
Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

From Proof Theory to Machine Learning

Klaus Mainzer

Emeritus of Excellence

Technical University of Munich

Senior Professor

Eberhard Karls University of Tübingen

Challenges of Responsible Software and AI

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

In his “mathesis universalis” G. W.
Leibniz (1646-1716) demanded the

theory of a universal formal
language (lingua universalis) to
represent human thinking by calculation
procedures (algorithms) and to
implement them on mechanical
calculating machines.

Mathematical theorems should be verified by “machines” (ad abacos). But also

all kinds of practical problems should be solved by mechanical procedures
for benefits of mankind.

G. W. Leibniz: Mathesis Universalis -
Verification by Algorithms

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Trust & Provability in Mathematics and Society

Nowadays, mathematical arguments often have become so complicated that a

single mathematician rarely can examine them in detail: They trust in the expertise

of their colleagues. The situation is similar to modern industrial labor world:

According to the French sociologist Emile Durkheim (1858-1917), modern

industrial production is so complex that it must be organized on the principle of

division of labor and trust in expertise, but nobody has the total survey.

On the background of critical flaws overlooked by the scientific

community, Vladimir Voevodsky (1966-2017, IAS Princeton, Fields

medal) no longer trusted in the principle of “job-sharing”. Humans

could not keep up with the ever-increasing complexity of mathematics.

Are computers the only solution? Thus, his foundational program of

univalent mathematics is inspired by the idea of a proof-checking

software to guarantee trust & verification in mathematics.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Incorrectness of Programs leads to Catastrophies

Killed by a machine by massive overdoses of

radiation - Therac-25 1985-87

Crash of Ariane 5 by

software failure 1996

Dramatic accidents highlight the dangers of safety-critical systems

without software verification .

Software failure of Boing 737 Max 2019

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

2. Foundations of Constructive Proof Theory

3. From Constructive Proof Theory to Proof Assistants

4. Verification in Machine Learning

5. Verification and Trust in Mathematics, Computer

Science, and Society

1. Introduction: Challenges of Artificial Intelligence

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

1. Introduction: Challenges of Artifical Intelligence

1.1 From Digital Computer to AI

1.2 Machine Learning and Neural Nets

1.3 Machine Learning and Internet of Things

1.4 From Certification of AI-Programs to Responsible AI

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

1.1 From Digital Computers to AI

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Turing Machine and Computing

Every algorithm (computer

program) can be simulated

by a Turing machine

(Church‘s thesis).

Alan M. Turing

(1912-1954)
∙ ∙ ∙

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

What is Machine Intelligence ?

Turing Test

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Working Definition

of Artificial Intelligence

A system is called intelligent iff it can solve complex problems

autonomously and efficiently.

The degree of intelligence depends on the degree of the

autonomy of systems, the degree of complexity of problems

and the degree of efficiency of problem solving procedures.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

WATSON is a semantic search

machine (IBM) which can

understand questions and

answers in natural language by

parallel computing of phrases

with linguistic algorithms and

probabilities of answers in huge

data bases.

AI defeats Humans in a Knowledge Quiz

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

AI learns faster than Humans

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

1.2 Machine Learning and Neural Networks

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Neural Networks and Learning Algorithms

Feedforward with one

synaptic layer

Feedforward with two synaptic

layers (Hidden Units)

Learning algorithms:

• supervised

• non-supervised

• reinforcement

• deep learning

Feedback of recurrent

neural network (RNN)

Neural networks are complex systems of firing and non-firing neurons with topologies

like brains. There is no central processor (‚mother cell‘), but a self-organizing

information flow in cell-assemblies according to rules of synaptic interaction (‚synaptic

plasticity‘).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Deep learning relates to many-layered

neural nets identifying patterns and

profiles with increasing complexity (e.g.

human faces). Huge mass of data can be

classified into categories.

Deep Learning: How
Machines learn to learn

In „Google Brain “ (Mount View CA 2014), 1

million neurons and 1 billion connections

(synapses) can be simulated. Big Data

technology enables neuronal nets with many

(recurrent) layers which were only theoretically

possible in 1980.

Spektrum der Wissenschaft

Layer 1: Net

identifies different

pixels.

Layer 2: Net learns

to identify simple

forms and shapes.

Layer 3: Net learns to

identify more complex

forms and objects (e.g.

partial faces)

Layer 4: Net learns to

identify whole human

faces.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Machine Learning detects Elementary Particles

The Standard Model of particle physics

predicts that the Higgs boson H decays to two

bottom quarks b, in association with a Z

boson decaying to an electron 𝒆− and an

antielectron 𝒆+.

„The superb LHC (Large Hadron Collider)

performance and modern machine learning

techniques allowed us to identify the coupling

of the Higgs boson to the heaviest fermions –

explaining why there is mass in the universe.“

CERN 28 August 2018

This event must be identified among billions of data

generated by proton-proton collisions (Big Data).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Pattern Recognition and Classification in Elementary Particle Physics

Signal (s) events (e.g., Higgs boson decay

H→ 𝝉+𝝉−) must be distinguished from

background (b) events.

Vector 𝐱 = (𝒙𝟏, … , 𝒙𝒏) with 𝒏 quantities of an event (e.g., 𝒙𝟏momentum of a lepton) follows a joint

probability density function with 𝒇(𝐱|s) for signal events and 𝒇(𝐱|b) for background events. (The density

for signal and background events are indicated by the red dots and blue triangles, resp.)

Pattern („event“) selection could be based, e.g., on cuts (a), linear boundaries (b), and nonlinear

boundaries (c). An optimal boundary is provably obtained by using contours of constant likelihood ratio

𝛌 𝐱 =
𝒇(𝐱|𝐬)

𝒇(𝐱|𝐛)
. As probability densities are in general not known, 𝛌 𝐱 is not computable (but finite samples

with training data by Monte Carlo methods).

Machine learning algorithms should find a function 𝒚(𝐱) that best approximates

the likelihood ratio 𝛌 𝐱 for pattern selection of the signal event.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Machine Learning enables Medical Diagnosis

Machine learning (ML) supports

pattern recognition in complex data:

In tissue sections, normal lymph

nodes are distinguished from

cancer cells (e.g. breast cancer).

With machine learning, the pathology

in Havard improved the accuracy from

96% to 99,5 %. IBM Watson for

Genomics confirmed the diagnosis of

physicians in 1018 cases with more

than 99% and discovered additional

genomic events with great significance.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Pattern Formation in the Human Brain

The brain is a complex system of billions of firing neurons. Under
appropriate conditions, neural clusters fire synchronously and organize
themselves in macroscopic patterns, corresponding to perceptions,
emotions, thoughts, and consciousness (“Brain Reading”).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Simulation of Neural Cell Assemblies
The input of a neuron can be

simulated in FitzHugh-Naguma

equations (simplification of Hodgkin-

Huxley equations) by electrical

current. The degree of excitation is

denoted with voltage variable 𝑽𝟏, the

recovery by variable 𝑽𝟐.

The location (j, k) = (50, 50) is situated „at the edge of chaos“,

where local active and stable cells become unstable and

chaotic by dissipative coupling at time t = 211 (chaos attrator).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

The Computational Brain and Neuromorphic Computers

I external axon membrane current

INa sodium ion current

IK potassium ion current

IL leakage current

E membrane capacitor voltage

ENa sodium ion battery voltage

EK potassium ion battery voltage

EL leakage voltage

𝑮𝑵𝒂 sodium ion gate (memristor)

𝑮𝑲 potassium ion gate (memristor)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Parameter Explosion in Computational Brain Models

Neural networks and learning

algorithms are mathematical causal

models of brain dynamics (K.

Mainzer/L. Chua 2013).

But, the parameter explosion

(𝟏𝟎𝟏𝟐neurons with 𝟏𝟎𝟏𝟓synapses)

generates a black box of Big Data

which needs explanation of causal

interaction between brain regions

(e.g., for medical diagnosis,

psychotherapies, legal and ethical

questions of accountability and

responsibility).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Machine Learning and Autonomous Cars

In the case of collision, the connections between the active nodes of proximity and

collision layer are reinforced by Hebbean learning: A behavioral pattern emerges!

A simple robot with diverse sensors (e.g., proximity, light, collision) and motor

equipment can generate complex behavior by a self-organizing neural network:

In the case of collision, the connections between the active nodes of proximity and

collision layer are reinforced by Hebbean learning: A behavioral pattern emerges!

A simple robot with diverse sensors (e.g., proximity, light, collision) and motor

equipment can generate complex behavior by a self-organizing neural network:

Pfeifer/Scheier 1999

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Explosion of Parameters and Big

Data generate a Black Box:

Who should be responsible

when there is an accident

involving autonomous

vehicles (ethical and legal

challenges)?

How many real world

accidents are required to

teach machine-learning

based autonomous

vehicles?

We need provability, explainability and accountability of

neural networks with causal models !

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Blindness of Machine Learning and Big Data

Without explanation, big neural networks with large statistical training data (Big Data) are

black boxes. Statistical data correlations do not replace explanations of causes and

effects. Their evaluation needs causal modeling for answering questions of

accountability and responsibility.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Causal Modeling and Machine Learning

causal model

probabilistic model observations

& outcomes

observations &

outcomes incl.

changes &

interventions

subsumes subsume

causal learning

causal reasoning

statistical learning

statistical reasoning
Peters et al. 2017, p. 6

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

1.3 Machine Learning and Internet of Things

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

From the Internet to the Internet of Things

Classical

Internet is

separated from

physical

infrastructures.

Internet of Things observes its physical environment by

sensors, process their information, and influence their

environment with actuators according to communication

devices.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Mobility as Intelligent

Infrastructure

Networks of mobility with cloud-based

applications support safe and

autonomous driving.

Cars become mobile

systems with sensors in a

global net with swarm

intelligence!

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Smart Cities and Infrastructures
Global urbanization is a challenge of 21st century.

Smart cities become self-organizing complex

sytems by intelligent technologies and efficient

infrastructures.

Different domains (e.g., civil service,

mobility, energy- and health system)

must be integrated by smart

technologies.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Smart Grid as Intelligent Infrastructures

Many energy providers

of central generators

and decentralized

renewable energy

resources lead to power

delivery networks with

increasing complexity.

Smart grids mean the integration of the power delivery infrastructure with a unified

communication and control network. It is a complex information, supply and delivery

system, minimizing losses, self-healing and self-organizing.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Intelligent Infrastructure of Industry
The 1st industrial
revolution introduced the
steam engine.

The 2nd industrial
revolution means mass
production, divison of
labour, and working on
the assembly line.

The 3rd industrial
revolution additionally
applied industrial robots

for further automation of
production.

The 4th industrial revolution changes production on the basis of internet of
Things (IoT). Production, marketing, and trade are transformed into a more or less
self-organizing complex system.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

1.4 From Certification of AI-Programs

to Responsible AI

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Correctness of Certified Programs with Proof Assistants

Implementation

Requirements

Design

Verification

Maintenance

„Waterfall“

of development

in software engineering

A program is correct

(„certified“) if it can be

verified to follow a given

specification.

A proof assistant proves the correctness of a computer

program in a consistent formalism like an exact proof in

mathematics (e.g., Coq, Agda, MinLog, Isabelle).

Therefore, proof assistants are the best formal

verification of correctness for certified programs.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Degrees of Certification in

Software Testing Research

Ad-hoc

testing

Anti-model-based

testing

Model-based

testing

Theorem

proving

Complexity

Accuracy & Security

We must aim at increasing accuracy, security, and trust in software in

spite of increasing complexity of civil and industrial applications, but

w.r.t. to costs of testing (e.g.,utility functions for trade-off time of

delivery vs. market value, cost/effectiveness ratio of availability)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Certified AI-Programs

and Causal Learning

Statistical machine learning works,

but we can’t understand the underlying

reasoning.

Machine learning technique is akin to testing,

but it is not enough for safety-critical systems.

⟹ Combination of causal learning and

certified AI-programs

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

2. Foundations of Constructive Proof Theory

2.1 What are Constructive Proofs?

2.2 Basics of Constructive, Intuitionistic, and

Classical Mathematics

2.3 Basics of Reverse Mathematics

2.4 Basics of Intuitionistic Type Theory

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

2.1 What are Constructive Proofs ?

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Constructivity – Origin and Practice of Mathematics

In Euclidean geometry, proofs were supported by

constructions of figures with compass and ruler rooting in

the practice of geodetic and astronomic measurements.

In Cartesian geometry, geometric forms were replaced by

coordinates, algebraic terms, and equations.

Thus, a proof of existence means constructing a

geometric figure or algebraic solution in question.

But, what about „non-constructive“ proofs, in

which one proves that something exists by

assuming it does not exist, and then deriving a

logical contradiction, without showing a way to

construct the thing in question?

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Computability – Origin and Practice of Mathematics

Geometric constructing and numeric computing

are the practical roots of mathematics. Since

antiquity, algorithms were supported by the

abacus and calculating boards. The intended

practitioners were businessmen and craftsmen.

Since the age of mechanization, computing was

supported by calculating machines (e.g., Leibniz,

Pascal) up to program-controlled computers (e.g.,

Babbage) in the age of industrialization.

A proof of existence means an

algorithmic solution realizable by a

computer.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Turing Machine and Computing

Every algorithm (computer

program) can be simulated

by a Turing machine

(Church‘s thesis).

Alan M. Turing

(1912-1954)
∙ ∙ ∙

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

A number-theoretical function f is computable

(according to Church’s thesis) if and only if (iff) f

is computable by a Turing machine TM.

Computability of Functions

i.e. there is a TM-program stopping for numerical

inputs x1, …, xn as arguments of a function f (e.g.,

x1=3, x2 = 5 of the additional function f (x1, x2) = x1

+ x2) after finitely many steps and printing the

functional value f (x1, …, xn)

(e.g. f (3, 5) = 8).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Computability and Decidability

e.g.: The property that a natural number is even or not can be decided by

division with 2.

Therefore, Leibniz’ ars iudicandi is made precise by Turing machines

resp. computable functions (according to Church’s thesis by µ-

recursive functions).

For a subset M of natural numbers, the characteristic function is

defined by

A numerical set M (resp. the corresponding

property or predicate) is decidable iff its

characteristic function fM is computable.

Mnotx

Mx
xfM

 ofelement if,0

 ofelement if,1

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Computability and Enumerability

e.g.: The set of all even numbers is enumerable by

the computable function f (n) = 2n with

f (1) = 2, f (2) = 4, f (3) = 6, … for n = 1, 2, 3, …

How can solutions of problems (Leibniz’ ars

inveniendi) be found by machines?

A numerical set M (resp. the corresponding property

or predicate) is enumerable iff there is a computable

function f, generating its elements f (1)=x1, f (2)=x2,

…successively for all elements x1, x2, … of M.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Turing’s Non-Computable Real Number

By definition, this real number cannot be found in the list of
computable numbers. Therefore, it is not computable.

Real numbers like, e.g., π = 3,1415926 … seem to

be random, but they can be computed by an

algorithm (Turing machine) step by step. Every

instruction of a Turing machine and the whole

program can uniquely be coded by a natural

number. We consider a list p1, p2, p3, … of

machine codes ordered along the sequence of

their size.

P1 - . z11 z12 z13 z14 z15 z16

P2 - . z21 z22 z23 z24 z25

P3 - . z31 z32 z33 z34 z35 z36

P4

P5 - . z51 z52 z53 z54 z55 z56

Behind the machine codes, we note the development of the decimal fraction of
the real number computed by the corresponding machine or the line is empty.
We define a new development of decimal fraction consisting of the
(underlined) diagonal values of the list which we changed (e.g., by addition of
1):

.... *

55

*

33

*

22

*

11
zzzz

⋮⋮

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

stop ?

Undecidability and Turing’s Halting Problem

Consequence : There is no procedure which can check arbitrary computer
programs for infinite slopes.

In principle, there is no general

procedure deciding if an

arbitrary Turing machine stops

for an arbitrary input after

finitely many steps or not

(halting problem of Turing

machines).

Proof: Assumed the halting problem is decidable, then we can confirm if the n-th computer
program (n = 1, 2, …) computes, stops, and prints a n-th integer behind the decimal point in
finitely many steps. In this case, a real number which definitely cannot be contained in the
list of computable real numbers must be computable.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Incompleteness and Turing‘s Halting Problem

According to Turing, incompleteness

directly follows from the undecidability of

the Halting problem: If there is a complete

formal system with formal proofs for all

mathematical truths, then there is a

procedure of deciding if a computer

program will stop or not.

We run through all possible proofs until a proof is

found that the program stops or a proof is found, that

it never will stop. In that case, it could be decided if

the computer program would stop after finitely many

steps or not – contrary to the undecidability of the

Halting problem.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Hilbert’s 10th problem and Turing’s Halting problem

Algebraic equations which involve only

multiplication, addition and exponentiation of whole

numbers, are named after the third-century Greak

mathematican Diophantos of Alexandria. In 1900,

David Hilbert asked for an algorithm which will

decide whether a diophantine equation has a

solution (10th problem of his famous list of 23

problems).

In 1970, J.V. Matijasevic (V.A. Steklov Institute, St. Petersburg) proved that

Hilbert‘s 10th problem is equivalent to Turing‘s Halting problem and,

consequently, not decidable. (They used results of M. Davis, H. Putnam and J.

Robinson 1961).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Matijasevic‘s Proof
According to Lagrange’s representation of natural numbers as sum of four

quadratic whole numbers, Hilbert’s 10th problem can be reduced to the existence

of solutions in natural numbers.

A predicate 𝑫 is called Diophantine if it is definable by predicates

𝒙 + 𝒚 = 𝒛, 𝒙 ∙ 𝒚 = 𝒛, 𝒙𝒚 = 𝒛 and logical operations ⋁, ⋀, ∃:

𝑫 𝒙𝟏, … , 𝒙𝒏 ↔ ∃𝒚𝟏, … , 𝒚𝒓 𝑷(𝒙𝟏, … , 𝒙𝒏, 𝒚𝟏, … , 𝒚𝒓) with 𝑷 recursive

↔ ∃𝒚𝟏, … , 𝒚𝒓 𝒇𝒑(𝒙𝟏, … , 𝒙𝒏, 𝒚𝟏, … , 𝒚𝒓) = 1 with computable

characteristic function 𝒇𝒑 as polynom.

Obviously, every Diophantine predicate is enumerable. It can be proven that

every enumerable predicate is Diophantine. (Matijasevic and Cudnovskij

used the Fibonacci sequence to define an appropriate diophantine predicate.)

The Halting problem can be represented by an enumerable, but not

decidable predicate. Therefore, the corresponding Diophantine

predicate is also not decidable.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Intuitionistic Philosophy of Creative Subject
According to Brouwer, mathematical truth is founded by

construction of a creative subject . Following Kant,

mathematical construction can only be realized in a finite

process, step by step in time like counting in arithmetic.

Thus, for Brouwer, mathematical truth depends on finite

stages of realization in time by a creative subject (in a

definition of Kripke and Kreisel 1967) :

The creative subject has a proof of proposition A at stage m

(σ ⊢𝒎 𝑨) iff

(CS1) For any proposition A , σ ⊢𝒎 𝑨 is a decidable function of A , i.e.

∀𝒙 ∈ ℕ (σ ⊢𝒙 𝑨 ˅ ¬σ ⊢𝒙 𝑨)

(CS2) ∀𝒙, 𝒚 ∈ ℕ (σ ⊢𝒙 𝑨 → (σ ⊢𝒙+𝒚 𝑨)

(CS3) ∃𝒙 ∈ ℕ (σ ⊢𝒙 𝑨) ↔ 𝑨

A weaker version of CS3 is G. Kreisel’s “Axiom of Christian Charity” (1967)

(CC) ¬∃𝒙 ∈ ℕ σ ⊢𝒙 𝑨 → ¬𝑨.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Intuitionistic Sets of Spreads and Fans

A spread is the intuitionistic analogue of a set,

because infinite objects are considered as ever

growing and never finished.

Therefore, a spread is a countably branching tree

labelled with natural numbers or other finite objects

and containing only infinite paths.

A fan is a finitely branching spread.

The only available information about a lawless sequence at any stage is the

initial segment of the sequence created thus far.

.... … … …

.... … … …

.... … … … ……………

.... ………

....… ... …

.... … … … ……

A branch is an intuitionistic choice sequence, i.e. an

infinite sequence of numbers (or finite objects)

created step by step by a law (algorithm) or without

law (e.g., coin). A lawless sequence is ever

unfinished.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Fan Principle and Fan Theorem

∀𝜶 ∈ 𝑻 ∃𝒙 𝑨 ഥ𝜶 𝒙 → ∃𝒛 ∀𝜶 ∈ 𝑻 ∃𝒚 ≤ 𝒛 𝑨 ഥ𝜶 𝒚

with 𝜶 choice sequences and ഥ𝜶(𝒙) the initial segment of 𝜶 with

the first 𝒙 elements.

The fan principle states that for every fan T in which every branch at some point

satisfies a property A, there is a uniform bound on the depth at which this property is

met. Such a property is called a bar of T.

Proof: Fan Principle

Every continuous real function on a closed interval is

uniformly continuous.

FAN

Principle:

FAN

Theorem:

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Brouwer-Heyting-Kolmogorov (BHK) Proof Interpretation of
the Intuitionistic Logical Constants

i. There is no proof for ⊥.

ii. A proof of 𝑨 ∧ 𝑩 is a pair (q,r) of proofs, where q is a proof of A and r is a

proof of B.

iii. A proof of 𝑨 ∨ 𝑩 is a pair of (n,q) consisting of an integer n and a proof q

which proves A if 𝒏 = 𝟎 and resp. B if 𝒏 ≠ 𝟎.

iv. A proof p of 𝑨 → 𝑩 is a construction which transforms any hypothetical

proof q of A into a proof p(q) of B.

v. A proof p of ∀𝒙𝑨(𝒙) is a construction which produces for every

construction 𝒄𝒅 of an element d of the domain a proof 𝒑(𝒄𝒅) of A(d).

vi. A proof of ∃𝒙𝑨(𝒙) is a pair (𝒄𝒅, 𝒒), where 𝒄𝒅 is the construction of an

element d of the domain and q is a proof of A(d).

BHK interpretation explains the meaning of logical constants in terms of

proof constructions : (Heyting 1934; Kolmogorov 1932; Kohlenbach 2008)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Computable Functionals and Constructive Proofs

The disadvantage of the BHK-interpretation is the unexplained notion of construction

resp. constructive proof. K. Gödel wanted that constructive proofs of existential

theorems provide explicit realizers. Therefore, he replaced the notion of constructive

proof by the more definite and less abstract concept of computable functionals of finite

type.

Following Gödel, every formula A is assigned with the existential formula ∃𝒙𝑨𝟏(𝒙) with

𝑨𝟏 𝒙 ∃-free. Then, a realizing term r with 𝑨𝟏 𝒓 must be extracted from a derivation of

A (‚Dialectica-Interpretation ‘ 1958)

But Gödel‘s proof interpretation is largely independent of a precise definition of

computable functionals : One only needs certain basic functionals as computable

(e.g., primitive recursion in finite types) and their closure under composition.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

2.2 Basics of Constructive, Classical, and

Intuitionistic Mathematics

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Constructive Mathematics with Classical Logic
In “Differential and Integral” (1964), Lorenzen used Weyl's technique in “Das Kontinuum”

(1918) to develop a predicative analysis, which can reconstruct classical analysis with the

principle of excluded middle as far as analysis is constructively founded.

H. Weyl (1885-1955)

P. Lorenzen (1915-1994)

The set of natural numbers is given by inductive construction of terms /, //, … .

Constructive sets and functions are abstractions of inductively defined terms (e.g.

variables 𝒔, 𝒕, … , 𝒔 + 𝒕, 𝒔 ∙ 𝒕) resp. formulas (e.g., 𝒔𝟐 > 𝟏, ∃𝒓 𝒓 < 𝒔):

A set 𝑴 is inductively defined by the equivalences

𝟏, 𝒙𝟏, … , 𝒙𝒎 ∈ 𝑴 ↔ 𝑨 𝒙𝟏, … , 𝒙𝒎
𝒏 + 𝟏, 𝒙𝟏, … , 𝒙𝒎 ∈ 𝑴 ↔ 𝑩𝑴 𝒏 + 𝟏, 𝒙𝟏, … , 𝒙𝒎

if the formula 𝑨 𝒙𝟏, … , 𝒙𝒎 does not contain the symbol 𝑴 and the

formula 𝑩𝑴 𝒏 + 𝟏, 𝒙𝟏, … , 𝒙𝒎 may contain partial formulas

𝒔, 𝒕𝟏, … , 𝒕𝒎 ∈ 𝑴 (with terms 𝒔, 𝒕𝟏, … , 𝒕𝒎), but only such that 𝐬 < 𝒏 + 𝟏 .

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Induction Principle of Predicative Analysis

𝒏, 𝒙𝟏, … , 𝒙𝒎 ∈ 𝑴 ↔ 𝑨𝑴 𝒏, 𝒙𝟏, … , 𝒙𝒎

with formula 𝑨𝑴 𝒏, 𝒙𝟏, … , 𝒙𝒎 which only contains symbol 𝑴 in partial formulas

𝒔, 𝒕𝟏, … , 𝒕𝒎 ∈ 𝑴 (with terms 𝒔, 𝒕𝟏, … , 𝒕𝒎), but only such that 𝒔 < 𝒏 .

The induction definition can be contracted in a comprehension scheme:

Starting with the construction of natural numbers, further constructive objects are generated by

inductive construction of terms and formulas about already constructed objects:

Example: Real numbers

Definition (Equivalence of Cauchy sequences): 𝒓𝒏 ~ 𝒔𝒏 ≡ 𝒓𝒏 − 𝒔𝒏 null sequence

If 𝑨(𝒕𝒏) is an invariant formula about 𝒕𝒏 with

𝒓𝒏 ~ 𝒔𝒏 ∧ 𝑨(𝒓𝒏) → 𝑨(𝒔𝒏), then write 𝑨(lim
𝒏→∞

𝒕𝒏)

with term lim
𝒏→∞

𝒕𝒏 of real numbers.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Constructive Mathematics with Intuitionistic Logic

E. Bishop (1928-1983)

In Foundations of Constructive Analysis (1967), Bishop could prove most of the

important theorems of real analysis with constructive methods without contradicting

classical mathematics as Brouwer‘s intuitionistic mathematics did.

Natural numbers are given as fundamental construction of the

human mind (Kant, Kronecker, Brouwer).

• A constructive set 𝑴 is defined by a rule to construct an element of 𝑴 in

finite steps, by a method to prove that two elements of 𝑴 are equal, and a

proof that this equality =𝑴 is an equivalence relation.

• A constructive function 𝒇:𝑴 → 𝑵 is a rule which associates an element

𝒃 ≡ 𝒇 𝒂 of a set 𝑵 to each element 𝒂 of a set 𝑴, in such a way that 𝒃 can

be found by a finite routine when 𝒂 is given. Equal elements of 𝑵 must be

associated to equal elements of 𝑴.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

The Real Number System of Constructive Analysis

In Bishop‘s constructive analysis, rationals are given as expressions 𝒑/𝒒 with integers 𝒑,𝒒
and 𝒒 ≠ 𝟎.A sequence of rational numbers is a rule which associates to each positive integer

𝒏 a rational number 𝒓𝒏.

A sequence (𝒓𝒏) of rational numbers is regular iff

|𝒓𝒎 − 𝒓𝒏| ≤ 𝒎−𝟏 + 𝒏−𝟏 for all positive integers 𝒎,𝒏.

A real number is a regular sequence of rational numbers.

Two real numbers 𝒙 ≡ (𝒓𝒏) and 𝐲 ≡ (𝒔𝒏) are equal iff

|𝒓𝒏 − 𝒔𝒏| ≤ 𝟐𝒏−𝟏 for all positive integers 𝒏.

Notice that Bishop‘s constructive real numbers are no equivalence classes,

but identified with regular sequences of rational numbers.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Bishop‘s Influence on Proof Systems

In 1985, Robert Constable acknowledged the influence of Bishop on the

design of NuPrl designed to „execute constructive proofs“ by extracting

programs from proofs:

„Shortly after we had executed our first constructive

proof, I wrote to Bishop informing him of what I took to

be an historic event. I told him how much his writings and

his encouragement had meant to us on the long road to

this accomplishment. I was crushed to receive my letter

back unopened, marked „recipient deceased“.“

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

2.3 Basics of Reverse Mathematics

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Reverse Mathematics in Antiquity

Since Euclid (Mid-4th century – Mid 3rd century BC),

axiomatic mathematics has started with axioms to

deduce a theorem. But the “forward ” procedure from

axioms to theorems is not always obvious. How can we

find appropriate axioms for a proof starting with a given

theorem in a „backward “ (reverse) procedure ?

Pappos of Alexandria (290-350 AC) called the “forward ”

procedure as “synthesis” with respect to Euclid’s

logical deductions from axioms of geometry and

geometric constructions (Greek: “synthesis ”) of

corresponding figures. The reverse search procedure of

axioms for a given theorem was called “analysis ” with

respect to decomposing a theorem in its necessary

and sufficient conditions and the decomposition of the

corresponding figure in its building blocks.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Classical Reverse Mathematics

Reverse mathematics is a modern research program to determine the minimal

axiomatic system required to prove theorems. In general, it is not possible to

start from a theorem 𝝉 to prove a whole axiomatic subsystem 𝑻𝟏. A weak base

theory 𝑻𝟐 is required to supplement 𝝉:

If 𝑻𝟐 + 𝝉 can prove 𝑻𝟏, this proof is called a reversal.

If 𝑻𝟏 proves 𝝉 and 𝑻𝟐 + 𝝉 is a reversal, then 𝑻𝟏 and 𝝉 are said to be

equivalent over 𝑻𝟐.

Reverse mathematics allows to determine the proof-theoretic strength resp.

complexity of theorems by classifying them with respect to equivalent

theorems and proofs. Many theorems of classical mathematics can be

classified by subsystems of second-order arithmetic ℤ𝟐 with variables of

natural numbers and variables of sets of natural numbers.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

The Subsystems of Second-Order Arithmetics 𝓩𝟐

Arithmetical formulas can be classified according to the arithmetical hierarchy

σ𝒏
𝟎, ς𝒏

𝟎, and ∆𝒏
𝟎. We can distinguish σ𝒏

𝟎, ς𝒏
𝟎, and ∆𝒏

𝟎- schemas of induction and

comprehension. That is also possible for the analytical hierarchy σ𝒏
𝟏, ς𝒏

𝟏, and ∆𝒏
𝟏

A structure of an (arithmetical) set M defines its variables and non-logical

symbols (constants, operations) satisfying relations between variables : e.g.,

ℚ = (𝑴,+ℚ, −ℚ, ∙ℚ, 𝟎ℚ, 𝑰ℚ, <ℚ, =ℚ) structure of rational numbers.

A model of a set of (arithmetical) formulas is a structure with the same non-

logical symbols and all formulas in the set are in the model as well.

The arithmetical and analytical hierarchies yield classifications of axiomatic

subsystems of 𝓩𝟐 with increasing proof-theoretic power and corresponding

structures of 𝓩𝟐-models.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

𝓩𝟐- Subsystems and Philosophical Research Programs

𝑹𝑪𝑨𝟎: Turing’s computability

𝑾𝑲𝑳𝟎: Hilbert’s finitistic reductionism

𝑨𝑪𝑨𝟎: Weyl’s & Lorenzen’s predicativity

𝑨𝑻𝑹𝟎: Friedman’s & Simpson’s predicative reductionism

ς𝟏
𝟏−𝑪𝑨𝟎: impredicativity

T is a theory of hyperarithmetic analysis iff

i. its 𝝎-models are closed under joins and hyperarithmetic reducibility

ii. it holds in 𝐇𝐘𝐏(𝒙) for all x

The five most commonly used 𝓩𝟐 - subsystems in reverse mathematics correspond to

philosophical programs in foundations of mathematics with increasing proof-

theoretic power starting with the weakest 𝑹𝑪𝑨𝟎-subsystem .

∆𝟏
𝟏 − 𝑪𝑨𝟎 yields systems of hyperarithmetic analysis (Feferman et al.) with ∆𝟏

𝟏-

predicativism:

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Constructive Reverse Mathematics
Classical reverse mathematics (Friedmann/Simpson) uses classical logic and classification of proof-

theoretic strength with 𝑹𝑪𝑨𝟎 (∆𝟏
𝟎-recursive comprehension) as weak subsystem.

Constructive reverse mathematics (Ishihara et al.) uses intuitionistic logic and Bishop’s constructive

mathematics (BISH) as weak subsystem of a constructive classification :

BISH = 𝓩𝟐 + Intuitionistic Logic + Axioms of Countable, Dependent and Unique Choice

Intuitionistic Mathematics (Brouwer, Heyting et al.):

INT = BISH + Axiom of Continuous Choice + Fan Theorem

Constructive Recursive Mathematics (Markov et al.):

RUSS = BISH + Markov‘s Principle + Church‘s Thesis

Classical Mathematics (Hilbert et al.):

CLASS = BISH + Principle of Excluded Middle + Full Axiom of Choice

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Bishop‘s Constructive Mathematics BISH

Axiom of Countable Choice:

BISH ⊢ 𝑨′ and CLASS ⊢ 𝑨 ↔ 𝑨′

BISH is an informal mathematics with intuitionistic logic and function existence axioms

:

Bishop’s constructive (forward) mathematics (BISH) intends to find a constructive

substitute A’ for a classical theorem A such that

∀𝒏 ∈ ℕ ∃𝒙 ∈ 𝑿 𝑨 𝒏, 𝒙 → ∃𝒇 ∈ 𝑿ℕ∀𝒏 ∈ ℕ 𝑨(𝒏, 𝒇 𝒏)

Axiom of Dependent Choice:

∀𝒙 ∈ 𝑿 ∃𝒚 ∈ 𝑿 𝑨 𝒙, 𝒚 → ∀𝒙 ∈ 𝑿 ∃𝒇 ∈ 𝑿ℕ(𝒇 𝟎 = 𝒙 ∧ ∀𝒏 ∈ ℕ 𝑨 𝒇 𝒏 , 𝒇 𝒏 + 𝟏)

Axiom of Unique Choice:

∀𝒙 ∈ 𝑿 ∃! 𝒚 ∈ 𝒀 𝑨 𝒙, 𝒚 → ∃𝒇 ∈ 𝒀𝑿 ∀𝒙 ∈ 𝑿 𝑨(𝒙, 𝒇 𝒙)

When A and A’ are not equivalent in BISH, A can sometimes be shown to do not

admit a constructive proof by giving a “Brouwerian counterexample P ” to A such

that

BISH ⊢ 𝑨 → 𝑷 and BISH ⊬ P

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Markov‘s Constructive Recursive Mathematics (RUSS)

(1) Markov‘s principle (MP):

∀𝜶 ∈ ℕℕ(¬¬∃𝒏 𝜶 𝒏 ≠ 𝟎 → ∃𝒏 𝜶 𝒏 ≠ 𝟎

(2) ∀𝒙 ∈ ℝ(¬¬(𝟎 < 𝒙) → 𝟎 < 𝒙)

RUSS is Bishop‘s constructive mathematics (BISH) with Markov‘s principle and

Church‘s thesis :

The following are equivalent in BISH:

Remark: MP is an instance of the double negation elemination ¬¬𝑷 → 𝑷 which is

rejected in INT, but accepted in RUSS.

MP is weaker than LPO. The following are equivalent with the weak Markov

principle:

(1) Weak Markov‘s principle (WMP):

∀𝜶 ∈ ℕℕ(∀𝜷 ∈ ℕℕ(¬¬∃𝒏𝜷(𝒏) ≠ 𝟎 ∨ ¬¬∃𝒏(𝜶(𝒏) ≠ 𝟎 ∧ 𝜷(𝒏) ≠ 𝟎) → ∃𝒏 𝜶(𝒏) ≠ 𝟎

(2) ∀𝒙 ∈ ℝ(∀𝒚ℝ¬¬(𝟎 < 𝒚) ∨ ¬¬(𝒚 < 𝒙) → 𝟎 < 𝒙)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

2.4 Basics of Intuitionistic Type Theory

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Curry-Howard Correspondence
In 1969, the logician W.A. Howard observed that Gentzen’s proof system of natural

deduction can be directly interpreted in its intuitionistic version as a typed variant of the

mode of computation known as lambda calculus.

According to Church, 𝝀𝒂. 𝒃 means a function mapping an element 𝒂 onto the function

value 𝒃 with 𝝀𝒂. 𝒃[𝒂] = 𝒃. In the following, proofs are represented by terms 𝒂, 𝒃, 𝒄, … ;

propositions are represented by 𝑨,𝑩, 𝑪, … .

[A]

λ𝑎(λ𝑏. 𝑎) ⋮
𝐵 → 𝐴

(→ I) 𝐴 → (𝐵 → 𝐴)

[A]

λ𝑎. 𝑏 ⋮
𝐵

(→ I) 𝐴 → 𝐵

Examples:

A proof is a program, and the formula it proves is

the type for the program.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Intuitionistic

sequent calculus

Lambda calculus type

assignment rules

Γ1,𝛼,Γ2⊢𝛼
Ax

Γ1, 𝑥: 𝛼, Γ2 ⊢ 𝑥: 𝛼

Γ,𝛼⊢𝛽

Γ⊢𝛼→𝛽
→ 𝐼

Γ, 𝑥: 𝛼 ⊢ 𝑡: 𝛽

Γ ⊢ λ𝑥. 𝑡: 𝛼 → 𝛽

Γ⊢𝛼→𝛽 Γ⊢𝛼

Γ⊢𝛽
→ 𝐸

Γ ⊢ 𝑡: 𝛼 → 𝛽 Γ ⊢ 𝑢: 𝛼

Γ ⊢ 𝑡𝑢: 𝛽

Gentzen‘s Sequent Calulus and Lambda Calculus

Proving Γ ⊢ α means having a program that, given values with the types listed in Γ,

manufactures an object of type α. An axiom corresponds to the introduction of a new

variable with a new, unconstrained type, the → I rule corresponds to function abstraction

and the → E rule corresponds to function application.

𝒕: 𝜶 means „𝒕 proves 𝜶“ as well as „𝒕 is of type 𝜶“.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Propositions as Types in Intuitionistic Type Theory

⊥= ∅
⊺= 1

𝐴 ∨ 𝐵 = 𝐴 + 𝐵
𝐴 ∧ 𝐵 = 𝐴 × 𝐵
𝐴 ⊃ 𝐵 = 𝐴 → 𝐵
∃𝑥: 𝐴. 𝐵 = Σ𝑥: 𝐴. 𝐵
∀𝑥: 𝐴. 𝐵 = Π𝑥: 𝐴. 𝐵

According to the Curry-Howard interpretation

of propositions as types, Σx:A.B is the disjoint

sum of the A-indexed family of types B and

Πx:A.B is its cartesian product.

The canonical elements of Σx:A. B are pairs (𝒂, 𝒃) such that 𝒂:𝑨 and 𝒃:𝑩 𝒙 ≔ 𝒂 (the type

obtained by substituting all free occurrences of 𝒙 in 𝑩 by 𝒂). The elements of Πx:A. B are

(computable) functions 𝒇 such that 𝒇𝒂:𝑩[𝒙 ≔ 𝒂], whenever 𝒂:𝑨.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Theorem on Prime Numbers under

Curry-Howard Interpretation

∀𝑚:N. ∃𝑛: N.𝑚 < 𝑛 ∧ 𝑃𝑟𝑖𝑚𝑒(𝑛)

The theorem expresses that there are arbritrarily large primes:

Under the Curry-Howard interpretation this becomes the type of functions

which map a number m to a triple (n,(p, q)), where n is a number, p is a proof

that m < n and q is a proof that n is prime:

Π𝑚:𝑁. Σ𝑛:𝑁. 𝑚 < 𝑛 × 𝑃𝑟𝑖𝑚𝑒(𝑛)

This is the proofs as programs principle: a constructive proof that there are

arbitrarily large primes becomes a program which given any number produces a

larger prime together with proofs that it indeed is larger and indeed is prime.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Martin-Löf‘s Intuitionistic Type Theory

In addition to the type formers of the Curry-Howard

interpretation, the logician and philosopher P.

Martin-Löf extended the basic intuitionistic type

theory (containing Heyting‘s arithmetic of higher

types 𝐇𝐀𝝎and Gödel‘s system 𝐓 of primitive recursive

functions of higher type) with primitive identity types,

well founded tree types, universe hierarchies and

general notions of inductice and inductive–recursive

definitions.

His extension increases the proof-theoretic power of the

theory and its application to programming as well as to

formalization of mathematics.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Intuitionistic Type Predicate Logic
Besides the given rules for 𝚷, there are analogous rules for other type formers corresponding

to the logical constants of typed predicate logic:

𝜷-conversion η-conversion

𝜞, 𝒙:𝑨 ⊢ 𝒃:𝑩 𝜞 ⊢ 𝒂: 𝑨

𝜞 ⊢ 𝝀𝒙. 𝒃 𝒂 = 𝒃 𝒙 ≔ 𝒂 :𝑩[𝒙 ≔ 𝒂

𝜞 ⊢ 𝒇:Π𝒙: 𝑨.𝑩

𝜞 ⊢ 𝝀𝒙. 𝒇𝒙 = 𝒇:𝚷𝒙: 𝑨.𝑩

congruence rule

𝜞 ⊢ 𝑨 = 𝑨′ 𝜞, 𝒙:𝑨 ⊢ 𝑩 = 𝑩′

𝜞 ⊢ Π𝒙:𝑨.𝑩 = Π𝒙:𝑨′. 𝑩′

𝚷-formation 𝚷-introduction 𝚷-elimination

𝜞 ⊢ 𝑨 𝜞, 𝒙:𝑨 ⊢ 𝑩

𝜞 ⊢ 𝚷𝒙:𝑨.𝑩

𝜞, 𝒙: 𝑨 ⊢ 𝒃:𝜷

𝜞 ⊢ 𝝀𝒙. 𝒃:𝚷𝒙:𝑨.𝑩

𝜞 ⊢ 𝒇:Π𝒙: 𝑨.𝑩 𝜞 ⊢ 𝒂:𝑨

𝜞 ⊢ 𝒇𝒂:𝑩[𝒙 ≔ 𝒂]

Π-equality is introduced by𝜷-conversion and η-conversion:

Conguence rules preserve equality:

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Intuitionistic Type Arithmetic
As in Peano arithmetic, the natural numbers are generated by 0 and the successor

operation 𝒔:

The elimination rule states that these are the only ways to generate a natural number.

The function 𝒇 𝒄 = 𝑹 𝒄, 𝒅, 𝒙𝒚. 𝒆 is defined by primitive recursion on the natural

number 𝒄 with base 𝒅 and step function 𝒙𝒚. 𝒆 (or 𝝀𝒙𝒚. 𝒆) which maps the value 𝒚 for

the previous number 𝒙:𝐍 to the value for 𝒔 𝒙 :

N-formation N-introduction

𝜞 ⊢N 𝜞 ⊢ 𝟎:N
𝜞⊢ 𝟎:𝐍

𝜞⊢ s (𝒂):𝑵

N-elimination

𝜞,𝒙: 𝐍 ⊢ C 𝜞 ⊢ c :N 𝜞 ⊢ d:C [x ≔ 𝟎] 𝜞,𝒚: 𝐍, 𝒛: 𝑪 𝒙 ≔ 𝒚 ⊢ e:C [𝒙 ≔ 𝒔(𝒚)]

𝜞 ⊢ 𝑹 𝒄,𝒅, 𝒚𝒛. 𝒆 : 𝑪[𝒙 ≔ 𝒄]

N-equality (under appropriate premisses)

𝑹 𝟎,𝒅, 𝒚𝒛. 𝒆 = 𝒅:𝑪[𝒙 ≔ 𝟎]

𝑹 𝒔(𝒂), 𝒅, 𝒚𝒛. 𝒆 = 𝒆[≔ 𝒂, 𝒛 ≔ 𝑹 𝒂,𝒅, 𝒚𝒛. 𝒆]: 𝑪[𝒙 ≔ 𝒔 𝒂]

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

The Universe of Small Types
To overcome the impredicativity of the „type of all types“, Martin-Löf introduced a

universe U of small types closed under all type formers of the theory, except that it does not

contain itself:
U-formation

𝜞 ⊢ 𝐔

U-introduction

𝜞 ⊢ ∅ ∶ 𝐔 𝜞 ⊢1:U

𝜞⊢A : U 𝜞⊢B : U
𝜞⊢A+B : U

𝜞⊢A : U 𝜞⊢B : U
𝜞⊢A×B : U

𝜞 ⊢ A : U 𝜞 ⊢ B : U

𝜞 ⊢ A → B : U
𝜞⊢A : U 𝜞,𝒙:𝑨⊢B : U

𝜞⊢Σ𝒙:A. B : U
𝜞⊢A : U 𝜞,𝒙:𝑨⊢B : U

𝜞⊢Π𝒙:A. B : U

𝜞 ⊢ 𝐍:𝐔

U-elimination

𝜞 ⊢ 𝑨:𝐔

𝜞 ⊢ A

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Type-Theoretic Universe U and the Grothendieck Universe

The type-theoretic universe U is analogous to a Grothendieck universe in set theory which

is a set of sets closed under all the ways sets can be constructed in Zermelo-Fraenkel set

theory:

Alexander Grothendieck (1928-2014) used his universe as a way of avoiding proper classes

in algebraic geometry. Its existence goes beyond the usual axioms of Zermelo–Fraenkel set

theory and implies the existence of strongly inaccessible cardinals.

Tarski–Grothendieck set theory is an axiomatic treatment of set theory, used in some

automatic proof systems, in which every set belongs to a Grothendieck universe. The

concept of a Grothendieck universe can also be defined in a topos (category theory).

1. 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑥 ⇒ 𝑦 ∈ 𝑈 (transitivity)

2. 𝑥, 𝑦 ∈ 𝑈 ⇒ ሼ ሽ𝑥, 𝑦 ∈ 𝑈
3. 𝑥 ∈ 𝑈 ⇒ 𝒫(𝑥) ∈ 𝑈 (power set)

4. ሼ ሽ𝑥𝛼 𝛼∈𝐼
family of elements of 𝑈, 𝐼 ∈ 𝑈 ⇒ 𝛼∈𝐼ڂ 𝑥𝛼 ∈ 𝑈

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

The Axiom of Choice is a Theorem in Intuitionistic Type Theory

In intuitionistic type theory, the axiom of choice is an immediate consequence of the BHK-

interpretation of the intuitionistic quantifiers:

(Π𝑥: 𝐴. Σ𝑦: 𝐵. 𝐶) → Σ𝑓: Π𝑥: 𝐴. 𝐵 . 𝐶[𝑦 ≔ 𝑓𝑥]

− Π𝑥: 𝐴. Σ𝑦: 𝐵. 𝐶 is the type of functions which map

elements 𝑥: 𝐴 to pairs (𝑦, 𝑧) with y: 𝐵 and z: 𝐶.

− The choice function 𝑓 is obtained by returning the first

component y: 𝐵 of this pair.

Proof:

Theorem:

In set theory, the axiom of choice is in general not constructive. (Types are not in general

appropriate constructive approximations of sets in the classical sense.)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

General Identity Type Former
The rules for I express that the identity relation is inductively generated by the proof of

reflexivity (constant r):

The elimination rule for the identity type is a generalization of identity elimination in

predicate logic (elimination constant J):

I-formation I-introduction

𝜞 ⊢ A 𝜞 ⊢ 𝒂:A 𝜞 ⊢ 𝒂′: 𝑨

𝜞 ⊢ I(A , 𝒂, 𝒂′)

𝜞 ⊢ A 𝜞 ⊢ 𝒂:A

𝜞 ⊢ r : I(A , 𝒂, 𝒂)

I-elimination

𝜞, 𝒙:𝑨, 𝒚: 𝐈 𝑨, 𝒂, 𝒙 ⊢ C 𝜞 ⊢ 𝒃:A 𝜞 ⊢ c: I(A , 𝒂, 𝒃) 𝜞 ⊢ d :C [𝒙 ≔ 𝒂,𝒚 ≔ 𝒓]

𝜞 ⊢ J(c , d) :C [𝒙 ≔ 𝒃,𝒚 ≔ 𝒄]

J-equality (under appropriate assumptions)

J(r,d) = d

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Inductive Types in Intuitionistic Type Theory

An inductive type is freely generated by a certain number of constructors.

Examples: a) Type ℕ of natural numbers with constructors

• 𝟎: ℕ
• 𝐬𝐮𝐜𝐜:ℕ → ℕ

b) Type 𝐋𝐢𝐬𝐭(𝑨) of finite lists of elements of type 𝑨 with constructors

• 𝐧𝐢𝐥: 𝐋𝐢𝐬𝐭(𝑨) (empty list)

• 𝐜𝐨𝐧𝐬:𝑨 → 𝐋𝐢𝐬𝐭(𝑨) → 𝐋𝐢𝐬𝐭(𝑨) (add an element to the front of the list)
• app: 𝐋𝐢𝐬𝐭(𝑨) → 𝐋𝐢𝐬𝐭(𝑨) → 𝐋𝐢𝐬𝐭(𝑨) (concatenate two lists)

An induction principle proves a statement for a type freely generated by its

constructors.

Example: 𝐖-𝒕𝒚𝒑𝒆𝐖 𝒂:𝑨 𝑩(𝒂) of well-founded trees with nodes labeled by elements 𝒂 ∶ 𝑨

and 𝑩(𝒂)-many branches. We prove a statement 𝑬:𝐖 𝒂:𝑨 𝑩(𝒂) → 𝓤 about all elements of the

type 𝐖 𝒂:𝑨 𝑩(𝒂) by proving it for its constructor(s).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

3. From Proof Theory to Proof Assistants

2.1 Intuitionistic Type Theory and Proof Assistants

2.2 Verification of Circuits in Proof Assistants: Basics

2.3 Verification of Circuits in Proof Assistants: Applications

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

3.1 Intuitionistic Type Theory and Proof Assistant

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Terms of the Calculus of Constructions (CoC)
CoC is a type theory of Thierry Coquand et al. which can serve as typed programming language as

well as constructive foundation of mathematics. It extends the Curry-Howard isomorphism to proofs in

the full intuitionistic predicate calculus. Coc has very few rules of construction for terms:

• T is a term (Type).

• P is a term (Prop).

• Variables (𝒙, 𝒚, 𝒛,…) are terms.

• If 𝑨 and 𝑩 are terms, then (𝑨𝑩) is a term.

• If 𝑨 and 𝑩 are terms and 𝒙 is a variable,

then 𝝀𝒙 ∶ 𝑨.𝑩 and ∀𝒙 ∶ 𝑨.𝑩 are terms.

The objects of CoC are proofs (terms with propositions as types),

propositions (small types), predicates (functions that return propositions),

large types (types of predicates, e.g., P), T (type of large types).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Inference Rules of CoC
𝚪 is a sequence of type assignments 𝒙𝟏: 𝑨𝟏, 𝒙𝟐: 𝑨𝟐, …; 𝐊 is either T or P :

𝚪 ⊢ 𝑷∶ 𝑻

𝚪 ⊢ 𝑨:𝑲

𝚪,𝒙∶ 𝑨 ⊢ 𝒙∶ 𝑨

𝚪, 𝒙 ∶ 𝑨 ⊢ 𝑩:𝑲 𝚪, 𝒙: 𝑨 ⊢ 𝑵:𝑩

𝚪 ⊢ 𝝀𝒙 ∶ 𝑨.𝑵 : ∀𝒙: 𝑨. 𝑩 :𝑲

𝚪 ⊢ 𝑴 ∶ ∀𝒙: 𝑨. 𝑩 𝚪 ⊢ 𝑵:𝑨

𝚪 ⊢ 𝑴𝑵:𝑩[𝒙 ≔ 𝑵]

𝚪 ⊢ 𝑴:𝑨 𝑨 =𝜷 𝑩 𝑩:𝑲

𝚪 ⊢ 𝑴:𝑩

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Logical Operators and Data Types in CoC

Coc has very few basic operators. The only logical operator for forming

propositions is ∀ :∀

𝐴 ⇒ 𝐵 ≡ ∀𝑥: 𝐴. 𝐵 𝑥 ∉ 𝐵
𝐴 ∧ 𝐵 ≡ ∀𝐶: 𝑃. (𝐴 ⇒ 𝐵 ⇒ 𝐶) ⇒ 𝐶
𝐴 ∨ 𝐵 ≡ ∀𝐶: 𝑃. (𝐴 ⇒ 𝐶) ⇒ 𝐵 ⇒ 𝐶 ⇒ 𝐶
¬𝐴 ≡ ∀𝐶: 𝑃. 𝐴 ⇒ 𝐶
∃𝑥: 𝐴. 𝐵 ≡ ∀𝐶: 𝑃. (∀𝑥: 𝐴(𝐵 ⇒ 𝐶)) ⇒ 𝐶

data types: booleans: ∀𝑨:𝑷. 𝑨 ⇒ 𝑨 ⇒ 𝑨
naturals: ∀𝑨:𝑷. (𝑨 ⇒ 𝑨) ⇒ (𝑨 ⇒ 𝑨)
product 𝑨 × 𝑩: 𝑨 ∧ 𝑩
disjoint union 𝑨 + 𝑩: 𝑨 ∨ 𝑩

logical operators:

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Calculus of Inductive Constructions (CiC)
CiC is based on CoC enriched with inductive and co-inductive definitions with the following

rules for constructing terms:

• identifiers refer to constants or variables.

• (𝑨𝑩) application of a functional object 𝑨 to 𝑩

• 𝒙: 𝑨 𝑩 abstraction of variable 𝒙 of type 𝑨 in term 𝑩 to construct a

functional object 𝝀𝒙 ∈ 𝑨.𝑩
• 𝒙: 𝑨 𝑩 term of type Set corresponds to ς𝒙∈𝑨𝑩 product of sets.

𝒙: 𝑨 𝑩 term of type Prop corresponds to ∀𝒙 ∈ 𝑨 𝑩.

If 𝒙 does not occur in 𝑩, 𝑨 → 𝑩 is an abbreviation which corresponds to

• set of all functions from 𝑨 to 𝑩
• logical implication

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Inductive Types in CiC*
An inductive type is freely generated by a certain number of constructors.

Examples: a) Type ℕ of natural numbers with constructors

• 𝟎: ℕ
• 𝐬𝐮𝐜𝐜:ℕ → ℕ

b) Type 𝐋𝐢𝐬𝐭(𝑨) of finite lists of elements of type 𝑨 with constructors

• 𝐧𝐢𝐥: 𝐋𝐢𝐬𝐭(𝑨)
• 𝐜𝐨𝐧𝐬:𝑨 → 𝐋𝐢𝐬𝐭 𝑨 → 𝐋𝐢𝐬𝐭 𝑨
• app: 𝐋𝐢𝐬𝐭(𝑨) → 𝐋𝐢𝐬𝐭(𝑨) → 𝐋𝐢𝐬𝐭(𝑨) (concatenate two lists)

Inductive proofs make it possible to prove statements for infinite collections of

objects (e.g., integers, lists, binary trees), because all these objects are

constructed in a finite number of steps.

An induction principle of an inductive type proves a statement for a type freely

generated by its constructors.

* C. Paulin-Mohring (1993), Inductive Definition in the System Coq: Rules and Properties (Research Report 92-49, LIP-ENS Lyon)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Co-Inductive Types in CiC*
Besides inductive types, there are co-inductive types concerning infinite objects

(e.g., potentially infinite lists, potentially infinite trees with infinite branches).

Terms are still be obtained by repeated uses of constructors such as in inductive

types. However, there is no induction principle and the branches may be infinite.

CoInductive Stream (A : Set) : Set :=

Cons : A → Stream → Stream

Contrary to the inductive type of a list, there is no constructor of the

empty list. Thus, finite lists cannot be constructed.

In practical domains such as telecommunication, energy, or transportation, streams

are examples with infinite execution which are defined by constructor Cons:

* E. Giménez (1996), Un calcul de constructions infinies et son application à la vérification de systèmes communicants (PhD thesis Lyon)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Equivalence of Streams in CiC

Accessors of a stream l are defined by functions on the structure of the stream with head

hd and tail tl:

Definition Head: Stream → A := [l] Cases l of (Cons hd _) ⇒ hd end.

Definition Tail: Stream → Stream := [l] Cases l of (Cons _ tl) ⇒ tl

end.

Two streams l and l‘ are equivalent iff their heads are equal and their tails are equivalent. In

CiC, equivalence of streams is represented by a co-inductive definition:

CoInductive EqS : Stream → Stream → Prop := eqs : (l , l‘ : Stream)

(Head l) = (Head l‘) →

(EqS (Tail l)(Tail l‘)) →
(EqS l l‘).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Production of Streams in CiC
The mapping of a given function 𝒇 on two streams 𝒍 and 𝒍′ is co-recursively defined in CiC:

CoFixpoint Map2 : (A, B, C : Set)

(A → B → C) → (Stream A) → (Stream B) →(Stream C) :=
[A, B, f, l, l‘]

(Cons (f (Head l)(Head l‘))(Map2 f (Tail l)(Tail l‘)))

The function 𝑷𝒓𝒐𝒅 builds the stream of the pairs, element by element, of two streams of type

(𝑺𝒕𝒓𝒆𝒂𝒎 𝑨) and (𝑺𝒕𝒓𝒆𝒂𝒎 𝑩) respectively. 𝑷𝒓𝒐𝒅 is the result of the application 𝑴𝒂𝒑𝟐 to the

function (𝒑𝒂𝒊𝒓 𝑨 𝑩), where 𝒑𝒂𝒊𝒓 is the constructor of the cartesian product 𝑨 ∗ 𝑩. In CiC, 𝑷𝒓𝒐𝒅 is

represented by:

Definition Prod := [A, B : Set] (Map2 (pair A B))

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

The Coq Proof Assistant*
Coq implements a program specification which is based on the Calculus of Inductive

Constructions (CiC) combining both a higher-order logic and a richly-typed functional

language.

The commands of Coq allow

- to define functions or predicates (that can be evaluated efficiently)

- to state mathematical theorems and software specifications

- to interactively develop formal proofs of these theorems

- to machine-check these proofs by a relatively small certification (kernel)

- to extract certified programs to languages (e.g., Objective Caml, Haskell,

Scheme)

Coq provides interactive proof methods, decision and semi-decision algorithms.

Connections with external theorem provers are available.

Coq is a platform for the verification of mathematical proofs as well as

the verification of computer programs in CiC.

* Y. Bertot, P. Castéran (2004), Interactive Theorem Proving and Program Development: Coq‘Art: CiC (Springer)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

3.2 Verification of Circuits in Proof Assistants: Basics

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Verification of Circuits with Co-Induction in Coq

A hardware or software program is correct („certified by Coq“) if it can be

verified to follow a given specification in CIC.

The structure and behaviour of circuits can mathematically be described

by interconnected finite automata (e.g., Mealy machines). In circuits, one

has to cope with infinitely long temporal sequences of data (streams).

A circuit is correct iff, under certain conditions, the output stream of the

structural automaton is equivalent to that of the behavioural automaton.

Example: Verification of circuits*

Therefore, automata theory must be implemented into CiC with the

co-inductive type of streams.

* S. Coupet-Grimal, L. Jakubiec (1996): Coq and Hardware Verification: a Case Study (TPHOLs ‚96, LCNS 1125, 125-139)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Specification of Mealy Automata

A Mealy automaton is a 5-tuple (𝑰, 𝑶, 𝑺 𝑻𝒓𝒂𝒏𝒔,𝑶𝒖𝒕) with input set 𝑰, output set

𝑶, state set 𝑺, transition function 𝑻𝒓𝒂𝒏𝒔 ∶ 𝑰 𝒙 𝑺 → 𝑺, and output function

𝑶𝒖𝒕 ∶ 𝑰 𝒙 𝑺 → 𝑶 .

𝑇𝑟𝑎𝑛𝑠 𝑂𝑢𝑡𝑠𝑖

Given an initial state 𝒔 , the Mealy machine computes an infinite output

sequence („stream“) in response to an infinite input sequence („stream“).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Implementation of Mealy Automata in CiC

Variables I, O, S : Set .

Variable Trans : I → S → S.

Variable Out : I → S → O.

CoFixpoint Mealy : (Stream I) → S → (Stream O) := [inp, s]

(Cons (Out (Head inp) s) (Mealy (Tail inp)(Trans (Head inp) s)).

The first element of the output stream is the result of the application of the output function 𝑶𝒖𝒕 to

the first input (the head of the input stream 𝒊𝒏𝒑) and to the initial state 𝒔. The tail of the output

stream is then computed by a recursive call to 𝑴𝒆𝒂𝒍𝒚 on the tail of the input stream and the new

state. This new state is given by the function 𝑻𝒓𝒂𝒏𝒔, applied to the first input and the initial state.

The streams of all the successive states from the initial one 𝒔 is obtained similarily:

CoFixpoint States : (Stream I) → S → (Stream S) := [inp, s]

(Cons s (States (Tail inp)(Trans (Head inp) s))).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Network of Automata
In a network, automata are inter-connected by parallel composition, sequential composition,

and feedback composition of synchronous sequential devices.

𝑇𝑟𝑎𝑛𝑠1 𝑠1 𝑂𝑢𝑡1

𝑇𝑟𝑎𝑛𝑠2 𝑠2 𝑂𝑢𝑡2

𝑓 ∗ 𝑜𝑢𝑡𝑝𝑢𝑡𝑖 𝑜

𝐴1

𝐴2

In the parallel composition of two Mealy automata 𝑨𝟏 and 𝑨𝟐, 𝒇 = (𝒇𝟏, 𝒇𝟐)
builds from the current input 𝒊 the pair of inputs (𝒇𝟏(𝒊), 𝒇𝟐(𝒊)) for 𝑨𝟏 and

𝑨𝟐, 𝒐𝒖𝒕𝒑𝒖𝒕 computes the global outputs of 𝑨𝟏 and 𝑨𝟐.

𝑓1(𝑖)

𝑓2(𝑖)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Implementation of Parallel Automata in CiC

Variables I1, I2, O1, O2, S1, S2, I, O : Set

Variable Trans1 : I1 → S1 → S1. Variable Trans2 : I2 → S2 → S2.

Variable Out1 : I1 → S1 → O1. Variable Out2 : I2 → S2 → O2.

Variable f : I → I1*I2. Variable f : O → O1*O2.

Local A1 := (Mealy Trans1 Out1). Local A2 := (Mealy Trans2 Out2).

Definition parallel : (Stream I) → S1 → S2 := [inp, s1, s2]

(Map output (Prod (A1 (Map Fst (Map f inp)) s1)

(A2 (Map Snd (Map f inp)) s2))).

The initial states of automata 𝑨𝟏 and 𝑨𝟐 are 𝒔𝟏 and 𝒔𝟐. The input of 𝑨𝟏 is obtained by

mapping the first projection 𝑭𝒔𝒕 on the stream resulting from the mapping of the function 𝒇

on the global stream 𝒊𝒏𝒑. Then (𝑨𝟏 𝑴𝒂𝒑 𝑭𝒔𝒕 𝑴𝒂𝒑 𝒇 𝒊𝒏𝒑 𝒔𝟏) is the output stream 𝑨𝟏. That

of 𝑨𝟐 is defined similarly. Finally, the parallel composition is obtained by mapping the function

𝒐𝒖𝒕𝒑𝒖𝒕 on the product of the output streams of 𝑨𝟏 and 𝑨𝟐.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Invariant Relations of Mealy Automata*

The equivalence of structure and behaviour of circuits can be proved by certain

invariant relations of states and streams in the corresponding Mealy automata.

Consider two Mealy automata 𝑨𝟏 = (𝑰, 𝑶, 𝑺𝟏, 𝑻𝒓𝒂𝒏𝒔𝟏,𝑶𝒖𝒕𝟏) and 𝑨𝟐 = (𝑰,𝑶, 𝑺𝟐, 𝑻𝒓𝒂𝒏𝒔𝟐,𝑶𝒖𝒕𝟐) with the

same input set and the same output set. Given 𝒑 streams, a relation which holds for all 𝒑-tuples of

elements at the same rank is called an invariant of these 𝒑 streams.

In CiC, an invariant relation 𝑷 with respect to input set 𝑰 and the state sets 𝑺𝟏 and 𝑺𝟐 can be definied by

co-induction:

CoInductive Inv [P : I → S1 → S2 → Prop] :

(Stream I) → (Stream S1) → (Stream S2) → Prop :=

C_Inv : (inp : (Stream I))(st1 : (Stream S1))(st2 : (Stream S2))

(P (Head inp) (Head st1) (Head st2))→
(Inv P (Tail inp) (Tail st1) (Tail st2)) →
(Inv P inp st1 st2).

*S. Coupet-Grimal, L. Jakubier, Hardware Verification using co-induction in Coq (Laboratoire d‘Informatique de Marseille, URA CNRS 1787)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Invariant State Relation of Mealy Automata in CiC
Let 𝑹 be a relation on the state space 𝑺𝟏 × 𝑺𝟐 and 𝑷 a relation on 𝑰 × 𝑺𝟏 × 𝑺𝟐.

The invariance of relation 𝑹 can be implemented into CIC :

Definition Inv_under := [P : I→ S1 → S2 → Prop][R : S1 → S2→ Prop]

(i : I)(s1 : S1)(s2 : S2)

(P i s1 s2) → (R s1 s2) →(R (Trans 1 i s1)(Trans2 i s2)).

An output relation is strong enough to induce the equality of the outputs of two automata:

Definition Output_rel := [R : S1 → S2 → Prop]

(i : I)(s1 : S1) (s2 : S2)

(R s1 s2) →(Out1 i s1)=(Out2 i s2).

𝑹 is invariant under 𝑷 for the automata 𝑨𝟏 and 𝑨𝟐 iff

∀𝒊 ∈ 𝑰 ∀𝒔𝟏 ∈ 𝑺𝟏 ∀𝒔𝟐 ∈ 𝑺𝟐
(𝑷(𝒊, 𝒔𝟏, 𝒔𝟐) ∧ R(𝒔𝟏, 𝒔𝟐)) ⇒ 𝑹(𝑻𝒓𝒂𝒏𝒔𝟏 (𝒊, 𝒔𝟏), 𝑻𝒓𝒂𝒏𝒔𝟐 (𝒊, 𝒔𝟐)).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Proof Scheme for Circuit Correctness.
The correctness of a circuit is proved by the equivalence of its structure and behaviour which are

represented by two composed Mealy automata. The equivalence of composed Mealy automata can

be proved by the equivalence lemma of invariant relations (which is also represented in CiC) :

If 𝑹 is an output relation invariant under 𝑷 that holds for the initial

states, if 𝑷 is an invariant for the common input stream and the state

streams of each automata, then the two output streams are equivalent.

Lemma Equiv_2_Mealy :

(P : I → S1 → S2 → Prop)(R : S1 → S2 → Prop)

(Output_rel R) → (Inv_under P R) → (R s1 s2) →
(inp : (Stream I)) (s1 : S1) (s2 : S2)

(Inv P inp (States Trans1 Out1 inp s1)(States Trans2 Out2 inp s2)) →
(EqS (A1 inp s1) (A2 inp s2)).

Proof by co-induction

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

3.3 Verification of Circuits in Proof Assistants: Application

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Certification of a 4 by 4 Switch Fabric

A switch fabric is a network topology in which nodes interconnect via

one or more switches. The switching element performs switching of data

from 4 input ports to 4 output ports and arbitrating data clashes

according to the output port requests made by the input ports.*

The most significant part for verification is the Arbitration Unit. It

decodes requests from input ports and priorities between data to be sent,

and then performs arbitration.

* Local area network based on ATM (Systems Research Group, Cambridge University)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Structure of the Arbitration Unit
The arbiration unit is the interconnection of three modules:

• 𝑭𝑶𝑼𝑹_𝑨𝑹𝑩𝑰𝑻𝑬𝑹𝑺 performs the arbitration for all output ports

(following Round Robin algorithm)

• 𝑻𝑰𝑴𝑰𝑵𝑮 determines when the arbitration process can be triggered.

• 𝑷𝑹𝑰𝑶𝑹𝑰𝑻𝒀_𝑫𝑬𝑪𝑶𝑫𝑬 decodes the requests and filters them according to

their priority

𝑇𝐼𝑀𝐼𝑁𝐺

𝑃𝑅𝐼𝑂𝑅𝐼𝑇𝑌_𝐷𝐸𝐶𝑂𝐷𝐸 𝐹𝑂𝑈𝑅_𝐴𝑅𝐵𝐼𝑇𝐸𝑅𝑆
𝐺𝑟𝑎𝑛𝑡

𝑜𝑢𝑡𝑝𝑢𝑡 𝐷𝑖𝑠𝑎𝑏𝑙𝑒
4

4× 2
𝐼𝑡𝑅𝑒𝑞

4× 4
4

4× 2

4

1

1

routeEnable

𝑓𝑠

𝑎𝑐𝑡

𝑝𝑟𝑖
𝑟𝑜𝑢𝑡𝑒

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Outline of the Proof of Correctness*

The correctness of a switch fabric requires an equivalence proof of its structural automaton and behavioural

automaton. It follows from the verification of its modules that compose the 𝑨𝒓𝒃𝒊𝒕𝒓𝒂𝒕𝒊𝒐𝒏 unit.

(1) Proof that the behavioural automata for 𝑻𝑰𝑴𝑰𝑵𝑮, 𝑭𝑶𝑼𝑹_𝑨𝑹𝑩𝑰𝑻𝑬𝑹𝑺, and 𝑷𝑹𝑰𝑶𝑹𝑰𝑻𝒀_𝑫𝑬𝑪𝑶𝑫𝑬
are equivalent to the three corresponding structural automata.

(2) Construction of the global structural automaton 𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆_𝑨𝑹𝑩𝑰𝑻𝑹𝑨𝑻𝑰𝑶𝑵 by interconnecting the structural

automata of the three modules 𝑻𝑰𝑴𝑰𝑵𝑮, 𝑭𝑶𝑼𝑹_𝑨𝑹𝑩𝑰𝑻𝑬𝑹𝑺, and 𝑷𝑹𝑰𝑶𝑹𝑰𝑻𝒀_𝑫𝑬𝑪𝑶𝑫𝑬 .

(3) Construction of the global behavioural automaton 𝑪𝒐𝒎𝒑𝒐𝒔𝒆𝒅_𝑩𝒆𝒉𝒂𝒗𝒊𝒐𝒖𝒓𝒔 by interconnecting the behavioural

automata of the the three modules 𝑻𝑰𝑴𝑰𝑵𝑮, 𝑭𝑶𝑼𝑹_𝑨𝑹𝑩𝑰𝑻𝑬𝑹𝑺, and 𝑷𝑹𝑰𝑶𝑹𝑰𝑻𝒀_𝑫𝑬𝑪𝑶𝑫𝑬 .

(4) Proof that 𝑪𝒐𝒎𝒑𝒐𝒔𝒆𝒅_𝑩𝒆𝒉𝒂𝒗𝒊𝒐𝒖𝒓𝒔 and 𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆_𝑨𝑹𝑩𝑰𝑻𝑹𝑨𝑻𝑰𝑶𝑵 are equivalent (which follows from (1)

and by applying the lemmas stating that the equivalence of automata is a congruence for the composition rules).

(5) Proof that 𝑪𝒐𝒎𝒑𝒐𝒔𝒆𝒅_𝑩𝒆𝒉𝒂𝒗𝒊𝒐𝒖𝒓𝒔 is equivalent to the expected behaviour𝑩𝒆𝒉𝒂𝒗𝒊𝒐𝒖𝒓_𝑨𝑹𝑩𝑰𝑻𝑹𝑨𝑻𝑰𝑶𝑵.

(𝑪𝒐𝒎𝒑𝒐𝒔𝒆𝒅_𝑩𝒆𝒉𝒂𝒗𝒊𝒐𝒖𝒓𝒔 is more abstract than 𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆_𝑨𝑹𝑩𝑰𝑻𝑹𝑨𝑻𝑰𝑶𝑵 .)

(6) The equivalence of 𝑩𝒆𝒉𝒂𝒗𝒊𝒐𝒖𝒓_𝑨𝑹𝑩𝑰𝑻𝑹𝑨𝑻𝑰𝑶𝑵 and 𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆_𝑨𝑹𝑩𝑰𝑻𝑹𝑨𝑻𝑰𝑶𝑵 is obtained from (4) and (5)

by using the transitivity of of the equivalence on the s𝒕𝒓𝒆𝒂𝒎𝒔.

* S. Coupet-Grimal, L. Jakubier, Hardware Verification using co-induction in Coq (Laboratoire d‘Informatique de Marseille, URA CNRS 1787)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Advantages of the Coq Proof Assistent

for Verification of Software/Hardware

• In Coq, a verification of a computer program is as strong and save as a

mathematical proof in a constructive formalism.

• The use of Coq dependent types provide precise and reliable

specifications.

• The use of Coq co-inductive types provide a clear modelling of streams in

circuits (without introducing any temporal parameter).

• The use of Coq co-induction allows to capture the temporal aspects of the

proof processes in one lemma.

• The hierarchical and modular approach allows correctness results in a

complex verification process related to pre-proven components.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

4. Verification in Machine Learning

3.1 Basics of Machine Learning

3.2 Causal and Statistical Learning

3.3 Testing, Verification, and Certification of Programs

3.4 Perspectives of Responsible AI

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

4.1 Basics of Machine Learning

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Neural Networks and Learning Algorithms

Feedforward with one

synaptic layer

Feedforward with two synaptic

layers (Hidden Units)

Learning algorithms:

• supervised

• non-supervised

• reinforcement

• deep learning

Feedback of recurrent

neural network (RNN)

Neural networks are complex systems of firing and non-firing neurons with topologies

like brains. There is no central processor (‚mother cell‘), but a self-organizing

information flow in cell-assemblies according to rules of synaptic interaction (‚synaptic

plasticity‘).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

A (recurrent) neural network 𝓝 is presented by a directed graph of nodes called neurons.

Each neuron updates its activation value by applying a composition of a one-variable function

with a linear combination of the activations of all neurons 𝒙𝒋 (𝒋 = 𝟏,… ,𝑵), the external inputs

𝒖𝒌 (𝒌 = 𝟏,… ,𝑴), and synaptic weights of rational coefficients 𝒂𝒊𝒋, 𝒃𝒊𝒋, 𝒄𝒊.

Each processor‘s (cellular) state is updated by

𝒙𝒊 𝒕 + 𝟏 = 𝝈(σ𝒋=𝟏
𝑵 𝒂𝒊𝒋𝒙𝒋 𝒕 + σ𝒋=𝟏

𝑴 𝒃𝒊𝒋𝒖𝒋 𝒕 + 𝒄𝒊)

with 𝒙𝒊 states of activation, 𝒖𝒋 inputs at the previous instants, synaptic weights 𝒂𝒊𝒋, 𝒃𝒊𝒋, 𝒄𝒊, and

sigmoid (e.g., saturated-linear) function 𝝈:

𝝈 𝒙 ≔ ൞

𝟎, 𝒊𝒇 𝒙 < 𝟎
𝒙, 𝒊𝒇 𝟎 ≤ 𝒙 ≤ 𝟏

𝟏, 𝒊𝒇 𝒙 > 𝟏

Definition of a (Finite Size Recurrent) Neural Network

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Oracle (polynomially

restricted

digital net

with rational weights

analog recurrent net

with real weights

Equivalence of Neural Networks, Automata, and Machines

recognition of

computable („recursive“)

languages
(Chomsky grammar)

recognition of (non-recursive)

languages (beyond Chomsky)

Turing machine

digital McCulloch-Pitts net

with integer weights
finite automaton

recognition of

computable („regular“)

languages

Turing oracle machine

read head

control

unit

input tape

read/write head

control

unit

storage

read/write head

control

unit

storage

*

**

* S.C. Kleene (1956); **, *** H.T. Siegelmann, E.D. Sontag (1995), (1994); K. Mainzer (2018)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Acceptance and Recognition of Languages

A language 𝑳 ⊆ 𝟎, 𝟏 + is accepted by a formal net 𝓝 if, for every word 𝝎 ∈
𝑳, 𝝎 is accepted by 𝓝, and for every word 𝝎 ∉ 𝑳, 𝝎 is rejected or not

classified by 𝓝.

𝑳 is recognized or decided by net 𝓝 if 𝑳 is accepted by 𝓝 and its complement

is rejected by 𝓝.

Let 𝑻:ℕ → ℕ be a total function on natural numbers.

The language 𝑳 is recognized or decided in time 𝑻 by the 𝓝 if any word

𝝎 ∈ 𝟎, 𝟏 + is correctly classified in time not greater than 𝑻(𝝎).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Verification of Neural Networks

and Learning Algorithms

Digital neural networks are equivalent to appropriate automata

(with respect to certain cognitive tasks).

The structure and behaviour of automata can be implemented

into the Calculus of inductive Constructions (CiC).

Thus, in principle, their conformance could verify the

correctnesss of circuits of automata and, therefore, the correctness

of neural networks in Coq.

Even analog neural networks (with real weights) could be

implemented into CiC extended by higher inductively defined

structures in HoTT to verify their correctness in Coq.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

4.2 Causal and Statistical Learning

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

What does Probabilistic Reasoning

and Pobabilistic Learning mean?

Probability theory is based on a model of a random experiment or probability

space (𝛀,𝓕, 𝑷) with 𝜴 set of all outcomes (data), 𝓕 collection of events 𝑨 ⊆
𝜴, and 𝑷 measure assigning a probability to each event.

Probabilistic reasoning tries to infer properties of the outcomes (data) of

random experiments from a given mathematical structure (𝛀, 𝓕, 𝑷).

Probabilistic learning tries to infer properties of the underlying statistical

model from the outcomes of experiments.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Example of Probabilistic Learning

Example :

Given 𝒙𝟏, 𝒚𝟏 , … , 𝒙𝒏, 𝒚𝒏 observed data with 𝒙𝒊 ∈ 𝓧 inputs and 𝒚𝒊 ∈ 𝓨 outputs (𝟏 ≤ 𝒊 ≤ 𝒏).
Metric spaces 𝓧 and 𝓨 are equipped with the Borel 𝝈-algebra.

Assume that each 𝒙𝒊, 𝒚𝒊 is independently generated by the same unknown random experiment,

i.e. realizations of random variables 𝑿𝟏, 𝒀𝟏 , … , 𝑿𝒏, 𝒀𝒏 i.i.d. (independent and identically

distributed) with joint distribution 𝑷𝑿,𝒀 and measurable function 𝑿:𝛀 → 𝓧 as random variable.

Try to infer properties of joint distribution 𝑷𝑿,𝒀 such as:*

(i) the expectation of the output 𝒇 𝒙 = 𝔼 𝒀 𝑿 = 𝒙 given the input (regression)

(ii) a binary classifier assigning each 𝒙 to the class that is more likely:

𝒇 𝒙 = 𝐚𝐫𝐠𝐦𝐚𝐱𝒚∈𝓨𝑷(𝒀 = 𝒚|𝑿 = 𝒙) with 𝓨 = ሼ ሽ±𝟏

(iii) the density 𝒑𝑿,𝒀 of 𝑷𝑿,𝒀 (assuming it exists)

* Vapnik 1998

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Causal Modeling and Machine Learning

causal model

probabilistic model observations

& outcomes

observations &

outcomes incl.

changes &

interventions

subsumes subsume

causal learning

causal reasoning

statistical learning

statistical reasoning

Peters et al. 2017, p. 6

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Definition of Structural Causal Models

A structural causal model (SCM) 𝕮 = (𝐒, 𝑷𝐍) consists of a collection 𝐒 of d structural

assignments 𝑿𝒋 ≔ 𝒇𝒋 𝐏𝐀𝒋, 𝑵𝒋 (𝒋 = 𝟏,… , 𝒅) with 𝐏𝐀𝒋 ⊆ ቄ ሽ𝑿𝟏, … , 𝑿𝒅 ∖ ൛ ൟ𝑿𝒋 parents of 𝑿𝒋

and a joint distribution 𝑷𝐍 over the (jointly independent) noise variables 𝐍 = 𝑵𝟏, … , 𝑵𝒅

(i.e. 𝑷𝐍 product distribution).

The graph 𝓖 of SCM is generated by one vertex (node) for each 𝑿𝒋 and directed edges

from each parent in 𝐏𝐀𝒋 to 𝑿𝒋.

𝑿𝒋 is called direct effect of the elements of 𝐏𝐀𝒋 as direct causes of 𝑿𝒋.

Proposition on Entailed Distributions

An SCM 𝕮 defines a unique distribution 𝑷𝐗
𝕮 over the variables 𝐗 = (𝑿𝟏, … , 𝑿𝒅) such

that 𝑿𝒋 ≔ 𝒇𝒋 𝐏𝐀𝒋, 𝑵𝒋 (𝒋 = 𝟏,… , 𝒅).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Proofs of Causal Structures
Under the assumption of different types of structural models 𝕮 (i.e. theories of mathematical

laws) with Gaussian noise, causal graph structures 𝓖 can be provable identified from the joint

distribution of data. (Results for non-Gaussian noise are also available.)

Types of structural models Types of equations Condition on functions Proofs of uniquely identifiable

causal graphs

Structural Causal Models

SCM (general)

𝑋𝑗 ≔ 𝑓𝑗(𝑋𝐏𝐀𝑗 , 𝑁𝑗) − no

Additive Noise Models

ANM
𝑋𝑗 ≔ 𝑓𝑗 𝑋𝐏𝐀𝑗 + 𝑁𝑗

nonlinear yes

Causal Additive Models

CAM
𝑋𝑗 ≔

𝑘∈𝐏𝐀𝑗

𝑓𝑗𝑘 𝑋𝑘 +𝑁𝑗
nonlinear yes

Linear Gaussian
𝑋𝑗 ≔

𝑘∈𝐏𝐀𝑗

𝛽𝑗𝑘 𝑋𝑘 +𝑁𝑗
linear no

Linear Gaussian with equal

error invariance
𝑋𝑗 ≔

𝑘∈𝐏𝐀𝑗

𝛽𝑗𝑘 𝑋𝑘 +𝑁𝑗
linear yes

Peters et al. 2017, p. 138

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

4.3 Testing, Verification, and Certification of Programs

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Correctness of Certified Programs with Proof Assistants

Implementation

Requirements

Design

Verification

Maintenance

„Waterfall“

of development

in software engineering

A program is correct („certified“) if it can be

verified to follow a given specification.

A proof assistant proves the correctness of

a computer program in a consistent

formalism like a constructive proof in

mathematics (e.g., Coq, Agda, MinLog).

Therefore, proof assistants are the best formal

verification of correctness for certified programs.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Ad-Hoc and Empirical Testing versus Model-Based Testing

Empirical testing lays directly on the analysis of program executions. It collects

information from executing the program either after actively soliciting some

executions, or passively during operation and try to abstract from these some

relevant properties of data or of behavior.

On this basis, it is decided whether the system conforms to the expected behavior.

Model-based testing uses a model of the system that is based on the design.

From this model, test input is automatically generated and executed by a test tool.

The output of the system is automatically compared to the output specified by the

model of the system (conformance of implementation with specification).

If the system passes all the generated tests, then the system is considered to be

correct.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Test Tool Architecture of Model-Based Testing

The test engine implements the test generation procedure:

It steps through the specification of the model and computes the sets of allowed input and

output actions.

If an output action is observed, then the test engine evaluates whether this output is

allowed by the specification of the model (conformance of implementation/specification).

If some output is observed that is not allowed according to the specification, then the test

is terminated with the verdict fail. As long as the verdict fail is not given, the test

terminates with the verdict pass.

specification Test

Engine
Adapter

Test

Implemen

tation

Environment

M
ed

iu
m

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Proof Assistants
A proof assistant proves the correctness of

a computer program in a consistent

formalism like a constructive proof in

mathematics (e.g., Coq, Agda, MinLog,

Isabelle).

Therefore, proof assistants are the

best formal verification of correctness

for certified programs.

There are restricted practical applications (e.g., Metro line in

Paris with Coq), but not for increasing complexity in industry.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Degrees of Certification in

Software Testing Research

Ad-hoc

testing

Anti-model-based

testing

Model-based

testing

Theorem

proving

Complexity

Accuracy & Security

We must aim at increasing accuracy, security, and trust in software in

spite of increasing complexity of civil and industrial applications, but

w.r.t. to costs of testing (e.g.,utility functions for trade-off time of

delivery vs. market value, cost/effectiveness ratio of availability)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

4.4 Perspectives of Responsible Artificial Intelligence

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Certified AI-Programs

Statistical machine learning works,

but we can’t understand the underlying reasoning.

Machine learning technique is akin to testing,

but it is not enough for safety-critical systems.

⟹ Combination of causal learning

with certified programs of model-based testing,

satisfaction techniques, and theorem proving

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Proof Theory
(e.g., type theory)

Mathematics

(e.g., analysis, homotopy

theory)

Computer Science
(e.g., theorem prover)

Science and Society

(e.g., AI, Big Data)

„Trust & Verification by

Type-checking “

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

References:

Bertot, Y.; Castéran, P. (2004): Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of

Inductive Constructions. Springer: New York.

Bishop, E.; Bridges, D. (1985): Constructive Analysis. Springer: New York.

Howard, W. A. (1969): The formulae-as-types notion of construction. In: Seldin, J. P.; Hindley,

J. R. (eds.), To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press: Boston,

MA, 479–490.

Kohlenbach, U. (2008): Applied Proof Theory: Proof Interpretations and Their Use in Mathematics. Springer: Berlin.

Lorenzen, P. (1965): Differential und Integral. Eine konstruktive Einführung in die klassische Analysis. Akademische

Verlagsgesellschaft. Frankfurt.

Mainzer, K. (2018): The Digital and the Real World. Computational Foundations of Mathematics, Science,

Technology, and Society. World Scientific Singapore.

Mainzer, K; Schuster, P.; Schwichtenberg, H. (Eds.) (2018): Proof and Computation. Digitization in Mathematics,

computer Science, and Philosophy. World Scientific Singapore.

Mainzer, K. (2019): Artificial Intelligence. When do Machines take over? Springer (Translation of 2nd German

edition 2019)

Martin-Löf, P. (1998): An intuitionistic theory of types. Twenty-five years of constructive type theory (Venice, 1995).

In: Oxford Logic Guides 36, Oxford University Press: New York, 127-172.

Palmgren, E. (1998): On universes in type theory. In: G. Sambin, J. M. Smith (eds), Twenty-five years of constructive

type theory, Clarendon Press: Oxford, 191-204.

Peters, J.; Janzing, D.; Schölkopf, B. (2017): Elements of Causal Inference. Foundations of Learning Algorithms. MIT

Press; Cambridge Mass.

Weyl, H. (1918): Das Kontinuum. Kritische Untersuchungen über die Grundlagen der Analysis. De Gruyter: Leipzig.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

