• MoonGen [3] is used to generate traffic
• DuT (t4p4s): Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10 GHz, L3-cache size: 15 MiB
• Packets specifies key and new value of updated table entry
• Old value sent back → read and write
• 4 Byte key and value size

Typical cache-based optimizations
• Load whole cache lines (e.g. 64 B) (spatial locality)
• Heuristic-based prefetching (time locality)

Measure worst-case scenario → maximize cache misses
• Key is pseudo-randomly selected in [0; TABLE_SIZE)
• Large table size exceeding cache size
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Evaluation
Table Update Methods, 700 B Packets
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Change method
• Bad performace

• 3.39 kpps
• 322 µs median latency

(high variance)

• uses original synchronization
mechanism → wait time of 200 µs

Pointer method
• Good performance

• 1.73 Mpps (hits linerate)
• 26.5 µs median latency

(almost constant)

• Not compatible with synchroniza-
tion mechanism

Digest method
• Ignoring sleep

• 4.1 kpps (else out of memory )
• 65.3 µs median latency

(low variance)

• Hardcoded sleep of 1 second
would allow < 1 pps
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Table Architecture
Overview

lcore
active replica

. . .
lcore

active replica

Table Replica 1 Table Replica 2

Current State
• Lock-free double-buffering

• Changes are done to the currently passive replica
• Replicas are swapped
• Sleep between replica change of 200 µs
• Changes then promoted to now passive

• Pointer method not compatible

Consistency
• Insert/Update consistency

→ one replica of lock-free DPDK hash map

• Inter-packet race conditions
→ per-entry locks
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Table Architecture
Insert/Update-Consistency, 84 Byte Packets
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DPDK LF 256
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t4p4s 1
t4p4s 256
t4p4s 131072
t4p4s 1048576

Replace double-buffering mechanism (t4p4s) through lock-free DPDK hash table implementation (DPDK LF)

• DPDK design is also lock-free → nearly same performance
• Only one replica required → allowing pointer method to work
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Table Architecture
Avoiding Inter-Packet Data Races, 84 Byte Packets
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Each entry includes an (optional) lock (Synced)

• Lock is acquired before executing action, and released afterwards
• Locking decreases performance up to 10 %
• Only necessary for global (i.e., flow-independent) entries/state
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Conclusion

Contributions

• Implementation of writable table entries in t4p4s using @__ref annotation
→ comparable performance to only reading entries

• Synchronization and storage design configurable using @tableconfig annotation
• Avoiding inter-packet races using per-entry locks
• Source code available on GitHub [4]

Further contributions not presented
• Cache-efficient storage design
• Cache fitting models

→ read our paper [9]
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Additional slides

Additional slides
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Storage Design
Original Storage Design

• So far, we only considered fast table updates and consistency
• Performance can be further improved by a cache-efficient storage design

→ Ensure spatial locality

uint8_t* entries[]

<key, value>

char[] key = ...
*data = NULL
index = 2

<key, value>

char[] key = ...
*data = NULL
index = 6

...

table_entry
actionId = ...
params = ...

table_entry
actionId = ...
params = ...

t4p4s
(DPDK target)

DPDK
Hash
Table

Problems
• Double indirection
• Memory lost due to alignment

to 64 Byte
• Entries lay fragmented in

memory
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Storage Design
Dynamic Storage Design

uint8_t* entries[]

<key, value>

char[] key = ...
*data = NULL
index = 2

<key, value>

char[] key = ...
*data = NULL
index = 6

...

table_entry
actionId = ...
params = ...

table_entry
actionId = ...
params = ...

t4p4s
(DPDK target)

DPDK
Hash
Table

Advantages
• Only one indirection
• Dynamic allocation of required

memory for entries
• Flexible table size

Problems
• Memory lost due to alignment

to 64 Byte
• Entries lay fragmented in

memory
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Storage Design
Static Storage Design

table_entry entries[]

<key, value>

char[] key = ...
*data = NULL
index = 0

<key, value>

char[] key = ...
*data = NULL
index = 2

...

table_entry
actionId = ...
params = ...

table_entry
actionId = ...
params = ...

t4p4s
(DPDK target)

DPDK
Hash
Table

Advantages
• Only one indirection
• Enforcing spatial locality
• Aligned to 16 Byte
• Better cache utilization

Problems
• Fixed table size
• Lost memory for low table fill

rates
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Storage Design
Throughput and Cache Misses for Static and Dynamic Storage, 84 Byte Packets
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• Static design achieves more throughput, especially for large table sizes
• Performance gain up to 40 %
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