Empirical asset pricing:

The Stochastic Discount Factor approach

Joachim Grammig
University of Tübingen
Department of Econometrics, Statistics and Empirical Economics

Course outline

Empirical asset pricing: The Stochastic Discount Factor approach

1. Theoretical Background 3
2. Stochastic Discount Factors and GMM estimation 20
3. Recent models 62
4. Testing conditional predictions of asset pricing models:
Managed portfolios and scaled factors
5. Linear factor models and the basic pricing equation 106

1. Theoretical background

Readings:
Cochrane (2005), Chapters 1 (without 1.5), 3 (3.1 and 3.2), 4 (4.1 and 4.2)

Empirical asset pricing - Introduction (1)

50 years US stocks: $\quad 9 \%$ average return (real) p.a.
1% real interest rate p.a. (treasury bills)
8% premium earned for holding risk
What is the risk that is priced?
Asset pricing
normative
how should the world work? are the prices "wrong"?

- trading opportunities?
- cost of capital
- non traded assets: " fair" price

Empirical asset pricing - Introduction (2)

Basic: Prices equal discounted expected payoff
What probability measure?

> Absolute Asset Pricing
> exposure to " "fundamental" macroeconomic risk
> Asset priced given other asset prices (e.g. option pricing)
> Relative Asset Pricing
e.g. CAPM:

$$
\begin{aligned}
\mathbb{E}\left(R^{i}\right) & =R^{f}+\beta_{i}(\underbrace{\mathbb{E}\left(R^{m}\right)-R^{f}}) \\
\beta_{i} & =\frac{\operatorname{cov}\left(R^{i}, R^{m}\right)}{\operatorname{var}\left(R^{m}\right)}
\end{aligned}
$$

Market price of risk (factor)risk premium not explained

Empirical asset pricing - Introduction (3)

Basic pricing equation $p_{t}=\mathbb{E}_{t}\left(m_{t+1} x_{t+1}\right)$

asset price stochastic payoff
at t discount (r.v.) factor (r.v.)

$$
m_{t+1}=f(\underbrace{\text { data }, \text { parameters }}_{\text {the model }})
$$

Moment condition: $\mathbb{E}_{t}\left(m_{t+1} x_{t+1}\right)-p_{t}=0$

$$
\text { use } \quad \frac{1}{n} \sum \rightarrow \mathbb{E}() \quad \text { WLLN }
$$

Generalized Method of Moments (GMM) to estimate parameters

Empirical asset pricing - Introduction (4)

From an utility maximising investor`s first order conditions we obtain the basic asset pricing formula (1)

Basic objective: find p_{t}, the present value of stream of uncertain payoff x_{t+1}

Utility function

$$
\begin{aligned}
c_{t} & =e_{t}-p_{t} \xi \\
c_{t+1} & =e_{t+1}+x_{t+1} \xi
\end{aligned}
$$

Random variables: $p_{t+1}, d_{t+1}, x_{t+1}, e_{t+1}, c_{t+1}, u\left(c_{t+1}\right) \quad \mathbb{E}_{t}[\cdot] \triangleq \mathbb{E}\left[\cdot \mid \mathcal{F}_{t}\right]$

From an utility maximising investor`s first order conditions we obtain the basic asset pricing formula (2)

$$
\begin{gathered}
\max _{(\xi)}\left[U\left(c_{t}, c_{t+1}\right)\right] \text { s.t. } \\
c_{t}=e_{t}-p_{t} \xi ; c_{t+1}=e_{t+1}+x_{t+1} \xi \\
\max _{(\xi)}\left\{u\left(e_{t}-p_{t} \xi\right)+\beta \mathbb{E}_{t}\left[u\left(e_{t+1}+x_{t+1} \xi\right)\right]\right\} \\
-p_{t} \cdot u^{\prime}\left(c_{t}\right)+\beta \cdot \mathbb{E}_{t}\left[u^{\prime}\left(c_{t+1}\right) \cdot x_{t+1}\right]=0
\end{gathered}
$$

utility loss if investor buys another unit of the asset

Turning off uncertainty we are in the standard two-goods case (1)

$$
\begin{gathered}
\max \left[u\left(c_{t}\right)+\beta u\left(c_{t+1}\right)\right] \text { s.t. } c_{t}=e_{t}-p_{t} \cdot \xi, c_{t+1}=e_{t+1}+x_{t+1} \cdot \xi \\
\frac{\partial U\left(c_{t}, c_{t+1}\right)}{\partial \xi}=-p_{t} \cdot \frac{\partial u\left(c_{t}\right)}{\partial c_{t}}+\beta \cdot x_{t+1} \cdot \frac{\partial u\left(c_{t+1}\right)}{\partial c_{t+1}}=0 \\
p_{t} \cdot u^{\prime}\left(c_{t}\right)=x_{t+1} \cdot \beta u^{\prime}\left(c_{t+1}\right) \\
p_{t}=x_{t+1} \cdot \frac{\beta u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}
\end{gathered}
$$

marginal valuation of consumption in $t+1$ in terms of consumption in t

$$
\longrightarrow \quad-\frac{d c_{t}}{d c_{t+1}}=\frac{\beta \cdot u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}=\frac{p_{t}}{x_{t+1}} \longleftarrow \begin{gathered}
\text { opportunity cost to transfer } \\
\text { consumption from to t } \mathrm{t}+1
\end{gathered}
$$

$$
\begin{aligned}
p_{t} u^{\prime}\left(c_{t}\right) & =\mathbb{E}_{t}\left[\beta u^{\prime}\left(c_{t+1}\right) x_{t+1}\right] \\
p_{t} & =\mathbb{E}_{t}\left[\beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)} x_{t+1}\right]
\end{aligned}
$$

We often use a convenient power utility function (1)

$$
\begin{array}{rlrl}
u\left(c_{t}\right) & =\frac{1}{1-\gamma} c_{t}^{1-\gamma} & \lim _{\gamma \rightarrow 1}\left(\frac{1}{1-\gamma} c_{t}^{1-\gamma}\right)=\ln \left(c_{t}\right) & \\
\text { marginal } \\
u^{\prime}\left(c_{t}\right) & =c_{t}^{-\gamma} & \frac{d c_{t}}{d c_{t+1}}=\frac{\beta u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}=\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma} & \text { rate of } \\
& \text { substitution }
\end{array}
$$

utility $u\left(c_{t}\right)$
 parameter γ :

increasing concavity of utility function

Prices, payoffs, excess returns

	Price p_{t}	Payoff x_{t+1}
stock	p_{t}	$p_{t+1}+d_{t+1}$
return	1	R_{t+1}
excess return	0	$R_{t+1}^{e}=R_{t+1}^{a}-R_{t+1}^{b}$
one $\$$ one period discount bond	p_{t}	1
risk-free rate	1	R^{f}

Payoff x_{t+1} divided by price $p_{t} \Rightarrow$ gross return $R_{t+1}=\frac{x_{t+1}}{p_{t}}$
Return: payoff with price one

$$
1=\mathbb{E}_{t}\left(m_{t+1} \cdot R_{t+1}\right)
$$

Zero-cost portfolio:
Short selling one stock, investing proceeds in another stock
\Rightarrow excess return R^{e}
Example: Borrow $1 \$$ at R^{f}, invest it in risky asset with return R.
Pay no money out of the pocket today \rightarrow get payoff $R^{e}=R-R^{f}$.
Zero price does not imply zero payoff.

The covariance of the payoff with the discount factor rather than its variance determines the risk-adjustment

$$
\begin{aligned}
& \operatorname{cov}\left(m_{t+1}, x_{t+1}\right)=\mathbb{E}\left(m_{t+1} \cdot x_{t+1}\right)-\mathbb{E}\left(m_{t+1}\right) \mathbb{E}\left(x_{t+1}\right) \\
& p_{t}=\mathbb{E}\left(m_{t+1} \cdot x_{t+1}\right) \\
& =\mathbb{E}\left(m_{t+1}\right) \mathbb{E}\left(x_{t+1}\right)+\operatorname{cov}\left(m_{t+1}, x_{t+1}\right) \\
& R^{f}=\frac{1}{\mathbb{E}\left(m_{t+1}\right)} \\
& p_{t}=\frac{\mathbb{E}\left(x_{t+1}\right)}{R^{f}}+\operatorname{cov}\left(m_{t+1}, x_{t+1}\right) \\
& p_{t}=\frac{\mathbb{E}\left(x_{t+1}\right)}{R^{f}}+\operatorname{cov}\left(\beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}, x_{t+1}\right) \\
& p_{t}=\underbrace{\frac{\mathbb{E}\left(x_{t+1}\right)}{R^{f}}}_{\text {price in risk-neutral }}+\beta \underbrace{\frac{\operatorname{cov}\left(u^{\prime}\left(c_{t+1}\right), x_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}}_{\text {risk adjustment }} \longleftarrow \\
& \text { price in risk-neutral risk adjustment } \\
& \text { Marginal utility declines } \\
& \text { as consumption rises. } \\
& \text { Price is lowered if payoff } \\
& \text { covaries positively with } \\
& \text { consumption. (makes consumption } \\
& \text { stream more volatile) } \\
& \text { Price is increased if payoff } \\
& \text { covaries negatively with } \\
& \text { consumption. (smoothens } \\
& \text { consumption) Insurance! }
\end{aligned}
$$

Investor does not care about volatility of an individual asset, if he can keep a steady consumption.

All assets have an expected return equal to the risk-free rate, plus risk adjustment

$$
\begin{aligned}
& 1=\mathbb{E}\left(m_{t+1} \cdot R_{t+1}^{i}\right) \\
& 1=\mathbb{E}\left(m_{t+1}\right) \mathbb{E}\left(R_{t+1}^{i}\right)+\operatorname{cov}\left(m_{t+1}, R_{t+1}^{i}\right) \\
& R^{f}=\frac{1}{\mathbb{E}\left(m_{t+1}\right)} ; 1-\frac{1}{R^{f}} \mathbb{E}\left(R_{t+1}^{i}\right)=\operatorname{cov}\left(m_{t+1}, R_{t+1}^{i}\right. \\
& \mathbb{E}\left(R_{t+1}^{i}\right)-R^{f}=-R^{f} \cdot \operatorname{cov}\left(m_{t+1}, R_{t+1}^{i}\right) \\
& \mathbb{E}\left(R_{t+1}^{i}\right)-R^{f}=-\frac{1}{\mathbb{E}\left(\beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}\right)} \cdot \operatorname{cov}\left(\beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}, R_{t+1}^{i}\right) \\
& \text { excess return } \\
& \overbrace{\mathbb{E}\left(R_{t+1}^{i}\right)-R^{f}}=-\frac{\operatorname{cov}\left(u^{\prime}\left(c_{t+1}\right), R_{t+1}^{i}\right)}{\mathbb{E}\left(u^{\prime}\left(c_{t+1}\right)\right)}
\end{aligned}
$$

Investors demand higher excess returns for assets that covary positively with consumption. Investors may accept expected returns below the risk-free rate. Insurance !

The basic pricing equation has an expected return-beta representation

$$
\begin{gathered}
\mathbb{E}\left(R_{t+1}^{i}\right)-R^{f}=-R^{f} \cdot \operatorname{cov}\left(R_{t+1}^{i}, m_{t+1}\right) \\
\mathbb{E}\left(R_{t+1}^{i}\right)-R^{f}=-\frac{\operatorname{cov}\left(R_{t+1}^{i}, m_{t+1}\right)}{\operatorname{Var}\left(m_{t+1}\right)} \frac{\operatorname{Var}\left(m_{t+1}\right)}{\mathbb{E}\left(m_{t+1}\right)} \\
\mathbb{E}\left(R_{t+1}^{i}\right)=R^{f}-\left(\frac{\operatorname{cov}\left(R_{t+1}^{i}, m_{t+1}\right)}{\operatorname{Var}\left(m_{t+1}\right)}\right) \cdot\left(\frac{\operatorname{Var}\left(m_{t+1}\right)}{\mathbb{E}\left(m_{t+1}\right)}\right)
\end{gathered}
$$

asset specific quantity of risk

With $m=\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}$ and lognormal consumption growth $\frac{c_{t+1}}{c_{t}}$

$$
\begin{aligned}
\mathbb{E}\left(R^{i}\right) & =R^{f}+\beta_{R^{i}, \Delta c} \cdot \lambda_{\Delta c} \\
\lambda_{\Delta c} & \approx \gamma \cdot \operatorname{Var}(\Delta \ln c)
\end{aligned}
$$

The more risk averse the investors or the riskier the environment, the larger the expected return premium for risky (high-beta) assets.

Marginal utility weighted prices follow martingales (1)

Basic first order condition:

$$
p_{t} u^{\prime}\left(c_{t}\right)=\mathbb{E}_{t}(\beta\left(u^{\prime}\left(c_{t+1}\right)\right)(\overbrace{p_{t+1}+d_{t}}))
$$

Market efficiency \Leftrightarrow Prices follow martingales (random walks)?
Risk neutral investors u'()=const.

Then:

$$
\begin{array}{rlrl}
\text { Then: } & & p_{t} & =\mathbb{E}\left(p_{t+1}\right) \\
& & p_{t+1} & =p_{t}+\varepsilon_{t+1} \\
\text { if } & \sigma^{2}\left(\varepsilon_{t+1}\right) & =\sigma^{2} \quad \text { = Random Walk }
\end{array}
$$

\Rightarrow Returns are not predictable $\mathbb{E}\left(\frac{p_{t+1}}{p_{t}}\right)=1$

Marginal utility weighted prices follow martingales (2)

With risk aversion (but no dividends) and $\beta=1$

$$
\begin{aligned}
\tilde{p}_{t} & =\mathbb{E}\left(\tilde{p}_{t+1}\right) \\
\tilde{p}_{t} & =\tilde{p}_{t} \cdot u^{\prime}\left(c_{t}\right)
\end{aligned}
$$

Scale prices by marginal utility, correct for dividends and apply risk neutral valuation formulas

Predictability in the short horizon?
consumption risk aversion
\Rightarrow Random Walks successful \Rightarrow Predictability of asset returns (day by day)?

Technical analysis, media reports...

Some popular linear factor models

Factor pricing models
return on wealth portfolio

CAPM: $\underbrace{m_{t+1}=a+b R_{t+1}^{w}}_{\text {Free parameters }}$
Compatible with utility maximisation ?

ICAPM : $\quad m_{t+1}=a+b^{\prime} f_{t+1}$
parameter factors vector
factors (macro, term spread, priceearnings ratio help forecast conditional distribution of future asset returns)

APT :

but factors determined by principal component analysis of payoff covariance matrix

Practice : just test $m=b^{\prime} f$ and don't worry about derivations

The benchmark model: Fama/French $(1993,1996)$ three factor model

- Fama French model
excess return small vs.
large stocks
$m_{t+1}=b_{0}+b_{m} R_{t+1}^{e m}+b_{S M B} S M B_{t+1}+b_{H M L} H M L_{t+1}$
excess return value stocks vs. growth stocks (high book-to-markt - low book-to-market)
'2. Stochastic discount factors and GMM estimation

Readings:
Cochrane (2005), Chapters 7, 10, 11
Hamilton (1994), Chapter 14
Hayashi (2000), Chapter 7
Hall (2005) (new GMM textbook)

The basic pricing equation implies a set of CONDTIONAL moment restrictions

$$
\begin{aligned}
p_{t} & =\mathbb{E}_{t}\left(m_{t+1} x_{t+1}\right) \\
& =\mathbb{E}\left(m_{t+1} x_{t+1} \mid I_{t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left\{m_{t}\right\} \text { and } \\
& \left\{x_{t}\right\} \text { non i.i.d. } \Rightarrow \\
& \mathbb{E}_{t}(\cdot) \neq \mathbb{E}_{(\cdot)}
\end{aligned}
$$

Information set (partially) not observed, conditional density not known, conditional expectation cannot be computed

Conditioning down to coarser information set

$$
\begin{array}{ll}
p_{t} & =\mathbb{E}_{t}\left(m_{t+1} x_{t+1}\right) \\
\mathbb{E}\left(p_{t}\right) & =\mathbb{E}\left(\mathbb{E}_{t}\left(m_{t+1} x_{t+1}\right)\right) \quad \text { I.i.e. } \\
& =\mathbb{E}\left(m_{t+1} x_{t+1}\right)
\end{array}
$$

Estimation and evaluation of asset pricing models (Basics)

Models contain free parameters

$$
p_{t}=\mathbb{E}_{t}\left(\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma} x_{t+1}\right)
$$

- Estimation from data
- Testing hypotheses about parameters
- How good is the model?

Estimation and evaluation of asset pricing models (CBM)

$$
\begin{gathered}
p_{t}=\mathbb{E}_{t}\left(m_{t+1} x_{t+1}\right) \quad \text { or } \quad 1=\mathbb{E}_{t}\left(m_{t+1} R_{t+1}\right) \\
\uparrow f(\text { data }, \text { parameters })
\end{gathered}
$$

e.g. CBM with $u(c)=\frac{1}{1-\gamma} c^{1-\gamma} \Rightarrow m_{t+1}=\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}$
$\frac{c_{t+1}}{c_{t}}$: data (random variables)
$b=(\beta, \gamma)^{\prime}$:free parameters

Assume model correct: "Best" choice for β, γ ?
Best " fit", smallest (average) pricing errors

Estimation and evaluation of asset pricing models. The basic idea.

Estimates \hat{b} from data, distribution of \hat{b} ?

Average pricing errors:

$$
\begin{gathered}
\text { sample mean } \underbrace{(\text { observed price - predicted price) }}_{\text {should be close to zero }}=\alpha \\
p_{t}=\mathbb{E}_{t}\left(m_{t+1}(b) \cdot x_{t+1}\right)=\mathbb{E}\left(m_{t+1}(b) \cdot x_{t+1} \mid I_{t}\right) \\
\mathbb{E}\left(p_{t}\right)=\mathbb{E}\left[\mathbb{E}_{t}\left(m_{t+1}(b) \cdot x_{t+1}\right)\right]=\mathbb{E}\left[m_{t+1}(b) \cdot x_{t+1}\right]
\end{gathered}
$$

Unconditional expectation: $\quad \mathbb{E}\left[m_{t+1}(b) x_{t+1}-p_{t}\right]=0$
Equivalently using returns:

$$
1=\mathbb{E}_{t}\left(m_{t+1}(b) R_{t+1}\right) \Rightarrow 0=\mathbb{E}\left(m_{t+1}(b) R_{t+1}-1\right)
$$

Generalized Methods of Moments estimation is based on the WLLN

$$
W L L N: \frac{1}{N} \sum_{i=1}^{N} y_{i} \quad \vec{p} \quad \mathbb{E}(Y)
$$

sample average consistent estimate for population moment

$$
\underbrace{\frac{1}{T} \sum_{t=1}^{T} p_{t}-\frac{1}{T} \sum_{i=1}^{T} m_{t+1}(b) x_{t+1}}_{\alpha} \approx 0
$$

GMM basic idea(first step):
choose \widehat{b} to minimize α^{2} (squared average pricing error) among set of test assets.

The two asset, two parameter case

$$
\begin{aligned}
\mathbb{E}\left(m_{t+1}(\beta, \gamma) x_{t+1}^{1}-p_{t}^{1}\right) & =0 \\
\mathbb{E}\left(m_{t+1}(\beta, \gamma) x_{t+1}^{2}-p_{t}^{2}\right) & =0 \\
\mathbb{E}\left(m_{t+1}(\beta, \gamma) R_{t+1}^{1}-1\right) & =0 \\
\mathbb{E}\left(m_{t+1}(\beta, \gamma) R_{t+1}^{2}-1\right) & =0 \\
\frac{1}{T} \sum_{t=1}^{T} m_{t+1}(\beta, \gamma) R_{t+1}^{1}-1 & =0 \\
\frac{1}{T} \sum_{t=1}^{T} m_{t+1}(\beta, \gamma) R_{t+1}^{2}-1 & =0 \\
\text { solve equations for } \beta, \gamma & \Rightarrow \widehat{\beta}, \widehat{\gamma} \Rightarrow
\end{aligned}
$$

To apply GMM data have to be generated by stationary (and ergodic) processes (not necessarily i.i.d.)

Problem: WLLN works for stationary data:
(Weakly) stationary process: $\left\{Y_{t}\right\}_{t=-\infty}^{\infty}$
$\left\{\ldots, \mathrm{y}_{0}, y_{1}, \ldots, y_{5}, \ldots\right\}$
$\mathbb{E}\left(Y_{t}\right)=u$
$\operatorname{var}\left(Y_{t}\right)=\sigma^{2}$
$\operatorname{cov}\left(Y_{t}, Y_{t-j}\right)=\gamma_{j}$
Solution: \Rightarrow We use:

$$
\begin{aligned}
& 1=\mathbb{E}\left(m_{t+1}(b) \cdot R_{t+1}\right) \quad \text { instead of } \quad \mathbb{E}\left(p_{t}\right)=\mathbb{E}\left(m_{t+1}(b) \cdot x_{t+1}\right) \\
& 0=\mathbb{E}\left(m_{t+1}(b) \cdot R_{t+1}-1\right)
\end{aligned}
$$

Define the GMM residual or "pricing error"

Define GMM residual: object whose mean should be zero

$$
\begin{gathered}
u_{t+1}(b)=m_{t+1}(b) R_{t+1}-1 \\
\mathbb{E}\left(u_{t+1}(b)\right)=0 \\
\mathbb{E}_{T}\left[u_{t}(b)\right]=\frac{1}{T} \sum_{t=1}^{T} u_{t}(b) \approx 0
\end{gathered}
$$

Notational convenience (Hansen's notation, sometimes causing confusion)

$$
\mathbb{E}_{T}(\cdot)=\frac{1}{T} \sum_{t=1}^{T}(\cdot)
$$

We have more assets than unknown model parameters

For GMM parameter estimation: Select N test assets
$R_{t}{ }^{1}, R_{t}{ }^{2}, \cdots, R_{t}{ }^{N} \quad t=1, \cdots, T$

$$
\left[\begin{array}{c}
\mathbb{E}_{T}\left[u_{t}^{1}(b)\right] \\
\mathbb{E}_{T}\left[u_{t}^{2}(b)\right] \\
\vdots \\
\vdots \\
\mathbb{E}_{T}\left[u_{t}^{N}(b)\right]
\end{array}\right]=g_{T}(b) \quad N \times 1 \quad \text { vector }
$$

If \sharp assets $=\sharp$ parameters b can be chosen such that average pricing errors are zero usually \sharp assets $>\sharp$ parameters.

GMM objective function

$$
\begin{aligned}
\widehat{b}= & \underset{\{b\}}{\operatorname{argmin}} g_{T}^{\prime}(b) \cdot I_{N} \cdot g_{T}(b) \quad \text { first step GMM estimate } \\
& =\underset{\{b\}}{\operatorname{argmin}}\left[\mathbb{E}_{T}\left[u_{t+1}^{1}(b)\right]\right]^{2}+\left[\mathbb{E}_{T}\left[u_{t+1}^{2}(b)\right]\right]^{2}+\ldots+\left[\mathbb{E}_{T}\left[u_{t+1}^{N}(b)\right]\right]^{2} \\
\Rightarrow & \text { minimize sum of squared average (pricing)errors } \\
& \text { equal weight for all test assets } 1, \ldots, N
\end{aligned}
$$

Alternatively other weight matrix

$$
\widehat{b}=\underset{\{b\}}{\operatorname{argmin}} \quad g_{T}^{\prime}(b) W g_{T}(b) \quad \text { e. g. } W=\left[\begin{array}{lll}
1 & 0 & \\
0 & 2 & \\
& & 100 \cdots
\end{array}\right]
$$

Under mild assumptions (stationarity) GMM estimators have desirable properties

GMM estimators consistent:
Bias and variance of estimator go to zero asymptotically $\hat{b} \vec{p} b$

GMM estimators asymptotically normal. Required for inference:

$$
\operatorname{var}(\hat{b})=\left(\begin{array}{ccc}
\operatorname{var}\left(\hat{b}_{1}\right) & \cdots & \\
\operatorname{cov}\left(\widehat{b}_{1}, \hat{b}_{2}\right) & \operatorname{var}\left(\widehat{b}_{2}\right) & \\
\vdots & \vdots & \\
\operatorname{cov}\left(\widehat{b}_{1}, \widehat{b}_{k}\right) & \cdots & \operatorname{var}\left(\widehat{b}_{k}\right)
\end{array}\right)
$$

To conduct t-test: $\frac{\widehat{b}_{k}}{\widehat{\sigma} k} \stackrel{a}{\sim} N(0,1)$

Efficient estimates obtained by using the optimal weighting matrix

Efficiency: Smallest asymptotic variance among GMM esimators

Efficient estimator: employ S^{-1} as weighting matrix

There exists an optimal weighting matrix

Optimal weighting matrix
(and GMM parameter standard errors): use consistent estimate \widehat{S} of S in minimization:
$\widehat{b}=\underset{\{b\}}{\operatorname{argmin}} \quad g_{T}(b)^{\prime} \widehat{S}^{-1} g_{T}(b)$
write $u_{t}(b)=\left(\begin{array}{c}u_{t}^{1}(b) \\ \vdots \\ u_{t}^{N}(b)\end{array}\right) \quad\left(u_{t}^{i}(b)=m_{t+1}(b) x_{t+1}^{i}-p_{t}^{i}\right)$

Recall: $\mathbb{E}\left(u_{t}^{i}\right)=0 \Rightarrow \mathbb{E}\left(u_{t}(b)\right)=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right)$

The optimal weighing matrix takes into account variances and covariances of pricing errors across assets

$$
\quad S=\mathbb{E}\left[u_{t}(b) \cdot u_{t}^{\prime}(b)\right]=\left[\begin{array}{ccc}
\mathbb{E}\left(\left[u_{t}^{1}(b)\right]^{2}\right) \cdots & \\
\vdots & \cdots & \\
\mathbb{E}\left[u_{t}^{1}(b) u_{t}^{2}(b)\right] & \\
\vdots & & \mathbb{E}\left(\left[u_{t}^{N}(b)\right]^{2}\right)
\end{array}\right]
$$

$S=$ variance covariance matrix of pricing errors

$$
=\left[\begin{array}{lll}
\operatorname{var}\left(u_{t}^{1}(b)\right) \cdots \\
\operatorname{cov}\left(u_{t}^{1}(b) u_{t}^{2}(b)\right) \operatorname{var}\left(u_{t}^{2}(b)\right) & \cdots & \\
\vdots & & \\
& & \operatorname{var}\left(u_{t}^{N}(b)\right)
\end{array}\right]
$$

Estimate \widehat{S} : Replace \mathbb{E} by $\frac{1}{N} \sum$ using \widehat{b} obtained with weighting matrix $I_{N} \Rightarrow \widehat{S}$.

Steps of iterated GMM estimation

1) $\hat{b}^{1}=\underset{\{b\}}{\operatorname{argmin}} g_{T}(b)^{\prime} I_{N} g_{T}(b) \Rightarrow$
2) $\widehat{S} \Rightarrow$
3) $\begin{aligned} & \widehat{b}^{2}=\underset{\{b\}}{\operatorname{argmin}} \mathrm{g}_{T}(b)^{\prime} \widehat{S}^{-1} g_{T}(b) \\ & \text {..repeat..... }\end{aligned}$

Intuition behind optimal weighting matrix (1)

Intuition behind GMM weighting matrix
Example

$$
N=2, \operatorname{cov}\left(u_{t}^{1}(b), u_{t}^{2}(b)\right)=0 \text { [zero covariance of pricing errors] }
$$

$$
\begin{gathered}
S=\left[\begin{array}{ll}
\operatorname{var}\left[u_{t}^{1}(b)\right] & 0 \\
0 & \operatorname{var}\left[u_{t}^{2}(b)\right]
\end{array}\right] \\
S^{-1}=\left[\begin{array}{ll}
\frac{1}{\operatorname{var}\left[u_{t}^{1}(b)\right]} & 0 \\
0 & \frac{1}{\operatorname{var}\left[u_{t}^{2}(b)\right]}
\end{array}\right]=\left[\begin{array}{ll}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right]
\end{gathered}
$$

Example $S=\left(\begin{array}{ll}10 & 0 \\ 0 & 0.1\end{array}\right)$

Intuition behind optimal weighting matrix (2)

GMM objective $g_{T}(b)^{\prime} S^{-1} g_{T}(b)$ becomes
$\underset{\{b\}}{\operatorname{argmin}} \mathbb{E}_{T}\left[u_{t}^{1}(b)\right]^{2} \cdot W_{1}+\mathbb{E}_{T}\left[u^{2}(b)\right]^{2} \cdot W_{2}$

Example
$W_{1}: 0.1 \Rightarrow \operatorname{var}\left(u_{t}^{1}(b)\right)=10$
$W_{2}: 10 \Rightarrow \operatorname{var}\left(u_{t}^{2}(b)\right)=0.1$
\Rightarrow Asset (1) gets less weight in minimization
"Model imprecise" for asset 1, more precise for asset 2.

Some more intuition behind optimal weighting matrix: Correlations across pricing errors (1)

Another example: Correlations between asset returns: Two " similar" assets (high correlation of pricing errors) are downweighted.
Count more like one asset.

$$
\begin{aligned}
& \text { Example } S=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0.999 \\
0 & 0.999 & 1
\end{array}\right) \quad \operatorname{cov}\left(u_{t}^{2}, u_{t}^{3}\right)=0.999 \\
& \qquad \operatorname{corr}\left(u_{t}^{2}, u_{t}^{3}\right) \approx 1=\frac{0.999}{\sqrt{1} \sqrt{1}} \\
& \underset{\{b\}}{\operatorname{argmin}}\left[\mathbb{E}_{T}\left(u_{t}^{1}(b)\right), \mathbb{E}_{T}\left(u_{t}^{2}(b)\right), \mathbb{E}_{T}\left(u_{t}^{3}(b)\right)\right] \times\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0.99 \\
0 & 0.99 & 1
\end{array}\right]^{-1} \times \\
& \\
& \\
& \\
& {\left[\begin{array}{l}
\mathbb{E}_{T}\left(u_{t}^{1}(b)\right) \\
\mathbb{E}_{T}\left(u_{t}^{2}(b)\right) \\
\mathbb{E}_{T}\left(u_{t}^{3}(b)\right)
\end{array}\right]}
\end{aligned}
$$

Some more intuition behind optimal weighting matrix: Correlations across pricing errors (2)

$$
\begin{aligned}
& S^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 500.25 & -499.75 \\
0 & -499.75 & 500.25
\end{array}\right] \\
& \underset{\{b\}}{\operatorname{argmin}} g_{T}(b)^{\prime} S^{-1} g_{T}(b)= \\
& {\left[\mathbb{E}_{T}\left(u_{t}^{1}(b)\right), \mathbb{E}_{T}\left(u_{t}^{2}(b)\right) \cdot 500.25-\mathbb{E}_{T}\left(u_{t}^{3}(b)\right) \cdot 499.75,\right.} \\
& \left.\mathbb{E}_{T}\left(u_{t}^{3}(b)\right) \cdot 500.75-\mathbb{E}_{T}\left(u_{t}^{2}(b)\right) \cdot 499.75\right] \times\left[\begin{array}{l}
\mathbb{E}_{T}\left(u_{t}^{1}(b)\right) \\
\mathbb{E}_{T}\left(u_{t}^{2}(b)\right) \\
\mathbb{E}_{T}\left(u_{t}^{3}(b)\right)
\end{array}\right]
\end{aligned}
$$

Some more intuition behind optimal weighting matrix: Correlations of pricing errors (3)

$$
\begin{aligned}
& \underset{\{b\}}{\operatorname{argmin}} g_{T}(b)^{\prime} S^{-1} g_{T}(b)= \\
& \mathbb{E}_{T}\left(u_{t}^{1}(b)\right)^{2}+\mathbb{E}_{T}\left(u_{t}^{2}(b)\right)^{2} \cdot 500.25+\mathbb{E}_{T}\left(u_{t}^{3}(b)\right)^{2} \cdot 500.25- \\
& 2 \cdot \mathbb{E}_{T}\left(u_{t}^{2}(b)\right) \mathbb{E}_{T}\left(u_{t}^{3}(b)\right) \cdot 499.75 \\
& \approx \mathbb{E}_{T}\left(u_{t}^{1}(b)\right)^{2}+0.5 \mathbb{E}_{T}\left(u_{t}^{2}(b)\right)^{2}+0.5 \mathbb{E}_{T}\left(u_{t}^{3}(b)\right)^{2} \\
& \text { since } \\
& \mathbb{E}_{T}\left(u_{t}^{2}(b)\right) \approx \mathbb{E}_{T}\left(u_{t}^{3}(b)\right)
\end{aligned}
$$

To test hypotheses we need the distribution of the GMM estimates

Standard errors of GMM estimates

We want:

$$
\begin{aligned}
& \operatorname{var}(\hat{b})=\left(\begin{array}{lll}
\operatorname{var}\left(\hat{b}_{1}\right) & \operatorname{cov}\left(\widehat{b}_{1}, \hat{b}_{2}\right) \cdots & \operatorname{cov}\left(\hat{b}_{1}, \widehat{b}_{k}\right) \\
\operatorname{cov}\left(\hat{b}_{1}, b_{2}\right) & \operatorname{var}\left(\widehat{b}_{2}\right) & \cdots \\
\operatorname{cov}\left(\widehat{b}_{1}, \widehat{b}_{k}\right) & \cdots & \operatorname{var}\left(\widehat{b}_{k}\right)
\end{array}\right)(K \times K) \\
& b=\left(b_{0}, b_{1}, \cdots, b_{k}\right) \\
& t=\frac{\widehat{b}_{k}-0}{\sqrt{\operatorname{var(\hat {b}_{k})}} \stackrel{a}{\sim} N(0,1) \text { under } H_{0}: b_{k}=0}
\end{aligned}
$$

Asyptotic distribution of GMM estimates when using optimal weighting matrix

References for nonlinear GMM results: Hayashi (2000) Econometrics, Chapter 6, Hall (2005)

$$
\begin{gathered}
\sqrt{T}(\widehat{b}-b) \underset{d}{\rightarrow} N\left(0,\left(d^{\prime} S^{-1} d\right)\right. \\
d=\mathbb{E}\left(\frac{\partial u_{t}(b)}{\partial b}\right)
\end{gathered}
$$

consistently estimated by

$$
\left.\widehat{d}=\frac{\partial g_{T}(b)}{\partial b} \right\rvert\, \widehat{b}
$$

t - and Wald tests use

$$
\widehat{\operatorname{var}(\widehat{b})}=\frac{\widehat{d}^{\prime} \widehat{S}^{-1} \widehat{d}}{T}
$$

Details

Some more details:
a) In application: replace S^{-1} by consistent estimate \widehat{S}^{-1}
b) Recall

$$
\begin{gathered}
g_{T}(b)=\left[\begin{array}{c}
\frac{1}{T} \sum u_{t}^{1}(b) \\
\vdots \\
\frac{1}{T} \sum u_{t}^{N}(b)
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{T} \sum m_{t}(b) R_{t}^{1}-1 \\
\vdots \\
\frac{1}{T} \sum m_{t}(b) R_{t}^{N}-1
\end{array}\right] \\
\frac{\partial g_{T}(b)}{\partial b}=\left[\begin{array}{l}
\frac{1}{T} \sum \frac{\partial u_{t}^{1}(b)}{\partial b_{1}} \frac{1}{T} \sum \frac{\partial u_{t}^{1}(b)}{\partial b_{2}} \cdots \frac{1}{T} \sum \frac{\partial u_{t}^{1}(b)}{\partial b_{k}} \\
\vdots \\
\frac{1}{T} \sum \frac{\partial u_{t}^{N}(b)}{\partial b_{1}} \frac{1}{T} \sum \frac{\partial u_{t}^{N}(b)}{\partial b_{2}} \cdots \frac{1}{T} \sum \frac{\partial u_{t}^{N}(b)}{\partial b_{k}}
\end{array}\right]
\end{gathered}
$$

Details

$$
\frac{\partial g_{T}(b)}{\partial b}=\left[\begin{array}{ll}
\frac{1}{T} \sum_{t=1}^{T} & \frac{\partial m_{t}(b)}{\partial b_{1}} R_{t}, \cdots \\
\downarrow & \text { Parameters } \\
N &
\end{array}\right]
$$

For power utility
$m_{t+1}(b)=\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}$
$b=\beta, \gamma$

Linear factor models $m_{t+1}=b^{\prime} f_{t+1} \quad b \neq 0 ?$

Risk factor?

$$
\frac{\partial m_{t+1}(b)}{\partial b_{1}}=?
$$

We employ the estimated variance covariance matrix to test

 hypotheses$\operatorname{var}(\hat{b})$ used for testing hypotheses:
$H_{0}: \quad b_{k}=0$
t-statistic: $\frac{\widehat{b}_{k}-0}{\sqrt{\operatorname{var}\left(\widehat{b}_{k}\right)}} \stackrel{a}{\sim} N(0,1) \hat{=}$ Standard t-test.
joint significance:

$$
H_{0}: \underbrace{\left(b_{j 1}=b_{j 2}==b_{j N}\right.}_{\text {some subset of } b}=0) \text { or } \underset{J \times 1}{b_{J}}=0
$$

$\widehat{b}_{j}^{\prime}[\underbrace{\operatorname{var}(\hat{b})_{J}}]^{-1} \widehat{b}_{j} \stackrel{a}{\sim} \chi^{2}(J)] \hat{=}$ Standard Wald test use to test $R b=r$
appropriate subset of $\operatorname{var}(\widehat{b})$
Nonlinear restrictions testable applying delta method => EVIEWS example

Testing the validity of the model (moment conditions) by J-test

$\left\{R_{t}, \Delta c_{t}, \ldots\right\}$ data is a random sample $\quad \Rightarrow \widehat{b} \quad$ is a random variable $\quad \Rightarrow$
$u_{t}(b) \quad$ is a random variable $\quad \Rightarrow \mathbb{E}_{T}\left(u_{t}(b)\right)=\frac{1}{N} \sum \cdots \underset{\text { variable }}{\text { is a random }}$
pricing errors too large to be explained by random sampling?
\Leftrightarrow Is the model in correct?

$$
T \cdot J_{T}=T \cdot \underbrace{\left[g_{T}(\widehat{b})^{\prime} \widehat{S}^{-1} g_{T}(\widehat{b})\right]} \stackrel{a}{\sim} \chi^{2}\binom{\text { no. moment conditions }}{\text {-no. of parameters. }}
$$

objective function at minimum using optimal weighting matrix estimate
\Rightarrow Reject or non-reject model (i.e. moment conditions) at given significance level Example: no. of moment conditions: 10, no. parameters: 2,

$$
T J_{T}=7.9, \chi_{95}^{2}(1)=2.73 \Rightarrow
$$

Remarks

Inference is different if other weighting matrix than optimal weighting matrix is used

- different formula for parameter standard errors
- different formula for J-statistic. Watch out when using EVIEWS!

When comparing alternative models (e.g. parameter restrictions) use the same weighting matrix (weighting matrix depends on unknown parameters)

General GMM results (Hayashi Ch. 6)

Chooese W to be positive semi-definite and symmetric

$$
\widehat{b}=\underset{\{b\}}{\arg \min } g_{T}(b)^{\prime} \dot{W}^{\not} g_{T}(b)
$$

$$
\times g_{T}(b)=0
$$

K linear combinations set to zero

General GMM results (Hayashi Ch. 6)

$$
\sqrt{T}(\widehat{b}-b) \underset{d}{\rightarrow} N\left(0,\left(d^{\prime} W d\right)^{-1} d^{\prime} W S W d\left(d^{\prime} W d\right)^{-1}\right)
$$

For t - and Wald-tests use

$$
\widehat{\operatorname{var}(\widehat{b})}=\frac{(\widehat{d} W \widehat{d})^{-1} \widehat{d}^{\prime} W \widehat{S} W \widehat{d}(\widehat{d} W \widehat{d})^{-1}}{T}
$$

General GMM results (Hayashi Ch. 6)

$$
\begin{aligned}
& \qquad \sqrt{T} g_{T}(\widehat{b}) \underset{d}{\rightarrow} N\left(0, \operatorname{Avar}\left(g_{T}(\widehat{b})\right)\right) \\
& \operatorname{Avar}\left(g_{T}(\widehat{b})\right)=\left(I-d\left(d^{\prime} W d\right)^{-1} d^{\prime} W\right) S\left(I-d\left(d^{\prime} W d\right)^{-1} d^{\prime} W\right. \\
& \text { General form of J-statistic } \\
& \left.\quad \operatorname{Tg}_{T}(\widehat{b})^{\prime}\left[\operatorname{Avar(g_{T}}(\widehat{b})\right)\right]^{+} g_{T}(\widehat{b}) \underset{d}{\rightarrow} \chi(N-K)
\end{aligned}
$$

Performance comparison (1)

Problems using J-statistic
Popular measure
Compare observed average return with $\mathbb{E}(R)$ predicted by model

From

$$
\begin{aligned}
1 & =\mathbb{E}(m R) \\
1 & =\mathbb{E}(m) \mathbb{E}(R)+\operatorname{cov}(m, R) \\
\mathbb{E}(R) & =\frac{1}{\mathbb{E}(m)}-\frac{\operatorname{cov}(m, R)}{\mathbb{E}(m)}
\end{aligned}
$$

Use as predictor

$$
\widehat{\mathbb{E}(R)}=\frac{1}{\frac{1}{T} \sum_{t=1}^{T} m_{t}}-\frac{\frac{1}{T} \sum_{t=1}^{T} m_{t} R_{t}-\frac{1}{T} \sum_{t=1}^{T} m_{t} \frac{1}{T} \sum_{t=1}^{T} R_{t}}{\frac{1}{T} \sum_{t=1}^{T} m_{t}}
$$

Performance comparison (2)

Plot $\widehat{\mathbb{E}(R)}$ vs. $\frac{1}{T} \sum_{t=1}^{T} R_{t}=\bar{R}$
Similarly using excess returns as test assets

$$
\text { From } \begin{aligned}
0 & =\mathbb{E}\left(m R^{e}\right) \\
0 & =\mathbb{E}(m) \mathbb{E}\left(R^{e}\right)+\operatorname{cov}\left(m, R^{e}\right) \\
\mathbb{E}\left(R^{e}\right) & =-\frac{\operatorname{cov}\left(m, R^{e}\right)}{\mathbb{E}(m)}
\end{aligned}
$$

Again: replace $\mathbb{E}(\cdot)$ by $\frac{1}{T} \Sigma(\cdot)$ to obtain $\widehat{\mathbb{E}\left(R^{e}\right)}$
Plot $\widehat{\mathbb{E}\left(R^{e}\right)}$ against \bar{R}^{e}
RMSE $=\sqrt{\sum_{j=1}^{N}\left[\widehat{\mathbb{E}\left(R^{j}\right)}-\bar{R}^{j}\right]^{2}}$ or $=\sqrt{\sum_{j=1}^{N}\left[\widehat{\mathbb{E}\left(R^{e j}\right)}-\bar{R}^{e j}\right]^{2}}$ used to
rank and compare alternative models

Cochrane‘s (1996) estimation results for the consumption based model with power utility
 Parameter Estimates

Note.-GMM estimates and tests of consumption-based model: $m_{t+1}=\beta\left(c_{t+1} / c_{t}\right)^{-\gamma}$. Asset returns are deciles $1-10$ in the unconditional estimates'and deciles $1,2,5$, and 10 scaled by the constant, term premium, and dividend/ price ratio in the conditional estimates. Assets do not include investment returns.

Non-rejection doesn't mean a thing

Cochrane‘s (1996) results for unconditional estimation of CAPM

Cochrane's (1996) results for unconditional estimation of CAPM

Performance comparison. Example: Consumption-Based Model estimated on 25 Fama-French portfolios

Consumption-Based Model

Performance comparison. Example: CAPM estimated on 25 FamaFrench portfolios

Performance comparison. Example: Fama-French two factor model estimated on 25 Fama-French portfolios

Fama-French-Model

GMM estimation using the Gauss library: Ingredients and recipe

1. Supply data
2. Provide GMM/optimization settings (number of iterations, weighting matrix)
3. Supply initial parameter values
4. Call GMM minimization procedure
iteratively calls procedure to compute GMM residuals $u_{t}(b)$
5. Check parameter estimates and test statistics

The canoncical example: Estimate the CBM by GMM

For consumption based model with power utility

$$
\mathbb{E}_{T}\left(u_{t}(b)\right)=\frac{1}{T} \sum_{t=1}^{T} \beta\left(\frac{c_{t+1}}{c_{t}}\right)^{\gamma} \cdot R_{t}^{i}-1=0
$$

Exercise: 10 test assets (NYSR decile portfolios)
Perform GMM estimation of γ and β using EXCEL solver.

Input: Time series of returns and consumption growth.

$$
\left[\begin{array}{ccccc}
R_{1}^{1} & \cdots & R_{1}^{10} & R_{1}^{f} & d c_{1} \\
\vdots & & \vdots & & \vdots \\
R_{T}^{1} & & R_{1}^{10} & R_{1}^{f} & d c_{T}
\end{array}\right]
$$

3. Recent approaches

Readings: Lettau and Ludvigson (2001), Garcia, Renault and Semonov (2002), Yogo (2006)

Newer models consumption based model and habit formation

Garcia et al. (2003)
Period utility function

$$
u\left(c_{t} / H_{t}, H_{t}\right)=\frac{\left(\frac{c_{t}}{H_{t}}\right)^{1-\gamma} H_{t}^{1-\psi}-1}{1-\gamma}
$$

Marginal utility

$$
u^{\prime}\left(c_{t}\right)=c_{t}^{-\gamma} H_{t}^{\gamma-\psi}
$$

Stochastic discount factor

$$
\begin{gathered}
m_{t+1}=\delta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}\left(\frac{H_{t+1}}{H_{t}}\right)^{\gamma-\psi} \\
\mathbb{E}_{t}\left[\delta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}\left(\frac{H_{t+1}}{H_{t}}\right)^{\gamma-\psi} R_{t+1}^{i}\right]=1
\end{gathered}
$$

Modelling the habit level (1)

$$
\begin{aligned}
c_{t+1} & =\frac{a}{\lambda}+\lambda \sum_{i=0}^{\infty}(1-\lambda)^{i} c_{t-i}+\varepsilon_{t+1} \\
c_{t+1} & =\frac{a}{\lambda}+\lambda c_{t}+\lambda(1-\lambda) c_{t-1}+\lambda(1-\lambda)^{2} c_{t-2}+\ldots+\varepsilon_{t+1} \\
(1-\lambda) c_{t} & =\frac{a}{\lambda}(1-\lambda)+\lambda(1-\lambda) c_{t-1}+\ldots+(1-\lambda) \varepsilon_{t}
\end{aligned}
$$

Modelling the habit level (2)

Subtracting two previous equations

$$
\begin{gathered}
c_{t+1}-(1-\lambda) c_{t}=a+\lambda c_{t}+\ldots+\varepsilon_{t+1}-(1-\lambda) \varepsilon_{t} \\
\Delta c_{t+1}=a-(1-\lambda) \varepsilon_{t}+\varepsilon_{t+1}
\end{gathered}
$$

ARIMA($0,1,1$) model - Estimation by Maximum Likelihood Use parameter estimates of a and λ to iterate on

$$
H_{t+1}=a+\lambda c_{t}+(1-\lambda) H_{t} .
$$

to estimate habit level
Plug in GMM objective function

An alternative model for the habit process (1)

Log habit growth (unobservable)

$$
\begin{aligned}
\Delta h_{t+1} & =\ln \left(H_{t+1}\right)-\ln \left(H_{t}\right) \\
\Delta h_{t+1} & =a_{0}+\sum_{i=1}^{n} a_{i} \cdot \Delta \ln c_{t+1-i}+b \cdot r_{t+1}^{m}
\end{aligned}
$$

with

$$
\begin{aligned}
\Delta h_{t+1} & =\mathbb{E}\left(\Delta \ln c_{t+1} \mid \Delta \ln c_{t}, \Delta \ln c_{t-1}, \ldots\right) \\
\Delta \ln c_{t+1} & =a_{0}+\sum_{i=1}^{n} a_{i} \cdot \Delta \ln c_{t+1-i}+b \cdot r_{t+1}^{m}+\varepsilon_{t+1}
\end{aligned}
$$

a_{0}, a_{1}, \ldots, b can be estimated by GMM additional moment restrictions

An alternative model for the habit process (2)

Estimation
Add to usual moment conditions additional moment restrictions from habit equation:
use

$$
\begin{aligned}
& \mathbb{E}\left(m_{t+1} R_{t+1}^{i}-1\right)=0 \\
& \mathbb{E}\left(m_{t+1} R_{t+1}^{N}-1\right)= \\
& \vdots
\end{aligned}
$$

along with

$$
\begin{aligned}
\mathbb{E}\left(\varepsilon_{t+1} r_{t+1}^{m}\right) & =0 \\
\mathbb{E}\left(\varepsilon_{t+1} \Delta \ln c_{t}\right) & =0
\end{aligned}
$$

An alternative model for the habit process (3)
Habit growth is then

$$
\frac{H_{t+1}}{H_{t}}=A \prod_{i=0}^{n}\left[\frac{c_{t+1-i}}{c_{t-i}}\right]^{a_{i}}\left(R_{t+1}^{m}\right)^{b}
$$

Stochastic discount factor

$$
m_{t+1}=\delta A^{\gamma-\psi}\left[\frac{c_{t+1}}{c_{t}}\right]^{-\gamma} \prod_{i=0}^{n}\left[\frac{c_{t+1-i}}{c_{t-i}}\right]^{a_{i}(\gamma-\psi)}\left(R_{t+1}^{m}\right)^{b(\gamma-\psi)}
$$

Used for estimation

$$
m_{t+1}=\delta^{*}\left[\frac{c_{t+1}}{c_{t}}\right]^{-\gamma} \prod_{i=0}^{n}\left[\frac{c_{t+1-i}}{c_{t-i}}\right]^{\frac{a_{i} \kappa}{b}}\left(R_{t+1}^{m}\right)^{\kappa}
$$

We estimate using

$$
\begin{aligned}
& n=0 \quad \text { "Epstein-Zin SDF" } \\
& n=1
\end{aligned}
$$

Performance comparison. Example: Habit model Grammig/Schrimpf (2005) estimated on 25 Fama-French portfolios

Human Capital extended Model

Performance comparison. Example: Fama-French two factor model estimated on 25 Fama-French portfolios

Fama-French-Model

Performance comparison. Example: CAPM estimated on 25 FamaFrench portfolios

CAPM

Yogo‘s durable consumption model (JF, 2006) includes durable and nondurables in investor utility function

$$
D_{t}=(1-\delta) D_{t-1}+E_{t} \quad \delta \in(0,1)
$$

Stock of durable goods
Expenditures durable goods
Nondurable goods

The intra-period CES utility function contains durables and nondurables

$$
u(C, D)=\left[(1-\alpha) C^{1-1 / \rho}+\alpha D^{1-1 / \rho}\right]^{(1-1 / \rho)}
$$

Elasticity of substitution between durables and nondurables

$$
\alpha \in(0,1) \quad \rho \geq 0
$$

The household's intertemporal utility is specified by a recursive function that disentangles EIS and RRA

$$
u_{t}=\left\{(1-\beta) u\left(C_{t}, D_{t}\right)^{1-1 / \sigma}+\beta\left(\mathbb{E}_{t}\left[u_{t+1}^{1-\gamma}\right]\right)^{1 / \kappa}\right\}^{1 /(1-1 / \sigma)}
$$

Idea of recursive utility function: Epstein/Zin (Econometrica 1989), (JPE 1991)

Special case I $\sigma=\rho$

$$
u_{t}=\left\{(1-\beta)\left[(1-\alpha) C_{t}^{1-1 / \sigma}+\alpha D_{t}^{1-1 / \sigma}\right]+\beta\left(\mathbb{E}_{t}\left[u_{t+1}^{1-\gamma}\right]\right)^{1 / \kappa}\right\}^{1 /(1-1 / \sigma)}
$$

Additively seperable model by Epstein/Zin 1989, 1991

Special case II $\sigma=1 / \gamma$: additively separable utility model

$$
u_{t}^{1-\gamma}=(1-\beta) \mathbb{E}_{t} \sum_{s=0}^{\infty} \beta^{s} u\left(C_{t+s}, D_{t+s}\right)^{1-\gamma}
$$

Dunn/Singleton (1986), Eichenbaum and Hansen (1990), Ogaki/Reinhard (1998)

Solving the intertemporal asset allocation problem Yogo (2006) obtains the following SDF

$$
\begin{gathered}
m_{t+1}=\left[\beta\left(\frac{C_{t+1}}{C_{t}}\right)^{-1 / \sigma}\left(\frac{v\left(D_{t+1} / C_{t+1}\right)}{v\left(D_{t} / C_{t}\right)}\right)^{1 / \rho-1 / \sigma} R_{t+1}^{W}(1-1 / \kappa)\right]^{\kappa} \\
v\left(\frac{D}{C}\right)=\left[1-\alpha+\alpha\left(\frac{D}{C}\right)^{1-1 / \rho}\right]^{1 /(1-1 / \rho)} \text { with } u(C, D)=C v(D / C)
\end{gathered}
$$

Use as usual for

$$
\mathbb{E}_{t}\left(m_{t+1} R_{t+1}^{i}=1\right) \quad \mathbb{E}_{t}\left(m_{t+1} R_{t+1}^{e i}\right)=0
$$

An additional moment restriction for the „investment" in the durable good is added

$$
\begin{aligned}
& \frac{u_{D t}}{u_{C t}}=P_{t}-(1-\delta) \mathbb{E}_{t}\left[m_{t+1} P_{t+1}\right]=\frac{\alpha}{1-\alpha}\left(\frac{D_{t}}{C_{t}}\right)^{-1 / \rho} \\
& \mathbb{E}\left[1-\frac{\alpha}{1-\alpha}\left(D_{t} / C_{t}\right)^{-1 / \rho} \frac{1}{P_{t}}-(1-\delta) m_{t+1} \frac{P_{t+1}}{P_{t}}\right]=0
\end{aligned}
$$

Yogo‘s (2006) estimation results for Fama-French portfolios

	σ	0.024	ElS estimate small
Source: Yogo (2006) p. 552	(0.009)		
	γ	191.438	Risk aversion estimate high
standard errors in	ρ	(49.868)	
parentheses		0.520	elasticity of subsitution reasonable
		(0.544)	
		0.827	
	β	(0.089)	
		0.900	subjective discount factor < 1
		(0.055)	
p-values in	Test for $\sigma=\rho$	0.817	Epstein/Zin (1991) non-rejected
parentheses		(0.366)	
		5.594	Eichenbaum/Hansen (1987) rejected
		(0.018)	
		12.050	Durable model not rejected
		(0.956)	

The fit of the durable consumption model is good (Fama French portfolios)
(d) Durable Consumption

Source: Yogo (2006), p. 558

Some more models

- Linearized consumption based model

$$
m_{t+1}=b_{0}+b_{\Delta c} \Delta \ln c_{t+1}
$$

Taylor approximation of $\frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}$

- CAPM

$$
m_{t+1}=b_{0}+b_{m} R_{t+1}^{m}
$$

- Scaled CAPM by Lettau and Ludvigson (2001)

$$
m_{t+1}=b_{0}+b_{\text {cay }} c a y_{t}+b_{m} R_{t+1}^{m}+b_{\text {caym }} c a y_{t} R_{t+1}^{m}
$$

4. Testing conditional predictions of asset pricing models:

Managed portfolios and scaled factors
Readings: Cochrane (2002), Ch. 8, 10, Cochrane (1996), Lettau and Ludvigson (2001 (JPE))

We use instruments to test the conditional predictions of asset pricing models

$$
\begin{aligned}
& p_{t}=\mathbb{E}\left(m_{t+1}(b) \cdot x_{t+1} \mid I_{t}\right) \text { or } 1=\mathbb{E}\left(m_{t+1}(b) \cdot R_{t+1} \mid I_{t}\right) \\
& \text { or } 0=\mathbb{E}\left(m_{t+1}(b) \cdot R_{t+1}^{e} \mid I_{t}\right)
\end{aligned}
$$

I.i.e "integrates out" conditional implications, let us focus on unconditional implications of asset pricing model (model for S.D.F.): $\mathbb{E}\left(m_{t+1}(b) \cdot R_{t+1}-1\right)=0$

To test conditional implications write
$\mathbb{E}\left(Y_{t+1} \mid I_{t}\right)=0$ where $Y_{t+1}=\left(m_{t+1}(b) \cdot R_{t+1}-1\right)$ or \ldots
$\left\{Y_{t+1}\right\}$ a martingale difference sequence.
Properties of m.d.s include:
$\operatorname{cov}\left(Y_{t+1}, z_{t}\right)=0 \quad \forall \quad z_{t} \in I_{t}$
$\mathbb{E}\left(Y_{t+1} z_{t}\right)=0$ since $1 \in I_{t}$
Testable restrictions therefore: $\mathbb{E}\left[\left(m_{t+1}(b) \cdot R_{t+1}-1\right) z_{t}\right]=0 \quad \forall \quad z_{t} \in I_{t}$

The use of instruments has an economic interpretation: Can the model price "managed portfolios"?
$\tilde{x}_{t+1}=x_{t+1}^{i} z_{t}$ conceived as (payoff of) managed portfolios,
i.e. artificial assets.

Example: $z_{t}=\frac{d_{t}}{p_{t}}$ invest if $z_{t} \uparrow$
\tilde{x}_{t+1} conceived as another payoff wtih price $z_{t} p_{t}$
If model correct, it prices any asset, also mgt. portfolios.

$$
\underbrace{z_{t} p_{t}}_{p\left(\widetilde{x}_{t+1}\right)}=\mathbb{E}_{t}(m_{t+1}(b) \cdot \underbrace{x_{t+1} z_{t}}_{\widetilde{x}_{t+1}}) \text { or } z_{t}=\mathbb{E}_{t}\left(m_{t+1}(b) \cdot R_{t+1} z_{t}\right)
$$

i.e.

$$
\mathbb{E}\left(z_{t}\right)=\mathbb{E}\left(m_{t+1} R_{t+1} z_{t}\right) \quad \text { or } \quad \mathbb{E}\left[\left(m_{t+1} R_{t+1}-1\right) z_{t}\right]=0
$$

To test the conditional implications you simply "blow up" the number of assets by including meaningful managed portfolios and proceed as before.

Practice: N assets, M instruments
M moment restrictions

$$
\mathbb{E}\left(\left[m_{t+1}(b) R_{t+1}-1\right] \otimes z_{t}\right)=0
$$

With two assets and two instruments $z_{t}=\left(1, z_{t}^{1}\right)^{\prime}$

$$
\mathbb{E}\left[\begin{array}{l}
m_{t+1}(b) R_{t+1}^{a}-1 \\
m_{t+1}(b) R_{t+1}^{b}-1 \\
\left(m_{t+1}(b) R_{t+1}^{a}-1\right) z_{t}^{1} \\
\left(m_{t+1}(b) R_{t+1}^{b}-1\right) z_{t}^{1}
\end{array}\right]=0
$$

or, emphasizing the managed portfolio interpretation

$$
\begin{aligned}
& \mathbb{E}(m_{t+1}(b) \underbrace{R_{t+1} \otimes z_{t}}_{\text {payoff }}-\underbrace{1 \otimes z_{t}}_{\text {price }})=0 \\
& \mathbb{E}(m_{t+1}(b) \underbrace{x_{t+1} \otimes z_{t}}_{\text {payoff }}-\underbrace{p_{t} \otimes z_{t}}_{\text {price }})=0
\end{aligned}
$$

You should include economically meaningful instruments (managed portfolios)

- $p=\mathbb{E}(m x)$ should price any asset, also managed portfolios
- if model prices all managed portfolios, conditional asset pricing model true.
- select few selected instruments (we also select few assets from millions available). New managed funds example
- Select meaningful instruments: Those affecting conditional distribution of returns
- Any $z_{t} \in I_{t}$ qualifies as an instruments, but if $\operatorname{corr}\left(\left(m_{t+1} R_{t+1}\right), z_{t}\right)=$ 0 but $\operatorname{corr}\left(R_{t+1}, z_{t}\right)$ small: weak instrument
- danger of using weak instruments (Hamilton, 1994, p. 426 for references)

Some more details and intuition on the choice of instruments

$$
p_{t} z_{t}=\mathbb{E}_{t}\left(m_{t+1} x_{t+1} z_{t}\right) \quad \text { resp. } \quad z_{t}=\mathbb{E}_{t}\left(m_{t+1} R_{t+1} z_{t}\right)
$$

holds true trivially if $\operatorname{corr}\left(\left(m_{t+1} R_{t+1}-1\right), z_{t}\right)=0$
but an interesting instrument implies $\operatorname{corr}\left(R_{t+1}, z_{t}\right) \neq 0$ and/or $\operatorname{corr}\left(m_{t+1}, z_{t}\right) \neq 0$

$$
\text { if } \quad \mathbb{E}_{t}\left(R_{t+1}\right) \uparrow \text { when } z_{t} \uparrow
$$

then in

$$
1 z_{t}=z_{t} \underbrace{\mathbb{E}_{t}\left(R_{t+1}\right)}_{\uparrow} \underbrace{\mathbb{E}_{t}\left(m_{t+1}\right)}_{\downarrow \text { or }}+z_{t} \underbrace{\operatorname{cov}_{t}\left(m_{t+1} R_{t+1}\right)}_{\downarrow}
$$

Is a conditional asset pricing model testable at all?

Most asset pricing models imply conditional moment restrictions

$$
1=\mathbb{E}\left(m_{t+1}\left(b_{t}\right) \cdot R_{t+1} \mid I_{t}\right)
$$

e.g. $\mathrm{CAPM} m_{t+1}=a_{t}-b_{t} R_{t+1}^{W}$.

Parameters of factor pricing model vary over time.
\Rightarrow unconditioning via l.i.e. no longer possible:

$$
1=\mathbb{E}\left(m_{t+1}\left(b_{t}\right) \cdot R_{t+1} \mid I_{t}\right)
$$

does NOT imply

$$
1=\mathbb{E}\left(m_{t+1}(b) \cdot R_{t+1}\right)
$$

this is not repaired by using scaled returns. GMM estimation no possible.

Hansen and Richard critique: CAPM (or other factor model) is not testable.

Scaled factors are a partial solution to the problem

With linear factor model

$$
m_{t+1}=b_{t}^{\prime} \underbrace{f_{t+1}}_{K \times 1}
$$

use of "scaled factors" a partial solution:
"Blow up" number of factors by scaling factors with ($M \times 1$) instruments vector z_{t} observable at t

$$
m_{t+1}=b^{\prime} \underbrace{\left(f_{t+1} \otimes z_{t}\right)}_{K M \times 1}
$$

Unconditioning via l.i.e. and GMM procedure as above.

Time varying parameters lead to scaled factors (single factor case)

Motivation

Consider linear one factor model $m_{t+1}=a_{t}+b_{t} f_{t+1}$ (f_{t+1} scalar) Assume Parameters vary with $M \times 1$ instruments vector z_{t}.

$$
m_{t+1}=a\left(z_{t}\right)+b\left(z_{t}\right) f_{t+1}
$$

With linear functions

$$
\begin{gathered}
a\left(z_{t}\right)=a^{\prime} z_{t} \quad \text { and } \quad b\left(z_{t}\right)=b^{\prime} z_{t} \\
\Rightarrow m_{t+1}=a^{\prime} z_{t}+\left(b^{\prime} z_{t}\right) f_{t+1}
\end{gathered}
$$

Mathematically equivalent to

$$
m_{t+1}=\widetilde{b}^{\prime}\left(\tilde{f}_{t+1} \otimes z_{t}\right)
$$

where $\tilde{b}=\left[\begin{array}{l}a \\ b\end{array}\right], \tilde{f}_{t+1}=\left[\begin{array}{c}1 \\ f_{t+1}\end{array}\right]$
Number of parameters to estimate $2 \cdot M$

Time varying parameters lead to scaled factors (multi factor case)

Multi-factor case:

$$
m_{t+1}=b_{t}^{\prime} \underbrace{f_{t+1}}_{K \times 1}
$$

Again: Time varying parameters linear functions of $M \times 1$ vector of observables z_{t}.

$$
m_{t+1}=b\left(z_{t}\right)^{\prime} f_{t+1} \quad \text { with } \quad b\left(z_{t}\right)=\underbrace{B}_{K \times M} z_{t}
$$

Equivalent to $m_{t+1}=\widetilde{b}^{\prime} \underbrace{\left(f_{t+1} \otimes z_{t}\right)}_{K \times N}$ where $\tilde{b}=\operatorname{vec}(B)$

In practical application some elements of B may be set to zero.

Using scaled factors we can condition down and apply GMM

Conditioning down and GMM estimation possible
$\mathbb{E}_{t}(\underbrace{\left(\tilde{b}^{\prime}\left(f_{t+1} \otimes z_{t}\right)\right)}_{m_{t+1}} R_{t+1})=1 \quad$ I.i.e. $\Rightarrow \underbrace{\mathbb{E}\left(\left(\tilde{b}^{\prime}\left(f_{t+1} \otimes z_{t}\right)\right) R_{t+1}-1\right)=0}_{\text {unconditional moment restrictions }}$
Scaled factors and managed portfolios can be combined.
(z_{t} might be the same).

$$
\left.\Rightarrow \mathbb{E}\left(\widetilde{b}^{\prime}\left(f_{t+1} \otimes z_{t}\right) R_{t+1}-1\right] \otimes z_{t}\right)=0
$$

- Inclusion of conditioning information as managed portfolios (scaled returns, increases number of test assets.
- Scaled factors increase number of unknown parameters

Cochranes (1996) CAPM with scaled factors

$$
\begin{aligned}
& f=\binom{1}{R^{W}} z_{t}=\left(\begin{array}{c}
1 \\
\frac{P}{D} \\
\text { term }
\end{array}\right) B=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right] \\
& f \otimes z=\left(\begin{array}{c}
1 \\
R^{W} \\
\frac{P}{D} \\
R^{W} \cdot \frac{P}{D} \\
\operatorname{term} \\
R^{W} \cdot \operatorname{term}
\end{array}\right) \tilde{b}=\left(b_{11}, b_{21}, b_{12}, b_{22}, b_{13}, b_{23}\right)^{\prime} \\
& m=\tilde{b}^{\prime}(f \otimes z)=b_{11}+b_{12} \frac{P}{D}+b_{13} \operatorname{term}+b_{21} R^{W}+b_{22} R^{W} \cdot \frac{P}{D}+b_{23} R^{W} \cdot t e r m
\end{aligned}
$$

In application Cochrane (1996) restricts b_{12} and b_{13} to zero

Cochrane‘s (JPE 1996) estimation results for the consumption based model with power utility

Parameter Estimates

Note.-GMM estimates and tests of consumption-based model: $m_{t+1}=\beta\left(c_{t+1} / c_{t}\right)^{-\gamma}$. Asset returns are deciles $1-10$ in the unconditional estimates and deciles $1,2,5$, and 10 scaled by the constant, term premium, and dividend/

Conditional estimation yields a poor performance of the consumption based model (Cochrane (1996))

Cochrane‘s (1996) results for unconditional estimation of CAPM

Cochrane's (1996) results for unconditional estimation of CAPM

Cochrane‘s (1996) results for conditional estimation of CAPM

Cochrane‘s (1996) results for conditional estimation of CAPM

B. Scaled Model $m=b_{0}+b_{m} r^{m}+b_{t p}\left(r^{m} \times t p\right)+b_{d p}\left(r^{m} \times d p\right)$:

Conditional Estimates

	Parameter Estimates			
	b_{0}	b_{m}	$b_{t p}$	$b_{d p}$
First-stage:				
Coefficient	4.56	-2.66	-. 33	-. 39
t-statistic	1.48	-. 80	-1.32	-2.05
Iterated:				
Coefficient	5.88	-4.62	. 24	-. 36
t-statistic	3.51	-2.70	2.26	-3.62
		Tests		
		$b_{m}, b_{t p}, b_{d p}$	Scaled b	J_{T}
First-stage:				
χ^{2}		59	4.9	15.6
Degrees of freedom		3	2	9
p-value (\%)		. 00	8.6	7.7
Iterated:				
χ^{2}		67	15	18.9
Degrees of freedom		3	2	9
p-value (\%)		. 00	. 06	2.6

Cochrane‘s (1996) results for conditional estimation of scaled CAPM

Cochrane's (1996) results for conditional estimation of scaled CAPM

Yogo‘s (2006) cross section estimation results

Parameter	Panel A: Unconditional Moments				Panel B: Conditional Moments
	Fama-French	Industry \& BE/ME	Beta-Sorted	All Portfolios	
σ	0.024	0.023	0.024	0.023	0.023
	(0.009)	(0.007)	(0.009)	(0.002)	(0.005)
γ	191.438	199.496	185.671	205.905	174.455
	(49.868)	(44.280)	(43.924)	(11.785)	(23.340)
ρ	0.520	0.554	0.870	0.700	0.554
	(0.544)	(0.604)	(1.955)	(0.247)	(0.026)
α	0.827	0.821	0.786	0.802	0.816
	(0.089)	(0.091)	(0.156)	(0.027)	(0.006)
β	0.900	0.935	0.926	0.939	0.884
	(0.055)	(0.054)	(0.057)	(0.018)	(0.030)
Test for $\sigma=\rho$	0.817	0.768	0.187	7.510	375.185
	(0.366)	(0.381)	(0.666)	(0.006)	(0.000)
Test for $\sigma=1 / \gamma$	- 5.594	8.424	4.637	140.620	12.385
	(0.018)	(0.004)	(0.031)	(0.000)	(0.000)
J-test	12.050	9.583	1.866	5.065	42.500
	(0.956)	(0984)	(1.000)	(1.000)	(0.065)

Resurrection of the C(CAPM) by Lettau and Ludvigson (2001)

Scaled CCAPM

$$
m_{t+1}=b_{0}+b_{1} c a y_{t}+b_{2} \Delta \ln c_{t+1}+b_{3} c a y_{t} \Delta \ln c_{t+1}
$$

Scaled CAPM

$$
m_{t+1}=a_{0}+a_{1} c a y_{t}+a_{2} r_{t+1}^{m}+a_{3} c a y_{t} r_{t+1}^{m}
$$

$$
\begin{aligned}
& \text { log wealth } \\
& c_{t}-\stackrel{\rightharpoonup}{w}_{t} \approx \mathbb{E}_{t} \sum_{i=1}^{\infty} \rho_{w}^{i}\left(r_{t+i}^{m}-\Delta c_{t+i}\right) \\
& \log \text { asset wealth } \\
& c a y_{t}=c_{t}-\omega a_{t}-(1-\omega) y_{t}
\end{aligned}
$$

Performance comparison. Example: Lettau/Ludvigson model estimated on 25 Fama-French portfolios

Scaled CAPM, 1952Q2-2002Q1

Model comparison (practical exercise)

- 10 decile portfolios and t-bill rate (Cochrane 1996)
- 25 size/book-to-market portfolios and t-bill rate
- Excess returns or gross returns as test assests
- Estimation using GMM (alternatives \Rightarrow course 1)
- J-test
- RMSE comparisons (plots)

Models:

* Consumption Based Model (CBM), CAPM, Scaled (LL) CBM,

Scaled (LL) CAPM, various habit model variants

5. Linear factor model and the basic pricing equation

$$
\text { Readings: Cochrane (2005), Ch. } 6
$$

Linear factor model dominate the empirical work because they have been easier to estimate

$$
\begin{gathered}
\text { Linear factor models } \\
p=\mathbb{E}(m x) \quad \text { or } \quad 1=\mathbb{E}(m R) \quad \text { or } \quad 0=\mathbb{E}\left(m R^{e}\right)
\end{gathered}
$$

linear models for discount factor $m=a+b^{\prime} f m$: MRS

$$
b=\left(b_{1}, b_{2}, \ldots, b_{K}\right)^{\prime} \quad f=\left(f_{1}, f_{2}, \ldots, f_{K}\right)^{\prime}
$$

often: factors are returns of portfolios, e.g market or wealth portfolio
$m=a-b \cdot R^{m}$: single factor model
What qualifies as a factor? Anything that affects investors MRS!

Linear factor models are equivalent to the more familiar expected return-beta representation

$$
\begin{gathered}
m=a+b^{\prime} f \quad \Leftrightarrow \quad \mathbb{E}\left(R^{i}\right)=\gamma+\lambda^{\prime} \beta_{i} \quad \text { resp. } \mathbb{E}\left(R^{e i}\right)=\lambda^{\prime} \beta_{i} \\
\lambda=\underbrace{\left(\lambda_{1}, \ldots, \lambda_{K}\right)^{\prime}}_{\text {"Price of factor k" or factor risk premium }} \beta_{i}=\underbrace{\left(\beta_{i 1}, \ldots, \beta_{i K}\right)^{\prime}}_{\text {Exposure of asset ito factor k }} \\
\gamma=\frac{1}{\mathbb{E}(m)}=R^{f}
\end{gathered}
$$

Compare to linear regression:
$y_{i}=a+b^{\prime} x_{i}+\underbrace{u_{i}}_{\mathbb{E}\left(u_{i}\right)=0}$
$\mathbb{E}\left(y_{i}\right)=a+b^{\prime} \mathbb{E}\left(x_{i}\right)$

If the factors have certain properties, the betas are given by the ratio of a covariance and a variance

Special cases:
if $\mathbb{E}(f)=0$ (demeaned factors)
and $\mathbb{E}\left(f_{i} f_{j}\right)=\operatorname{cov}\left(f_{i}, f_{j}\right)=0$ for $i \neq j$ (orthogonal factors)
$\Rightarrow \quad \beta_{i k}=\frac{\operatorname{cov}\left(f_{k}, R_{i}\right)}{\operatorname{var}\left(f_{k}\right)}$

Example:

$$
m=a-b R^{m} \quad \Leftrightarrow \quad \mathbb{E}\left(R^{i}\right)=R^{f}+\beta_{i}\left(\mathbb{E}\left(R^{m}\right)-R^{f}\right)
$$

where $R^{f} \hat{=} \gamma, \beta_{i} \hat{=}$ riskiness of asset i and $\mathbb{E}\left(R^{m}\right)-R^{f} \hat{=} \lambda \hat{=}$ market risk premium

How can one estimate linear factor models?

Estimation and testing:
a) Use GMM $(1=\mathbb{E}(m R))$
b) linear regression - time series or cross section - Fama/McBeth

General problem for linear factor models: " fishing for factors"

We want to show the equivalence of the two representations (1)

We want to show: $1=\mathbb{E}(m R) \quad \Leftrightarrow \quad \mathbb{E}(R)=\gamma+\lambda^{\prime} \beta$:
single factor case: if $m=\tilde{a}+b^{\prime} \tilde{f}$
convenient: demean factors: "fold" means of factors into constant a

$$
\begin{aligned}
& \tilde{f}= \text { factor with } \quad(\tilde{f}) \neq 0 \\
& f= \\
& m=a+b^{\prime} f \quad \text { where } \quad a=\tilde{a}(\tilde{f})=\text { demeaned factor with } \quad \mathbb{E}(f)=0 \\
& \Rightarrow \quad \mathbb{E}(\tilde{f}) \\
& \mathbb{E}(m)=a
\end{aligned}
$$

We want to show the equivalence of the two representations (2)

Rewrite

$$
\begin{aligned}
1 & =\mathbb{E}(m R) \\
& =\operatorname{cov}(m, R)+\mathbb{E}(m) \cdot \mathbb{E}(R) \\
\Rightarrow \mathbb{E}(R) & =\frac{1}{\mathbb{E}(m)}-\frac{\operatorname{cov}(m, R)}{\mathbb{E}(m)} \\
& =\frac{1}{a}-\frac{\operatorname{cov}((a+b f), R)}{a} \\
\operatorname{cov}((a+b f), R) & =\mathbb{E}[(a+b f-a)(R-\mathbb{E}(R))] \\
& =\mathbb{E}(b f R)-\underbrace{\mathbb{E}(b f) \cdot \mathbb{E}(R)}_{=0 \text { as } \mathbb{E}(f)=0}
\end{aligned}
$$

We want to show the equivalence of the two representations (3)

$$
\begin{aligned}
\mathbb{E}(R) & \left.=\frac{1}{a}-\frac{b \mathbb{E}(R f)}{a} \right\rvert\, \text { we want betas } \\
& =\frac{1}{a}-\frac{\operatorname{cov}(f, R)}{\operatorname{var}(f)} \cdot \frac{b v a r(f)}{a}
\end{aligned}
$$

Define

$$
\begin{aligned}
& \gamma \equiv \frac{1}{a}=\frac{1}{\mathbb{E}(m)}=R^{f} \quad \text { (if traded) } \\
& \beta \equiv \frac{\operatorname{cov}(f, R)}{\operatorname{var}(f)} \\
& \lambda \equiv-\frac{b \operatorname{var}(f)}{a} \\
& \Rightarrow \quad \mathbb{E}\left(R^{i}\right)=\gamma+\beta_{i} \lambda
\end{aligned}
$$

λ in the expeced return- beta representation can be interpreted as the price of the risk factor

We want to interpret λ as price of risk factor

$$
\begin{aligned}
\lambda=-\frac{b \mathbb{E}\left(f^{2}\right)}{a} & \left.=-\frac{\mathbb{E}((a+b f) \cdot f)}{a} \right\rvert\, \text { note: } \mathbb{E}(a f)=a \mathbb{E}(f)=0 \\
& =-\frac{\mathbb{E}(m \cdot f)}{a}=-\frac{p(f)}{a}=-\gamma \cdot p(f)
\end{aligned}
$$

if \tilde{f} (non-demeaned factor) is a return, e.g. R^{m}

$$
\begin{aligned}
& -\gamma \cdot p(f)=-\gamma p(\tilde{f}-\mathbb{E}(\tilde{f}))=-\gamma(p(\tilde{f})-p(\mathbb{E}(\tilde{f}))) \left\lvert\, \begin{array}{l}
\text { since expectation } \\
\text { operator is linear }
\end{array}\right. \\
& p(\tilde{f})=1 \text { if } \tilde{f} \text { is a return }
\end{aligned}
$$

$$
p(\underbrace{\mathbb{E}(\tilde{f})}_{\substack{\text { constant } \\ \text { payoff } \\ \text { in } t+1}})=\mathbb{E}(m \cdot \mathbb{E}(\tilde{f}))=\mathbb{E}(m) \cdot \mathbb{E}(\tilde{f})=\frac{\mathbb{E}(\tilde{f})}{\gamma}
$$

If the factor is a return, λ has the interpretation of an expected excess return, or factor risk premium

$$
\begin{aligned}
& \left.\lambda=-\gamma\left(1-\frac{\mathbb{E}(\tilde{f})}{\gamma}\right)=\mathbb{E}(\tilde{f})-\gamma \right\rvert\, \overbrace{\mathbb{E}(\tilde{f})-R^{f}}^{\text {expected excess return }}: \text { factor risk premium } \\
& \Rightarrow \quad 1=\mathbb{E}(m R) \\
& \text { with } m=a+b \cdot f \text { and } f=\tilde{f}-\mathbb{E}(\tilde{f}) \text { and } \tilde{f} \text { is a return } \\
& \Leftrightarrow \quad \mathbb{E}(R)=\gamma+\beta(\mathbb{E}(\tilde{f})-\gamma) \\
& \text { with } \gamma=\frac{1}{\mathbb{E}(m)}=R^{f} \tilde{f}=R^{m} \Rightarrow \mathrm{CAPM}
\end{aligned}
$$

Equivalence in the multifactor case (1)

In a multifactor model with k factors

1. $\mathbb{E}\left(R^{i}\right)=\gamma+\lambda^{\prime} \beta_{i}$
2. $\lambda=\underbrace{\mathbb{E}(\tilde{f})}_{K \times 1}-\gamma$

$$
\underbrace{\beta_{i}}_{K \times 1}=\left[\mathbb{E}\left[f f^{\prime}\right]\right]^{-1} \mathbb{E}\left[f R^{i}\right] \text { with } \mathbb{E}(f)=0 \text { (demeaned factors) }
$$

Equivalence in the multifactor case (2)

$$
\begin{gathered}
\Rightarrow \quad \beta_{i}=\operatorname{cov}\left(f, R^{i}\right) \cdot[\operatorname{cov}(f)]^{-1} \\
\text { where } \operatorname{cov}\left(f, R^{i}\right)=\left[\begin{array}{lccc}
\operatorname{cov}\left(f_{1}, R^{i}\right) & \operatorname{cov}\left(f_{2}, R^{i}\right) & \cdots
\end{array}\right] \\
\text { and } \operatorname{cov}(f)=\left[\begin{array}{cccc}
\operatorname{var}\left(f_{1}\right) & \operatorname{cov}\left(f_{1}, f_{2}\right) & \cdots & \operatorname{cov}\left(f_{1}, f_{K}\right) \\
\operatorname{cov}\left(f_{1}, f_{2}\right) & \operatorname{var}\left(f_{2}\right) & \cdots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{cov}\left(f_{1}, f_{K}\right) & \cdots & \cdots & \operatorname{var}\left(f_{K}\right)
\end{array}\right]
\end{gathered}
$$

if demeaned factors orthogonal: $\mathbb{E}\left(f_{i} f_{j}\right)=0$ for $i \neq j$

$$
\beta_{i k}=\frac{\operatorname{cov}\left(f_{k}, R^{i}\right)}{\operatorname{var}\left(f_{k}\right)}
$$

