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1. Theoretical background

Readings:
Cochrane (2005), Chapters 1 (without 1.5), 3 (3.1 and 3.2), 4 (4.1 and 4.2)

Prof. Joachim Grammig, University of Tübingen, Department of Econometrics, Statistics and Empirical Economics 3



Empirical asset pricing - Introduction (1)
Asset pricing (Valuation of financial assets)

risk of 
payoff

delay of 
payoff

account for

⇒ risk correction

9% average return (real) p.a.50 years US stocks: 
1% real interest rate p.a. (treasury bills)

8% premium earned for holding risk
What is the risk that is priced?

Asset pricing

normative positive
how does the world work?
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how should the world work?
are the prices ”wrong”?
- trading opportunities?
- cost of capital
- non traded assets: ”fair” price



Empirical asset pricing - Introduction (2)

E
³
Ri
´
= Rf + βi

³
E(Rm)−Rf| {z }´

βi =
cov
¡
Ri,Rm

¢
var(Rm)

Basic : Prices equal discounted expected payoff

What probability measure?

Absolute Asset Pricing

exposure to ”fundamental” macroeconomic risk

Asset priced given other asset prices (e.g. option pricing)

Relative Asset Pricing

e.g. CAPM:

Market price of risk (factor)risk premium not explained
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Empirical asset pricing - Introduction (3)

use

Moment condition:

WLLN

Generalized Method of Moments (GMM) to estimate parameters

the model

Basic pricing equation pt = Et(mt+1xt+1)

asset price stochastic payoff
at t discount (r.v.)

factor
(r.v.)

mt+1 = f(data , parameters| {z })

Et(mt+1xt+1)− pt = 0

1
n

P → E()
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Empirical asset pricing - Introduction (4)
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From an utility maximising investor`s first order conditions we
obtain the basic asset pricing formula (1)

dividend

price of asset in t+1

subjective discount factorconsumption

consumption level without asset purchase (other income)

quantity of asset bought/sold

period utility function

expected utility

Basic objective: find pt, the present value of stream of uncertain payoff xt+1

xt+1 = pt+1 + dt+1

Utility function

U (ct, ct+1) = u (ct) + βEt [u (ct+1)]

ct = et− ptξ

ct+1 = et+1 + xt+1ξ

Random variables: pt+1, dt+1, xt+1, et+1, ct+1, u (ct+1) Et [·] , E [· | Ft]
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From an utility maximising investor`s first order conditions we
obtain the basic asset pricing formula (2) 

utility loss if investor buys
another unit of the asset

discounted expected utility increase
from extra payoff

Investor continues to buy
or sell the asset until marginal
loss equals marginal gain.

endogenous variablesNo complete solution:

max
(ξ)

[U (ct, ct+1)] s.t.

ct = et − ptξ; ct+1 = et+1 + xt+1ξ

max
(ξ)

{u (et − ptξ) + βEt [u (et+1 + xt+1ξ)]}

−pt · u0 (ct) + β · Et
£
u0 (ct+1) · xt+1

¤
= 0

ptu
0 (ct) = Et

£
βu0 (ct+1)xt+1

¤
pt = Et

∙
β
u0 (ct+1)
u0 (ct)

xt+1

¸
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Turning off uncertainty we are in the standard two-goods case (1)

opportunity cost to transfer
consumption from t to t+1 

marginal valuation
of consumption
in t+1 in terms of
consumption in t

max [u (ct) + βu (ct+1)] s.t. ct = et− pt · ξ, ct+1 = et+1 + xt+1 · ξ

∂U (ct, ct+1)

∂ξ
= −pt ·

∂u (ct)

∂ct
+ β · xt+1 ·

∂u (ct+1)

∂ct+1
= 0

pt · u0 (ct) = xt+1 · βu0 (ct+1)

pt = xt+1 ·
βu0 (ct+1)
u0 (ct)

dct
dct+1

=
β · u0 (ct+1)

u0 (ct)
=

pt
xt+1

ptu
0 (ct) = Et

£
βu0 (ct+1)xt+1

¤
pt = Et

∙
β
u0 (ct+1)
u0 (ct)

xt+1

¸
−
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u (ct) =
1

1− γ
c1−γt lim

γ→1

µ
1

1− γ
c1−γt

¶
= ln (ct)

u0 (ct) = c
−γ
t

dct
dct+1

=
βu0 (ct+1)
u0 (ct)

= β

µ
ct+1
ct

¶−γ

x 121086420

10

8

6

4

2

0

We often use a convenient power utility function (1)

marginal
rate of
substitution

consumption (ct)

utility u(ct)

0.80.3 0.5

increasing concavity
of utility function

parameter γ:



Prices, payoffs, excess returns

Price pt Payoff xt+1
stock pt pt+1 + dt+1
return 1 Rt+1

excess return 0 Re
t+1 = Ra

t+1−Rb
t+1

one $ one period discount bond pt 1
risk-free rate 1 Rf

Payoff xt+1 divided by price pt ⇒ gross return Rt+1 =
xt+1
pt

Return: payoff with price one

1 = Et (mt+1 ·Rt+1)

Zero-cost portfolio:
Short selling one stock, investing proceeds in another stock
⇒excess return Re

Example: Borrow 1$ at Rf , invest it in risky asset with return R.
Pay no money out of the pocket today → get payoff Re = R−Rf .

Zero price does not imply zero payoff.
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The covariance of the payoff with the discount factor rather than its
variance determines the risk-adjustment

Marginal utility declines
as consumption rises.

Price is lowered if payoff
covaries positively with
consumption. (makes consumption
stream more volatile)

Price is increased if payoff
covaries negatively with
consumption. (smoothens
consumption) Insurance !

Investor does not care about volatility of an individual asset, if he can keep a steady consumption.

price in risk-neutral
world

risk adjustment

cov (mt+1, xt+1) = E (mt+1 · xt+1) − E (mt+1)E (xt+1)
pt = E (mt+1 · xt+1)
= E (mt+1)E (xt+1) + cov (mt+1, xt+1)

Rf =
1

E (mt+1)

pt =
E (xt+1)

Rf
+ cov (mt+1, xt+1)

pt =
E (xt+1)

Rf
+ cov

µ
β
u0 (ct+1)
u0 (ct)

, xt+1

¶
pt =

E (xt+1)
Rf

+ β
cov

¡
u0 (ct+1) , xt+1

¢
u0 (ct)
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All assets have an expected return equal to the risk-free rate, plus 
risk adjustment

excess return

Investors demand higher excess returns for assets that covary positively with consumption.
Investors may accept expected returns below the risk-free rate. Insurance !

1 = E
³
mt+1 · Ri

t+1

´
1 = E (mt+1) E

³
Ri
t+1

´
+ cov

³
mt+1, R

i
t+1

´
Rf =

1

E (mt+1)
; 1 − 1

Rf
E
³
Ri
t+1

´
= cov

³
mt+1, R

i
t+1

E
³
Ri
t+1

´
− Rf = −Rf · cov

³
mt+1, R

i
t+1

´
E
³
Ri
t+1

´
− Rf = − 1

E
³
β
u0(ct+1)
u0(ct)

´ · cov µβ u0 (ct+1)
u0 (ct)

, Ri
t+1

¶

E
³
Ri
t+1

´
− Rf = −

cov
¡
u0 (ct+1) , Ri

t+1

¢
E (u0 (ct+1))
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The basic pricing equation has an expected return-beta
representation

price of risk for all assetsasset specific quantity of risk

Beta-pricing model:

The more risk averse the investors
or the riskier the environment,
the larger the expected return
premium for risky (high-beta)
assets.

E
³
Ri
t+1

´
−Rf = −Rf · cov

³
Ri
t+1,mt+1

´
E
³
Ri
t+1

´
−Rf = −

cov
¡
Ri
t+1,mt+1

¢
V ar (mt+1)

V ar (mt+1)

E (mt+1)

E
³
Ri
t+1

´
= Rf −

Ã
cov

¡
Ri
t+1,mt+1

¢
V ar (mt+1)

!
·
µ
V ar (mt+1)

E (mt+1)

¶

E
³
Ri
´
= Rf + βRi,m · λm

With m = β
³
ct+1
ct

´−γ
and lognormal consumption growth

ct+1
ct

E
³
Ri
´
= Rf + βRi,∆c · λ∆c

λ∆c ≈ γ · V ar (∆ ln c)
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Marginal utility weighted prices follow martingales (1)

Basic first order condition:
xxt+1t+1

Market efficiency ⇔ Prices follow martingales (random walks)? NO!

Required:

Risk neutral investors u’( )=const. 
or no variation in consumption

⇐ OK short time horizon

no dividends

Then:

if = Random Walk

⇒ Returns are not predictable

ptu
0(ct) = Et

³
β
³
u0(ct+1)

´
(pt+1 + dt)

´

β = 1

pt = E(pt+1)
pt+1 = pt+ εt+1

σ2(εt+1) = σ2

E
³pt+1

pt

´
= 1



Marginal utility weighted prices follow martingales (2)

With risk aversion (but no dividends) and β=1

Scale prices by marginal utility, correct for dividends and apply risk neutral 
valuation formulas

Predictability in the short horizon?

consumption

risk aversion
does not change day by day

p̃t = E(p̃t+1)

p̃t = p̃t · u0(ct)

⇒ Random Walks successful ⇒ Predictability of asset returns (day by day)?

Technical analysis, media reports...
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Some popular linear factor models

Factor pricing models

CAPM :

return on wealth portfolio

Free parameters

Compatible with utility maximisation ?

ICAPM :

parameter factors
vector

factors (macro, term spread, price-
earnings ratio help forecast
conditional distribution of future
asset returns)

similar,     but factors determined by principal
component analysis of payoff covariance
matrix

Practice : just test               and don’t worry about derivations

APT :

mt+1 = a+ bRw
t+1

mt+1 = a+ b0ft+1

m= b0f
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The benchmark model: Fama/French (1993,1996) three factor model

+ + y +

- Fama French model

mt+1 = b0 + bmRem
t+1 + bSMBSMBt+1 + bHMLHMLt+1

Market excess return

excess return small vs. 
large stocks

excess return value
stocks vs. growth stocks
(high book-to-markt – low
book-to-market)
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´2. Stochastic discount factors and GMM estimation

Readings:
Cochrane (2005), Chapters 7, 10, 11

Hamilton (1994), Chapter 14
Hayashi (2000), Chapter 7

Hall (2005) (new GMM textbook)
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pt = Et
³
mt+1xt+1

´
= E

³
mt+1xt+1 | It

´ {mt} and
{xt} non i.i.d.⇒
Et (·) 6= E (·)

pt = Et
³
mt+1xt+1

´
E (pt) = E

³
Et
³
mt+1xt+1

´´
l.i.e.

= E
³
mt+1xt+1

´

Information set (partially) not observed,
conditional density not known, conditional expectation cannot be computed

Conditioning down to coarser
information set

The basic pricing equation implies a set of CONDTIONAL moment
restrictions
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Models contain free parameters

pt = Et

⎛⎝β Ãct+1
ct

!−γ
xt+1

⎞⎠

• Estimation from data

• Testing hypotheses about parameters

• How good is the model?

Estimation and evaluation of asset pricing models (Basics)
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pt = Et(mt+1 xt+1) or 1 = Et(mt+1Rt+1)

↑ f(data, parameters)

e.g. CBM with u(c) = 1
1−γ c

1−γ ⇒ mt+1 = β(
ct+1
ct
)−γ

ct+1
ct

: data (random variables)

b = (β, γ)0 :free parameters

Assume model correct: ”Best” choice for β, γ?

Best ”fit”, smallest (average) pricing errors

Estimation and evaluation of asset pricing models (CBM)
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Estimates b̂ from data, distribution of b̂?

Average pricing errors:

sample mean (observed price - predicted price)| {z }= α

should be close to zero

pt = Et
³
mt+1(b) · xt+1

´
= E

³
mt+1(b) · xt+1|It

´
E(pt) = E[Et

³
mt+1(b) · xt+1

´
] = E[mt+1(b) · xt+1]

Unconditional expectation: E[mt+1(b)xt+1 − pt] = 0

Equivalently using returns:

1 = Et
³
mt+1(b)Rt+1

´
⇒ 0 = E

³
mt+1(b)Rt+1 − 1

´

Estimation and evaluation of asset pricing models. The basic idea.
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WLLN :
1

N

NX
i=1

yi
−→p E(Y )

sample average consistent estimate for population moment

1

T

TX
t=1

pt −
1

T

TX
i=1

mt+1(b)xt+1| {z } ≈ 0
α

GMM basic idea(first step):

choose b̂ to minimize α2 (squared average pricing error) among

set of test assets.

Generalized Methods of Moments estimation is based on the
WLLN
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E
³
mt+1 (β, γ)x

1
t+1 − p1t

´
= 0

E
³
mt+1 (β, γ)x

2
t+1 − p2t

´
= 0

E
³
mt+1 (β, γ)R

1
t+1 − 1

´
= 0

E
³
mt+1 (β, γ)R

2
t+1 − 1

´
= 0

1

T

TX
t=1

mt+1 (β, γ)R
1
t+1− 1 = 0

1

T

TX
t=1

mt+1 (β, γ)R
2
t+1− 1 = 0

solve equations for β, γ ⇒ bβ, bγ ⇒

The two asset, two parameter case



Problem: WLLN works for stationary data:

(Weakly) stationary process: {Yt}∞t=−∞
{. . . ,y0, y1, . . . , y5, . . .}
E(Yt) = u

var(Yt) = σ2

cov(Yt, Yt−j) = γj

Solution: ⇒ We use:

1 = E
³
mt+1(b) · Rt+1

´
instead of E(pt) = E

³
mt+1(b) · xt+1

´
0 = E

³
mt+1(b) · Rt+1 − 1

´

To apply GMM data have to be generated by stationary (and 
ergodic) processes (not necessarily i.i.d.)
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Define GMM residual: object whose mean should be zero

ut+1(b) = mt+1(b)Rt+1 − 1

E(ut+1(b)) = 0

ET [ut(b)] =
1

T

TX
t=1

ut(b) ≈ 0

Notational convenience (Hansen’s notation, sometimes causing

confusion)

ET(·) =
1

T

TX
t=1

(·)

Define the GMM residual or “pricing error“
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For GMM parameter estimation: Select N test assets

Rt
1, Rt

2, · · · , Rt
N t= 1, · · · , T

⎡⎢⎢⎢⎢⎢⎢⎣
ET [u1t (b)]
ET [u2t (b)]

...

...

ET [uNt (b)]

⎤⎥⎥⎥⎥⎥⎥⎦ = gT(b) N × 1 vector

If assets = parameters b can be chosen such that average

pricing errors are zero usually assets > parameters.

We have more assets than unknown model parameters
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b̂ = argmin
{b}

g0T(b) · IN · gT(b) first step GMM estimate

= argmin
{b}

h
ET [u1t+1(b)]

i2
+
h
ET [u2t+1(b)]

i2
+ . . .+

h
ET [uNt+1(b)]

i2
⇒ minimize sum of squared average (pricing)errors

equal weight for all test assets 1, . . . ,N

Alternatively other weight matrix

b̂ = argmin
{b}

g0T(b) W gT(b) e. g.W =

⎡⎢⎢⎢⎣
1 0
0 2

100 .. .

0

⎤⎥⎥⎥⎦

GMM objective function
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GMM estimators consistent:

Bias and variance of estimator go to zero asymptotically b̂ −→p b

GMM estimators asymptotically normal. Required for inference:

var(b̂) =

⎛⎜⎜⎜⎝
var(̂b1) · · ·

cov(̂b1, b̂2) var(b̂2)
... ...

cov(b̂1, b̂k) · · · var(b̂k)

⎞⎟⎟⎟⎠

To conduct t−test: b̂k
σ̂k

a∼ N(0,1)

Under mild assumptions (stationarity) GMM estimators have
desirable properties
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Efficient estimates obtained by using the optimal weighting matrix

S = var(gT (b)) = E(gT (b)gT (b)0) = E(ut(b)ut(b)0) resp. =

j=+∞X
j=−∞

E(ut(b)ut−j(b)0)

Efficiency: Smallest asymptotic variance
among GMM esimators

Efficient estimator: employ S-1 as weighting matrix

variance-covariance
matrix average pricing errors

with serial correlation
in moment conditions

x 420-2-4

0.4

0.3

0.2

0.1

0

0θ θ̂

( )θf

1̂θ

2̂θ

x 420-2-4

0.4

0.3

0.2

0.1

0

variance-covariance
matrix of pricing errors
(no serial correlation)
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Optimal weighting matrix

(and GMM parameter standard errors): use consistent esti-

mate Ŝ of S in minimization:

b̂ = argmin
{b}

gT(b)
0 Ŝ−1 gT(b)

write ut(b) =

⎛⎜⎝u1t (b)
...

uNt (b)

⎞⎟⎠ ³
uit(b) = mt+1(b)x

i
t+1 − pit

´
i=assets

Recall: E(uit) = 0 ⇒ E(ut(b)) =

⎛⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎠

There exists an optimal weighting matrix

Prof. Joachim Grammig, University of Tübingen, Department of Econometrics, Statistics and Empirical Economics 33



S = E
h
ut(b) · u0t(b)

i
=

⎡⎢⎢⎢⎢⎢⎣
E
³
[u1t (b)]

2
´
· · ·
. . .

E
h
u1t (b)u

2
t (b)

i
... E

³
[uNt (b)]

2
´

⎤⎥⎥⎥⎥⎥⎦
S= variance covariance matrix of pricing errors

=

⎡⎢⎢⎢⎢⎢⎣
var

³
u1t (b)

´
· · ·

cov
³
u1t (b)u

2
t (b)

´
var

³
u2t (b)

´
. . .

...

var
³
uNt (b)

´

⎤⎥⎥⎥⎥⎥⎦

Estimate Ŝ: Replace E by 1
N

P
using b̂ obtained with weighting

matrix IN ⇒ Ŝ.

The optimal weighing matrix takes into account variances and 
covariances of pricing errors across assets

With no serial correlation in pricing errors!
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1) b̂1 = argmin
{b}

gT(b)
0 IN gT(b)⇒

2) Ŝ ⇒

3) b̂2 = argmin
{b}

gT(b)
0Ŝ−1 gT(b)

...repeat... . . .

Steps of iterated GMM estimation
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Intuition behind GMM weighting matrix

Example

N = 2, cov(u1t (b), u
2
t (b)) = 0 [zero covariance of pricing errors]

S =

"
var[u1t (b)] 0

0 var[u2t (b)]

#

S−1 =

⎡⎢⎣ 1
var[u1t (b)]

0

0 1
var[u2t (b)]

⎤⎥⎦ = "
W1 0
0 W2

#

Example S =

Ã
10 0
0 0.1

!

Intuition behind optimal weighting matrix (1)
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GMM objective gT(b)
0S−1 gT(b) becomes

argmin
{b}

ET
h
u1t (b)

i2 ·W1 + ET
h
u2(b)

i2 ·W2

Example

W1 : 0.1⇒ var
³
u1t (b)

´
= 10

W2 : 10⇒ var
³
u2t (b)

´
= 0.1

⇒ Asset (1) gets less weight in minimization

”Model imprecise” for asset 1, more precise for asset 2.

Intuition behind optimal weighting matrix (2)
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Another example: Correlations between asset returns: Two ”sim-

ilar” assets (high correlation of pricing errors) are downweighted.

Count more like one asset.

Example S =

⎛⎜⎝ 1 0 0
0 1 0.999
0 0.999 1

⎞⎟⎠ cov(u2t , u
3
t ) = 0.999

corr(u2t , u
3
t ) ≈ 1 = 0.999√

1
√
1

argmin
{b}

"
ET(u1t (b)), ET(u2t (b)),ET(u3t (b))

#
×

⎡⎢⎣ 1 0 0
0 1 0.99
0 0.99 1

⎤⎥⎦
−1

×

⎡⎢⎣ ET(u1t (b))ET(u2t (b))
ET(u3t (b))

⎤⎥⎦

Some more intuition behind optimal weighting matrix: Correlations
across pricing errors (1)
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S−1 =

⎡⎢⎣ 1 0 0
0 500.25 −499.75
0 −499.75 500.25

⎤⎥⎦
argmin
{b}

gT(b)
0 S−1gT(b) =

"
ET

³
u1t (b)

´
,ET

³
u2t (b)

´
· 500.25 − ET

³
u3t (b)

´
· 499.75,

ET
³
u3t (b)

´
· 500.75− ET

³
u2t (b)

´
· 499.75

#
×

⎡⎢⎣ ET(u1t (b))ET(u2t (b))
ET(u3t (b))

⎤⎥⎦

Some more intuition behind optimal weighting matrix: Correlations
across pricing errors (2)
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argmin
{b}

gT(b)
0 S−1gT(b) =

ET
³
u1t (b)

´2
+ ET

³
u2t (b)

´2 · 500.25 + ET
³
u3t (b)

´2 · 500.25 −
2 · ET

³
u2t (b)

´
ET

³
u3t (b)

´
· 499.75

≈ ET
³
u1t (b)

´2
+ 0.5 ET

³
u2t (b)

´2
+ 0.5ET

³
u3t (b)

´2
since

ET

³
u2t (b)

´
≈ ET

³
u3t (b)

´

Some more intuition behind optimal weighting matrix: Correlations
of pricing errors (3)
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Standard errors of GMM estimates

We want:

var(̂b) =

⎛⎜⎜⎜⎜⎜⎜⎝
var(̂b1) cov(̂b1, b̂2) · · · cov(b̂1, b̂k)
cov(̂b1, b̂2) var(̂b2)

.. .

cov(̂b1, b̂k) · · · var(̂bk)

⎞⎟⎟⎟⎟⎟⎟⎠ (K ×K)

b = (b0, b1, · · · , bk)

t =
b̂k−0√
var(̂bk)

a∼ N(0, 1) under H0 : bk = 0

To test hypotheses we need the distribution of the GMM estimates
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√
T (bb− b)→

d
N(0, (d0S−1d)

d = E
µ
∂ut(b)

∂b

¶
bd = ∂gT (b)

∂b
|bb

\var(bb) = bd0bS−1bd
T

Asyptotic distribution of GMM estimates when using optimal 
weighting matrix

References for nonlinear GMM results: Hayashi (2000) Econometrics, Chapter 6, Hall (2005)

consistently estimated by

t- and Wald tests use
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Some more details:

a) In application: replace S−1 by consistent estimate Ŝ−1

b) Recall

gT(b) =

⎡⎢⎢⎣
1
T

P
u1t (b)
...

1
T

P
uNt (b)

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1
T

P
mt(b)R

1
t − 1

...
1
T

P
mt(b)R

N
t − 1

⎤⎥⎥⎦

∂gT (b)
∂b =

⎡⎢⎢⎢⎢⎣
1
T

P ∂u1t (b)
∂b1

1
T

P ∂u1t (b)
∂b2

· · · 1T
P ∂u1t (b)

∂bk...

1
T

P ∂uNt (b)
∂b1

1
T

P ∂uNt (b)
∂b2

· · · 1T
P ∂uNt (b)

∂bk

⎤⎥⎥⎥⎥⎦
[N × k]

Details
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∂gT (b)
∂b =

⎡⎢⎢⎢⎢⎣
1
T

PT
t=1

∂mt(b)
∂b1

Rt,
···
∂b2

· · ·
↓ −→

Parameters
N

⎤⎥⎥⎥⎥⎦
For power utility

mt+1(b) = β
³ct+1

ct

´−γ
b = β, γ

Linear factor models mt+1 = b0ft+1 b 6= 0 ?

Risk factor?

∂mt+1(b)
∂b1

= ?

Details
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var(̂b) used for testing hypotheses:

H0 : bk = 0

t-statistic: b̂k−0√
var(̂bk)

a∼ N(0,1) =̂ Standard t-test.

joint significance:

H0 : (bj1 = bj2 = = bjN| {z }= 0) or bJ
J×1

= 0

some subset of b

b̂0j

∙
var(b̂)J| {z }

¸−1
b̂j

a∼ χ2(J)

#
=̂ Standard F -test

appropriate subset of var(b̂)

We employ the estimated variance covariance matrix to test 
hypotheses

Standard Wald test use to test Rb=r

Nonlinear restrictions testable applying delta method => EVIEWS example
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{Rt,∆ct, . . .} ⇒ bb ⇒

ut(b) ⇒ ET (ut(b)) = 1
N

P · · ·

T · JT = T ·
h
gT(b̂)

0 Ŝ−1 gT (̂b)
i
a∼ χ2

TJT = 7.9, χ295 (1) = 2.73⇒

Testing the validity of the model (moment conditions) by J-test

data is a random sample is a random variable 

is a random variable
is a random
variable

pricing errors too large to be explained by random sampling? 

⇔ Is the model in correct?

objective function at minimum using optimal weighting matrix estimate

no. moment conditions
- no. of parameters.

⇒ Reject or non-reject model (i.e. moment conditions) at given significance level
Example: no. of moment conditions: 10, no. parameters: 2,
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Remarks

Inference is different if other weighting matrix than optimal weighting matrix is used

- different formula for parameter standard errors

- different formula for J-statistic. Watch out when using EVIEWS!

When comparing alternative models (e.g. parameter restrictions) use the same
weighting matrix (weighting matrix depends on unknown parameters)
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bb =argmin
{b}

gT (b)
0WgT (b)

∂gT (b)
0

∂b
W| {z }

K linear combinations set to zero

×gT (b) = 0

gT (bb)| {z }
N×1 vector of r.v. with K linear dependencies

General GMM results (Hayashi Ch. 6)

Chooese W to  be positive semi-definite and symmetric
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General GMM results (Hayashi Ch. 6)

For t- and Wald-tests use

√
T(bb− b)→

d
N (0, (d0Wd)−1d0WSWd(d0Wd)−1)

\
var(bb) = (bd0W bd)−1bd0W bSW bd(bd0W bd)−1

T
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General GMM results (Hayashi Ch. 6)

√
TgT (bb)→

d
N (0, Avar(gT (bb)))

Avar(gT (
bb)) = (I − d(d0Wd)−1d0W )S(I − d(d0Wd)−1d0W )

TgT (bb)0[ \
Avar(gT (bb))]+gT (bb)→

d
χ(N −K)

General form of J-statistic
Pseudo inverse, linear dependencies in 
g by construction, V-C matrix singular
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Problems using J-statistic

Popular measure

Compare observed average return with E(R) predicted by model

From 1 = E(mR)

1 = E(m)E(R) + cov(m,R)

E(R) = 1
E(m) −

cov(m,R)
E(m)

Use as predictor

dE(R) = 1

1
T

TP
t=1

mt

−
1
T

TP
t=1

mtRt−1T
TP

t=1
mt

1
T

TP
t=1

Rt

1
T

TP
t=1

mt

Performance comparison (1) 



Performance comparison (2) 
Plot dE(R) vs. 1

T

TP
t=1

Rt = R̄

Similarly using excess returns as test assets

From 0 = E(mRe)

0 = E(m)E(Re) + cov(m,Re)

E(Re) = −cov(m,Re)
E(m)

Again: replace E(·) by 1
T

P
(·) to obtain \E(Re)

Plot \E(Re) against R̄e

RMSE =

vuut NP
j=1

∙
\E(Rj)− R̄j

¸2
or =

vuut NP
j=1

∙
\E(Rej)− R̄ej

¸2
used to

rank and compare alternative models
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Cochrane‘s (1996) estimation results for the consumption based
model with power utility



Non-rejection doesn‘t mean a thing
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Cochrane‘s (1996) results for unconditional estimation of CAPM
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Cochrane‘s (1996) results for unconditional estimation of CAPM
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Performance comparison. Example: Consumption-Based Model
estimated on 25 Fama-French portfolios
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Performance comparison. Example: CAPM estimated on 25 Fama-
French portfolios
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Performance comparison. Example: Fama-French two factor
model estimated on 25 Fama-French portfolios
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GMM estimation using the Gauss library: Ingredients and recipe

1. Supply data

2. Provide GMM/optimization
settings (number of 
iterations, weighting matrix)

3. Supply initial parameter
values

4. Call GMM minimization
procedure

iteratively calls procedure to 
compute GMM residuals ut(b)

5. Check parameter estimates
and test statistics

Procedure returns
ut(b):GMM residuals

evaluated at b 

„Global“ control
variables like

model version

specification
details

Data: 

-Returns

-Factors

-Economic
Variables

Parameter values

b

Procedure to compute GMM 
residuals ut(b)

ut(b) : object with unconditional
expectation equal to zero



For consumption based model with power utility

ET(ut(b)) = 1
T

PT
t=1 β

³
ct+1
ct

´γ · Ri
t − 1 = 0

Exercise: 10 test assets (NYSR decile portfolios)

Perform GMM estimation of γ and β using EXCEL solver.

Input: Time series of returns and consumption growth.

⎡⎢⎢⎣R
1
1 · · · R101 Rf

1 dc1
... ... ...

R1T R101 R
f
1 dcT

⎤⎥⎥⎦

The canoncical example: Estimate the CBM by GMM
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3. Recent approaches

Readings: Lettau and Ludvigson (2001), Garcia, Renault and Semonov (2002), 
Yogo (2006)
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Newer models consumption based model and habit formation
Garcia et al. (2003)

Period utility function

u(ct/Ht,Ht) =

³
ct
Ht

´1−γ
H1−ψ
t − 1

1− γ

Marginal utility

u0(ct) = c−γt Hγ−ψ
t

Stochastic discount factor

mt+1 = δ

Ã
ct+1
ct

!−γ ÃHt+1

Ht

!γ−ψ

Et

⎡⎣δÃct+1
ct

!−γ ÃHt+1

Ht

!γ−ψ
Ri
t+1

⎤⎦ = 1

habit level (external)



Modelling the habit level (1)

Ht+1 = E(ct+1|ct, ct−1, . . .)

∆Ht+1 = λ(ct−Ht) 0 ≤ λ ≤ 1

Ht+1 = a+λct+(1− λ)Ht

Ht+1 =
a

λ
+ λ

∞X
i=0

(1− λ)ict−i

using

ct+1 =
a

λ
+ λ

∞X
i=0

(1− λ)ict−i+ εt+1

ct+1 =
a

λ
+ λct+ λ(1− λ)ct−1 + λ(1− λ)2ct−2 + . . .+ εt+1

(1− λ)ct =
a

λ
(1− λ)+ λ(1− λ)ct−1 + . . .+(1− λ)εt
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Modelling the habit level (2)

Subtracting two previous equations

ct+1− (1− λ)ct = a+ λct+ . . .+ εt+1− (1− λ)εt

∆ct+1 = a− (1− λ)εt+ εt+1

ARIMA(0,1,1) model - Estimation by Maximum Likelihood

Use parameter estimates of a and λ to iterate on

Ht+1 = a+λct+(1− λ)Ht.

to estimate habit level

Plug in GMM objective function
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An alternative model for the habit process (1)

Log habit growth (unobservable)

∆ht+1 = ln(Ht+1)− ln(Ht)

∆ht+1 = a0 +
nX

i=1

ai ·∆ ln ct+1−i+ b · rmt+1

with

∆ht+1 = E(∆ ln ct+1|∆ ln ct,∆ ln ct−1, . . .)

∆ ln ct+1 = a0 +
nX

i=1

ai ·∆ ln ct+1−i+ b · rmt+1+ εt+1

a0, a1, . . . , b can be estimated by GMM additional moment

restrictions

log return market portfolio

orthogonal forecast error
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An alternative model for the habit process (2)

Estimation

Add to usual moment conditions additional moment restrictions

from habit equation:

use E(mt+1Ri
t+1 − 1) = 0

...
E(mt+1R

N
t+1 − 1) = 0

along with E(εt+1rmt+1) = 0

E(εt+1∆ ln ct) = 0
...
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An alternative model for the habit process (3)

Habit growth is then

Ht+1

Ht
= A

nY
i=0

"
ct+1−i
ct−i

#ai ³
Rm
t+1

´b

Stochastic discount factor

mt+1 = δAγ−ψ
"
ct+1
ct

#−γ nY
i=0

"
ct+1−i
ct−i

#ai(γ−ψ) ³
Rm
t+1

´b(γ−ψ)
Used for estimation

mt+1 = δ∗
"
ct+1
ct

#−γ nY
i=0

"
ct+1−i
ct−i

#ai·κ
b ³

Rm
t+1

´κ
We estimate using

n= 0 ”Epstein-Zin SDF”

n= 1

exp(a0)
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Performance comparison. Example: Habit model
Grammig/Schrimpf (2005) estimated on 25 Fama-French portfolios

Prof. Joachim Grammig, University of Tübingen, Department of Econometrics, Statistics and Empirical Economics 69



Performance comparison. Example: Fama-French two factor
model estimated on 25 Fama-French portfolios
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Performance comparison. Example: CAPM estimated on 25 Fama-
French portfolios
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Dt = (1− δ)Dt−1 +Et δ ∈ (0, 1)

NX
i=0

Bi
t =Wt−Ct− PtEt

Wt+1 =
NX
i=0

Bi
tR

i
t+1

Yogo‘s durable consumption model (JF, 2006) includes durable and 
nondurables in investor utility function

Nondurable goods
Stock of durable goods

Depreciation rate

Expenditures durable goods

Wealth

Investment in 
assets



The intra-period CES utility function contains durables and 
nondurables

u(C,D) = [(1 − α)C1−1/ρ + αD1−1/ρ](1−1/ρ)

α ∈ (0, 1) ρ ≥ 0

Elasticity of substitution between
durables and nondurables
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ut = {(1− β)u(Ct,Dt)
1−1/σ+ β(Et[u1−γt+1])

1/κ}1/(1−1/σ)

κ= (1− γ)/(1− 1/σ) β ∈ (0,1) σ ≥ 0 γ > 0

The household‘s intertemporal utility is specified by a recursive
function that disentangles EIS and RRA

Idea of recursive utility function: Epstein/Zin (Econometrica 1989), (JPE 1991)

relative risk aversion
coefficient

Intertemporal elasticity of substitution (EIS)

Special cases: Epstein/Zin (1991) σ=ρ
Dunn/Singleton (1986) nonsperable expected utility model σ=1/γ
Additive separable Model σ=1/γ=ρ

Subjective discount factor
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ut= {(1−β)[(1−α)C1−1/σt +αD
1−1/σ
t ]+β(Et[u1−γt+1])

1/κ}1/(1−1/σ)

Special case I σ=ρ

Additively seperable model by Epstein/Zin 1989, 1991
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u
1−γ
t = (1− β)Et

∞X
s=0

βsu(Ct+s,Dt+s)
1−γ

Special case II σ=1/γ : additively separable utility model

Dunn/Singleton (1986), Eichenbaum and Hansen (1990), Ogaki/Reinhard (1998)
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mt+1 =

"
β

Ã
Ct+1

Ct

!−1/σÃv(Dt+1/Ct+1)

v(Dt/Ct)

!1/ρ−1/σ
RW
t+1

(1−1/κ)
#κ

v

Ã
D

C

!
=

"
1−α+α

Ã
D

C

!1−1/ρ#1/(1−1/ρ)
with u(C,D) = Cv(D/C)

Et(mt+1R
i
t+1 = 1) Et(mt+1R

ei
t+1) = 0

Solving the intertemporal asset allocation problem Yogo (2006) 
obtains the following SDF

Use as usual for
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uDt

uCt
= Pt− (1− δ)Et[mt+1Pt+1] =

α

1− α

Ã
Dt

Ct

!−1/ρ

E
h
1− α

1− α
(Dt/Ct)

−1/ρ 1
Pt
− (1− δ)mt+1

Pt+1
Pt

i
= 0

An additional moment restriction for the „investment“ in the durable 
good is added
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Yogo‘s (2006) estimation results for Fama-French portfolios
EIS estimate small

Source: Yogo (2006)  p. 552
Risk aversion estimate high

standard errors in 
parentheses

elasticity of subsitution reasonable

subjective discount factor < 1

Epstein/Zin (1991) non-rejected

p-values in 
parentheses Eichenbaum/Hansen (1987) rejected

Durable model not rejected



The fit of the durable consumption model is good (Fama French 
portfolios)

Source: Yogo (2006), p. 558
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- Linearized consumption based model

mt+1 = b0 + b∆c∆ ln ct+1

Taylor approximation of
u0(ct+1)
u0(ct)

- CAPM

mt+1 = b0 + bmRm
t+1

- Scaled CAPM by Lettau and Ludvigson (2001)

mt+1 = b0 + bcaycayt+ bmRm
t+1 + bcaymcaytRm

t+1

Some more models
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4. Testing conditional predictions of asset pricing models:
Managed portfolios and scaled factors

Readings: Cochrane (2002), Ch. 8, 10, 
Cochrane (1996), Lettau and Ludvigson (2001 (JPE))
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We use instruments to test the conditional predictions of asset
pricing models

pt = E (mt+1(b) · xt+1|It) or 1 = E (mt+1(b) · Rt+1|It)
or 0 = E

¡
mt+1(b) · Re

t+1
|It
¢

l.i.e ”integrates out” conditional implications, let us focus on
unconditional implications of asset pricing model (model for S.D.F.):
E (mt+1(b) · Rt+1 − 1) = 0

To test conditional implications write
E (Yt+1|It) = 0 where Yt+1 = (mt+1(b) · Rt+1 − 1) or ...
{Yt+1} a martingale difference sequence.

Properties of m.d.s include:

cov (Yt+1, zt) = 0 ∀ zt ∈ It
E (Yt+1zt) = 0 since 1 ∈ It
Testable restrictions therefore: E [(mt+1(b) · Rt+1 − 1)zt] = 0 ∀ zt ∈ It
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x̃t+1 = xit+1zt conceived as (payoff of) managed portfolios,

i.e. artificial assets.

Example: zt =
dt
pt
invest if zt ↑

x̃t+1 conceived as another payoff wtih price ztpt
If model correct, it prices any asset, also mgt. portfolios.

ztpt|{z}
p(x̃t+1)

= Et(mt+1(b) · xt+1zt| {z }
x̃t+1

) or zt = Et
³
mt+1(b) ·Rt+1zt

´

i.e.

E(zt) = E(mt+1Rt+1zt) or E[(mt+1Rt+1 − 1)zt] = 0

The use of instruments has an economic interpretation: Can the
model price “managed portfolios“?

Prof. Joachim Grammig, University of Tübingen, Department of Econometrics, Statistics and Empirical Economics 84



Prof. Joachim Grammig, University of Tübingen, Department of Econometrics, Statistics and Empirical Economics 85

To test the conditional implications you simply “blow up“ the
number of assets by including meaningful managed portfolios and 
proceed as before.
Practice: N assets, M instruments
M moment restrictions

E
³h
mt+1 (b)Rt+1 − 1

i
⊗ zt

´
= 0

With two assets and two instruments zt = (1, z1t )
0

E

⎡⎢⎢⎢⎢⎢⎣
mt+1(b)R

a
t+1 − 1

mt+1(b)R
b
t+1 − 1

(mt+1(b)R
a
t+1 − 1)z

1
t

(mt+1(b)R
b
t+1 − 1)z

1
t

⎤⎥⎥⎥⎥⎥⎦ = 0

or, emphasizing the managed portfolio interpretation

E(mt+1 (b)Rt+1 ⊗ zt| {z }
payoff

−1 ⊗ zt| {z }
price

) = 0

E(mt+1 (b)xt+1 ⊗ zt| {z }
payoff

− pt ⊗ zt| {z }
price

) = 0



You should include economically meaningful instruments
(managed portfolios)

• p = E(mx) should price any asset, also managed portfolios

• if model prices all managed portfolios, conditional asset pric-
ing model true.

• select few selected instruments (we also select few assets

from millions available). New managed funds example

• Select meaningful instruments: Those affecting conditional
distribution of returns

• Any zt ∈ It qualifies as an instruments, but if corr((mt+1Rt+1), zt) =

0 but corr(Rt+1, zt) small: weak instrument

• danger of using weak instruments (Hamilton, 1994, p. 426
for references)
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Some more details and intuition on the choice of instruments

ptzt = Et(mt+1xt+1zt) resp. zt = Et(mt+1Rt+1zt)

holds true trivially if corr((mt+1Rt+1 − 1), zt) = 0

but an interesting instrument implies corr(Rt+1, zt) 6= 0 and/or

corr(mt+1, zt) 6= 0

if Et(Rt+1) ↑ when zt ↑

then in

1zt = ztEt(Rt+1)| {z }
↑

Et(mt+1)| {z }
↓ or

+zt covt(mt+1Rt+1)| {z }
↓
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Is a conditional asset pricing model testable at all?

Most asset pricing models imply conditionalmoment restrictions

1 = E
³
mt+1(bt) · Rt+1|It

´
e.g. CAPM mt+1 = at − btR

W
t+1.

Parameters of factor pricing model vary over time.

⇒unconditioning via l.i.e. no longer possible:

1 = E
³
mt+1(bt) · Rt+1|It

´
does NOT imply

1 = E
³
mt+1(b) ·Rt+1

´
this is not repaired by using scaled returns. GMM estimation no

possible.

Hansen and Richard critique: CAPM (or other factor model) is

not testable.
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Scaled factors are a partial solution to the problem

With linear factor model

mt+1 = b0t ft+1| {z }
K×1

use of ”scaled factors” a partial solution:

”Blow up” number of factors by scaling factors with (M × 1)

instruments vector zt observable at t

mt+1 = b0 (ft+1⊗ zt)| {z }
KM×1

Unconditioning via l.i.e. and GMM procedure as above.
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Time varying parameters lead to scaled factors (single factor case)

Motivation

Consider linear one factor model mt+1 = at+btft+1 (ft+1 scalar)
Assume Parameters vary with M × 1 instruments vector zt.

mt+1 = a(zt) + b(zt)ft+1

With linear functions

a(zt) = a0zt and b(zt) = b0zt

⇒ mt+1 = a0zt+ (b0zt)ft+1

Mathematically equivalent to

mt+1 = b̃0(f̃t+1 ⊗ zt)

where b̃ =

⎡⎣ a

b

⎤⎦, f̃t+1 =
⎡⎣ 1

ft+1

⎤⎦
Number of parameters to estimate 2 ·M
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Time varying parameters lead to scaled factors (multi factor case)

Multi-factor case:

mt+1 = b0t ft+1| {z }
K×1

Again: Time varying parameters linear functions of M ×1 vector
of observables zt.

mt+1 = b(zt)
0ft+1 with b(zt) = B|{z}

K×M
zt

Equivalent to mt+1 = b̃0 (ft+1 ⊗ zt)| {z }
K×N

where b̃ = vec(B)

In practical application some elements of B may be set to zero.
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Using scaled factors we can condition down and apply GMM

Conditioning down and GMM estimation possible

Et

⎛⎜⎜⎝³̃b0(ft+1 ⊗ zt)
´

| {z }
mt+1

Rt+1

⎞⎟⎟⎠= 1 l.i.e.⇒ E
³³
b̃0(ft+1 ⊗ zt)

´
Rt+1 − 1

´
= 0| {z }

unconditional moment restrictions

Scaled factors and managed portfolios can be combined.

(zt might be the same).

⇒ E(b̃0(ft+1 ⊗ zt)Rt+1 − 1 ]⊗zt) = 0

• Inclusion of conditioning information as managed portfolios
(scaled returns, increases number of test assets.

• Scaled factors increase number of unknown parameters
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Cochranes (1996) CAPM with scaled factors

f =

⎛⎝ 1

RW

⎞⎠ zt =

⎛⎜⎜⎜⎝
1
P
D

term

⎞⎟⎟⎟⎠B =

⎡⎣ b11 b12 b13

b21 b22 b23

⎤⎦

f ⊗ z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

RW

P
D

RW · PD
term

RW · term

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
b̃ =

³
b11, b21, b12, b22, b13, b23

¢0

m = b̃0(f⊗z) = b11+b12
P

D
+b13term+b21R

W+b22R
W ·P

D
+b23R

W ·term

In application Cochrane (1996) restricts b12 and b13 to zero
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Cochrane‘s (JPE 1996) estimation results for the consumption
based model with power utility



Conditional estimation yields a poor performance of the
consumption based model (Cochrane (1996))
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Cochrane‘s (1996) results for unconditional estimation of CAPM
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Cochrane‘s (1996) results for unconditional estimation of CAPM

Prof. Joachim Grammig, University of Tübingen, Department of Econometrics, Statistics and Empirical Economics 97



Cochrane‘s (1996) results for conditional estimation of CAPM
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Cochrane‘s (1996) results for conditional estimation of CAPM
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Cochrane‘s (1996) results for conditional estimation of scaled CAPM 
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Cochrane‘s (1996) results for conditional estimation of scaled CAPM 
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Yogo‘s (2006) cross section estimation results

Source: Yogo (2006)  p. 552
Both restrictions rejected
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mt+1 = b0 + b1cayt + b2∆ ln ct+1 + b3cayt∆ ln ct+1

mt+1 = a0 + a1cayt + a2r
m
t+1 + a3caytr

m
t+1

ct −wt ≈ Et
∞X
i=1

ρiw(r
m
t+i −∆ct+i)

cayt = ct− ωat − (1− ω)yt

Resurrection of the C(CAPM) by Lettau and Ludvigson (2001)

Scaled CCAPM

Scaled CAPM

log wealth

log asset wealth
log labor income
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Performance comparison. Example: Lettau/Ludvigson model
estimated on 25 Fama-French portfolios

Prof. Joachim Grammig, University of Tübingen, Department of Econometrics, Statistics and Empirical Economics 104



Model comparison (practical exercise)

- 10 decile portfolios and t-bill rate (Cochrane 1996)

- 25 size/book-to-market portfolios and t-bill rate

- Excess returns or gross returns as test assests

- Estimation using GMM (alternatives ⇒ course 1)

- J-test

- RMSE comparisons (plots)

Models:

∗ Consumption Based Model (CBM), CAPM, Scaled (LL) CBM,

Scaled (LL) CAPM, various habit model variants
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5. Linear factor model and the basic pricing equation

Readings: Cochrane (2005), Ch. 6
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Linear factor model dominate the empirical work because they
have been easier to estimate

Linear factor models

p = E(mx) or 1 = E(mR) or 0 = E(mRe)

linear models for discount factor m = a+ b0f m: MRS

b = (b1, b2, . . . , bK)
0 f = (f1, f2, . . . , fK)

0

often: factors are returns of portfolios, e.g market or wealth

portfolio

m = a − b · Rm: single factor model

What qualifies as a factor? Anything that affects investors MRS!
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Linear factor models are equivalent to the more familiar expected
return-beta representation

m= a+ b0f ⇔ E(Ri) = γ+ λ0βi resp. E(Rei) = λ0βi

λ= (λ1, . . . , λK)
0| {z }

”Price of factor k” or factor risk premium

βi = (βi1, . . . , βiK)
0| {z }

Exposure of asset i to factor k

γ =
1

E(m)
= Rf

Compare to linear regression:

yi = a+ b0xi+ ui|{z}
E(ui)=0

E(yi) = a+ b0E(xi)
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Special cases:

if E(f) = 0 (demeaned factors)

and E(fifj) = cov(fi, fj) = 0 for i 6= j (orthogonal factors)

⇒ βik =
cov(fk,Ri)
var(fk)

Example:

m = a − bRm ⇔ E(Ri) = Rf + βi(E(Rm)−Rf)

where Rf=̂γ, βi=̂ riskiness of asset i and E(Rm)−Rf=̂λ=̂ market

risk premium

If the factors have certain properties, the betas are given by the
ratio of a covariance and a variance
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Estimation and testing:

a) Use GMM (1 = E(mR))

b) linear regression - time series or cross section - Fama/McBeth

General problem for linear factor models: ”fishing for factors”

How can one estimate linear factor models?
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We want to show the equivalence of the two representations (1)

We want to show: 1 = E(mR) ⇔ E(R) = γ + λ0β:

single factor case: if m = ã+ b0f̃

convenient: demean factors: ”fold” means of factors into con-

stant a

f̃ = factor with (f̃) 6= 0

f = f̃ − E(f̃) = demeaned factor with E(f) = 0

m= a+ b0f where a = ã+ b0E(f̃)

⇒ E(m) = a
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Rewrite

1 = E(mR)

= cov(m,R) + E(m) · E(R)

⇒ E(R) =
1

E(m)
− cov(m,R)

E(m)

=
1

a
−
cov

³
(a+ bf),R

´
a

cov
³
(a+ bf), R

´
= E

h
(a+ bf − a)(R− E(R))

i
= E(bfR)− E(bf) · E(R)| {z }

=0 as E(f)=0

We want to show the equivalence of the two representations (2)
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E(R) =
1

a
− bE(Rf)

a

¯̄̄̄
¯ we want betas

=
1

a
− cov(f,R)

var(f)
· bvar(f)

a

Define

γ ≡ 1

a
=

1

E(m)
= Rf (if traded)

β ≡ cov(f, R)

var(f)

λ ≡ −bvar(f)
a

⇒ E(Ri) = γ + βiλ

We want to show the equivalence of the two representations (3)
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We want to interpret λ as price of risk factor

λ= −bE(f
2)

a
= −

E
³
(a+ bf) · f

´
a

¯̄̄̄
¯ note: E(af) = aE(f) = 0

= −E(m · f)
a

= −p(f)
a

= −γ · p(f)

if f̃ (non-demeaned factor) is a return, e.g. Rm

−γ·p(f) = −γp(f̃−E(f̃)) = −γ
³
p(f̃)−p(E(f̃))

´ ¯̄̄̄¯ since expectation

operator is linear

p(f̃) = 1 if f̃ is a return

p
³
E(f̃)| {z }
constant
payoff
in t+1

´
= E

³
m · E(f̃)

´
= E(m) · E(f̃) = E(f̃)

γ

λ in the expeced return- beta representation can be interpreted as 
the price of the risk factor
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λ = −γ
Ã
1 − E(f̃)

γ

!
= E(f̃)−γ

¯̄̄̄
¯
expected excess returnz }| {
E(f̃)−Rf : factor risk premium

⇒ 1 = E(mR)

with m = a+ b · f and f = f̃ − E(f̃) and f̃ is a return

⇔ E(R) = γ + β
³
E(f̃)− γ

´

with γ = 1
E(m) = Rf f̃ = Rm ⇒ CAPM

If the factor is a return, λ has the interpretation of an expected
excess return, or factor risk premium
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In a multifactor model with k factors

1. E(Ri) = γ+ λ0βi

2. λ = E(f̃)| {z }
K×1

−γ

βi|{z}
K×1

=
h
E[ff 0]

i−1E[fRi] with E(f) = 0 (demeaned factors)

Equivalence in the multifactor case (1)
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⇒ βi = cov(f, Ri) ·
h
cov(f)

i−1
where cov(f, Ri) =

h
cov(f1, R

i) cov(f2, R
i) · · ·

i

and cov(f) =

⎡⎢⎢⎢⎣
var(f1) cov(f1, f2) · · · cov(f1, fK)

cov(f1, f2) var(f2) · · · ...
... ... . . . ...

cov(f1, fK) . . . . . . var(fK)

⎤⎥⎥⎥⎦

if demeaned factors orthogonal: E(fifj) = 0 for i 6= j

βik =
cov(fk,R

i)

var(fk)

Equivalence in the multifactor case (2)
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