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Part I

The Foundational Crisis of Mathematics
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Part 1 – The Foundational Crisis of Mathematics

Georg Cantor (1845 – 1918)
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Part 1 – The Foundational Crisis of Mathematics

How it all started:

Unter einer “Menge” verstehen wir jede Zusammenfassung M
von bestimmten wohlunterschiedenen Objekten m unserer An-
schauung oder unseres Denkens (welche die Elemente von M
genannt werden) zu einem Ganzen.

A set is a gathering together into a whole of definite, distinct
objects of our perception or of our thought – which are called
elements of the set.
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Russell’s paradox

Consider the set R := {x : x /∈ x}

But then R ∈ R if and only if R /∈ R, a contradiction!

Bertrand Russell (1872 – 1970)
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Russell’s scientific oeuvre

Logic and (foundations of) mathematics, type theory, Principia
Mathematica (with A.N. Whitehead)

One of the founders of Analytical Philosophy (“against Idealism”)

Historian (historical essays)

Social critic, political activist, pacifist

Nobel Prize in Literature, 1950 (”in recognition of his varied and
significant writings in which he champions humanitarian ideals and
freedom of thought”)
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Part 1 – The Foundational Crisis of Mathematics

First reactions to the inconsictency of Cantor’s “definition”:

By Russell himself: Several type theories, e.g. ramfied type theory

Many forms of axiomatic set theories’, avoiding Russell’s paradox by
allowing only restricted forms of comprehension,

I Zermelo-Fraenkel set theory ZF or ZFC,

I von Neumann-Bernays-Gödel set theory NBG,

I Morse-Kelley set theory MK.

Systems of second or higher-order arithmetic.

But (at least) two central questions remain:

I How “safe” are these restriced formalisms?

I What is a set?
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Three traditional ways out of the crisis

Hilbert’s Proof Theory,

Brouwer’s Intuitionism,

Predicativity à la Russell and Poincaré.
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Hilbert’s doctrine

Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand
vertreiben können. (Nobody should be able to drive us out of
Paradise, the Cantor created us.)

David Hilbert (1862 – 1943)
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Hilbert’s “implicit definition” approach

In analogy to his successful approach to geometry in

Grundlagen der Geometrie (first published 1899)

Hilbert did not consider it necessary give an explicit definition of “set”.
Instead, he proposed to characterize sets implicitly via their characteristic
properties and rules regulating their interplay.

Consequence: Set up an adequate axiomatic framework whose axioms re-
flect self-evident properties – according to our present working experience
– of sets and/or numbers.

However, Hilbert did not claim that (this sort of) self-evidence guarantees
consistency.
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The program of proof theory (Beweistheorie)

The crucial steps

(1) The eventual aim is a formal system F in which all of mathematics
(or at least those parts relevant for us) can be formalized, yielding
“decidability” in the following sense: For every menaingful ϕ,

F ` ϕ or F ` ¬ϕ.

(2) Start off from a basic system F0 that is justified by finite reasoning
(some sort of finite combinatorics).

(3) And then try to develop a sequence of increasing systems

F0, F1, F2, . . . , Fk = F

such that Fi establishes the consistency of Fi+1 by finite methods.
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What was the ratioanle behind Hilbert’s approach?

(1) Formulas and proofs can be coded as finite sequences (of natural
numbers).

(2) Thus, by finite manipulations only, it should be possible to show that
proofs of (0 = 1) cannot exist.

A drawback

Gödel’s results show that this program cannot work.
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Modern proof theory

A new question

Given a fairly weak base theory B – like PRA or PA – and a strong system
T . What amount Inf of “infinity” has to be added to B such that

B + Inf proves the consistency of T?

This leads to

the notion of proof-theoretic ordinal of a formal system and the
ordinal analysis of formal theories,

classification of formal theories according to their proof-theoretic
ordinals.
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Brouwer’s dogma

Mathematics is an essentially languageless mental activity, based
on a philosophy of mind and leading to a form of constructive
mathematics.

Luitzen Egbertus Jan Brouwer (1881 – 1966)
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A non-constructive proof

Theorem

There are irrational numbers a and b such that ab is rational.

Proof.

We know from school that
√

2 is irrational. Now we distinguish the
following two cases:

(i)
√

2
√

2
is rational. Then simply set a := b :=

√
2.

(ii)
√

2
√

2
is irrational. Then we set a :=

√
2
√

2
and b :=

√
2 and

observe:

ab = (
√

2

√
2
)
√

2 =
√

2
(
√

2·
√

2)
=
√

2
2

= 2.

This finishes the proof, but this argument does not tell us whether a is
√

2 or
√

2
√

2
.
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Constructive formal systems

Some characteristc properties of constructive systems

Disjunction property:

CS ` A ∨ B ⇒ CS ` A or CS ` B.

Existence property:

CS ` ∃xA[x ] ⇒ CS ` A[t] for some term t.

Constructive systems are based on intuitionistic logic (no “tertium
non datur”).
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Brouwer-Heyting-Kolmogorov interpretation (BHK) of IL

A proof of

ϕ1 ∧ ϕ2 is a pair (π1, π2) where π1 is a proof of ϕ1 and π2 is a
proof of ϕ2;

ϕ1 ∨ ϕ2 is a pair (i , π) where i is 0 and π is a proof of ϕ1 or i is 1
and π is a proof of ϕ2;

ϕ1 → ϕ2 is an operation f that converts any proof π of ϕ1 into a
proof f (π) of ϕ2;

∀xϕ[x ] is an operation that converts any element a of the universe
into a proof f (a) of ϕ[a];

∃xϕ[x ] is a pair (a, π) where a is an element of the universe and π
a proof of ϕ[a].
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The role of contradiction ⊥

There is a specific atomic formula ⊥ that does not have a proof.

¬ϕ is defined as ϕ→ ⊥.

Hence a proof of ¬ϕ is an operation that transforms any hypothetical
proof of ϕ into a proof of a contradiction.
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Examples

Consider the formula ¬(P ∧ ¬P), i.e. (P ∧ (P → ⊥))→ ⊥).
A proof of this formula is an operation f that transforms a proof of
(P ∧ (P → ⊥)) into a proof of ⊥. Simply take

f ((a, b)) := b(a).

Consider the formula P ∨ ¬P, i.e. P ∨ (P → ⊥).
A proof of this formula is a pair (a, b) where

a = 0 and b proof of P or a = 1 and b proof of P → ⊥.

Hence, if neither P nor P → ⊥ are provable, then P ∨ ¬P is not
provable.
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Part 2

Predicativity:

Russell – Poincaré – Weyl – Schütte – Feferman
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Part 2 – Predicativity

The vicious circle principle (VCP)

A definition of an object S is impredicative if it refers to a
totality to which S belongs.

A typical example: S = { n ∈ N : (∀X ⊆ N)ϕ[X , n] }

? : m ∈ S  (∀X ⊆ N)ϕ[X ,m]  ϕ[S ,m]  m ∈ S .

Russell and Poincaré (around 1901 – 1906), later also Weyl

VPC is the essential source of inconsistencies.

The structure of the natural numbers and the principle of induction
on the natural numbers (for arbitrary properties) do not require
foundational justification; further sets have to be introduced by
purely predicative means.
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Henri Poincaré (1854 – 1912) Hermann Weyl (1885 – 1955)
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Hermann Weyl: Das Kontinuum (1918)

Subtitle: Kritische Untersuchungen über die Grundlagen der Analysis

Weyl’s foundational contributions

Prior to 1918: Only one publication on the foundations of
mathematics,

Über die Definitionen der mathematischen Grundbegriffe,

its central aim being to replace the vague idea of “defined property”
by a precisely defined notion.

1918: Das Kontinuum.

Not much later, Weyl became a convert to Brouwerian intuitionistic
constructivism.
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1 Independent of the classical versus intuitionistic question, Weyl
always (from 1917 on) was critical of the Cantor-style set-theoretic
foundations of mahematics:

The set-theoretical foundations of mathematics are a house
built to an essential extent on sand.

2 In Das Kontinuum:

I The natural number system is a basic conception; proof and definition
by induction are also basic.

I All other mathematical concepts (sets and functions) have to be
introduced by explicit definitions. There are no completed totalities.

I Definitions which single out an object from a totality by reference to
that totality are not permitted (Russell-Poincaré predicativity).

I Statements formulated in terms of these notions have a definite truth
value (true or false).
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Feferman’s formal reconstruction in
Weyl vindicated: Das Kontinuum 70 years later

K(α), basically ACA0 with some additional syntactic sugar.

K(β), third-order extension of K(α).

Explicit function and relation definition.

For every term t[~n] there is a constant function symbol F such that
F (~n) = t[~n].

For each function constant F there is a relation constant R such that
∀~n(R(~n) ↔ F (~n) = 0).

Arithmetical comprehensions. For all arithmetical ϕ[ ~m] and ψ[ ~m, n],

∃R∀ ~m(R( ~m) ↔ ϕ[ ~m]),

∀ ~m∃!nψ[ ~m, n] → ∃F∀ ~m, n(F ( ~m) = n ↔ ψ[ ~m, n])
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Number-valued recursion. For all function constants F and G , rep-
resenting functions F : Nk → N and G : Nk+2 → N, respectively,
there is a function constant H := RcN(F ,G ) representing the function
H : Nk+1 → N such that

H(0, ~m) = F ( ~m) and H(n′, ~m) = G (n, ~m,H(n, ~m)).

Set-valued recursion. For all function constants F and G , representing
functions F : Nk → P(N) and G : Nk+1 × P(N) → P(N), respectively,
there is a function constant H := Rc(F ,G ) representing the function
H : Nk+1 → P(N) such that

H(0, ~m) = F ( ~m) and H(n′, ~m) = G (n, ~m,H(n, ~m)).
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Theorem (Feferman)

K(α) is a conservative extension of PA.

Remarks:

Quantification over relations and functions are to be excluded in
defining conditions of relations and functions.

Would Weyl have accepted full induction on N? More restrictive than
Russell-Poincaré predicativity.

Feferman’s system W

A more flexible framwork for “implementing” Weyl’s conceptual ideas.
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Arithmetical Comprehension

Let L2 be the language of second order arithmetic with variables

x , y , z , . . . ranging over natural numbers,

X ,Y ,Z , . . . ranging over sets of natural numbers

and constants for all primitve recursive relations and functions. A formula
is called arithmetical iff it does not quantify ovr sets of natural numbers.

The system ACA0

Arithmetical comprehension: For all arithmetical formulas A[x ],

∃Y ∀x(x ∈ Y ↔ A[x ]).

Induction for sets:

∀X (0 ∈ X ∧ (∀y ∈ X )(y + 1 ∈ X ) → ∀y(y ∈ X )).
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Predicative Hierarchies

Typical predicative definitions

Pick an arbitrary arithmetical formula A[U, n] of second order arithmetic
and consider the operation

Pow(N) 3 S 7−→ {n ∈ N : N |= A[S , n]} ∈ Pow(N).

Now we will iterate this operation. To do so, some notation:

Given a set S ⊆ N we write

m ∈ (S)n :⇔ 〈n,m〉 ∈ S .

Assume further that ≺ is a primitive recursive linear ordering whose
field is N and such that 0 is its least element and n ⊕ 1 the successor
of n in ≺.
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Now suppose that

(S)0 = X ,

(S)n⊕1 = {m ∈ N : N |= A[(S)n,m]},

(S)` = disjoint union of (S)n with n ≺ ` if ` limit.

Then we write HA[≺,X , S ] and call S an A-hierarchy, starting with X .

Question

For which linear orderings ≺ does this definition make sense?

Obvious answer: well-orderings.

But is this really so if one wants to build up sets from below?
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Warning: The notion of well-ordering is impredicative!

Let ≺ be a (primitive recursive) linear ordering on N and X a subset of N.
≺ is a well-ordering iff every non-empty subset of N has a least element,

WO[≺] :⇔ (∀X ⊆ N)(X 6= ∅ → X has a ≺-least element).

In this context also the following notions are used:

Prog [≺,X ] :⇔ (∀m ∈ N)((∀n ≺ m)(n ∈ X ) → (m ∈ X )),

Acc[≺] :=
⋂
{X ⊆ N : Prog [≺,X ]}

= {n ∈ N : (∀X ⊂ N)(Prog [≺,X ] → n ∈ X )}.

Then: WO[≺] ⇔ N ⊆ Acc[≺].
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Central question in connection with such arithmetical hierarchies:

How far are we allowed to iterate?

Obviously, the approach of iterating predicative set formation along well-
orderings involves in an essential way the impredicative notion of being
a well-ordered relation, even if one restrictes oneself to recursive well-
orderings.

The proof-theoretic shift

A step away from the semantic notion of well-ordered relation to
predicatively provable well-orderings.
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The proof-theoretic shift

Solomon Feferman (1928 – 2016)) Kurt Schütte (1909 – 1998)
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Feferman and Schütte: The limit of predicativity

A boot-strap method

(i) We start off from a predicatively accepted ground theory, say ACA0.

(ii) Then we systematically extend our framework: Whenever we have
proved that a primitive recursive linear ordering is a well-ordering, we
are allowed to iterate arithmetical comprehension along this
well-ordering and to carry through bar induction along this
well-ordering.

Originally done by Feferman and Schütte in the context of systems of
ramified analysis or/and progressions of theories.
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More modern terminology: the theory AUT (Π0
∞)

Recall that for any formula B[n] of second order arithmetic,

TI [≺,B] :⇔ Prog [≺,B] → ∀nB[n].

AUT (Π0
∞) := ACA0 +

WO[≺]

∀X∃Y HA[≺,X ,Y ]
+

WO[≺]

TI [≺,B]
,

where ≺ is a primitive recursive linear ordering, A[U, n] an arithmetical
formula, and B[n] an arbitrary formula.

What is the proof-theoretic strength of AUT (Π0
∞)?
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Measuring the proof-theoretic strength of a theory

Proof-theoretic ordinal

(1) The ordinal α is provable in the theory T iff there exists a
primitive-recursive well-ordering ≺ of order-type α such that
T `WO[≺].

(2) The proof-theoretic ordinal of T is the least ordinal that is not
provable in T ; it is often denoted by |T |.

Every formal theory has a countable proof-theoretic ordinal. The proof-
theoretic ordinals provide a linear ordering of formal systems.
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The Veblen functions ϕα

Definition

H := {ωξ : ξ ∈ On} the class of additive principal numbers;

Cr(α) := {β ∈ H : (∀ξ < α)(ϕξ(β) = β)};

ϕα : On→ On enumerates the set Cr(α).

Clearly,

ϕ0(α) = ωα,

ϕ1(α) = εα (fixed points of λξ.ωξ).
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Some properties of thes functions

1 ϕα1(β1) < ϕα2(β2) iff one of the following:

(i) α1 < α2 and β1 < ϕα2 (β2),

(ii) α1 = α2 and β1 < β2,

(iii) α2 < α1 and β2 < ϕα1 (β1).

2 α ≤ ϕα(0).

3 β ≤ ϕα(β).

Convention: In the following we write ϕαβ for ϕα(β).

Definition

Γ0 := least α such that α = ϕα0.
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General assumption

In the following we shall use a natural recursive well-ordering ≺ of
the natural numbers for a segment of the (recursive) ordinals – based
on the Veblen functions – which goes beyond Γ0.

To each α in the segment we have a number a in the field of ≺
whose order-type is α.

We write x ≺a y for x ≺ y ∧ y ≺ a.

Definitionof an auxiliary theory

Π0
∞-CA<α := ACA0 + WO[≺a] + ∀X∃YHA[≺a,X ,Y ],

where a is of order type smaller that α and A[X , n] arithmetical.

G. Jäger (Bern University) Foundational Crisis, Explicit Mathematics July 2019 39 / 45



Part 2 – Predicativity

Main Lemma

For all α and all b of order-type less than ϕα0,

Π0
∞-CA<α ` WO[≺b].

Theorem (Lower bound)

Γ0 ≤ |AUT (Π0
∞)|.

Proof.

Consider the sequence α0 := ω, α1 := ϕ10, and and αn+1 := ϕαn0 for
n ≥ 1. Then we have

sup(αn : n ∈ N) = Γ0 and Π0
∞-CA<αn ` WO[< αn+1],

yielding our assertion.
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Theorem (Upper bound)

Proof.

By cut elimination.

Corollary

The proof-theoretic ordinal of AUT (Π0
∞) is the ordinal Γ0, and

LΓ0 ∩ Pow(N) is its least standard model.
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Reverse Mathematics (Friedman, Simpson, et al.)

Five central subsystems of second order arithmetic – The Big Five

RCA0 − WKL0 − ACA0 − ATR0 − Π1
1-CA0

The principle (ATR) of arithmetical transfinite recursion

∀R(WO[R] → ∃X HA[R,X ]),

where A[X , n] is an arbitrary arithmetical formula which may contain
additional parameters.

ATR0 := ACA0 + (ATR)
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Predicative reducibility of ATR0

Theorem (Friedman, McAloon, Simpson, J)

1 The proof-theoretic ordinal of ATR0 is the ordinal Γ0.

2 ATR0 does not have a minimum ω-model or β-model, but HYP is
the intersection of all ω-models of ATR0.

3 Γε0 is the proof-theoretic ordinal of

ATR := ATR0 + induction on N for all L2 formulas

First consequences:

(1) AUT (Π0
∞) and ATR0 are proof-theoretically equivalent but

conceptually very different.

(2) And is there a big conceptual difference between ATR0 and ATR?
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Equivalences

Fixed points of positive arithmetical clauses (AFP)

∃X∀n(n ∈ X ↔ A[X+, n]),

where A[X+, n] is an arbitrary X -positive arithmetical formula which may
contain additional parameters.

Comparability of well-orderings (CWO)

∀X ,Y (WO[X ] ∧ WO[Y ] → (|X | ≤ |Y | ∨ |Y | ≤ |X |))

Π1
1 reduction (Π1

1-Red)

∀n(A[n]→ B[n]) → ∃X ({n : A[n]} ⊆ X ⊆ {n : B[n]}),

where A[n] and B[n] are arbitrary Σ1
1 and Π1

1 formulas, respectively.
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Theorem (Avigad, Friedman, Simpson)

(ATR), (AFP), (CWO), and (Π1
1-Red) are pairwise equivalent over ACA0.
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