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Summary

Iron is the most abundant redox-active metal in the
Earth’s crust. The one electron transfer between the two
most common redox states, Fe(II) and Fe(III), plays a role
in a huge range of environmental processes from min-
eral formation and dissolution to contaminant remedia-
tion and global biogeochemical cycling. It has been
appreciated for more than a century that microorgan-
isms can harness the energy of this Fe redox transfor-
mation for their metabolic benefit. However, this is most
widely understood for anaerobic Fe(III)-reducing or aero-
bic and microaerophilic Fe(II)-oxidizing bacteria. Only in
the past few decades have we come to appreciate that
bacteria also play a role in the anaerobic oxidation of fer-
rous iron, Fe(II), and thus can act to form Fe(III) minerals
in anoxic settings. Since this discovery, our understand-
ing of the ecology of these organisms, theirmechanisms
of Fe(II) oxidation and their role in environmental pro-
cesses has been increasing rapidly. In this article, we
bring these new discoveries together to review the cur-
rent knowledge on these environmentally important bac-
teria, and reveal knowledge gaps for future research.

Biogeochemistry of iron

A substantial amount of iron (Fe) is present in soils, as well
as freshwater, marine and subsurface sediments. Under

oxidizing conditions, iron is found mainly in Fe(III) (oxyhydr)
oxide minerals such as ferrihydrite (Fe(OH)3), goethite
(α-FeOOH) and haematite (α-Fe2O3), as well as, to a lesser
extent, in dissolved Fe(III)-natural-organic-matter complexes
(Fe(III)-NOM complexes) (Carlson and Schwertmann, 1981;
Schwertmann and Murad, 1988; Kostka and Luther, 1994).
Under reducing conditions iron is mostly found in mixed-
valent Fe minerals such as magnetite and green rust, or in
Fe(II) minerals such as vivianite (Fe3(PO4)2 � 8H2O) and sid-
erite (FeCO3), or even as dissolved Fe2+ ions (Thompson
et al., 2011; Daugherty et al., 2017; Ginn et al., 2017; Hern-
don et al., 2017). Under both oxidizing and reducing condi-
tions, iron can be found as structural components of silicate
minerals such as clays (Pentráková et al., 2013) and in iron
sulfide minerals. It has also been suggested that dissolved
Fe(III)- and Fe(II)-complexes and colloids are important for
iron biogeochemical processes (Luther et al., 1992; Taille-
fert et al., 2000). The fate of iron in the environment is con-
trolled by a series of abiotic and microbially catalysed redox
reactions that lead to Fe mineral formation, transformation
and dissolution (Melton et al., 2014a). Abiotic reactions
include the oxidation of Fe(II) by manganese oxides, by oxy-
gen and nitrogen species, or by reactive radicals from natu-
ral organic matter (NOM). Additionally, Fe(II) can be formed
by photochemical reduction of Fe(III), particularly in water
columns, as well as by reduction of Fe(III) by sulfide and
reduced NOM (Melton et al., 2014a).

Microbial Fe(III) reduction can reduce Fe(III) minerals,
and in turn provide Fe(II) as either a dissolved or solid
phase electron donor for Fe(II)-oxidizing bacteria. Under
acidic and pH-neutral conditions, aerobic and microaerophi-
lic Fe(II)-oxidizing bacteria can use O2 as an electron
acceptor for oxidation of Fe(II) to Fe(III). Almost 200 years
ago, Ehrenberg (1836) described microbially-produced
stalk-like iron oxide structures reminiscent of those now
known to be produced by microaerophilic Fe(II)-oxidizing
bacteria. However, in the last two decades, two other meta-
bolic types of Fe(II)-oxidizers were discovered which
require anoxic conditions and oxidize Fe(II) coupled to
either nitrate reduction (NRFeOx, Eq. 1) or to photosynthe-
sis (pFeOx, Eq. 2) (Widdel et al., 1993; Straub et al., 1996).
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Oxygen is not abundant in all habitats on Earth: for
example, vast regions of oceans and lakes are either sea-
sonally or permanently anoxic. Oxygen can only be mea-
sured down to a few millimetres depth in soils and
sediments, particularly if they are waterlogged and
organic-rich. Similarly, the deep sea and the deep conti-
nental crust are oxygen-poor. Thus, the discovery of these
anaerobic Fe(II)-oxidizers revealed that microorganisms
could contribute to Fe(II) oxidation in environments which
had previously been overlooked, rapidly broadening our
appreciation of the importance of Fe(II)-oxidizing bacteria
in the environment. Several strains of NRFeOx and pFeOx
have been isolated and more and more data from geno-
mic, metagenomic and metatranscriptomic studies are
available (He et al., 2016; Jewell et al., 2016), yet our
understanding of the ecological contribution, the physiol-
ogy and of the enzymatic mechanism(s) of anaerobic
Fe(II) oxidation is still very limited compared with our
understanding of microbial Fe(III) reduction or microaero-
philic Fe(II) oxidation. The physiology of these organisms
is very different from those known from oxic environments
and, since oxygen is one of the primary factors controlling
biogeochemical cycling, their interaction with the sur-
rounding environment is markedly different (Melton et al.,
2014a). Thus, specific focus on this anoxic part of the iron
cycle is required to fully appreciate the role of these bacte-
ria in the earth system. In this review article, we compile
the current knowledge on these anaerobic Fe(II)-oxidizing
bacteria, highlight existing open research questions and
discuss the potential environmental importance and bio-
technological applications of these microorganisms.

Nitrate-reducing Fe(II) oxidation

Links between nitrate-reducers and Fe(II)

The reduction of nitrate coupled to Fe(II) oxidation was first
observed more than 20 years ago (Brons et al., 1997;
Hafenbradl et al., 1996; Straub et al., 1996). Since then we
have come to appreciate that nitrate-reducing bacteria can
interact with Fe(II) in three distinct ways (Fig. 1). Firstly,
autotrophic nitrate-reducing Fe(II)-oxidizing bacteria
(NRFeOx) use Fe(II) as an electron donor for energy gen-
eration and fixation of CO2, from which they build biomass.
These organisms do not need organic carbon in addition
to the Fe(II). In contrast to autotrophic NRFeOx, most
other nitrate-reducing bacteria which have been shown to
oxidize Fe(II) require addition of an organic substrate such

as acetate to continually oxidize Fe(II) (Straub et al., 2004;
Kappler et al., 2005b). Such organisms are often referred
to in the literature as ‘mixotrophs’. In order to be a true mix-
otroph, these organisms must utilize Fe(II) as an electron
donor (by an enzymatic oxidation of the Fe(II)) in addition
to the organic C source. Alternatively, some of the organ-
isms described in the literature to catalyse Fe(II) oxidation
do so as a result of abiotic reactions with reactive nitrogen-
containing by-products of heterotrophic denitrification,
such as nitrite and nitric oxide. For our purposes, we will
refer to all organisms described to simultaneously oxidize
Fe(II) and reduce nitrate, but for which no enzymatic com-
ponent has been proven, as ‘chemodenitrifiers’, but will
not consider them true nitrate-reducing Fe(II)-oxidizers.
Given that these reactions, as discussed in subsequent
sections, seem to be common to typical denitrifiers such
as Escherichia coli (Brons et al., 1997), we expect that
such a classification would apply to any heterotrophic
denitrifier grown with high concentrations of Fe(II).

Deciphering which mechanism is applicable to which
strains is a subject of significant debate in the literature. In
the following sections we will highlight this debate, which cen-
tres around two key issues. Firstly, there have been many
strains proposed to be autotrophic NRFeOx yet evidence for
continued Fe(II) oxidation in the absence of additional carbon
sources is often lacking. Secondly, for a number of strains
which do require additional organic carbon, there is much
debate regarding whether or not there is an enzymatic com-
ponent of Fe(II) oxidation, that is, whether or not these strains
are ‘mixotrophs’ or simply ‘chemodenitrifiers’.

Autotrophic NRFeOx

While Fe(II) oxidation coupled to nitrate reduction is thermody-
namically favourable (ΔG�0 = −96.23 kJ mol−1 Fe), large
quantities of Fe(II) would be required by autotrophic NRFeOx
bacteria to grow (ca., 26 mol Fe(II) to fix 1 mol carbon) (Laufer
et al., 2016a). Despite this, several studies claim to have iden-
tified autotrophic NRFeOx organisms. In Table 1 we have
listed all the isolates which, to our knowledge, have been pro-
posed to be autotrophic NRFeOx. We suggest that a true
autotrophic culture would (i) require no organic carbon source,
(ii) show growth of cells with only Fe(II), nitrate and CO2 pro-
vided, (iii) maintain Fe(II) oxidation over several transfers with-
out organic carbon addition and (iv) demonstrate CO2 uptake
during Fe(II) oxidation by incorporation of labelled CO2 into
biomass. As can be seen in Table 1, only one enrichment cul-
ture, the so-called ‘KS Culture’, fulfils all of these criteria while
the other strains either do not fulfil these criteria, or the neces-
sary supporting information is not described.

The chemolithoautotrophic co-culture known as Culture
KS, enriched in the mid-1990s (Straub et al., 1996; Blöthe
and Roden, 2009; Nordhoff et al., 2017), is therefore the
most robust example of a purely autotrophic NRFeOx
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system to date. It has been cultivated continuously for over
20 years with Fe(II) as the sole electron donor, nitrate as
the sole electron acceptor, and CO2 as the only carbon
source in at least two different laboratories (Blöthe and
Roden, 2009; He et al., 2016; Nordhoff et al., 2017;
Tominski et al., 2018a). In this culture, complete oxidation
of aqueous Fe(II) is observed and is coupled to denitrifica-
tion to produce N2. The dominant strain in ‘Culture KS’
belongs to the family Gallionellaceae, with a flanking
community including species of Rhizobium/Agrobacterium,
Bradyrhizobium, Comamonadaceae, Nocardioides, Rho-
danobacter, Polaromonas and Thiobacillus which are che-
modenitrifiers (Tominski et al., 2018a). The Gallionellaceae
is designated as the autotrophic Fe(II)-oxidizer. The relative
abundance and composition of the flanking community and
the Fe(II)-oxidizer is dependent on the laboratory in which
the culture is cultivated. It is hypothesized that the autotroph
fixes CO2 for the heterotrophic community members while
the heterotrophic organisms detoxify nitric oxide which the
autotroph does not have the genetic machinery to reduce
(He et al., 2016; Tominski et al., 2018a, 2018b). The contri-
bution of the Gallionellaceae strain varies between 42%
and 96%, apparently as a result of different inoculum con-
centrations in different laboratories with lower inoculum con-
centrations (1%) favouring higher abundance of the Fe(II)-
oxidizer (He et al., 2016; Nordhoff et al., 2017). The effect
of the different community composition on the rate of
Fe(II) oxidation has not been directly compared.

Mixotrophic NRFeOx and chemodenitrification

Many studies have also been conducted with bacteria
which reduce nitrate and oxidize Fe(II) only in the pres-
ence of an additional carbon source, yet there is much
debate over whether these organisms are mixotrophs or
chemodenitrifiers (defined in Fig. 1). Some studies have
shown an energetic benefit and increase in cell number
when such bacteria are grown on acetate and nitrate with
Fe(II) compared with setups without Fe(II) which could be
seen as evidence of an enzymatic component (Muehe

et al., 2009; Chakraborty et al., 2011). However, it was
later suggested that this effect is probably a response to
the nutritional benefit of iron addition, and not due to enzy-
matic Fe(II) oxidation (Klueglein and Kappler, 2013).
Determination of an enzymatic component in potential
mixotrophs is technically challenging to decipher and
requires intricate analysis of all reactive intermediates
(see most recently Jamieson et al., 2018). These authors
claimed to have shown a requirement for an enzymatic
component of oxidation in Acidovorax sp. strains BoFeN1
and 2AN, as well as A. ebreus strain TPSY, Paracoccus
denitrificans Pd 1222 and Pseudogulbenkiania sp. strain
2002 by compilation and model-based interpretation of
previously published experimental data. However, while
this study is extensive and makes an impressive attempt
at accounting for all potential abiotic processes, all previ-
ous studies on which these models were based on only
account for extracellular substrate concentrations, that is,
those substrates which were exported out of the cell. In
the case of all of these strains, significant reactive nitrogen
species production and Fe(II) oxidation occurs in the peri-
plasm. We would argue that until these intracellular pro-
cesses can be fully considered, we do not have concrete
evidence that an enzymatic component is required to
explain observed Fe(II) oxidation in any of the strains com-
monly studied as NRFeOx. As such, we will include all
bacteria which have been shown to require an additional
organic substrate together under ‘chemodenitrifiers’, of
which some of the most well studied are listed in Table S1
(although this is not intended to be an exhaustive list).

Ecology of nitrate-reducing Fe(II)-oxidizers

A map displaying all isolated strains of anaerobic Fe(II)-
oxidizing bacteria is shown in Fig. 2. Chemodenitrifiers
have been isolated from a range of habitats including fresh-
water sediments (Straub et al., 1996), soils (Shelobolina
et al., 2012a), hypersaline sediments (Emmerich et al.,
2012), marine sediments (Laufer et al., 2016b) and hydro-
thermal vents (Hafenbradl et al., 1996; Edwards et al.,

A B C

Fig. 1. Overview of the three different
types of interaction between nitrate-
reducing bacteria and Fe(II). (A) Auto-
trophic NRFeOx obtain carbon from
CO2 and oxidize Fe(II) enzymatically.
(B) Mixotrophic NRFeOx require addi-
tional organic carbon as a carbon
source, and Fe(II) oxidation has some
enzymatic component (although there
may also be some abiotic component).
(C) Chemodenitrifiers require organic
carbon and have no enzymatic compo-
nent of Fe(II) oxidation. The position of
the minerals (orange) relative to cells
(black) indicates whether or not
encrustation is expected.

© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 20, 3462–3483

3464 C. Bryce et al.



T
ab

le
1.

S
um

m
ar
y
of

is
ol
at
es

/e
nr
ic
hm

en
t
cu

ltu
re
s
of

N
R
F
eO

x
pr
op

os
ed

in
pr
ev

io
us

st
ud

ie
s
to

be
ca

pa
bl
e
of

au
to
tr
op

hi
c
gr
ow

th
on

F
e(
II)

an
d
an

in
di
ca

tio
n
of

w
he

th
er

or
no

t
th
ey

m
ee

t
th
e
cr
ite

ria
fo
r
au

to
tr
op

hy
pr
op

os
ed

he
re
.
N
um

be
r
re
pr
es

en
ts

po
si
tio

n
in

th
e
m
ap

in
F
ig
ur
e
2.

T
hi
s
sh

ow
s
th
at

al
le

xc
ep

t
on

e
of

th
e
st
ra
in
s/
cu

ltu
re
s
pu

bl
is
he

d
as

an
‘a
ut
ot
ro
ph

’
do

no
t
m
ee

t
th
is

cr
ite

ria
.
S
tr
ai
n

m
ar
ke

d
‘*
’
re
qu

ire
d
H
2
fo
r
F
e(
II)

ox
id
at
io
n.

N
o.

C
ul
tu
re
/s
tr
ai
n
na

m
e

C
la
ss

O
rd
er

F
am

ily
O
rig

in
of

sa
m
pl
e

Id
en

tit
y
of

iro
n(
III
)

m
in
er
al
s

M
et

cr
ite

ria
fo
r
au

to
tr
op

hy

R
ef
er
en

ce
g
ro
w
th

F
e(
II)

ox
id
at
io
n

ov
er

se
ve

ra
l

g
en

er
at
io
ns

A
b
se

nc
e
of

or
g
an

ic
C

so
ur
ce

U
p
ta
ke

of
la
b
el
le
d
C
O

2

d
ur
in
g

F
e(
II)

ox
id
at
io
n

S
ta
b
le

en
ri
ch

m
en

t
cu

lt
u
re
s

1
E
nr
ic
hm

en
tc

ul
tu
re

K
S

F
e(
II)
-o
xi
di
ze

r:
B
et
ap

ro
te
ob

ac
te
ria

G
al
lio
ne

lla
le
s

G
al
lio
ne

lla
ce

ae

F
re
sh

w
at
er

se
di
m
en

t,
B
re
m
en

,
G
er
m
an

y
G
oe

th
ite

,m
ag

ne
tit
e

+
+

+
+

(S
tr
au

b
et

al
.,
19

96
;H

e
et

al
.,
20

16
;N

or
dh

of
f

et
al
.,
20

17
;T

om
in
sk

i
et

al
.,
20

18
a)

Is
o
la
te
d
st
ra
in
s

2
A
zo

ar
cu

s
S
tr
ai
n
T
oN

1
B
et
ap

ro
te
ob

ac
te
ria

;
R
ho

do
cy

cl
al
es

;Z
oo

gl
oe

ac
ea

e
W
es

er
riv

er
se

di
m
en

t,
B
re
m
en

,
G
er
m
an

y
n.
a.

n.
a.

n.
a.

+
n.
a.

(R
ab

us
an

d
W
id
de

l,
19

95
;S

tr
au

b
et

al
.,

19
96

)

3
P
se

ud
om

on
as

st
ut
ze

ri
G
am

m
ap

ro
te
ob

ac
te
ria

,
P
se

ud
om

on
ad

al
es

;
P
se

ud
om

on
ad

ac
ea

e

M
ar
in
e
sa

m
pl
e
of
ft
he

C
al
ifo

rn
ia
n

C
oa

st
n.
a.

n.
a.

n.
a.

+
n.
a.

(Z
oB

el
la

nd
U
ph

am
,

19
44

;S
tr
au

b
et

al
.,

19
96

;P
eñ

a
et

al
.,

20
12

)

4
F
er
ro
g
lo
b
us

p
la
ci
d
us

(h
yp

er
th
er
m
op

hi
lic

ar
ch

ae
a)

A
rc
ha

eo
gl
ob

i;
A
rc
ha

eo
gl
ob

al
es

;
A
rc
ha

eo
gl
ob

ac
ea

e
S
ha

llo
w

su
bm

ar
in
e
hy

dr
ot
he

rm
al

sy
st
em

,V
ul
ca

no
,I
ta
ly

R
us

ty
fe
rr
ic

pr
ec

ip
ita

te
s

+
−

−
n.
a.

(H
af
en

br
ad

le
ta

l.,
19

96
)

5
A
qu

ab
ac

te
riu

m
S
tr
ai
n
B
rG

2
B
et
ap

ro
te
ob

ac
te
ria

,
B
ur
kh

ol
de

ria
le
s,

C
om

am
on

ad
ac

ea
e

F
re
sh

w
at
er

se
di
m
en

t,
B
re
m
en

,
G
er
m
an

y
R
us

ty
fe
rr
ic

pr
ec

ip
ita

te
s

n.
a.

n.
a.

+
n.
a.

(S
tr
au

b
et

al
.,
19

96
;

B
uc

hh
ol
z-
C
le
ve

n
et

al
.,
19

91
)

6
Th

io
b
ac

ill
us

d
en

itr
ifi
ca

ns
A
T
C
C

25
25

9*
B
et
ap

ro
te
ob

ac
te
ria

;
N
itr
os

om
on

ad
al
es

;
T
hi
ob

ac
ill
ac

ea
e;

S
ew

ag
e
sl
ud

ge
,T

he
U
ni
te
d
K
in
gd

om
n.
a.

−
+

+
n.
a

(S
tr
au

b
et

al
.,
19

96
;

B
el
le
r
et

al
.,
20

06
)

7
G
eo

b
ac

te
r
m
et
al
lir
ed

uc
en

s
st
ra
in

G
S
-1
5

D
el
ta
pr
ot
eo

ba
ct
er
ia
;

D
es

ul
fu
ro
m
on

ad
al
es

;
G
eo

ba
ct
er
ac

ea
e

U
-c
on

ta
m
in
at
ed

aq
ui
fe
r
se

di
m
en

ts
,

S
an

Ju
an

R
iv
er
,S

hi
pr
oc

k
n.
a.

n.
a.

n.
a.

+
n.
a.

(L
ov

le
y,

19
97

;F
in
ne

ra
n

et
al
.,
20

02
;W

eb
er

et
al
.,
20

06
)

8
M
ar
in
ob

ac
te
r
re
la
te
d
sp

ec
ie
s

G
am

m
ap

ro
te
ob

ac
te
ria

;
A
lte

ro
m
on

ad
al
es

;
A
lte

ro
m
on

ad
ac

ea
e

D
ee

p
se

a
hy

dr
ot
he

rm
al

sy
st
em

,J
ua

n
de

F
uc

a
rid

ge
n.
a.

−
n.
a.

+
n.
a.

(E
dw

ar
ds

et
al
.,
20

03
)

9
H
yp

ho
m
on

as
re
la
te
d
sp

ec
ie
s

A
lp
ha

pr
ot
eo

ba
ct
er
ia
;

R
ho

do
ba

ct
er
al
es

;
H
yp

ho
m
on

ad
ac

ea
e;

D
ee

p
se

a
hy

dr
ot
he

rm
al

sy
st
em

,J
ua

n
de

F
uc

a
rid

ge
n.
a.

−
n.
a.

+
n.
a.

(E
dw

ar
ds

et
al
.,
20

03
)

10
P
ar
ac

oc
cu

s
fe
rr
oo

xi
d
an

s
st
ra
in

B
D
N
-1

A
lp
ha

pr
ot
eo

ba
ct
er
ia
,

R
ho

do
ba

ct
er
al
es

,
R
ho

do
ba

ct
er
ac

ea
e

S
ew

ag
e
sl
ud

ge
fr
om

bi
or
ea

ct
or

sy
st
em

F
er
ric

iro
n
pr
ec

ip
ita

te
s

+
−

−
n.
a.

(K
um

ar
as

w
am

y
et

al
.,

20
06

)

11
P
se

ud
og

ul
b
en

ki
an

ia
sp

.s
tr
ai
n

20
02

B
et
ap

ro
te
ob

ac
te
ria

;N
ei
ss

er
ia
le
s;

C
hr
om

ob
ac

te
ria

ce
ae

F
re
sh

w
at
er

la
ke

se
di
m
en

t,
Ill
in
oi
s

U
ni
ve

rs
ity

n.
a.

+
−

+
+

(W
eb

er
et

al
.,
20

06
)

12
A
zo

sp
ira

ba
ct
er
iu
m

T
R
1

B
et
ap

ro
te
ob

ac
te
ria

;
R
ho

do
cy

cl
al
es

;
R
ho

do
cy

cl
ac

ea
e

B
io
re
m
ed

ia
tio

n
si
te
,B

C
,C

an
ad

a
V
er
y
fi
ne

fe
rr
ic

iro
n

ox
id
es

−
−

−
n.
a.

(M
at
te
s
et

al
.,
20

13
)

(C
on

tin
ue

s)

© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 20, 3462–3483

Microbial anaerobic Fe(II) oxidation 3465



2003). Simultaneous Fe(II) oxidation and nitrate reduction
has been demonstrated in enrichment cultures and natural
sediment samples from freshwater (Melton et al., 2012),
marine (Laufer et al., 2016c), estuarine (Robertson et al.,
2016), fluvial (Coby et al., 2011) and subsurface (Benzine
et al., 2013) environments as well as sewage sludge (Oshiki
et al., 2013) and aquifers (Lovley et al., 1987). As shown in
Table 1, isolation of NRFeOx organisms which fulfil all the
criteria for autotrophy has proven to be more difficult. How-
ever, cultivation-independent techniques have been used to
identify potentially active autotrophic NRFeOx microbes in
the environment. A recent study by Laufer et al. (2016c)
using coastal marine sediment in 14C-labelled incubations
provided, for the first-time, unequivocal evidence for the exis-
tence of autotrophic NRFeOx organisms in the environment.
Using metagenomics and metatranscriptomics, Jewell et al.
(2016) showed an increase in members belonging to the
Fe(II)-oxidizing Gallionellaceae (accounting for up to 80% of
the transcriptome) when nitrate was pumped into a ground-
water aquifer. Another study showed that chemolithoautotro-
phy was dominant in an organic poor aquifer and that high
fractions of the denitrifying communities were represented
by OTUs closely related to the Fe(II)-oxidizer Sideroxydans
lithotrophicus ES-1 (Herrmann et al., 2017). Recent studies
have investigated the abundance and distribution of
NRFeOx bacteria in freshwater lake sediments (Melton
et al., 2012, 2014c) and in coastal marine sediments (Laufer
et al., 2016b). In the freshwater lake sediments, the results
indicate that NRFeOx bacteria are likely to be in competition
for Fe(II) with phototrophic Fe(II)-oxidizers in the presence of
light (Melton et al., 2012). Furthermore, while the distribution
of these microbes is expected to adhere to the thermody-
namically controlled geochemical stratification of substrates,
this is not always the case. In marine sediments, autotrophic
NRFeOx and denitrifiers which abiotically catalyse
Fe(II) oxidation (as well as photoferrotrophs) may exist
together in the sediment layers (Laufer et al., 2016b).

Mechanisms of oxidation

Mechanisms used by anaerobic NRFeOx bacteria to oxi-
dize Fe(II) are still unclear, but appear to be different
depending on whether the bacteria are autotrophs, mixo-
trophs or chemodenitrifiers (see Fig. 1). For autotrophic
NRFeOx, three mechanisms have been proposed for
Fe(II) oxidation whereby: (i) there is a dedicated
Fe(II) oxidoreductase, (ii) there is an unspecific activity of
the nitrate reductase or (iii) the bc1 complex accepts
electrons from Fe(II) and reduces the quinone pool (Ilbert
and Bonnefoy, 2012).

In recent years much research has focused on the
first scenario and attempted to identify a possible dedi-
cated outer membrane Fe(II) oxidoreductase present
in autotrophic NRFeOx microorganisms (Beller et al.,T
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2013; He et al., 2017). A metagenomics analysis of the
NRFeOx Culture KS identified homologues of the cyto-
chrome c putative Fe(II) oxidase Cyc2 (found in other
known Fe(II)-oxidizers) in the draft genomes of the
Gallionellaceae sp. and in the Rhodanobacter
sp. present within Culture KS (He et al., 2016). Homo-
logues of the porin cytochrome c porin complex MtoAB
were also found in the Gallionellaceae sp. in Culture
KS and as well as in D. aromatica RCB (which was
proposed to be autotrophic but has not been con-
firmed) (He et al., 2017). Figure 3A displays a potential
mechanism by which the proposed autotrophic Fe(II)-
oxidizer in the KS culture could oxidize Fe(II) in which
an electron is obtained via Fe(II) oxidation and passed
along the electron transport chain where nitrate is
reduced stepwise to NO. Outside the cell, there is
potential for NO to be either consumed by the flanking
community or react with aqueous Fe(II).

As already discussed, there is continuing controversy
as to whether some NRFeOx bacteria make use of an
enzymatic machinery to oxidize Fe(II), making them true
mixotrophs. Many hypothesize that Fe(II) oxidation is
driven by an abiotic chemical side reaction of denitrifica-
tion (Brons et al., 1997; Klueglein and Kappler, 2013;
Klueglein et al., 2014). It has been proposed that nitrate-
dependent Fe(II) oxidation can be promoted by all hetero-
trophic denitrifiers (Carlson et al., 2013). This is evidenced

by the fact that many nitrate-reducers can oxidize
Fe(II) when an organic compound is provided in combina-
tion with Fe(II), even E. coli (Brons et al., 1997). The abi-
otic reduction of nitrate by dissolved Fe(II) is slow (Buresh
and Moraghan, 1978; Colman et al., 2008), but nitrite
reduction by Fe(II) to N2O is kinetically favourable under
environmental conditions and likely to occur if reactive
chemical substrates are present as catalysts (Zhu-Barker
et al., 2015). For example, the reduction of nitrogen spe-
cies by Fe(II) can occur via heterogeneous surface cataly-
sis where viable surfaces include crystalline Fe(III)
oxyhydroxides, green rust, pyrite (FeS2) and cell surfaces
(Moraghan and Buresh, 1977; Ottley et al., 1997; Kamps-
chreur et al., 2011; Bosch et al., 2012; Dhakal et al., 2013;
Jones et al., 2015; Buchwald et al., 2016; Grabb et al.,
2017). Microbially driven NRFeOx, Fe-ammox (Fe(III)-
coupled ammonium oxidation) and heterotrophic nitrate-
reduction (denitrification) can lead to the formation of
reactive nitrogen species as a metabolic intermediate
(nitrite, NO2

− or nitric oxide, NO) (Weber et al., 2001;
Picardal, 2012; Klueglein and Kappler, 2013; Oshiki et al.,
2013), providing ample supply of compounds which could
react quickly with Fe(II).

A summary of the proposed mechanism for
Fe(II) oxidation by chemodenitrification is shown in
Fig. 3B. This represents an end-member mechanism for
NRFeOx where there is no enzymatic component to
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Fig. 2. Map displaying isolated strains (or stable enrichment cultures) of photoferrotrophs or nitrate-reducing bacteria implicated in Fe(II)-oxidation, as
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© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 20, 3462–3483

Microbial anaerobic Fe(II) oxidation 3467



Fe(II) oxidation. In this case electrons are obtained from
organic carbon oxidation, leading to stepwise reduction of
nitrate to nitrogen. Intermediates may leak out at any of
the steps and react with Fe(II) either inside or outside of
the cell. While some Fe(II)-oxidizing bacteria such as
photoferrotrophs and the autotrophic Culture KS have
developed strategies for avoiding cell encrustation by
Fe(III) minerals (Hegler et al., 2010), no such strategies
have been demonstrated by chemodenitrifying bacteria
(Schaedler et al., 2009; Klueglein et al., 2014). Cell
encrustation inhibits respiratory complexes and other peri-
plasmic sites which leads to decreased nitrate-dependent
Fe(II) oxidation (Carlson et al., 2013) and eventually
results in cell death (though not always for all community
members, e.g., Miot et al., 2015).

Fe(II) sources and Fe(III) minerology

Different sources of Fe(II) species including dissolved Fe2
+, complexed Fe(II) [e.g., Fe(II)-EDTA] and mineral bound
Fe(II) can undergo oxidation as a result of NRFeOx. Fe(II)-
OM complexes such as Fe(II)-EDTA and Fe(II)-NTA were
shown to be oxidized by several different species including
Dechloromonas sp. strain UWNR4, Paracoccus ferrooxi-
dans sp. nov., BDN-1, Pseudogulbenkiania sp. 2002
(Kumaraswamy et al., 2006) and Desulfitobacterium frap-
pieri (Shelobolina et al., 2003). Acidovorax sp. BoFeN1 is
able to promote oxidation of Fe(II)-citrate, Fe(II)-EDTA,
Fe(II)-humic-acid, and Fe(II)-fulvic-acid, but only in the
presence of aqueous Fe(II) (Peng et al., 2018). Potential
toxicity of ligands may also be a controlling factor in these
processes.

Fig. 3. Schematics of the current hypotheses on the mechanism of Fe(II) oxidation in (A) the Gallionellaceae species proposed to be the autotro-
phic nitrate-reducing Fe(II)-oxidizer in the KS culture (modified from He et al., 2016) and (B) the proposed mechanism of Fe(II) oxidation by che-
modenitrification (modified from Carlson et al., 2013). In (B), nitrate reduction may also be catalysed by Nap instead of Nar, and nitric oxide
reduction may be facilitated by NorZ instead of NorC, which accepts electrons from quinols rather than cytochrome c.
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In addition to dissolved Fe(II), different microbial
species are also able to oxidize Fe(II) mineral phases
via NRFeOx. The autotrophic enrichment Culture KS,
can oxidize Fe(II) in the form of microbially reduced
goethite, biogenic magnetite (Fe3O4) and chemically
precipitated siderite (FeCO3) but only a small amount
of biogenic siderite (Weber et al., 2001). Oxidation of
biogenically reduced goethite, chemically precipitated
siderite, biogenic magnetite and magnetite nanoparti-
cles by a chemodenitrifier has also been observed
(Chakraborty et al., 2011; Byrne et al., 2015). Sulfide
minerals, such as ferrous sulfide (FeS), was observed
to be oxidized by an enriched nitrate-reducing culture
from marine sediment although pyrite (FeS2) was not
bioavailable for oxidation by the same culture
(Schippers and Jorgensen, 2002). Vivianite can be oxi-
dized by Acidovorax sp. BoFeN1 in the presence of
dissolved free Fe2+ (Miot et al., 2009a), or also in cell
suspension experiments with Acidovorax ebreus
(Carlson et al., 2013); however, vivianite cannot be oxi-
dized by Acidovorax sp. Strain BoFeN1 in the absence
of dissolved Fe2+ (Kappler et al., 2005b; Miot et al.,
2009b). Fe(II)-containing phyllosilicates, such as bio-
tite, can be oxidized by the autotrophic enrichment Cul-
ture KS (Shelobolina et al., 2012b). Clay minerals such
as illite, smectite and nontronite, are also available for
Fe(II) oxidation by Desulfitobacterium frappieri
(Shelobolina et al., 2003) and by Pseudogulbenkiania
sp. strain 2002 (Zhao et al., 2017). Culturing of
microbes on solid mineral substrates has, however,
proved difficult. Poised electrodes could provide an
alternative strategy for enrichment of mineral trans-
forming bacteria as demonstrated by Rowe et al.
(2015) in sediment microcosms.

The oxidation of Fe(II) species coupled to microbial
nitrate reduction can lead to the precipitation of a variety
of Fe(III) minerals and/or mixed-valent Fe(II)–Fe(III) min-
eral phases. These phases can precipitate either on the
surface of the bacteria or in close association between
bacteria and minerals as cell mineral aggregates. For
many chemodenitrifiers, precipitation occurs in the peri-
plasm, as shells which completely enclose the cell, or in
extracellular globules or as Fe filaments on extracellular
polymeric substances (EPS) (Kappler et al., 2005b; Miot
et al., 2009b; Schaedler et al., 2009; Schmid et al.,
2014). The extent of encrustation increasingly limits the
metabolic capabilities of these bacteria until encrustation
is so severe that they are killed (Miot et al., 2015). The
extent to which encrustation is an artefact caused by high
Fe(II) concentrations in lab conditions is unclear, but such
structures have been observed in the environment (Miot
et al., 2016). In addition to goethite, mineral encrustation
of the bacterial periplasm may also be comprised of
Fe(III) phosphate minerals, which accumulate on proteins

within the periplasm of cells (Miot et al., 2009b). Acido-
vorax sp. strain BoFeN1 can also form extracellular mag-
netite when green rust is provided as an Fe(II) source
(Miot et al., 2014).

The mineralogy of biogenic Fe(III) minerals is depen-
dent on a myriad of variables ranging from the microbial
species, growth medium (i.e., phosphate or buffer con-
centrations), substrate availability, as well as geochemi-
cal and physical conditions such as pH and temperature
(Posth et al., 2014; Miot and Etique, 2016). Because
solution chemistry is such a strong driver in biogenic min-
eral precipitation, the same strain of bacteria, Acidovorax
sp. Strain BoFeN1 for example, is capable of forming
multiple Fe(III) mineral phases (Kappler and Newman,
2004; Kappler et al., 2005a; Hohmann et al., 2009; Miot
et al., 2009b; Posth et al., 2010). For instance, lepidocro-
cite (γ-FeOOH) can be formed directly via NRFeOx by
Acidovorax sp. strain BoFeN1 (Larese-Casanova et al.,
2010). However, in the presence of strong complexing
ligands such as carbonate, Fe(III) mineral precipitation is
directed toward goethite (α-FeOOH) (Carlson and
Schwertmann, 1981; Larese-Casanova et al., 2010). Sim-
ilarly, when phosphate concentration is high, the precipi-
tation of both poorly crystalline or crystalline Fe(III)-
phosphate minerals is favoured. In addition to Fe(III) min-
erals, mixed-valent minerals such as green rust (as an
intermediate phase) or magnetite can also result from
microbial Fe(II) oxidation coupled to nitrate reduction, by
species such as Dechlorosoma sullium strain PS (this
species is capable of using perchlorate or nitrate as an
electron acceptor) (Achenbach et al., 2001; Chaudhuri
et al., 2001) or by Acidovorax sp. strain BoFeN1 (Pantke
et al., 2012; Klueglein and Kappler, 2013; Miot et al.,
2014). Magnetite formation by NRFeOx has been shown
in the presence of magnetite nucleation sites which func-
tion as seeds for further magnetite formation (Dippon
et al., 2012). Green rust has also been shown to form as
an intermediate phase during the oxidation of Fe2+ to
Fe(III) minerals by Acidovorax sp. BoFeN1 (Pantke et al.,
2012), Klebsiella mobilis (Etique et al., 2014) and Culture
KS (Nordhoff et al., 2017). The formation of this metasta-
ble mineral gives an indication of the mineralization path-
way, that is, via precipitation of green rust by NRFeOx
followed by solid-state transformation into Fe(III) or
Fe(II)–Fe(III) mineral phases.

Environmental implications

The proposed stoichiometric reaction for NRFeOx organ-
isms is presented in Eq. 1 whereby the stepwise reduc-
tion of nitrate via denitrification coupled to Fe(II) oxidation
results in the formation of N2. While some studies have
shown nitrate reduction to N2 without the accumulation of
intermediates (Chaudhuri et al., 2001; Straub et al., 2004;
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Blöthe and Roden, 2009), a smaller number of studies
using sediment enrichments have shown that ammonium
accumulation can also occur during NRFeOx (Weber
et al., 2006; Coby et al., 2011). More recent studies using
sediment incubations have identified the concentration of
dissolved Fe(II) to be the controlling factor on the relative
contribution of denitrification and dissimilatory nitrate
reduction to ammonium (DNRA) in nitrate removal
(Roberts et al., 2014; Robertson et al., 2016; Robertson
and Thamdrup, 2017). In addition to contributing to the
accumulation of ammonium, anaerobic ammonium oxidiz-
ing (annamox) bacteria can also mediate nitrate-reducing
Fe(II) oxidation (Oshiki et al., 2013). The role of NRFeOx
in the transformation of ammonium can have important
implications for wastewater treatment processes.
The abiotic reduction of nitrite by Fe(II) can produce

N2O (Eq. 3) which is not quickly reduced by Fe(II).

4Fe2+ + 2NO2
− +5H2O!4FeOOH+N2O+6H+ ð3Þ

Thus, the abiotic reduction of nitrite by Fe(II) (Eq. 3)
has the potential to be a crucial source of nitrous oxide
(N2O) (Burgin and Hamilton, 2007; Picardal, 2012; Zhu-
Barker et al., 2015). N2O belongs to the group of green-
house gases (Wuebbles, 2009), has 300 times the global
warming potential of CO2 on a time scale of 100 years
(IPCC, 2013) and contributes to stratospheric ozone
depletion (Crutzen, 1974; Ravishankara et al., 2009). It is
known that abiotic nitrite reduction by redox-active
Fe(II) has the potential to be an important source of N2O
in Fe- and carbon-rich habitats (Burgin and Hamilton,
2007; Picardal, 2012; Zhu-Barker et al., 2015). Chemode-
nitrification occurs in forest, grassland and cropland soils
(van Cleemput and Samater, 1995; Zhu et al., 2013; Heil
et al., 2015), paddy soils (Liu et al., 2012; Wang et al.,
2016b), activated sludge (Wang et al., 2016a), hypersa-
line ponds and brines in Antarctica (Samarkin et al.,
2010; Peters et al., 2014; Zhu-Barker et al., 2015; Ostrom
et al., 2016), and marine coastal sediments (Wankel
et al., 2017). However, the contribution of this process to
the global N2O budget is currently unknown.
The identity and morphology of iron minerals formed

by NRFeOx can be influenced by the presence of metal
species, such as arsenic (As) or silicon (Si) (Kleinert
et al., 2011; Picard et al., 2016). For example, during ini-
tial formation, the presence of As can direct mineral for-
mation toward the poorly crystalline Fe(III) mineral
ferrihydrite as opposed to more crystalline Fe(III) mineral
goethite (Kleinert et al., 2011). Arsenic co-precipitated
with ferrihydrite could potentially be mobilized upon
microbial Fe(III) reduction whereas As-goethite co-
precipitates would likely be more stable (Hohmann et al.,
2009). This transformation process may be inhibited if
minerals are co-precipitated with Si, which has been

shown to stabilize phases such as ferrihydrite and goe-
thite (Picard et al., 2016). Repeated redox cycling
between oxidizing and reducing conditions can influence
the products which form as a result of nitrate-reducing
Fe(II) oxidation (Mejia et al., 2016) which may influence
the interactions between the minerals and other environ-
mental factors. Immobilization of iron by oxidation is itself
an important environmental process. For example, it has
been shown that NRFeOx processes can act to limit iron
transport from oceanic oxygen minimum zones (Scholz
et al., 2016). Since iron is a major limiting nutrient in the
world’s oceans (Moore et al., 2013), the limitation of iron
transport from zones where dissolved iron is higher than
average seawater can thus have an influence on global
oceanic productivity.

It should be noted that the concentrations of nitrate in
an environment do not need to be high to lead to
Fe(II) oxidation, because nitrate production and nitrate
consumption can proceed simultaneously. Therefore the
net concentrations which are measured (e.g., in pore-
water) do not necessarily reflect the amount of nitrate that
is available to interact with NRFeOx bacteria. Addition-
ally, the abiotic oxidation of Fe(II) is primarily driven by
reaction with reactive nitrogen intermediates (NO, NO2

−)
which are unstable and rapidly react, such that they
would not be detected in bulk measurements of pore-
water substrate concentrations.

Anoxygenic phototrophic Fe(II)-oxidizers

Physiology, existing isolates/cultures and ecology

The second group of anoxygenic bacteria which can oxi-
dize Fe(II) are anoxygenic phototrophs. These bacteria
harvest energy from light and oxidize Fe(II) in order to
produce reducing equivalents for CO2 fixation. The exis-
tence of phototrophic organisms which could oxidize
Fe(II) was first proposed as an explanation for the forma-
tion of vast, economically important iron-rich rock forma-
tions by Hartman (1984) who disagreed with the
geologist Preston Cloud that these were formed as a
result of cyanobacterial oxygenic photosynthesis (Cloud,
1973). Hartman suggested that anoxygenic photosyn-
thetic microorganisms thrived in Earth’s ancient, oxygen-
poor and iron-rich oceans, and utilized the abundant
Fe(II) as an electron donor. Nevertheless, it took almost
a decade for the first anoxygenic phototrophic Fe(II)-oxi-
dizer, described as a purple non-sulfur bacteria, to be iso-
lated (Widdel et al., 1993).

Anoxygenic phototrophic Fe(II)-oxidizers have since been
isolated from both the purple sulfur (Gammaproteobacteria)
and non-sulfur bacteria (Alphaproteobacteria), and from the
green sulfur bacteria (see Table 2). Isolated purple non-
sulfur bacteria include Rhodobacter ferrooxidans strain
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SW2 (Ehrenreich and Widdel, 1994), Rhodopseudomonas
palustris strain TIE-1 (Jiao et al., 2005), Rhodovulum iodo-
sum and Rhodovulum robiginosum (Straub et al., 1999; Wu
et al., 2014). The only purple sulfur bacteria isolate available
is Thiodycton sp. strain F4 (Croal et al., 2004). All isolated
photoferrotrophs from the green sulfur bacteria belong to
the genus Chlorobium. These include Chlorobium ferrooxi-
dans strain KoFox (Heising et al., 1999) and two recently
isolated species: Chlorobium phaeoferrooxidans (Crowe
et al., 2017; Thompson et al., 2017) and Chlorobium
sp. strain N1 which is closely related toChlorobium luteolum
(Laufer et al., 2017). These organisms typically oxidize
aqueous Fe(II) completely under normal culture conditions,
similarly to Culture KS and in contrast to most other
NRFeOx bacteria. Rhodobacter capsulatus can also oxi-
dize Fe(II) but does not appear to use this process to sup-
port growth (Poulain and Newman, 2009). This organism
instead utilizes Fe(II) oxidation as a detoxification mecha-
nism. Fe(II) can also be oxidized by purple non-sulfur bacte-
ria Rhodomicrobium vannielli strain BS-1, however, the
physiological role of Fe(II) oxidation by this organism seems
to be somewhat of an enigma. Heising and Schink (1998)
showed that while this strain could oxidize Fe(II), this pro-
cess is significantly aided by the presence of an organic
substrate and can only be maintained for two to three gener-
ations. This led them to suggest that Fe(II) oxidation was of
minor physiological importance and was merely a side-
reaction of normal metabolism. However, Rhodomicrobium
vannielli strain BS-1 does have the same set of genes for
Fe(II) oxidation as Rhodopseudomonas palustris strain
TIE-1 (He et al., 2017) and, thus, it is unclear why this strain
does not use Fe(II) as the sole electron donor whereas Rho-
dopseudomonas palustris TIE-1 does.

Purple non-sulfur bacteria and green sulfur bacteria
that oxidize Fe(II) live in both high and low salinity envi-
ronments. Marine strains include Chlorobium sp. strain
N1, Rhodovulum iodosum and Rhodovulum robiginosum
while all other isolates stem from freshwater habitats.
Phototrophic Fe(II)-oxidizers from the green sulfur bacte-
ria can utilize lower light intensities than the purple sulfur
bacteria due to differences in their pigments such as bac-
teriochlorphylls and carotenoids (Kappler et al., 2005a).
Some green sulfur bacteria utilize extremely low light
intensities (down to > 0.005% of surface irradiance; Man-
ske et al., 2005) and have a light saturation much lower
than that of purple bacteria (< 50 lux for Chlorobium fer-
rooxidans strain KoFox compared with 400 lux for Rho-
dobacter ferrooxidans strain SW2 or 800 lux for
Thiodycton sp. strain F4) (Hegler et al., 2008). Green sul-
fur bacteria such as Chlorobium sp. strain N1, however,
utilize higher light intensities (saturation at 400 lux) thus
they are not limited to very low light environments (Laufer
et al., 2017). All isolated anoxygenic phototrophic Fe(II)-
oxidizers are metabolically flexible and have the ability toT
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utilize multiple electron donors for CO2 fixation instead of
Fe(II), such as H2 and H2S (Croal et al., 2009). Alterna-
tively, they are able to use organic carbon compounds
instead of CO2 (Melton et al., 2014b).

Possibly as a result of their metabolic flexibility, anoxy-
genic phototrophs are widespread in both aquatic and
terrestrial habitats. Most of the isolated species were
obtained from either freshwater or marine sediments with
the exception of Chlorobium phaeoferrooxidans which
was isolated from the water column of ferruginous Lake
Kivu, East Africa (Crowe et al., 2017). However, despite
the lack of pelagic isolates, these bacteria have been
shown (using microcosms and in situ observations) to
substantially contribute to Fe(II) oxidation in numerous
stratified lakes. For example, in ferruginous Lake La
Cruz, Spain, an anoxygenic phototrophic Fe(II)-oxidizer
closely related to Chlorobium ferrooxidans strain KoFox
was enriched from the water column and shown to con-
tribute to Fe(III) mineral formation in situ (Walter et al.,
2014). These bacteria even thrive in low iron environ-
ments like mermomictic Lake Cadagno, where they are
thought to account for up to 10% of total carbon fixation
(Berg et al., 2016). Given the metabolic flexibility of
anoxygenic phototrophic Fe(II)-oxidizers, it is challenging
to determine whether or not they contribute to
Fe(II) oxidation in their environment of origin simply from
the analysis of in situ DNA or RNA.

Mechanisms of Fe(II) oxidation by photoferrotrophs

The mechanisms involved in Fe(II) oxidation by anoxy-
genic phototrophic Fe(II)-oxidizing bacteria are still not
fully understood. Questions remain about how these bac-
teria can oxidize different forms of Fe(II) at circumneutral
pH including dissolved Fe2+aq, ligand bound Fe(II) and
solid phase minerals (Byrne et al., 2015, 2016) as well as
poised electrodes (Bose et al., 2014). Furthermore, it is
not clear exactly how these bacteria are able to deal with
the solid phase mineral precipitates (e.g., ferrihydrite) that
are formed as a result.

The mechanism of phototrophic microbial Fe(II) oxidation
has been most widely studied in Rhodopseudomonas
palustris TIE-1. In this organism, electron transfer by
Fe(II) oxidation is thought to require the pioABC operon,
where pio stands for ‘photosynthetic Fe(II)-oxidation’ (Jiao
and Newman, 2007). This is a 3 gene operon containing
genes encoding for the proteins PioA (a periplasmic deca-
heme c-type cytochrome), PioB (an outer membrane beta-
barrel protein) and PioC (a periplasmic high potential iron–
sulfur cluster protein) (Jiao and Newman, 2007). PioA and
PioB are homologous with MtrA and MtrB, respectively, that
are for instance expressed by the Fe(III)-reducer Shewa-
nella oneidensis MR-1 (Jiao and Newman, 2007). PioC is
similar to the putative Fe(II) oxidoreductase Iro in

Acidothiobacillus ferrooxidans. Rhodopseudomonas palus-
tris TIE-1 most likely transfers electrons from PioA to PioC,
which then donates electrons to the bc1 complex. Some
authors have also suggested that the electrons could be
passed to the inner membrane phototrophic reaction centre
(Bird et al., 2014) (Fig. 4A). A pioABC operon was also
found in Rhodomicrobium vannielii that probably functions
similarly to that of Rhodopseudomonas palustris TIE-1
(He et al., 2017).

Deletion of PioA in Rhodopseudomonas palustris TIE-1
results in almost complete loss of Fe(II)-oxidizing ability
whereas PioB and PioC deletions only result in partial loss
compared with the wild type (Bose and Newman, 2011).
The pio genes show highest expression with Fe(II) as an
electron donor, but are transcribed and translated under
all anoxic growth conditions (Bose and Newman, 2011).
Expression of the pio operon is regulated by the global
regulator FixK (Bose and Newman, 2011). Transcriptome-
level insights have generated additional information on
how Fe(II) shapes cellular processes in Rhodopseudomo-
nas palustris TIE-1. These show that high levels of
Fe(II) induce stress responses even under anoxic condi-
tions where classical Fe(II) toxicity via oxidative stress
induced by the Fenton reaction should not be an issue.
The cellular response is primarily characterized by the
induction of numerous metal efflux mechanisms (Bird
et al., 2013).

To date, evidence relating to the location of PioA in the
cell is somewhat contradictory. On one hand, based on
sequence information, PioA is predicted to be a periplas-
mic protein (Jiao and Newman, 2007). Recent findings,
however, show that Rhodopseudomonas palustris TIE-1
can oxidize the solid phase mixed-valent Fe(II)–Fe(III) min-
eral magnetite Fe3O4 (Byrne et al., 2015), and utilized
electrons directly from poised electrodes (Bose et al.,
2014). This suggests that PioA, with its electron transport
mechanism and thus the ability to oxidize Fe(II), must be
present on the outer membrane of the cell. Furthermore, it
was shown that Rhodopseudomonas palustris TIE-1 is
only able to access surface bound Fe(II) in the magnetite
which further suggests a direct surface-mineral contact
mechanism might be required (Byrne et al., 2016).

The other widely studied mechanism of anoxygenic
phototrophic Fe(II) oxidation is that of Rhodobacter ferrooxi-
dans SW2. This organism oxidizes Fe(II) via the foxEYZ
operon (Croal et al., 2007). foxE encodes a c-type cyto-
chrome with no significant similarity to other known Fe(II)-
oxidizing or Fe(III)-reducing proteins. foxE and foxY are co-
transcribed in the presence of Fe(II) and/or hydrogen,
whereas foxZ is only transcribed in the presence of
Fe(II) (Croal et al., 2007). It is thought that FoxE is posi-
tioned in the periplasm (Saraiva et al., 2012). It has further
been proposed that electrons from Fe(II) are transferred to
FoxE, then to FoxY and from there to the bc1 complex or,
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possibly, to the reaction centre (Bird et al., 2011) (Fig. 4A).
To date, there is no evidence which shows the ability for
Rhodobacter ferrooxidans SW2 to oxidize solid phase
Fe(II) mineral phases.
The recently sequenced genome of Chlorobium

phaeoferrooxidans suggests that yet another mechanism
exists in these green sulfur bacteria. This genome
encodes for an outer membrane cytochrome (cyc2PV-1),
which is known to be responsible for Fe(II) oxidation in
the microaerophilic Fe(II)-oxidizer Mariprofundus ferroox-
idans PV-1 (Crowe et al., 2008). Cyc2PV-1 is a distant
homologue of Cyc2, which is widely present in many
known obligate lithotrophic Fe(II)-oxidizing bacteria
(He et al., 2017). Cyc2 is also encoded in the genome of
Chlorobium ferrooxidans DSM13031 (He et al., 2017).
The electron transfer mechanisms and proteins respon-

sible for Fe(II) oxidation are probably diverse and one sin-
gle mechanism is neither universally present among all

physiological types of Fe(II)-oxidizers nor within one group
of Fe(II)-oxidizers such as the phototrophs.

Mineral formation by photoferrotrophs

Phototrophic Fe(II)-oxidizing bacteria are able to oxidize
a variety of Fe(II) species (see previous paragraph)
resulting in the formation of poorly soluble Fe(III) (oxy-
hydr)oxides (Ehrenreich and Widdel, 1994; Straub et al.,
1999; Kappler and Newman, 2004; Jiao et al., 2005;
Gauger et al., 2015). Several studies observed the trans-
formation of these amorphous to low crystalline initial pre-
cipitates to higher crystalline and thermodynamically
more stable Fe mineral phases, such as goethite, lepido-
crocite and magnetite over time (Straub et al., 1999; Kap-
pler and Newman, 2004; Jiao et al., 2005; Miot et al.,
2009c; Schaedler et al., 2009; Wu et al., 2014). Partial

Fig. 4. Schematics of the current hypotheses on the mechanism of Fe(II) oxidation: (A) proposed Fe(II) oxidation mechanism in Rhodopseudo-
monas palustris TIE-1 and (B) proposed Fe(II) oxidation mechanism for Rhodobacter ferrooxidans SW2 (modified from Bird et al., 2011).

© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 20, 3462–3483

3474 C. Bryce et al.



dissolution and re-precipitation processes in combination
with mineral transformation by sorption of residual
Fe(II) represent potential transformation pathways (Posth
et al., 2014). Laufer et al. (2016c) suggested that a close
association between minerals and organics might con-
strain mineral growth and subsequent transformation,
thus preserving the poorly crystalline ferrihydrite. The
final mineral product of the Fe(II) oxidation therefore
depends on various factors such as the geochemical
conditions and/or the microbial community in the sur-
rounding environment, and the Fe(II) concentration
(e.g., Schaedler et al., 2009; Posth et al., 2010, 2013). In
the case of strain R. palustris TIE-1 the pH seemed to be
of particular importance, since at low pH conditions,
poorly crystalline Fe(III) oxyhydroxides and goethite were
formed while at pH conditions above 7.2, the formation of
magnetite was observed (Jiao et al., 2005).

It has been suggested that Fe(II) oxidation occurs at
different, strain specific localities, such as the cell surface
or the periplasm. In close proximity to bacteria, freshly
formed Fe(III) minerals, are expected to strongly adsorb
to the negatively charged cell surface (Kappler and New-
man, 2004; Schaedler et al., 2009). However, in contrast
to nitrate-reducing Fe(II)-oxidizing bacteria, a lack of
encrustation seems characteristic for photoferrotrophs
(Schaedler et al., 2009; Wu et al., 2014). Yet, the extent
to which cells and minerals are associated seems to be
strain-specific. Furthermore, varying cell-mineral aggre-
gate morphologies, ranging from irregular and bulbous to
more symmetric (e.g., flower- and star-like shapes) have
been reported and seem to depend on the mineralogy
and age of culture (Ehrenreich and Widdel, 1994; Kappler
and Newman, 2004; Jiao et al., 2005; Posth et al., 2010;
Wu et al., 2014; Gauger et al., 2015; Laufer et al., 2017).

Much research has focused on the question as to why
mineral precipitates and cells are closely associated
while the cell surface itself remains (mostly) free of min-
eral precipitates and no encrustation occurs in the case
of most photoferrotroph strains. Miot et al. (2009c) dem-
onstrated an occurrence of goethite only outside of the
cell and along organic fibres produced by Rhodobacter
ferrooxidans sp. SW2. Likewise, Wu et al. (2014) found
that in the case of Rhodovulum iodosum, the final precip-
itation product was mainly localized at the exopolysac-
charides (EPS) and suggested the excretion of EPS as a
strategy to prevent mineral encrustation on the cell sur-
face. Another potential mechanism was presented by
Hegler et al. (2010), who suggested that a low-pH envi-
ronment around the cell would prevent Fe(III) mineral pre-
cipitation on the cell surface, probably in combination
with the presence of EPS structures that direct the pre-
cipitation away from the cell surface. Avoidance of
encrustation may also be a result of the location of the
Fe(II) oxidase in the outer membrane and not in the

periplasm as is likely to be the case in Rhodopseudomo-
nas palustris TIE-1. This process may also be aided by
the location of the Fe(II) oxidase within an outer mem-
brane porin (Fig. 4A), which could facilitate the extrusion
of Fe(III) from the cell before it has time to precipitate
(Bird et al., 2011). The precipitation of Fe(III) outside of
the cell on organic fibres in Rhodobacter ferrooxidans
SW2 (Miot et al., 2009c) is consistent with either extracel-
lular oxidation or rapid removal of Fe(III) from the cell.
Alternatively, the structure of the Fe(II) oxidation protein
itself may aid in the avoidance of encrustation as pro-
posed by Pereira et al. (2017) who suggested that the
structure of FoxE in Rhodobacter ferrooxidans SW2 dis-
courages precipitation of Fe(III) within the periplasm fol-
lowing Fe(II) oxidation. A comparison between the iron
oxidation mechanisms in these two strains is shown
in Fig. 4.

A clear exception among the phototrophic Fe(II)-
oxidizing bacteria is the strain R. vannielii BSI, which has
been shown to produce Fe(III) oxyhydroxides that precipi-
tated directly on the cell surface, forming crusts, which hin-
dered further metabolic activity and hence, impeded
Fe(II) oxidation after prolonged cultivation (Heising and
Schink, 1998). The authors suggest that, other than during
a laboratory cultivation, in a natural environment, this strain
is likely able to re-dissolve the crusts of Fe(III) minerals
and hence, maintain microbial activity and cell growth. In
co-cultures of the green sulfur bacteria Chlorobium fer-
rooxidans KoFox and Geospirillum sp. KoFum, mineral
encrustations are also observed but only prominently on
KoFum cells (Schaedler et al., 2009). This suggests photo-
ferrotrophs have active mechanisms to avoid encrustation.

Photoferrotrophs and their interactions with metals

Similar to biogenic Fe minerals produced by NRFeOx
bacteria, biogenic Fe minerals produced by phototrophs
react with and can even remove heavy metals from solu-
tion through sorption and/or co-precipitation processes.
This association is mediated by forming Fe-metal bonds,
rather than metal bonds with organic carbon. For exam-
ple, when nickel (Ni) is reacted with biogenic phases pro-
duced by phototrophic bacteria, this heavy metal
demonstrates a clear preference for associations with Fe
on EPS, rather than with carbon (Eickhoff et al., 2014).
Similarly, when the association of Ni with Si in biogenic
Fe minerals produced by either Rhodobacter ferrooxi-
dans SW2 or Rhodovulum iodosum is examined using
scanning transmission X-ray microscopy (STXM), it is
clear that Ni preferentially is associated with Fe rather
than with Si (Eickhoff et al., 2014).

The preferential association of trace metals with Fe in
biogenic Fe(III) minerals produced via phototrophic bacte-
ria does not necessarily ensure decreased mobility of the
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trace metal. For example, biogenic ferrihydrite produced
by Rhodobacter ferrooxidans SW2 removes 99% of both
As(V) and As(III) added (Hohmann et al., 2009). While this
poorly crystalline phase adsorbs and incorporates As to a
greater extent compared with more crystalline phases, fer-
rihydrite is also more susceptible to microbial Fe(III) reduc-
tion. Microbial Fe(III) reduction may induce dissolution of
the solid and potentially release of As back into solution.
Phosphate, which behaves similarly to arsenic in the envi-
ronment, will also bind to Fe(III) minerals thus dissolution
of Fe(III) minerals can release P and lead to eutrophication
(Orihel et al., 2015). This effect may be enhanced in bio-
genic Fe minerals compared with abiogenic minerals due
to the presence of organic carbon on the mineral surface
and within the mineral structure itself due to co-
precipitation with organics. In addition to organic carbon
content, abiogenic and biogenic minerals produced by
phototrophic bacteria differ in the extent of metal sorption
and/or incorporation into the mineral structure. For exam-
ple, a two to three-fold lower Ni/Fe ratio is observed for
biogenic phases than for abiogenic phases. This decrease
is likely due to surface site blockage by organic carbon
(Eickhoff et al., 2014).

Co-existence of anaerobic Fe(II)-oxidizers in
sediments

One of the key recent discoveries in the field of sedi-
mentary Fe(II) oxidation is that anaerobic Fe-
transforming metabolisms (NRFeOx, pFeOx, Fe(III)-
reduction) are found to co-exist in both freshwater and
marine sediments (Melton et al., 2012; Laufer et al.,
2016b; Otte et al., 2018). Based on the
thermodynamically-controlled stratification of redox-
active compounds in sediments, it was previously sug-
gested that Fe(II)-oxidizing microorganisms would be
spatially separated over very short distances based on
where the optimum geochemical conditions are found
(Schmidt et al., 2010). The distribution of these metab-
olisms in shallow water sediments from Aarhus Bay
(marine) shows that none of the physiological groups
of Fe(II)-oxidizing bacteria in these sediments showed
strong correlations with geochemical gradients (Laufer
et al., 2016b; Otte et al., 2018), however some correla-
tion with the abundance of cable bacteria was
observed (Otte et al., 2018). It should be noted how-
ever, that these groups did show some correlation with
geochemical gradients in deeper, profundal sediments
in Lake Constance (Melton et al., 2012). Of the three
physiological types, MPN studies showed microaero-
philic Fe(II)-oxidizers were the most dominant, followed
by nitrate-reducing Fe(II) oxidizers, with anoxygenic
phototrophic iron oxidizers being the least abundant.

Possible applications in biotechnology

These anaerobic Fe(II)-oxidizing bacteria are not only envi-
ronmentally important, but may have some useful biotech-
nological applications. Firstly, the ability of Fe(II)-oxidizers
to remove nitrate may be harnessed for the improvement
of drinking water, waste water and sludge in sewage treat-
ment plants (Davidson et al., 2003; Zhang et al., 2015;
Wang et al., 2016a; Kiskira et al., 2017). This may already
occur naturally in aquifers where Fe(II)-oxidizing bacteria
could couple nitrate reduction to oxidation of Fe(II)-rich
clays or Fe(II)-containing minerals such as pyrite (Haaijer
et al., 2007; Vaclavkova et al., 2015; Jessen et al., 2017).
There is also potential to use minerals produced by these
anaerobic Fe(II)-oxidizers, particularly reactive Fe(II)–Fe(III)
phases like green rust or magnetite in remediation of
metals and contaminants (reviewed in Usman et al., 2018).
The importance of (biogenic) iron minerals in controlling As
mobility has already been well documented (Hohmann
et al., 2010). In anoxic Fe- and As-rich systems such as
rice paddy soil or As-contaminated aquifers, the formation
of iron minerals can act to bind arsenic and limit its dis-
persal in the environment (Seyfferth et al., 2010; Yamagu-
chi et al., 2014; Smith et al., 2017; Vega et al., 2017),
although nothing is yet known about the importance of bio-
genic Fe(III) minerals in As-contaminated aquifers. The As-
binding properties of iron are also harnessed in drinking
water filters in arsenic-rich areas to provide low cost filtra-
tion solutions for contaminated water in developing
counties (Nitzsche et al., 2015). On the one hand, Fe(II)-
oxidizing bacteria could help remove As by co-precipitation
(Hohmann et al., 2010). On the other hand, it has been
shown that less As binds to biogenic Fe(III) minerals in
such filter systems than to abiogenic Fe(II) minerals, proba-
bly due to surface sorption competition with the organic
material stemming from the bacteria (Kleinert et al., 2011).

Conclusions

The extensive research conducted on these two distinct
groups of anaerobic Fe(II)-oxidizing bacteria has pro-
vided a fundamental understanding of their physiology,
Fe(II) oxidation mechanisms and role in the environment.
However, there is much work still to be done. Regarding
their physiology, there is still an important need to further
test the proposed models for Fe(II) oxidation mechanisms
for both types of anaerobic Fe(II) oxidation and establish
how universal or variable these mechanisms are. Many
of the proposed autotrophic NRFeOx bacteria also need
to be re-tested to establish whether they are indeed auto-
trophic. We suggest that the four criteria used in Table 1
all need to be demonstrated in order to make this claim.
There also remains some doubt as to whether organisms
which require additional organic C for NRFeOx have
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some enzymatic component of Fe(II) oxidation or whether
it is all abiotic. We suggest that the role of intracellular
reactions needs to be considered before this can be
proven. Further understanding of how some Fe(II)-
oxidizers avoid encrustation by minerals whereas some
do not, and why some anoxygenic phototrophs can grow
using Fe(II) as an electron donor and others cannot, is
also needed. Another key knowledge gap is in the role of
solid substrates as an electron donor for such bacteria
which can often prove challenging. A promising avenue
of research in this regard is the use of poised electrodes
to simulate soil mineral substrates.

In terms of the environmental implications of these
metabolisms, while bacteria have been isolated from
many different environments (Fig. 2), we are still lacking
a complete overview of the abundance and environmen-
tal distribution of these metabolisms. For example, almost
all isolates of anaerobic Fe(II)-oxidizing bacteria have
come from freshwater or marine sedimentary environ-
ments in Europe and North America (Table 1 and Sup-
porting Information Table S1). However, their
demonstrated ubiquity in these environments, as well as
in freshwater stratified lakes, suggests that these bacteria
are widespread. NRFeOx processes in particular are
likely to play a key role in agricultural soils and aquifers
where nitrate contamination is high and iron is generally
plentiful. There is also a distinct European and North
American bias in our knowledge of the environmental role
of these organisms. Future work should focus on deter-
mining the role of these organisms in more tropical set-
tings, or in more extreme climatic conditions such as arid
or cold regions.

We also still need to better understand how our chosen
growth conditions influence the minerals which are
formed by Fe(II)-oxidizers, and why only some isolates
can oxidize solid substrates. The knowledge of what min-
erals form under environmentally relevant conditions, for
example, under low iron concentrations or in the pres-
ence of competing (organic or inorganic) substrates, has
been barely studied yet is critical for transferring our
knowledge of these processes out of the lab. A focus on
this may also aid in our understanding of the distribution
of these organisms within redox gradients in the environ-
ment by determining if their even distribution can be
explained by metabolic flexibility.

It is an exciting time to work on the anoxic side of the
microbial iron cycle. Our appreciation of the role of these
bacteria in many different environments is increasing rap-
idly, and we are beginning to establish the fundamental
mechanisms underpinning these metabolisms, and the
effects they have on mineral formation and element
cycling under environmental conditions. Over the coming
years, we hope that more and more researchers will
begin to look for these types of organisms in their own

anoxic systems and consider their potential biotechnolog-
ical usage when faced with an environmental problem.
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Appendix S1. SUPPORTING INFORMATION
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erals which can be formed.
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