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ABSTRACT
For much of the Precambrian era, the bulk ocean was anoxic and 

Fe(II) rich (ferruginous), except for the first development of shallow 
ocean oxygenation and temporally/spatially restricted sulfide-rich 
waters (euxinia) along productive continental margins in the late 
Archean, which prevailed throughout much of the remaining Pre-
cambrian. There is little detail pertaining to transition zones between 
ferruginous, euxinic, and oxic seawater over the continental shelf 
that may have played an important role in shaping the composition 
of the underlying sediment. Here we present spectroscopic data on 
the Fe and sulfur mineralogy in the Arvadi Spring (Switzerland), a 
proposed analogue for such conditions. Our study reveals green rust, 
ferrihydrite, and lepidocrocite as the main Fe minerals. Because the 
reactivity of green rust differs from that of ferric hydroxides and 
Fe(II) sulfides, it is important to understand its role in the transfer 
of metals and nutrients from seawater to underlying sediments, if 
those sediments are to be used as chemical archives of paleo-seawater. 
We observed elemental sulfur (S0) as the dominant sulfur precipitate 
and found indications for its role in pyrite formation, implying that 
S0 could have had a similar role in Precambrian deposition of pyrite-
poor or pyrite-rich sediments.

INTRODUCTION
The end of abundant banded iron formation (BIF) deposition (Bekker 

et al., 2014), and an accompanying increase in black shale deposition 
by ca. 1.8 Ga (Poulton et al., 2004a), reflects a major transition in sea-
water composition in the wake of atmospheric oxygenation across the 
Archean-Proterozoic boundary (Bekker and Holland, 2012). Specifically, 
shallow seawater became slightly oxygenated (Hardisty et al., 2014), and 
increased oxidative weathering of continental pyrite (Konhauser et al., 
2011) delivered substantial amounts of sulfate to the ocean. The resulting 
enhancement of sulfate reduction rates in the highly productive regions 

of upwelling deep water is thought to have resulted in regional growth of 
the oceanic sulfide pool, where Fe(II) was removed mostly in the form 
of Fe(II) sulfides (Canfield, 1998).

Although transition zones between ferruginous-euxinic, oxic-euxinic, 
and oxic-ferruginous water masses likely were a prominent feature in 
shallow Precambrian oceans, their areal extent, their biogeochemical 
composition, and the identity and composition of minerals and chemical 
sediments precipitating from such seawater remain unknown. The analysis 
of modern habitats that resemble ancient ocean settings, such as Lake 
Matano (Indonesia; Crowe et al., 2008), Lake Pavin (France; Busigny et 
al., 2014), Lake Cadagno (Switzerland; Canfield et al., 2010), and Lake 
La Cruz (Spain; Walter et al., 2014), is an emerging alternative approach 
to reconstruct paleo-seawater composition and the identity of mineral 
phases (Koeksoy et al., 2016). For instance, Zegeye et al. (2012) dem-
onstrated that green rust formed in Lake Matano, suggesting a particular 
role for this mixed-valence Fe mineral as a BIF precursor.

Here we present spectroscopic data of Fe- and S-rich precipitates that 
formed by biogeochemical processes in a Fe- and S-rich proposed modern 
analogue for oxygenated ferro-euxinic transition zones of Precambrian 
oceans, i.e., the Arvadi Spring (Switzerland, 46°40′17.4″N, 9°39′18.8″E; 
Koeksoy et al., 2018). Our results constrain (1) the identity of Fe and S 
phases that may have precipitated in oxygenated ferro-euxinic transition 
zones of the Precambrian ocean, and (2) the possible consequences for 
nutrient and trace metal bioavailability due to interaction with these phases.

MATERIALS AND METHODS
All samples were collected at the Arvadi Spring (Koeksoy et al., 2018, 

Fig. DR1 in the GSA Data Repository1) and transported on ice and in 
the dark to the Geomicrobiology laboratory, University of Tuebingen, 
Germany, for analysis. Water pH, temperature, oxygen saturation, and 
electrical conductivity were measured in situ (field multimeter, WTW 
Multi 3430). The Fe(II)/Fe(III) ratio was quantified with the ferrozine 
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assay (Stookey, 1970) in water samples fixed with 0.5 M HCl. Sulfide was 
quantified with the methylene blue assay (Cline, 1969) in water samples 
fixed with 2% (w/v) zinc acetate. Water samples for anion, cation, and 
dissolved organic carbon (DOC) quantification were filtered (0.45 µm) 
prior to analyses by ion chromatography (Dionex DX-120, equipped with 
AS9HC column and AG9HC precolumn) and a carbon analyzer (Elementar 
High TOC II). Mineral precipitates (“red flocs” and “white flocs”) were 
found as loose aggregates, with red flocs covering the entire spring sedi-
ment, and white flocs, which apparently had a lower density, accumulating 
in a heterogeneous distribution on top of red flocs. Red and white flocs 
were collected from the sediment top layer in airtight bottles flushed with 
N2 gas, transported on ice, and freeze dried in the laboratory. Samples 
were stored anoxically in the dark at room temperature until analysis.

Synchrotron-based X-ray absorption spectra were collected for red 
and white floc samples at the Fe and sulfur (S) K-edges at the SUL-X 
beamline at ANKA, Karlsruhe Institute of Technology (KIT), Germany, 
and subsequently energy calibrated and averaged using SixPack software 
(Webb, 2002). Fe spectra were subjected to linear combination fitting 
(LCF) using Athena software (Ravel and Newville, 2005) and shell-by-
shell fitting in Viper software (Klementev, 2001). Additionally, red floc 
Fe mineralogy was determined with 57Fe Mössbauer spectroscopy at 77 K 
and subsequent spectra fitting using Recoil software, Voigt-based fitting 
routine (Lagarec and Rancourt, 1998). White flocs were further subjected 
to sulfide (Cline, 1969) and elemental S (S0; Wan et al., 2014) quantifica-
tion in the Geomicrobiology Laboratory, University of Tuebingen, Ger-
many, and to polysulfide quantification (Rizkov et al., 2004; Kamyshny 
et al., 2006) in the Environmental Geochemistry Laboratory, University 
of Bayreuth, Germany.

The water saturation index (SI) with respect to FeS was calculated 
according to the following, with a solubility product, Ksp, of 10–5.7 for 
FeS (Rickard, 2006) and {FeS} of unity, considering FeS to be a pure 
solid phase:

 SI = log IAP
Ksp

, (1)

where the ion activity product (IAP) is

 IAP =
A{ } B{ }
AB{ } =

Fe2+{ } HS{ }
FeS{ } H+{ } . (2)

RESULTS AND DISCUSSION

Water Geochemistry
The water had a pH of 7.8 and a temperature of 7.5 °C, and contained 

dissolved O2 at 11.01 mg l–1. Dissolved Fe(II) and sulfide were quantified 
at 15.6 ± 2.3 µM (n = 3) and 1.8 ± 0.1 µM (n = 4), respectively; no dis-
solved Fe(III) was detected. Sulfate (8.4 ± 0.0 mM, n = 3), bicarbonate 
(4.5 ± 0.0 mM, n = 3), magnesium (3.3 ± 0.0 mM, n = 3), and calcium 
(7.0 ± 0.4 mM, n = 3) constituted the dominating anions and cations. Dis-
solved organic carbon was detected at 1.16 ± 0.03 mg l–1 (n = 3).

The Arvadi Spring water geochemistry is unique in that it contains 
measureable sulfide and Fe(II) concentrations while being exposed to 
relatively high levels of oxygen, demonstrating that the system is thermo-
dynamically out of equilibrium and the observed processes are governed 
by kinetics. S-isotope data (Strauss et al., 2016) and 16S rRNA gene 
sequencing data of Arvadi Spring sediment (Koeksoy et al., 2018) indi-
cate sulfate reduction as the source of sulfide in the Arvadi water, while 
dissimilatory Fe(III) reduction is the major source for Fe(II) (Koeksoy et 
al., 2018). We could not observe a redox gradient within the fully oxygen-
ated pond water due to its shallow depth (~20 cm), and assume anoxic 
conditions, which would allow anaerobic Fe(III) and sulfate reduction to 

occur below the first few millimeters of the sediment, similar to the oxygen 
penetration depth in organic-rich marine sediments (Revsbech et al., 1980).

Iron Mineralogy in Red Flocs
Linear combination fitting (LCF; Fig. 1; Table DR1) and shell-by-shell 

extended X-ray-absorption fine structure (EXAFS) data fitting of red floc 
samples (n = 3; Fig. 2; Table DR2) revealed a heterogeneous Fe mineral-
ogy, even within bulk spectra. The EXAFS data fitting corresponded to 
first-shell oxygen neighbors and second-shell Fe neighbors at distances 
typical for ferrihydrite and goethite, i.e., ~3.0 and 3.4 Å, respectively 
(Table DR2). According to the LCF, the Fe(II)-Fe(III) mixed-valence 
mineral green rust ([Fe(II)1–xFe(III)x(OH)2]

x+ ∙ [(x/n) An– ∙ mH2O]x–,where x 
denotes the number of Fe(III) atoms and respective ion charges, A denotes 
either Cl, SO4, or CO3, n denotes the respective ion charge number, and 
m denotes the number of water molecules) together with the Fe(III) oxy-
hydroxides lepidocrocite and ferrihydrite are the dominating Fe mineral 
species in red flocs, with minor contributions from goethite, magnetite, 
and organically complexed Fe (Fig. 1). Differences between EXAFS 
and X-ray absorption near edge structure (XANES) LCFs were likely 
caused by different region sensitivities, with the EXAFS region being 
more sensitive to the distance, number, and identity of the close neighbor, 
whereas the XANES region is more sensitive to the oxidation state and 
coordination environment. Furthermore, the LCFs are associated with 
uncertainties of 5%–10%. Carbonate as An– was the dominant anion in 
the green rust phases. The LCF showed almost no Fe(II) sulfides despite 
a supersaturation of FeS at a calculated SI of 2.90. It is likely that most 
Fe(II) sulfides form in the spring sediment, where Fe(II) and sulfide are 
present at higher concentrations, allowing them to overcome kinetic bar-
riers to nucleation and growth.

Mössbauer spectroscopy data on the red flocs were fitted with a wide 
paramagnetic doublet (δ [chemical shift] = 1.27 mm/s, ΔEQ [quadrupole 
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splitting] = 2.74 mm/s) that is characteristic of an Fe(II) mineral phase 
and accounts for 55.6% of the total spectral area (Table DR3; Fig. DR2 
in the Data Repository). The parameters of this doublet were consistent 
with Fe(II) present in green rust (Génin et al., 1998), providing additional 
support to the LCF data fitting. Due to masking by Fe(III) (oxyhydr)
oxides present in the samples, it is difficult to ascertain whether or not 
the corresponding Fe(III) doublet of green rust, which is necessary for 
its conclusive identification, is present in the spectra. Nevertheless, the 
presence of green rust as determined by Mössbauer analysis is in agree-
ment with LCF, in which green rust was also identified.

Green rust precipitation is usually observed during partial Fe(II) oxi-
dation (microbial or abiotic) under mildly alkaline conditions, or upon 
partial reduction of Fe(III) oxyhydroxides (Usman et al., 2012; Pantke 
et al., 2012). We suggest both pathways to be possible sources for the 
Arvadi Spring green rust, as Koeksoy et al. (2018) showed red flocs to 
be colonized by Fe(II)-oxidizing and Fe(III)-reducing microorganisms. 
In either case, the formation of green rust is controlled by the kinetics 
of (bio)chemical reactions and mineral precipitation in the Arvadi water 
and sediments, as it is metastable and not expected to persist in either 
oxidizing or reducing conditions (Halevy et al., 2017).

Iron and Sulfur Mineralogy in White Flocs
We found white flocs to be dominated by S0 (~2472 eV) and sul-

fate (SO4
2–; ~2481 eV) according to the peak fit of the S K-edge bulk 

spectra (Fig. 3C; Table DR4). S0 was quantified by high-performance 
liquid chromatography at 185 ± 41 mg g–1 dry flocs (18.5% of the dry 
weight), while the sulfate peak most likely is the result of MgSO4 or 
CaSO4 precipitation through the concentration of SO4

2–, Mg2+, and/or 
Ca2+ in residual Arvadi pond water during freeze drying. Polysulfides in 
the form of S5

2– were detected at much lower concentrations (186 ± 72 
µg g–1 dry flocs), similar to low concentrations of hydrogen sulfide and 
other polysulfides in the Arvadi water (at or below detection limits of a 
few µM for polysulfides, 1 µM for H2S), indicating their quick turnover 
to more oxidized S0 and sulfate.

Aqueous S0 forms by microbial or abiotic partial sulfide oxidation, and 
upon reaching supersaturation, solid S0 precipitates (Garcia and Druschel, 
2014). Koeksoy et al. (2018) showed Thiothrix spp., aerobic sulfide-oxi-
dizing microorganisms that store solid S0 in intracellular “sulfur globules” 
(Nielsen et al., 2000), to dominate the Arvadi Spring microbial community 
based on 16S rRNA gene sequence abundance. We therefore suggest that 
microbial sulfide oxidation is a significant S0 formation mechanism in the 
Arvadi Spring, while an alternative pathway is microbial (Lohmayer et al., 
2014) or abiotic (e.g., Poulton et al., 2004b) Fe(III) reduction coupled to 
sulfide oxidation. Once S0 is formed, S0 oxidation or reduction kinetics 
under Arvadi Spring conditions are slow enough to allow its persistence 
in white flocs.

White flocs contained a minor fraction of Fe (0.08 wt% or 837.8 µg g–1 
dry flocs) with a high mineralogical heterogeneity (Figs. 3A and 3B) that 
varied depending on the prevailing Fe and S concentrations. For instance, 
~50% of the mineral species at hotspots (HP) in the dried samples with 
high S and low Fe concentrations corresponded to green rust, mackinawite, 
and pyrite. In contrast, hotspots with high S and Fe concentrations (HP1, 
HP4, HP6, and HP7) were dominated by ferrihydrite and lepidocrocite 
(60%–70% of the Fe species) and contained minor green rust, pyrite, 
mackinawite, and potentially some Fe-organic complexes (Fig. 3). The S 
mineralogy also varied, with S0 being dominant under high S concentra-
tions (HP1, HP2, HP4, HP6, and HP7 according to µ-XRF [micro X-ray 
fluorescence]), whereas more sulfate was detected in samples with low 
or very low S concentrations (HP3 and HP5; Fig. 3C). Collectively, these 
results imply that pyrite nucleation in the Arvadi Spring is promoted by 
high S concentrations that in turn come along with S0 prevalence, being 
consistent with previous studies suggesting an important role for S0 in 
pyrite nucleation (Rickard and Luther, 2007; Wan et al., 2017).

Implications for Precambrian Ocean Biogeochemistry
The geochemistry, mineralogy, and microbiology of ferruginous and 

euxinic waters that encroached on oxygen-bearing surface waters is poorly 
understood. Koeksoy et al. (2018) proposed the Arvadi Spring as a modern 
analogue of Precambrian ocean mixing zones between ferruginous and 
euxinic, oxic and euxinic, or oxic and ferruginous waters, or all three. The 
Arvadi Spring not only suggests that such water masses may have contained 
appreciable concentrations of both Fe(II) and sulfide, but also constrains 
the mineralogy of precipitates from these waters upon exposure to oxygen.

Our data support previous suggestions of ferrihydrite and lepidocrocite 
as important precursors to crystalline and more stable Fe mineral phases 
(Posth et al., 2013). Most notably, however, our findings support the 
recent suggestion of green rust as a highly reactive BIF precursor based 
on experimental and modeling data (Halevy et al., 2017), and show that 
green rust can form not only in modern analogues for ferruginous oceans 
(Zegeye et al., 2012) but also in model habitats for oxygenated ferro-
euxinic transition zones. Green rust formation would have had important 
implications for nutrient and trace metal cycling, considering strong sorp-
tion of nickel (Zegeye et al., 2012), phosphate (Hansen and Poulsen, 1999), 
and silica (Kwon et al., 2007) to green rust, as well as immobilization of 
trace metals such as uranium (O’Loughlin et al., 2003) and chromium 
(Williams and Scherer, 2001).

Our study further highlights an important role for S0 in oxygenated 
ferro-euxinic mixing waters. Similar to green rust, S0 is metastable and 
was not preserved in the rock record, but both are expected to transform 
into more stable phases during diagenesis. Briefly, we expect green rust to 
transform into more stable Fe mineral phases (Fig. DR3), while S0 would 
react with pore-water sulfide to form dissolved or surface-associated 
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polysulfides, which rapidly react with FeS precursors to pyrite or par-
ticipates in organic matter sulfurization. Further laboratory and modeling 
experiments are required to confirm the ubiquity of green rust and S0 in 
oxygenated ferro-euxinic environments.
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