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ABSTRACT
On the Archean Earth (4.0–2.5 Ga) the lack of a protective ozone layer meant that harmful 

ultraviolet radiation (UVR) reached the surface almost unattenuated. For survival, primitive 
photosynthetic bacteria would have required strategies preventing UV-induced damage to 
their DNA. At that time, a fraction of the planktonic cells were likely anoxygenic photosyn-
thesizers that oxidized dissolved Fe(II) to Fe(III) during their metabolism. The result of their 
metabolism was most likely the ferric mineral precursors for the deposition of banded iron 
formations. Although Fe(III) (oxyhydr)oxide minerals absorb UV radiation while still trans-
mitting higher wavelengths, it is unknown whether minerals produced by Fe(II) oxidizers 
could have acted as an in situ UVR sunscreen. Here we demonstrate that the anoxygenic pho-
totrophic Fe(II) oxidizers Rhodopseudomonas palustris strain TIE-1 and Rhodobacter ferrooxi-
dans strain SW2 form nanometer-sized grains of ferrihydrite that are loosely attached to the 
cell surfaces. These biogenic Fe(III) minerals were shown to protect the bacteria from UV-C 
irradiation, while cells grown in the absence of Fe(II) displayed diminished cell viability as a 
consequence of damage to their DNA. Importantly, this study implies that primitive Fe(II)-
oxidizing bacteria would have been able to produce their own UV screen, enabling them to live 
in the shallow photic zone of ancient oceans.

INTRODUCTION
It is widely accepted that photosynthetic 

bacteria could have played a crucial role in 
Fe(II) oxidation and the precipitation of banded 
iron formations (BIFs) during the late Archean–
early Paleoproterozoic (2.7–2.4 Ga) (Posth et 
al., 2013). It is less clear whether bacteria simi-
larly caused the deposition of the oldest BIF at 
ca. 3.85 Ga (Mloszewska et al., 2012). Current 
constraints place the existence of cyanobacteria 
in the oceans by 3.0 Ga (Crowe et al., 2013; 
Planavsky et al., 2014), and perhaps even ear-
lier (Stüeken et al., 2015). As an alternative to 
O2-producing cyanobacteria, in particular dur-
ing Eoarchean (4.0–3.6 Ga) and Paleoarchean 
(3.6–3.2 Ga) BIF deposition for which no direct 
evidence for the participation of cyanobacteria 
exists, anoxygenic photosynthetic bacteria, so-
called photoferrotrophs, could have contributed 
to Fe(III) mineral deposition (Craddock and 
Dauphas, 2011; Czaja et al., 2013; Kappler et 
al., 2005; Pecoits et al., 2015). These bacteria 
use Fe(II) as electron donor and light as energy 
source, producing biomass and Fe(III) minerals 
(Widdel et al., 1993). Their presence in the early 
Archean has recently been supported by stud-
ies suggesting that cyanobacteria would have 
been phosphorous starved (Jones et al., 2015) 
and that ferruginous seawater would have been 
toxic to cyanobacteria (Swanner et al., 2015a); 
both would have favored photoferrotrophy and 
explain BIF deposition at that time.

In the absence of an ozone (O3) layer, plank-
ton would have been subject to higher levels 
of ultraviolet radiation (UVR), in particular 
UV-C (100–280 nm) (Cockell, 2000). Because 
DNA strongly absorbs at 254 nm, UV-C causes 
DNA strand breakage (Sinha and Häder, 2002) 
and the formation of photoproducts, such as 
cyclobutane pyrimidine dimers (CPD), that in-
hibit transcription and replication of the chro-
mosome and cause mutations (Pfeifer, 1997). 
Hence, in order to survive, these early plankton 
must have used strategies to contend with detri-
mental UVR by developing protective pigments 
(Dillon and Castenholz, 1999) and UV damage 
repair systems (Häder and Sinha, 2005; Sinha 
and Häder, 2002). However, it is also possible 
that before these biological responses evolved, 
primitive plankton produced an external sun-
screen from the solutes readily available to them 
(Bishop et al., 2006; Cleaves and Miller, 1998; 
Cockell, 2000; Phoenix et al., 2001). Due to the 
micrometer size of cells, such an effective exter-
nal screen could consist of nanoparticular min-
eral particles that were available in proximity to 
the cell’s surface.

Archean oceans were characterized by high 
concentrations of dissolved Fe(II) (Holland, 
1973). In the presence of UVR or photosyn-
thetically active radiation (PAR; 400–1000 nm), 
Fe(II) would have been abiologically (Cairns-
Smith, 1978) or biologically oxidized (Posth 
et al., 2013), leading to the formation of Fe(III) 
(oxyhydr)oxides such as ferrihydrite, Fe(OH)3. 
Ferrihydrite is an effective absorber of UV light 

(<400 nm), while higher wavelengths are re-
flected, scattered, and transmitted and are thus 
still available for photosynthesis (Bishop et al., 
2006; Phoenix et al., 2001). Therefore, it is pos-
sible that ancient photoferrotrophs would have 
been able to produce their own inorganic UV 
shield in form of Fe(III) minerals (Bishop et al., 
2006; Pierson et al., 1993). Here we determined 
to what extent the phototrophic Fe(II) oxidizers 
Rhodopseudomonas palustris strain TIE-1 and 
Rhodobacter ferrooxidans strain SW2 are pro-
tected from UVR in the presence and absence of 
Fe(III) minerals.

MATERIALS AND METHODS
UV treatment was carried out in an anoxic 

chamber where a UV lamp (8 W, S/L; Herolab, 
Germany) was used to irradiate the bacterial 
cultures with 254 nm UV-C. Cultures grown 
without (no UV shield present) or with 4 or 8 
mM Fe(II) [biogenic Fe(III) minerals present 
as UV shield], respectively, were split to ensure 
same cell numbers and health state in both non-
treated and UV-treated cultures. Cultures were 
poured into sterile petri dishes to a liquid layer 
thickness of <0.3 cm, and UV-C radiation (254 
nm) was applied from the top for varying time 
spans. Non-irradiated controls were treated the 
same, but covered with aluminum foil to avoid 
UVR. The irradiated and non-irradiated cultures 
were then used either to inoculate new Fe(II)-
free or Fe(II)-containing medium, to perform 
growth experiments, or for DNA damage analy-
sis. Full details of growth conditions, analytical 
methods, and enzyme-linked immunosorbent 
assay (ELISA) for DNA damage determination 
in the form of CPD photoproducts are provided 
in the GSA Data Repository1.

RESULTS AND DISCUSSION

Photoferrotrophic Biomineralization
Neutrophilic Fe(II)-oxidizing bacteria pro-

duce Fe(III) minerals that bind at negatively 
charged nucleation sites, e.g., extracellular 
polymeric substances or the cell wall. For pho-
totrophic Fe(II)-oxidizing bacteria, it was previ-

1 GSA Data Repository item 2015355, methods, is 
available online at www.geosociety.org/pubs /ft2015 
.htm, or on request from editing@geosociety .org or 
Documents Secretary, GSA, P.O. Box 9140, Boulder, 
CO 80301, USA.*E-mail: andreas.kappler@uni-tuebingen.de
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ously shown that most strains are able to prevent 
precipitation of Fe(III) minerals on their cell 
surfaces, but that the cells are closely associated 
with the minerals (Hegler et al., 2010; Schädler 
et al., 2009; Wu et al., 2014). Our study shows 
that cells of the phototrophic Fe(II)-oxidizing 
strain Rhodobacter ferrooxidans SW2 are in 
close proximity to the produced nanoparticu-
lar minerals, although the cell surfaces remain 
mostly free from precipitates (Fig. 1). A similar 
loose association of cells with Fe(III) minerals 
was shown for Rhodopseudomonas palustris 
TIE-1 (Jiao et al., 2005). Characterization of the 
minerals produced during Fe(II) oxidation by X-
ray diffraction (XRD) analysis revealed poorly 
crystalline ferrihydrite as the dominating min-
eral (Jiao et al., 2005), but also nanoparticular 
goethite and lepidocrocite (Posth et al., 2010).

Cell Viability after UV-C Irradiation
To evaluate the potential protective effect 

of these biogenic minerals formed by photo-
ferrotrophs against UVR, bacterial growth on 
acetate determined by means of the optical den-

sity (OD) at 600 nm was compared for cultures 
inoculated with UV-treated and non-UV-treated 
cultures grown with or without Fe(II), i.e., in 
the presence or absence of a UV shield. Rhodo-
bacter ferrooxidans SW2 showed no increase in 
OD600 nm, i.e., no growth, within 10 d, in cultures 
containing an inoculum from a culture grown 
without Fe(II) and treated with UV light for 5 
or 10 min. This suggests that the UV treatment 
killed or inactivated most cells in the cultures 
that were used as inoculum. By contrast, acetate 
cultures inoculated with non-UV-treated in-
oculum from an acetate culture showed a mean 
absorption of 0.789 after 6 d (Fig. 2A). Simi-
larly, a culture inoculated with inoculum from 
a healthy, non-UV-treated Fe(II)-grown culture 
grew with acetate to a mean OD600 nm of 0.797 
after 6 d. Surprisingly, cultures inoculated with 
inoculum from a UV-treated Fe(II)-grown cul-
ture showed high OD values of 0.773 (inoculum 
with 5 min UV treatment) and 0.688 (inoculum 
with 10 min UV treatment) (Fig. 2B), clearly 
suggesting that the Fe(III) minerals present 
during UV treatment protected the cells from 

damage because the growth was similar to that 
obtained in cultures inoculated with non-UV-
treated samples.

Cultures of Rhodopseudomonas palustris 
TIE-1 showed the same trend in OD as the 
cultures of Rhodobacter ferrooxidans SW2. 
Cultures inoculated with a non-UV-treated in-
oculum from a culture that was grown without 
Fe(II) reached an OD of 1.541 after 3 d. In con-
trast, cultures inoculated with UV-treated cells 
grown without Fe(II) (no UV screen) showed 
no change in OD after 10 d of incubation, sug-
gesting much less, if any, viable cells (Fig. 2C). 
Similar to SW2, TIE-1 cultures inoculated with 
samples from Fe(II)-grown cultures were able to 
grow to an OD600 nm of 1.502 after 4 d (inoculum 
from non-UV-treated culture), 1.342 (inoculum 
with 5 min UV treatment), and 1.487 (inoculum 
with 10 min UV) after 6 d (Fig. 2D). These re-
sults show that Fe(III) minerals present during 
UV treatment function as screen against harm-
ful UVR and protect the cells from damage.

Damage of Cell DNA during UV-C 
Irradiation

In addition to monitoring OD in cultures in-
oculated with UV-treated cells, we also quanti-
fied the direct effect of UVR on DNA (Fig. 3) 
by determining relative CPD production. UV-
induced damage to the DNA was indicated by 
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Figure 1. Scanning electron micrographs of phototrophic Fe(II)-oxidizing bacterium Rhodo-
bacter ferrooxidans strain SW2 grown in presence of 4 mM Fe(II). Samples were taken at late 
exponential growth phase when almost all Fe(II) was oxidized and biogenic Fe(III) minerals 
were formed. Cells are loosely associated with Fe(III) minerals. Images were taken with in-
lens detectors at acceleration voltages of 1 kV (A) or 2 kV (B).

Figure 2. Influence of 
UV treatment on growth 
of photoferrotrophic 
strains of bacteria Rho-
dobacter ferrooxidans 
SW2 and Rhodopseudo-
monas palustris TIE-1. 
Growth was quantified 
with acetate as electron 
donor by measuring op-
tical density (OD) at 600 
nm in cultures that were 
inoculated with inocu-
lum from cultures that 
were UV treated. Graphs 
show data for cultures 
inoculated from cultures 
grown without Fe(II) (A, 
C) or with Fe(II) (B, D) 
(biogenic minerals pres-
ent) with non-UV-treated 
controls (open circles), UV treated for 5 min (filled triangles), and UV treated for 10 min (filled 
squares). Error bars indicate standard deviation calculated from two to three parallels.

Figure 3. Influence of UV treatment on DNA 
damage quantified as cyclobutane pyrimi-
dine dimer photoproducts (CPD prod.) for 
photoferrotrophic strains of bacteria Rho-
dopseudomonas palustris TIE-1 (A) and 
Rhodobacter ferrooxidans SW2 (B). Rela-
tive production of CPD in DNA extracts of 
cultures grown without Fe(II) (gray) or with 
Fe(II) (black) and with (filled bars) or without 
(open bars) 30 min of UV treatment is shown. 
Error bars indicate standard deviation calcu-
lated from triplicate measurements.
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an increase in CPD in DNA for both photoferro-
trophic strains. In both Fe(II)-oxidizing cultures, 
the Fe(III) minerals provided a protective effect 
of the DNA. Specifically, absorption values at 
490 nm in the ELISA assay with DNA extracted 
for non-UV-treated Rhodopseudomonas palus-
tris TIE-1 cultures were 0.046 ± 0.002 when 
grown without Fe(II) and 0.044 ± 0.001 when 
grown with Fe(II). This suggests no effect by 
the Fe(II) itself on the DNA (Fig. 3A). By com-
parison, in DNA extracts from UV-treated cul-
tures, values of 0.193 ± 0.023 [grown without 
Fe(II)] and 0.111 ± 0.004 [grown with Fe(II)] 
were observed, suggesting more DNA damage 
by UVR in the absence of the Fe(III) minerals. 
Similar effects were observed for Rhodobacter 
ferrooxidans SW2: for non-UV-treated cultures, 
absorption values of 0.047 ± 0.002 [no Fe(II)] 
and 0.042 ± 0.001 [with Fe(II)] were deter-
mined. After UV treatment, the values increased 
to 0.207 ± 0.010 [no Fe(II)] and 0.138 ± 0.004 
[with Fe(II)] (Fig. 3B).

IMPLICATIONS FOR 
PHOTOFERROTROPHS ON EARLY 
EARTH

A number of arguments have recently been 
made in support of photoferrotrophy being re-
sponsible for the precipitation of BIFs before the 
evolution of cyanobacteria (Crowe et al., 2013; 
Planavsky et al., 2014). This includes studies 
that have suggested that Fe(II) UV photooxida-
tion (Konhauser et al., 2007) and oxidation by 
hydrogen peroxide (Pecoits et al., 2015) were 
unlikely to have been significant compared to 
photoferrotrophy; iron isotope studies that have 
suggested that the values in the 3.8 Ga Isua su-
pracrustal belt (Greenland) were best explained 
by biological oxidation (Craddock and Dau-
phas, 2011; Czaja et al., 2013; Swanner et al., 
2015b); molecular studies that have suggested 
an early evolutionary role of anoxygenic photo-
trophs (Xiong et al., 2000), possibly with Fe(II) 
as one of the first available electron donors (Ol-
son, 2001) that could have been used even in 
the presence of high dissolved H2 (Croal et al., 
2009); and modeling studies that have suggested 
that photoferrotrophs would have fared better 
than cyanobacteria given early seawater chem-
istry (Kappler et al., 2005; Jones et al., 2015).

However, without stratospheric ozone, UVR 
was attenuated much less than today [UVR 
fluxes estimated for the late Archean ocean from 
Cockell (2000, his figure 3a) to be ~0.01 µmol 
photons/(m2 s nm) for 254 nm in 1 m depth, 
while for modern oceans it is calculated (see the 
Data Repository) to be 5.0 × 10-4 µmol photons/
(m2 s nm)]. It was suggested that at 5 m depth, 
the potential DNA damage may have been two 
orders of magnitude higher than in present-day 
oceans, and an order of magnitude higher at 15 
m depth (Cockell, 2000). Exposure to hazard-
ous UVR would have been a substantial burden 

and especially affected life in shallow water or 
microbial mats. The question then is: Did mi-
crobes inhabit the uppermost oceans during 
the Eoarchean and Paleoarchean? Certainly the 
presence of purported stromatolites in the 3.49 
Ga Dresser Formation, northwestern Australia 
(Walter et al., 1980), and the presence of carbo-
naceous matter with carbon isotopes consistent 
with autotrophy in the 3.42 Ga Buck Reef Chert 
in the Barberton greenstone belt, South Africa 
(Tice and Lowe, 2004), suggest that phototrophs 
did indeed inhabit the upper euphotic zone early 
in Earth’s history.

To survive in proximity to the ocean’s sur-
face where solar radiation enabled photosynthe-
sis and where nearness to land provided better 
access to nutrients, microbes would have used 
different strategies to avoid or decrease UV-
induced damage. Although modern planktonic 
organisms are equipped with protective cellu-
lar components, e.g., pigments (Garcia-Pichel, 
1994), and they possess UV repair mechanisms, 
for example photoreactivation by the enzyme 
photolyase or nucleotide excision repair (Häder 
and Sinha, 2005; Sinha and Häder, 2002), it 
is unclear whether these mechanisms were 
in place during the early Archean. The influ-
ence of indirect effects of UV radiation that 
are mostly mediated by means of production of 
reactive oxygen species (ROS) that react with 
proteins, lipids, and DNA and subsequently in-
duce oxidative damage that leads to increased 
membrane porosity (Chamberlain and Moss, 
1987; Pattison and Davies, 2006) in anoxic 
Archean oceans is difficult to estimate as well. 
Inorganic substances might have protected mi-
croorganisms from UVR, e.g., iron, silica, or 
sulfur (Bishop et al., 2006; Gómez et al., 2007; 
Phoenix et al., 2001; Pierson et al., 1993), and 
in environments where Fe(II) was abundant, the 
production of Fe(III) minerals may have con-
stituted an early survival strategy. Properties of 
such Fe(III) minerals include the absorption of 
light in the low UV range (<400 nm), although 
visible light (~390–700 nm) is still transmitted. 
Depending on the mineral structure and identity, 
the transmission of light in the blue and violet 
range (400–500 nm) varies (Bishop et al., 2006). 
Nanoparticular Fe(III) minerals which are pro-
duced by phototrophic Fe(II)-oxidizing bacteria 
enable good penetration of a broader wavelength 
range of visible and near-infrared light (Bishop 
et al., 2006). Accessory pigments, for instance 
carotenoids, absorb light between 400 nm and 
550 nm. Protein complexes containing chloro-
phyll a and b (used in oxygenic photosynthesis) 
show absorption maxima at ~400–480 nm and 
~650–700 nm, respectively. However, solar ra-
diation used by protein complexes containing 
bacteriochlorophylls that are involved in anoxy-
genic photosynthesis ranges from 715 to 1035 
nm (Fuchs et al., 2006). Hence, Fe(III) minerals 
produced by Fe(II)-oxidizing bacteria absorb 

radiation exactly in those wavelength ranges 
that cause damage to DNA (<320 nm) while 
still transmitting radiation that is necessary for 
photosynthesis (~400–550 and 620–1100 nm).

Our findings suggest that ancient Fe(II)-ox-
idizing microorganisms would have grown by 
Fe(II) oxidation and at the same time produced 
their own effective UV shield in form of Fe(III) 
minerals. In our experiments, the UVR intensity 
was ~0.31 µmol photons/(m2 s nm) for 254 nm 
(for calculation see the Data Repository) and 
thus ~30× higher than estimated for a depth of 1 
m in the Archean ocean (see calculation above), 
and we also used 4–8 mM Fe concentrations 
that were probably higher than concentrations in 
the ancient ocean (up to 0.5 mM; Morris, 1993). 
Therefore, the actual extent of UV shielding at 
lower Fe concentrations in the ancient ocean 
is difficult to predict. This is true in particular 
because not only Fe(II) concentrations but also 
continuous flux of Fe(II) from hydrothermal 
sources has to be considered. Ultimately, in 
order to function as an effective UV shield, it 
is necessary that the flux of Fe(II) and the pre-
cipitation of Fe(III) minerals in proximity to the 
cells is sufficiently rapid to shield the bulk of the 
microbial community from damaging radiation.

Nevertheless, we show here that this Fe min-
eral UV shield can protect microorganisms from 
UV-induced damage, particularly on the DNA 
level, as seen in the decrease in CPD production 
in the presence of biogenic Fe(III) minerals. This 
decrease in CPD would still allow mutations in 
DNA of microorganisms, but to a much lesser 
extent. As mutation is one of the main drivers of 
evolution (Sagan, 1973), the lower CPD load in 
the protected microorganisms would have still 
enabled UV-induced early evolution, however 
possibly with less lethal outcomes.
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