Organic Geochemistry 58 (2013) 107-114

Contents lists available at SciVerse ScienceDirect

Organic Geochemistry

journal homepage: www.elsevier.com/locate/orggeochem

Bacteriohopanoid inventory of *Geobacter sulfurreducens* and *Geobacter metallireducens*

Merle Eickhoff^a, Daniel Birgel^{b,*}, Helen M. Talbot^c, Jörn Peckmann^b, Andreas Kappler^a

^a Geomicrobiology Group, Center for Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen, Germany ^b Department of Geodynamics and Sedimentology, University of Vienna, Althanstrasse 14 (UZA II), 1090 Vienna, Austria ^c School of Civil Engineering and Geosciences, Drummond Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

ARTICLE INFO

Article history: Received 9 October 2012 Received in revised form 28 January 2013 Accepted 27 February 2013 Available online 7 March 2013

ABSTRACT

Geobacter spp. are ubiquitous prokaryotes in diverse sedimentary environments, coupling the oxidation of various carbon compounds with the reduction of metals, such as ferric iron. One specific attribute of such species, namely *Geobacter metallireducens* and *Geobacter sulfurreducens*, is their ability to synthesize hopanoids. Hopanoids are among the most specific and abundant molecular fossils in the sedimentary record and are commonly used to trace bacterial activity in recent to sub-recent sediments. The production of polyfunctionalized bacteriohopanepolyols (BHPs) by *G. sulfurreducens* and *G. metallireducens* is known, but the intact BHPs were not identified. In this study, the complete hopanoid inventory of both species was investigated. Among the hopanoids, bacteriohopaneterol cyclitol ether was the major compound in both, while guanidine-substituted bacteriohopanetetrol cyclitol ether and bacteriohopanetetrol glucosamine were also found in high abundance in *G. sulfurreducens*, but only in trace amounts in *G. metallireducens*. Interestingly, the BHP inventories are similar to those of some aerobic or facultative anaerobic methylotrophic bacteria, but have been identified in anaerobic cultures of *Geobacter* for the first time. The ubiquity of *Geobacter* spp. in anoxic sediments provokes us to speculate that such species may be among the predominant sources of composite BHPs in many sedimentary environments.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Prokaryotes have shaped sedimentary environments since life evolved on the early Earth. As prokaryotes rarely leave behind morphological fossils, most information about early life derives from molecular fossils, commonly referred to as lipid biomarkers (e.g. Summons et al., 1999; Brocks et al., 2003; Brocks and Schaeffer, 2008). Lipid biomarkers are compounds that are specific to certain groups of organisms based on their production in modern representatives of these groups.

Among the most specific biomarkers of bacteria are hopanoids. Only an estimated 10% of the Bacteria have the ability to produce them (Pearson et al., 2007, 2009). Although many phyla of the bacterial domain are potentially capable of producing hopanoids, only few effectively synthesize them (Ourisson et al., 1979; Rohmer et al., 1984; Pearson et al., 2007, 2009; Talbot et al., 2008). Their function is still not well understood, but they are believed to enhance membrane stability and integrity (Ourisson et al., 1979, 1987; Jahnke et al., 1992; Berry et al., 1993; Kannenberg and Poralla, 1999; Welander et al., 2009). The characteristic pentacyclic carbon skeleton is diagnostic for all hopanoids and resists thermal degradation to a great extent. Due to this stability, hopanoids are among the oldest molecular fossils found in the rock record (Brocks et al., 1999, 2003) and are commonly prevalent in mature sediments and crude oils (Ourisson et al., 1979; Ourisson and Albrecht, 1992). They are also useful tracers in recent environments, where the distribution of diverse bacteriohopanepolyols (BHPs) has been used to reconstruct bacterial community structure (e.g. Talbot and Farrimond, 2007; Cooke et al., 2008; van Winden et al., 2012).

It was originally assumed that hopanoids were produced only by aerobic bacteria and a few facultative anaerobes (Rohmer et al., 1984; Neunlist et al., 1985). Only much later were they detected in microbial mats and deposits that formed in anoxic environments at methane seeps (e.g. Thiel et al., 2003), drawing attention to potential hopanoid production by anaerobic bacteria. Finally, they were also found in enrichment cultures of anaerobic ammonium-oxidizing (anammox) planctomycetes (Sinninghe Damsté et al., 2004) and sulfate reducing bacteria (Blumenberg et al., 2006). The production of hopanoids by Geobacter metallireducens, a strict anaerobe, and Geobacter sulfurreducens, usually an anaerobic organism, but able to tolerate or even use low amounts of O₂ (Lin et al., 2004), was reported in two independent studies (Fischer et al., 2005; Härtner et al., 2005). Members of the Geobacteraceae have been detected in various anoxic environments from freshwater, marine and estuarine settings to subsurface aquifers and organic- and metal-polluted environments (Cummings et al., 2003 and references therein). Their ubiquity provoked the

^{*} Corresponding author. Tel.: +43 1 4277 53464; fax: +43 1 4277 9534. *E-mail address*: daniel.birgel@univie.ac.at (D. Birgel).

^{0146-6380/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.orggeochem.2013.02.013

suggestion that these bacteria might be among the most dominant hopanoid producers in many anoxic environments (cf. Fischer et al., 2005). Fischer et al. (2005), as well as Härtner et al. (2005), confirmed the presence of polyfunctionalized BHPs in *G. sulfurreducens* by measuring the HIO_4 cleaved products, but intact BHPs were not examined.

In this study, we have determined the inventory of hopanoids, including BHPs, in *G. sulfurreducens* and *G. metallireducens*, using gas chromatography–mass spectrometry (GC–MS) and high performance liquid chromatography–mass spectrometry (HPLC–MS), and discuss the implications of the findings for the interpretation of hopanoid signatures in sediments and sedimentary rocks.

2. Materials and methods

2.1. Bacterial strains and growth conditions

G. metallireducens (Lovley and Phillips, 1988; Lovley et al., 1993) and *G. sulfurreducens* (Caccavo et al., 1994) belong to the Deltaproteobacteria. They can both grow by way of complete oxidation of organic matter coupled to dissimilatory Fe(III) reduction. *G. metallireducens* was originally isolated from freshwater sediments of the Potomac River and was obtained for this study from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures (DSMZ No. 7210, type strain). *G. sulfurreducens*, originally isolated from surface sediment of a ditch, was taken from the laboratory culture collection of the Tuebingen geomicrobiology group.

Both were cultivated in an anoxic medium. For G. metallireducens, DSMZ medium 579 was used, containing 55.9 mM Fe(III) citrate, 28.0 mM NH₄Cl, 4.4 mM NaH₂PO₄·H₂O, 1.3 mM KCl, 30.5 mM NaOAc and 10 ml trace element solution of DSMZ medium 141. The medium for G. sulfurreducens contained 5.6 mM NH₄Cl, 3.7 mM KH₂PO₄, 0.7 mM CaCl₂·2H₂O, 2.0 mM MgSO₄·7H₂O, 10 mM NaOAc and 10 ml trace element solution of DSMZ medium 141. After autoclaving and cooling under N₂/CO₂ (90/10), 22 mM HCO_3^- buffer, autoclaved separately under a N_2/CO_2 atmosphere, was added to each medium. The following solutions were then added from anoxic sterile stocks to each medium: 10 ml l⁻¹ vitamin solution of DSMZ medium 141, and 1 ml l⁻¹ selenite tungstate solution (Tschech and Pfennig, 1984). The G. metallireducens medium was additionally amended with $0.75 \mu M Na_2WO_4 \cdot 2H_2O$; 40 mM Na₂-fumarate was added as electron acceptor to the medium for G. sulfurreducens from a sterile stock solution. The pH of the final medium was adjusted to 6.8-7.0. Cultures were inoculated from fresh pre-cultures. Cultures were grown in 500 ml medium in 1 l Schott bottles. Incubation was at 28 °C in the dark.

Fe(III) reduction in *G. metallireducens* was monitored using the spectrophotometric ferrozine assay (see below). Cultures were harvested during late exponential growth phase after 2 days incubation, when ca. 90% of Fe(III) was reduced to Fe(II). For *G. sulfurreducens*, optical density (OD) at 540 nm (Analytik Jena, Spekol 1300) was taken as a measure of growth stage. Cells were harvested in late exponential growth phase after 2 days incubation (OD₅₄₀ ca. 0.5) via centrifugation at 10,000g under anoxic conditions (Herolab, HiCen 21), frozen and lyophilized (Christ, Alpha 1–4). The material from three independent cultures (500 ml each) was combined to provide the amount of biomass required for lipid analysis. Because cultures were not analyzed separately, the data represent an average of the combined triplicates.

2.2. Quantification of iron (ferrozine assay)

Fe(II) and Fe(total) were quantified using the spectrophotometric ferrozine assay modified from Stookey (1970) as described by Hegler et al. (2008). Quantification for all Fe-containing cultures was done before inoculation and during Fe(III) reduction by the cultures.

2.3. Extraction and derivatization of lipids

All glassware was baked at 400 °C for 4 h before use. The freeze dried material was extracted $(4 \times)$ with dichloromethane (DCM)/ MeOH (3:1 v/v) by sonication (15 min) at room temperature. Three internal standards (2-methyloctadecanoic acid, 1-nonadecanol and 5α -cholestane) were added to all samples before extraction. The extracts were combined and washed with DCM-extracted water. The organic phases were collected, combined and dried with Na₂SO₄. The solvent was removed under reduced pressure. Aliquots of the total lipid extracts (TLEs) were acetylated by reaction with Ac₂O and pyridine (1:1 y/y) for 1 h at 60 °C and subsequent incubation at room temperature overnight. Further aliquots of the TLEs were saponified (3 h, 80 °C) with 6% KOH in MeOH. After saponification, neutral lipids were extracted $(4 \times)$ from the saponification extract with *n*-hexane. Neutral lipids were separated into three fractions according to polarity via column chromatography (Supelco LC–NH₂ glass cartridges; 500 mg sorbed): hydrocarbons (F1) were eluted with hexane, ketones (F2) and esters with hexane/DCM (3:1 v/v) and alcohols (F3) with DCM/Me₂CO (9:1 v/v). The alcohol fractions were acetylated with Ac₂O and pyridine (1:1 v/v) for 1 h at 60 °C and subsequent incubation at room temperature overnight.

2.4. GC-MS

Lipids in acetylated TLEs and fractions F1 to F3 were identified and quantified via GC-MS with an Agilent 7890 A GC system coupled to an Agilent 5975 C inert MSD mass spectrometer at the University of Vienna. A split/splitless injector (310 °C) and a 30 m HP-5 MS UI fused silica column (0.25 mm i.d., 0.25 µm film thickness) were used with He as carrier gas. The GC temperature programme was: 60 °C (1 min) to 150 °C at 10 °C/min. then 150 °C to 325 °C (held 35 min) at 4 °C/min. This programme was used for fractions F1 to F3. Acetylated TLEs were additionally run with a 15 m DB-5HT fused silica column (0.25 mm i.d., 0.10 µm film thickness) with He as carrier gas. The GC temperature programme was: 80 °C (3 min) to 200 °C at 15 °C/min, then 200 °C to 250 °C at 10 °C/min, then 250 °C to 360 °C (held 20 min) at 15 °C/min. All acetylated TLEs were run in parallel in full scan (m/z 50–800) and selected ion monitoring mode $(m/z \ 191, \ 205)$ for analysis of trace amounts of pentacyclic triterpenoids, including bacteriohopane-32,33,34,35-tetrol (BHT). The acetylated TLEs were analyzed for identification and quantification of the components; 5α-cholestane was used as internal standard for quantification of the TLEs using the total ion current (TIC). The response factors of the various compounds were assumed to be identical, although it has been shown recently that response factors of various GC-amenable hopanoids may vary significantly (see Sessions et al., 2013). Fractions F1 and F3 were analyzed to detect possible artifacts that may have been introduced during acetylation of the TLE. Identification was based on comparison of retention times and mass spectra with published data and reference compounds.

2.5. HPLC-APCI-MS

BHPs in the acetylated TLE in MeOH/propan-2-ol (60:40 v/v) were analyzed at Newcastle University as described by van Winden et al. (2012). A Thermo Finnigan Surveyor HPLC system, equipped with a Phenomenex Gemini C_{18} 5 μ m HPLC column (150 mm, 3.0 mm i.d.) and a security guard column of the same material was used. The programme was: 0.5 ml/min at 30 °C with

90% A and 10% B (starting at 0 min); 59% A, 1% B and 40% C (at 25 min); isocratic (to 40 min), returning to starting conditions over 5 min and stabilizing for 15 min, with A = MeOH, B = water, C = propan-2-ol. A Thermo Finnigan LCQ ion trap MS instrument equipped with an atmospheric pressure chemical ionization (APCI) source operated in positive ion mode was used. HPLC–MS was performed in data-dependent mode with two scan events: SCAN 1 over the whole spectrum (m/z 500–1300) and with SCAN 2, a data-dependent MS² spectrum recorded for the most abundant ion from SCAN 1.

The relative abundances of BHPs were corrected for differences in response factors where N-containing BHPs showed a response $1.5 \times$ that of non-N-containing BHPs (cf. van Winden et al., 2012 and references therein). No internal standard was added for BHP analysis. BHP quantification was done indirectly by correlating GC-MS and HPLC-APCI-MS data, using GC-amenable free BHT as the scale, which was quantified via GC-MS with the internal standard (5 α -cholestane). The content quantified using GC was assumed to equal the content from HPLC, although it recently has been shown that BHP content measured using HPLC-MS is higher by at least a factor of 2 (Sessions et al., 2013). The content of the other BHPs was then calculated from relative abundance in the HPLC runs. Without standards for each hopanoid, the large potential error in the quantification calls for caution when comparing these values with values in the literature.

2.6. Quantification of lipids

For quantification of lipid compounds in *G. sulfurreducens* (producing only cells), amount of lipid per wt. of sample was back-calculated to amount per g carbon. The ratio of carbon wt. per dry wt. was assumed to equal 0.5 (Bratbak and Dundas, 1984) and the amount obtained per wt. of sample was divided by 2. For quantification of lipid compounds in *G. metallireducens* (producing cells and minerals), amount is given only per wt. of sample.

2.7. BLAST analysis

Protein BLAST searches of *Rhodopseudomonas palustris* strain TIE-1 HpnP sequence (responsible for C-2 methylation of hopanoids) and *Methylococcus capsulatus* strain Bath HpnR sequence (responsible for C-3 methylation of hopanoids) were run against the Integrated Microbial Genomes database (IMG of DOE's Joint

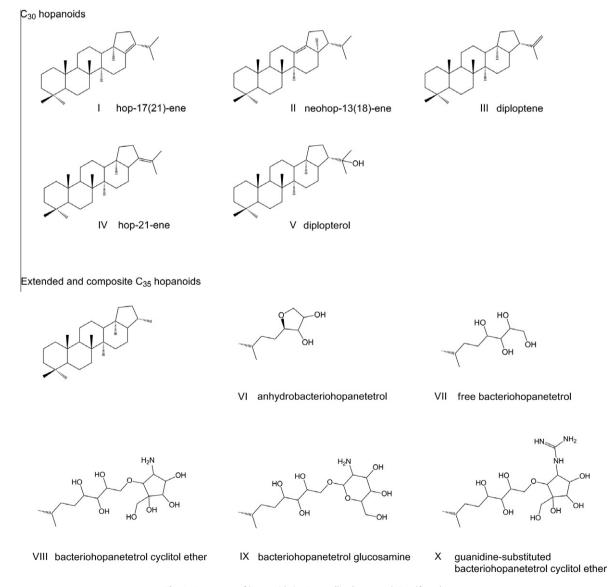


Fig. 1. Structures of hopanoids in G. metallireducens and G. sulfurreducens.

Genome Institute) of fully sequenced microbial genomes to search for homologues in *G. sulfurreducens* and *G. metallireducens*.

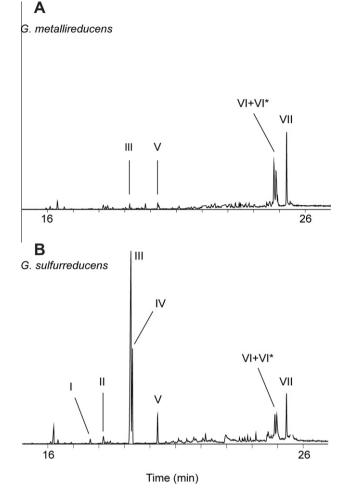
3. Lipid inventory of G. sulfurreducens and G. metallireducens

The hopanoids extracted from G. sulfurreducens and G. metallireducens can be subdivided into three groups: those without a side chain and 30 carbons (C₃₀), BHPs with a polyfunctionalized side chain and 35 carbons, and composite BHPs, where C-35 is linked to a complex moiety. The first group was only found in trace amount and comprised hop-22(29)-ene (diploptene) III (structures in Fig. 1) and hopan-22-ol (diplopterol) V (Table 1). Diploptene III was slightly more abundant in G. sulfurreducens than in G. metallireducens (Fig. 2; Table 1). Only a minor content of free bacteriohopanetetrol (BHT) VII was found in both cultures relative to the composite BHPs (see below). Absolute quantification of the C_{30} hopanoids was not possible due to additional production of C_{30} hopanoid hydrocarbons during derivatization (acetylation) or GC analysis. Diploptene III was abundant in the underivatized hydrocarbon fraction F1, but was found to be $4 \times$ more abundant in the TLE than in F1. Moreover, in the acetylated alcohol fraction (F3), hopenes (diploptene III and hop-21-ene IV) were present and even more abundant in F3 than in F1, revealing that they were artifacts probably produced by a combination of the derivatization (acetylation) of diplopterol (Welander et al., 2012; Eickhoff et al., 2013) and the injection with a split/splitless injector, which might also have been responsible for producing trace amounts of hop-17(21)-ene I, neohop-13(18)-ene II and hope-21-ene IV as a result of diplopterol dehydration (cf. Sessions et al., 2013).

G. sulfurreducens contained 12 mg hopanoids per g dry weight, corresponding to 6 mg per g carbon (Table 1). *G. metallireducens* synthesized 13 mg hopanoids per g dry wt. (Table 1), although the dry wt. comprised cells and minerals. This led to the assumption that the amount of hopanoids produced by *G. metallireducens* per g carbon was most likely higher (by an unknown factor) than that found for *G. sulfurreducens*. This is in agreement with a previous study in which *G. metallireducens* was found to produce $10 \times$ the amount of hopanoids produced by *G. sulfurreducens* (Härtner et al., 2005). The great majority of all hopanoids in both extracts were BHPs, predominantly composite BHPs (98% of all hopanoids; Table 1, Fig. 3). Free BHT **VII**, common in many hopanoid synthesizing bacteria, was present only in trace amount in both *Geobacter* species. While C₃₀ hopanoids and free BHT were scarce in our cultures, three composite BHPs were found to be highly dominant

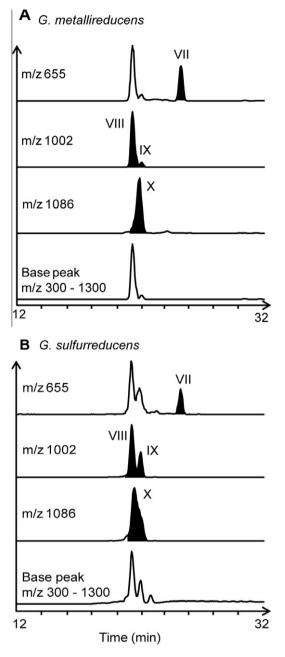
Table 1

Hopanoid inventory of *Geobacter metallireducens* and *Geobacter sulfurreducens* harvested at late stage exponential growth phase after 2 days. Relative abundance is given as % of total hopanoids (nd, not determined).


Compound ^{a,b}	G. metallireducens	G. sulfurreducens
C ₃₀ hopanoids		
III Diploptene	<1	2
V Diplopterol	<1	<1
C ₃₅₊ hopanoids		
VII Free BHT ^c	<1	<1
VIII BHT-CE ^{c,d}	98	54
X Guanidine-substituted BHT-CE ^{c,d}	1	21
IX BHT-glucosamine ^c	<1	22
Absolute amount hopanoids		
mg/g Dry sample wt.	13	12
mg/g Carbon	nd	6

^a C_{30} hopanoids and bacteriohopanetetrol were analyzed using GC–MS and C_{35+} hopanoids using HPLC–APCI–MS.

^b For structures see Fig. 1.


^c BHT, bacteriohopanetetrol.

^d CE, cyclitol ether.

Fig. 2. GC ion chromatograms (m/z 191) of acetylated total lipid extracts of cultures of *G. metallireducens* grown with Fe(III)-citrate (A), and of *G. sulfurreducens* grown with fumarate (B) as electron acceptor. Cultures were harvested in late exponential growth phase. Numbered compounds: I, hop-17(21)-ene; II, neohop-13(18)-ene; III, diploptene; IV, hop-21-ene; V, diplopterol; VI, 32,35-anhydrobacteriohopanetetrol; VII, bacteriohopanetetrol; * stereo isomer. For structures see Fig. 1.

(Table 1). Interestingly, their relative abundance varied significantly between the two species. The major hopanoid synthesized by G. sulfurreducens was BHT-cyclitol ether VIII (54%; Table 1, Fig. 3); guanidine-substituted BHT-cyclitol ether X (21%) and BHT-glucosamine IX (22%) were produced in equal and still high abundance. In contrast, G. metallireducens produced almost exclusively BHT-cyclitol ether VIII (98%; Table 1, Fig. 3), which clearly distinguished the two strains from each other; 32,35-anhydrobacteriohopanetetrol (anhydroBHT) VI was detected as two stereoisomers VI and VI* during GC analysis only (Fig. 2). AnhydroBHT is known as a degradation product of free BHT and other composite BHPs (e.g. Bednarczyk et al., 2005; Talbot et al., 2005; Schaeffer et al., 2008, 2010). As it was not detected during HPLC analysis, it might have been generated as an artifact during GC analysis. Because of its low abundance vs. the composite BHPs, it does not have an impact on the quantification of the BHPs, the putative precursors of anhydroBHT. Fischer et al. (2005) predicted the synthesis of penta- and hexafunctionalized BHPs by G. sulfurreducens, because they found C₃₀ and C₃₁ hopanols after applying HIO₄ acid cleavage. In our cultures, we could not detect any pentaor hexafunctionalized BHPs. This, however, does not rule out their presence in trace amount in the analyzed cells or their production under different growth conditions.

Fig. 3. HPLC–APCI–MS partial mass chromatograms showing bacteriohopanepolyols in acetylated total lipid extracts of cultures of *G. metallireducens* grown with Fe(III)-citrate (A), and cultures of *G. sulfurreducens* grown with fumarate (B) as electron acceptor. Numbered compounds: VII, free bacteriohopanetetrol (BHT); VIII, BHT-cyclitol ether; IX, BHT-glucosamine; X, guanidine-substituted BHT-cyclitol ether. For structures see Fig. 1.

Moreover, neither species produced C-2 or C-3 methylated hopanoids. These compounds are of interest because of their rarity among hopanoid synthesizing bacteria and the resulting potential as diagnostic biomarkers. C-2 methylated hopanoids are produced by various cyanobacteria (Rohmer et al., 1984; Summons et al., 1999; Talbot et al., 2008) and some Alphaproteobacteria (e.g. Bisseret et al., 1985; Vilchèze et al., 1994; Bravo et al., 2001; Rashby et al., 2007), while the HpnP enzyme necessary for their production is contained in several additional phyla (Welander et al., 2010). C-3 methylated hopanoid production has been found only in aerobic methanotrophs and acetic acid bacteria (Zundel and Rohmer, 1985a,b; Talbot et al., 2001), while the HpnR enzyme necessary for their production is contained in a diverse set of phyla (Welander and Summons, 2012). Based on amino acid sequences, both Geobacter strains contain proteins with relatively low homology to the C-2 methylase HpnP (G. sulfurreducens: 35.80% and 29.50% identity, G. metallireducens: 35.60% and 28.40% identity) and the C-3 methylase HpnR (G. sulfurreducens: 34.20%, 26.40% and 25.80% identity, G. metallireducens: 27.70%, 26.60% and 24.40% identity). The enzymes HpnP and HpnR are characterized as radical S-adenosylmethionine (SAM) domain proteins, as are the proteins identified in Geobacter with homologies to HpnP and HpnR. SAM domain proteins are a set of proteins that can catalyze diverse biochemical reactions that may or may not include C-2 or C-3 methylation of hopanoids. However, maximum likelihood trees constructed by Welander et al. (2010; HpnP) and Welander and Summons (2012; HpnR) show that Geobacter strains most likely do not contain genes for the enzymes necessary for C-2 or C-3 hopanoid methylation.

4. Implications of the lipid patterns of *G. sulfurreducens* and *G. metallireducens* for the biomarker concept

Even though facultative anaerobic bacteria have been known for quite some time to produce hopanoids in laboratory cultures (Rohmer et al., 1984), hopanoids were not known to be produced by anaerobic bacteria in the environment. The first significant occurrence of hopanoids in anaerobes that are widespread in various environments was reported for cultured anammox planctomycetes (Sinninghe Damsté et al., 2004). Soon after, hopanoid production in anaerobic cultures of G. sulfurreducens and G. metallireducens was recognized (Fischer et al., 2005; Härtner et al., 2005). The ubiquity, high abundance and metabolic diversity of the Geobacteraceae led to the speculation that they might be one of the most prominent sources of hopanoids in anoxic environments. In various immature anoxic sediments tetrafunctionalized BHPs, including composite BHPs, are highly abundant (e.g. Innes et al., 1997; Farrimond et al., 2000; Talbot and Farrimond, 2007; Zhu et al., 2011). BHT-cyclitol ether is very common among the composite BHPs found in the environment, whereas BHT-glucosamine has only been found in a few environmental samples (Talbot and Farrimond, 2007; Coolen et al., 2008; Talbot et al., 2008; Kim et al., 2011). Based on our new lipid data, Geobacter could indeed be a major source of hopanoids in various anoxic environments, taking into account that the major portion of hopanoids produced by the two species investigated were tetrafunctionalized composite BHPs (Table 1). The less widespread occurrence of BHT-glucosamine and guanidine-substituted BHT-cyclitol ether, which has only been found in a few soil samples (Cooke, 2010), could be a result of fast degradation of these composite BHPs to free BHT, but this requires further investigation.

Both Geobacter species produced BHT-cyclitol ether as the major composite hopanoid, whereas BHT-glucosamine and guanidine-substituted BHT-cyclitol ether occurred in significant amount only in G. sulfurreducens. G. sulfurreducens is known to tolerate low levels of O2, whereas G. metallireducens is strictly anaerobic. The new lipid data can now be used to better characterize sedimentary microenvironments, assuming that similar BHPs are produced under changing growth conditions. Since both Geobacter cultures were grown under strictly anoxic conditions and both were harvested in the exponential phase, it cannot be excluded that the inventory of composite BHPs may change under varying growth conditions, especially under microaerophilic conditions for G. sulfurreducens. However, as the BHP patterns of G. sulfurreducens and G. metallireducens were found to be rather similar, it seems more likely that compound abundance would change as a function of environmental conditions, with the combination of compounds remaining unchanged.

BHT-cyclitol ether, the most abundant BHP in both cultures, was first isolated as the major BHP from the facultative methanotroph Methylobacterium organophilum (Renoux and Rohmer, 1985). It is also produced by pink-pigmented facultative methylotrophs (PPFMs; Knani et al., 1994), Zymomonas mobilis (Renoux and Rohmer, 1985), the purple non-sulfur bacterium Rhodoblastus acidophilus (formerly Rhodopseudomonas acidophila) (Neunlist et al., 1988), strains related to Burkholderia (Cvejic et al., 2000), acetic acid bacteria including Frateuria aurantia (Joyeux et al., 2004) and by cyanobacteria (Talbot et al., 2008; Sáenz et al., 2012), often as major BHP. BHT-glucosamine is produced by mostly the same groups of bacteria as BHT-cyclitol ether, such as Zymomonas (Flesch and Rohmer, 1989), methylotrophic bacteria (Renoux and Rohmer, 1985; Knani et al., 1994), Alicyclobacillus (Langworthy et al., 1976; Rohmer et al., 1993) and some cyanobacteria (Talbot et al., 2008), but has not been found to be produced by purple non-sulfur bacteria or *Burkholderia*-like strains. While BHT-cyclitol ether, BHT-glucosamine and free BHT are produced by various groups of bacteria, guanidine-substituted BHT-cyclitol ether has been found here for the first time in a pure culture of bacteria other than methylotrophs (cf. Renoux and Rohmer, 1985; Knani et al., 1994). Otherwise, it has only been detected in a cyanobacterial enrichment culture (Talbot et al., 2008). Based on this apparently limited distribution, guanidinesubstituted BHT-cyclitol ether is possibly more specific for Geobacter spp. than the other BHPs.

Interestingly, the hopanoid inventory of G. sulfurreducens is very similar to that of PPFMs (Knani et al., 1994) and M. organophilum (Renoux and Rohmer, 1985), with the exception of high amounts of 2-methyldiplopterol and free BHT in the latter two. PPFMs are closely related to the genus Methylobacterium (Green et al., 1988; Knani et al., 1994). They differ mainly in the ability of the latter to oxidize methane (Green and Bousfield, 1981) and are collectively referred to as PPFMs below. Methylotrophs are a remarkable group of bacteria because of their ability to use reduced carbon compounds with no carbon-carbon bonds (i.e. C₁ compounds) such as MeOH or MeNH₂ as sole carbon source. The genome of G. sulfurreducens predicts its capability to use C₁ compounds for energy generation (Methé et al., 2003). Both Geobacteraceae and PPFMs are distributed in various environments, can use a variety of carbon sources and have great metabolic versatility (Knani et al., 1994 and references therein; Methé et al., 2003; Aklujkar et al., 2009). Although they are not closely related, similar adaptations and metabolic pathways may possibly be a factor for the similarity in hopanoid patterns.

The most prominent difference between most bacterial strains mentioned above and *Geobacter* is that the former are mostly aerobic or facultative anaerobic bacteria, while both *Geobacter* strains were grown anaerobically. Although production of composite BHPs was known in a few anaerobic bacterial strains, the most common and abundant BHPs, such as free BHT, aminotriol, adenosylhopane and BHT-cyclitol ether (Neunlist et al., 1985, 1988; Flesch and Rohmer, 1989; Hermans et al., 1991; Rashby et al., 2007; Welander et al., 2012; this study), as well as several of the less common compounds, such as 2-Me-BHT, BHT-glucosamine, guanidine-substituted BHT-cyclitol ether, aminotetrol and aminopentol (Flesch and Rohmer, 1989; Hermans et al., 1991; Llopiz et al., 1992; Rashby et al., 2007; Blumenberg et al., 2012; this study) have now been detected in anaerobic cultures.

Bacteria with the pattern of composite BHPs most similar to that of *Geobacter* are aerobic PPFMs and some cyanobacteria. PPFMs are often found in association with aquatic or terrestrial plants and cyanobacteria thrive in the oxic photic zone of lacustrine or marine water columns, while *Geobacter* is found in aquatic or terrestrial anoxic sediments. Because the groups of bacteria with a similar BHP pattern do inhabit environments other than *Geobacter*, this pattern is apparently specific when found in anoxic environments. The recognition of the observed uncommon combination of composite BHPs in anoxic sediments may be taken as the first evidence for the presence of Geobacter. However, because hopanoids produced by PPFMs on plant surfaces or by cyanobacteria in the water column may eventually also end up in sediments, the source organisms cannot be determined with certainty (see also Talbot and Farrimond, 2007; Talbot et al., 2008). In the light of such ambiguity, other accompanying hopanoids might provide further evidence, allowing discrimination between inputs from the different bacterial groups. In such a scenario, high abundances of diplopterol, 2-methyldiplopterol and free BHT would indicate an input from PPFMs (Knani et al., 1994), even if the coexistence of Geobacter species could not be excluded. Geobacter species prefer freshwater environments, while Desulfurumonas species of the same order as the Geobacteraceae family are commonly responsible for metal reduction in marine environments (Roden and Lovley, 1993; Coates et al., 1995). Although marine nitrogen-fixing cyanobacteria produce a high amount of BHT-cyclitol ether (Talbot et al., 2008), as does Geobacter, they are of no concern for the biomarker concept in lacustrine environments favoured by Geobacter. Lacustrine cyanobacteria may produce some BHT-cyclitol ether, but a high abundance of free BHT is much more common in lacustrine cyanobacteria (Talbot et al., 2008), as is a high abundance of C-2 methylated BHPs, especially 2-Me-BHT (Summons et al., 1999; Talbot et al., 2008). Pentafunctionalized BHPs are also synthesized by some cyanobacteria. The presence of these specific hopanoids would identify an input from cyanobacteria, but again not excluding a possible coexistence of Geobacter.

The sediment depth at which hopanoids are found also needs to be considered. The composite BHPs produced by Geobacter, PPFMs, and cyanobacteria are easily degradable and the complex moiety at C-35 of the functionalized side chain will be lost quickly. The presence of composite BHPs in deeper sediments indicates either a terrigenous source (e.g. Handley et al., 2010; Sáenz et al., 2011) along with rapid transport through the water column and effective preservation in environments typified by high sedimentation rate, or sedimentary bacteria like Geobacter as source organisms. BHT-cyclitol ether has occasionally been reported, but the source organisms were not identified with certainty at a time when the production of these composite BHPs by anaerobic bacteria was unknown. On that basis, it had been suggested that these hopanoids in anoxic sediments derived from aerobic bacteria that flourished in the water column or the sediment surface (e.g. Innes et al., 1997; Farrimond et al., 2000). Only in a more recent study has an increase in the content of BHT-cyclitol ether with increasing depth in peat sediments been suggested to reflect an anaerobic source organism (van Winden et al., 2012). In anoxic settings, the ubiquitous and metabolically versatile Geobacter is a more likely source organism for BHT-cyclitol ether than aerobic bacteria thriving in the water column, although a terrigenous source and riverine transport in the form of particulate organic matter prior to sedimention cannot be excluded.

Because composite BHPs are prone to degradation and do not withstand diagenetic conditions, they are unlikely to occur in older, especially thermally mature, sediments. Based on the scenario that many geohopanoids derive from composite BHPs, it is possible that *Geobacter* is a major source of BHPs (especially free BHT) in anoxic environments. The composite BHTs found in *Geobacter* are precursors of BHT, C₃₂ hopanols and C₃₂ hopanoic acids – the most prevalent components in early diagenetic sediments – and hopanoid hydrocarbons (geohopanoids) in more mature sediments and sedimentary rocks. As a consequence, *Geobacter*-specific hopanoid markers are probably difficult to trace in older sediments.

Geobacter allows for the recognition of this important group of bacteria in young sediments using the biomarker concept.

5. Conclusions

Anaerobic cultures of *G. sulfurreducens* and *G. metallireducens* produce composite bacteriohopanepolyols (BHPs). The recognition of a pattern of composite BHPs specific for *Geobacter* is significant, calling for reinterpretation of findings of these intact composite BHPs in anoxic sediments. Such findings have been interpreted to reflect input from aerobic bacteria thriving in the water column or the uppermost sedimentary column, or from a terrigenous source. Based on our results from strictly anaerobic cultures of *Geobacter*, it seems more likely that these bacteria are the source of composite BHPs in anoxic sediments.

Acknowledgements

This work was funded by grants from the Deutsche Forschungsgemeinschaft (DFG) to A.K. (KA 1736/4-1 and 12-1). We thank S. Büßecker for preparation of media and ferrozine assays, H. Schulz for freeze-drying, K. Heindel for help with lipid extraction and S. Behrens for help with BLAST search. F. Dunn is thanked for technical assistance. The ThermoFinnigan LCQ ion trap mass spectrometer (Newcastle University) was funded by the Science Research Infrastructure Fund (SRIF) from HEFCE. We also thank A.L. Sessions and an anonymous reviewer for constructive comments that improved the manuscript.

Associate Editor-P. Schaeffer

References

- Aklujkar, M., Krushkal, J., DiBartolo, G., Lapidus, A., Land, M.L., Lovley, D.R., 2009. The genome sequence of *Geobacter metallireducens*: features of metabolism, physiology and regulation common and dissimilar to *Geobacter sulfurreducens*. BMC Microbiology 9, 109, http://dx.doi.org/10.1186/1471-2180-9-109.
- Bednarczyk, A., Hernandez, T.C., Schaeffer, P., Adam, P., Talbot, H.M., Farrimond, P., Riboulleau, A., Largeau, C., Derenne, S., Rohmer, M., Albrecht, P., 2005. 32,35-Anhydrobacteriohopanetetrol: an unusual bacteriohopanepolyol widespread in recent and past environments. Organic Geochemistry 36, 673–677.
- Berry, A.M., Harriott, O.T., Moreau, R.A., Osman, S.F., Benson, D.R., Jones, A.D., 1993. Hopanoid lipids compose the *Frankia* vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proceedings of the National Academy of Sciences of the USA 90, 6091–6094.
- Bisseret, P., Zundel, M., Rohmer, M., 1985. Prokaryotic triterpenoids. 2. 2βmethylhopanoids from *Methylobacterium organophilum* and *Nostoc muscorum*, a new series of prokaryotic triterpenoids. European Journal of Biochemistry 150, 29–34.
- Blumenberg, M., Krüger, M., Nauhaus, K., Talbot, H.M., Oppermann, B.I., Seifert, R., Pape, T., Michaelis, W., 2006. Biosynthesis of hopanoids by sulfate-reducing bacteria (genus *Desulfovibrio*). Environmental Microbiology 8, 1220–1227.
- Blumenberg, M., Hoppert, M., Krüger, M., Dreier, A., Thiel, V., 2012. Novel findings on hopanoid occurrences among sulfate reducing bacteria: is there a direct link to nitrogen fixation? Organic Geochemistry 49, 1–5.
- Bratbak, G., Dundas, I., 1984. Bacterial dry matter content and biomass estimations. Applied and Environmental Microbiology 48, 755–757.
- Bravo, J.M., Perzl, M., Härtner, T., Kannenberg, E.L., Rohmer, M., 2001. Novel methylated triterpenoids of the gammacerane series from the nitrogen-fixing bacterium *Bradyrhizobium japonicum* USDA 110. European Journal of Biochemistry 268, 1323–1331.
- Brocks, J.J., Logan, G.A., Buick, R., Summons, R.E., 1999. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036.
- Brocks, J.J., Buick, R., Summons, R.E., Logan, G.A., 2003. A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billionyear-old Mount Bruce supergroup, Hamersley basin, western Australia. Geochimica et Cosmochimica Acta 67, 4321–4335.
- Brocks, J.J., Schaeffer, P., 2008. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek formation. Geochimica et Cosmochimica Acta 72, 1396–1414.
- Caccavo, F., Lonergan, D.J., Lovley, D.R., Davis, M., Stolz, J.F., McInerney, M.J., 1994. *Geobacter sulfurreducens* sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Applied and Environmental Microbiology 60, 3752–3759.

- Coates, J.D., Lonergan, D.J., Philips, E.J.P., Jenter, H., Lovley, D.R., 1995. Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Archives of Microbiology 164, 406–413.
- Cooke, M.P., Talbot, H.M., Farrimond, P., 2008. Bacterial populations recorded in bacteriohopanepolyol distributions in soils from northern England. Organic Geochemistry 39, 1347–1358.
- Cooke, M.P., 2010. The Role of Bacteriohopanepolyols as Biomarkers for Soil Bacterial Communities and Soil Derived Organic Matter. PhD Thesis, Newcastle University, UK.
- Coolen, M.J.L., Talbot, H.M., Abbas, B.A., Ward, C., Schouten, S., Volkman, J.K., Sinninghe Damsté, J.S., 2008. Sources for sedimentary bacteriohopanepolyols as revealed by 16S rDNA stratigraphy. Environmental Microbiology 10, 1783– 1803.
- Cummings, D.E., Snoeyenbos-West, O.L., Newby, D.T., Niggemyer, A.M., Lovley, D.R., Achenbach, L.A., Rosenzweig, R.F., 2003. Diversity of Geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses. Microbial Ecology 46, 257–269.
- Cvejic, J.H., Putra, S.R., El-Beltagy, A., Hattori, R., Hattori, T., Rohmer, M., 2000. Bacterial triterpenoids of the hopane series as biomarkers for the chemotaxonomy of *Burkholderia*, *Pseudomonas* and *Ralstonia* spp. FEMS Microbiology Letters 183, 295–299.
- Eickhoff, M., Birgel, D., Talbot, H.M., Peckmann, J., Kappler, A., 2013. Oxidation of Fe(II) leads to increased C-2 methylation of pentacyclic triterpenoids in the anoxygenic phototrophic bacterium *Rhodopseudomonas palustris* strain TIE-1. Geobiology, in press.
- Farrimond, P., Head, I.M., Innes, H.E., 2000. Environmental influence on the biohopanoid composition of recent sediments. Geochimica et Cosmochimica Acta 64, 2985–2992.
- Fischer, W.W., Summons, R.E., Pearson, A., 2005. Targeted genomic detection of biosynthetic pathways: anaerobic production of hopanoid biomarkers by a common sedimentary microbe. Geobiology 3, 33–40.
- Flesch, G., Rohmer, M., 1989. Prokaryotic triterpenoids a novel hopanoid from the ethanol-producing bacterium Zymomonas mobilis. Biochemical Journal 262, 673–675.
- Green, P.N., Bousfield, I.J., 1981. Microbial Growth on C1 Compounds. Heyden, London.
- Green, P.N., Bousfield, I.J., Hood, D., 1988. Three new *Methylobacterium* species: *M. rhodesianum* sp. nov., *M. zatmanii* sp. nov., and *M. fujisawaense* sp. nov. International Journal of Systematic Bacteriology 38, 124–127.
- Härtner, T., Straub, K.L., Kannenberg, E., 2005. Occurrence of hopanoid lipids in anaerobic *Geobacter* species. FEMS Microbiology Letters 243, 59–64.
- Handley, L., Talbot, H.M., Cooke, M.P., Anderson, K.E., Wagner, T., 2010. Bacteriohopanepolyols as tracers for continental and marine organic matter supply and phases of enhanced nitrogen cycling on the late Quaternary Congo deep sea fan. Organic Geochemistry 41, 910–914.
- Hegler, F., Posth, N.R., Jiang, J., Kappler, A., 2008. Physiology of phototrophic iron(II)oxidizing bacteria-implications for modern and ancient environments. FEMS Microbiology Ecology 66, 250–260.
- Hermans, M.A.F., Neuss, B., Sahm, H., 1991. Content and composition of hopanoids in *Zymomonas mobilis* under various growth conditions. Journal of Bacteriology 173, 5592–5595.
- Innes, H.E., Bishop, A.N., Head, I.M., Farrimond, P., 1997. Preservation and diagenesis of hopanoids in recent lacustrine sediments of Priest Pot, England. Organic Geochemistry 26, 565–576.
- Jahnke, L.L., Stan-Lotter, H., Kato, K., Hochstein, L.I., 1992. Presence of methyl sterol and bacteriohopanepolyol in an outer-membrane preparation from *Methylococcus capsulatus* (bath). Journal of General Microbiology 138, 1759– 1766.
- Joyeux, C., Fouchard, S., Llopiz, P., Neunlist, S., 2004. Influence of the temperature and the growth phase on the hopanoids and fatty acids content of *Frateuria aurantia* (DSMZ 6220). FEMS Microbiology Ecology 47, 371–379.
- Kannenberg, E.L., Poralla, K., 1999. Hopanoid biosynthesis and function in bacteria. Naturwissenschaften 86, 168–176.
- Kim, J.H., Talbot, H.M., Zarzycka, B., Bauersachs, T., Wagner, T., 2011. Occurrence and abundance of soil-specific bacterial membrane lipid markers in the Tet watershed (southern France): soil-specific BHPs and branched GDGTs. Geochemistry Geophysics Geosystems 12, Q02008. http://dx.doi.org/10.1029/ 2010gc003364.
- Knani, M., Corpe, W.A., Rohmer, M., 1994. Bacterial hopanoids from pink-pigmented facultative methylotrophs (PPFMs) and from green plant surfaces. Microbiology-UK 140, 2755–2759.
- Langworthy, T.A., Mayberry, W.R., Smith, P.F., 1976. A sulfonolipid and novel glucosamidyl glycolipids from the extreme thermoacidophile *Bacillus* acidocaldarius. Biochimica et Biophysica Acta (BBA) – Lipids and Lipid Metabolism 431, 550–569.
- Lin, W.C., Coppi, M.V., Lovley, D.R., 2004. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Applied and Environmental Microbiology 70, 2525–2528.
- Llopiz, P., Neunlist, S., Rohmer, M., 1992. Prokaryotic triterpenoids: Ο-α-Dglucuronopyranosyl bacteriohopanetetrol, a novel hopanoid from the bacterium *Rhodospirillum rubrum*. Biochemical Journal 287, 159–161.
- Lovley, D.R., Phillips, E.J.P., 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology 54, 1472–1480.
- Lovley, D.R., Giovannoni, S.J., White, D.C., Champine, J.E., Phillips, E.J.P., Gorby, Y.A., Goodwin, S., 1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism

capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Archives of Microbiology 159, 336–344.

- Methé, B.A., Nelson, K.E., Eisen, J.A., Paulsen, I.T., Nelson, W., Heidelberg, J.F., Wu, D., Wu, M., Ward, N., Beanan, M.J., Dodson, R.J., Madupu, R., Brinkac, L.M., Daugherty, S.C., DeBoy, R.T., Durkin, A.S., Gwinn, M., Kolonay, J.F., Sullivan, S.A., Haft, D.H., Selengut, J., Davidsen, T.M., Zafar, N., White, O., Tran, B., Romero, C., Forberger, H.A., Weidman, J., Khouri, H., Feldblyum, T.V., Utterback, T.R., Van Aken, S.E., Lovley, D.R., Fraser, C.M., 2003. Genome of *Geobacter sulfurreducens*: metal reduction in subsurface environments. Science 302, 1967–1969.
- Neunlist, S., Holst, O., Rohmer, M., 1985. Prokaryotic triterpenoids the hopanoids of the purple non-sulfur bacterium *Rhodomicrobium vannielii*: an aminotriol and its aminoacyl derivatives, *N*-tryptophanyl and *N*-ornithinyl aminotriol. European Journal of Biochemistry 147, 561–568.
- Neunlist, S., Bisseret, P., Rohmer, M., 1988. The hopanoids of the purple non-sulfur bacteria Rhodopseudomonas palustris and Rhodopseudomonas acidophila and the absolute configuration of bacteriohopanetetrol. European Journal of Biochemistry 171, 245–252.
- Ourisson, G., Albrecht, P., Rohmer, M., 1979. Hopanoids: Palaeochemistry and biochemistry of a group of natural products. Pure and Applied Chemistry 51, 709–729.
- Ourisson, G., Rohmer, M., Poralla, K., 1987. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annual Review of Microbiology 41, 301–333.
 Ourisson, G., Albrecht, P., 1992. Hopanoids. 1. Geohopanoids: the most abundant natural products on Earth? Accounts of Chemical Research 25, 398–402.
- Novel hopanoid cyclases from the environment. Environmental Microbiology 9, 2175–2188.
- Pearson, A., Leavitt, W.D., Sáenz, J.P., Summons, R.E., Tam, M.C.M., Close, H.G., 2009. Diversity of hopanoids and squalene–hopene cyclases across a tropical land-sea gradient. Environmental Microbiology 11, 1208–1223.
- Rashby, S.E., Sessions, A.L., Summons, R.E., Newman, D.K., 2007. Biosynthesis of 2methylbacteriohopanepolyols by an anoxygenic phototroph. Proceedings of the National Academy of Sciences of the USA 104, 15099–15104.
- Renoux, J.M., Rohmer, M., 1985. Prokaryotic triterpenoids new bacteriohopanetetrol cyclitol ethers from the methylotrophic bacterium *Methylobacterium* organophilum. European Journal of Biochemistry 151, 405–410.
- Roden, E.E., Lovley, D.R., 1993. Dissimilatory Fe(III) reduction by the marine microorganism *Desulfuromonas acetoxidans*. Applied and Environmental Microbiology 59, 734–742.
- Rohmer, M., Bouvier-Nave, P., Ourisson, G., 1984. Distribution of hopanoid triterpenes in prokaryotes. Journal of General Microbiology 130, 1137–1150.
- Rohmer, M., Knani, M., Simonin, P., Sutter, B., Sahm, H., 1993. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochemical Journal 295, 517–524.
- Sáenz, J.P., Eglinton, T.I., Summons, R.E., 2011. Abundance and structural diversity of bacteriohopanepolyols in suspended particulate matter along a river to ocean transect. Organic Geochemistry 42, 774–780.
- Sáenz, J.P., Waterbury, J.B., Eglinton, T.I., Summons, R.E., 2012. Hopanoids in marine cyanobacteria: probing their phylogenetic distribution and biological role. Geobiology 10, 311–319.
- Schaeffer, P., Schmitt, G., Adam, P., Rohmer, M., 2008. Acid-catalyzed formation of 32,35-anhydrobacteriohopanetetrol from bacteriohopanetetrol. Organic Geochemistry 39, 1479–1482.
- Schaeffer, P., Schmitt, G., Adam, P., Rohmer, M., 2010. Abiotic formation of 32,35anhydrobacteriohopanetetrol: a geomimetic approach. Organic Geochemistry 41, 1005–1008.
- Sessions, A.L., Zhang, L., Welander, P.V., Doughty, D., Summons, R.E., Newman, D.K., 2013. Identification and quantification of polyfunctionalized hopanoids by high

temperature gas chromatography-mass spectrometry. Organic Geochemistry, http://dx.doi.org/10.1016/j.orggeochem.2012.12.009.

- Sinninghe Damsté, J.S., Rijpstra, W.I.C., Schouten, S., Fuerst, J.A., Jetten, M.S.M., Strous, M., 2004. The occurrence of hopanoids in planctomycetes: implications for the sedimentary biomarker record. Organic Geochemistry 35, 561–566.
- Stookey, L.L., 1970. Ferrozine a new spectrophotometric reagent for iron. Analytical Chemistry 42, 779–781.
- Summons, R.E., Jahnke, L.L., Hope, J.M., Logan, G.A., 1999. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557.
- Talbot, H.M., Watson, D.F., Murrell, J.C., Carter, J.F., Farrimond, P., 2001. Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry. Journal of Chromatography A 921, 175–185.
- Talbot, H.M., Farrimond, P., Schaeffer, P., Pancost, R.D., 2005. Bacteriohopanepolyols in hydrothermal vent biogenic silicates. Organic Geochemistry 36, 663–672.
- Talbot, H.M., Farrimond, P., 2007. Bacterial populations recorded in diverse sedimentary biohopanoid distributions. Organic Geochemistry 38, 1212–1225.
- Talbot, H.M., Summons, R.E., Jahnke, L.L., Cockell, C.S., Rohmer, M., Farrimond, P., 2008. Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings. Organic Geochemistry 39, 232–263.
- Thiel, V., Blumenberg, M., Pape, T., Seifert, R., Michaelis, W., 2003. Unexpected occurrence of hopanoids at gas seeps in the Black Sea. Organic Geochemistry 34, 81–87.
- Tschech, A., Pfennig, N., 1984. Growth yield increase linked to caffeate reduction in *Acetobacterium woodii*. Archives of Microbiology 137, 163–167.
- van Winden, J.F., Talbot, H.M., Kip, N., Reichart, G.J., Pol, A., McNamara, N.P., Jetten, M.S.M., den Camp, H., Sinninghe Damsté, J.S., 2012. Bacteriohopanepolyol signatures as markers for methanotrophic bacteria in peat moss. Geochimica et Cosmochimica Acta 77, 52–61.
- Vilchèze, C., Llopiz, P., Neunlist, S., Poralla, K., Rohmer, M., 1994. Prokaryotic triterpenoids: new hopanoids from the nitrogen fixing bacteria Azotobacter vinelandii, Beijerinckia indica and Beijerinckia mobilis. Microbiology 140, 2749– 2753.
- Welander, P.V., Hunter, R.C., Zhang, L.C., Sessions, A.L., Summons, R.E., Newman, D.K., 2009. Hopanoids play a role in membrane integrity and pH homeostasis in *Rhodopseudomonas palustris* TIE-1. Journal of Bacteriology 191, 6145–6156.
- Welander, P.V., Coleman, M.L., Sessions, A.L., Summons, R.E., Newman, D.K., 2010. Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proceedings of the National Academy of Sciences of the USA 107, 8537–8542.
- Welander, P.V., Doughty, D.M., Wu, C.H., Mehay, S., Summons, R.E., Newman, D.K., 2012. Identification and characterization of *Rhodopseudomonas palustris* TIE-1 hopanoid biosynthesis mutants. Geobiology 10, 163–177.
- Welander, P.V., Summons, R.E., 2012. Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production. Proceedings of the National Academy of Sciences of the USA 109, 12905–12910.
- Zhu, C., Talbot, H.M., Wagner, T., Pan, J.M., Pancost, R.D., 2011. Distribution of hopanoids along a land to sea transect: implications for microbial ecology and the use of hopanoids in environmental studies. Limnology and Oceanography 56, 1850–1865.
- Zundel, M., Rohmer, M., 1985a. Prokaryotic triterpenoids. 1. 3β-Methylhopanoids from Acetobacter species and Methylococcus capsulatus. European Journal of Biochemistry 150, 23–27.
- Zundel, M., Rohmer, M., 1985b. Prokaryotic triterpenoids. 3. The biosynthesis of 2βmethylhopanoids and 3β-methylhopanoids of Methylobacterium organophilum and Acetobacter pasteurianus ssp. pasteurianus. European Journal of Biochemistry 150, 35–39.