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Abstract
Incineration is one of the key technologies in disposal of municipal waste, which produces municipal solid waste incinera-
tion (MSWI) residues with high valuable metal contents. The recycling strategy for the MSWI residues is typically focused 
on the recovery of scrap metals yielding processed municipal solid waste incineration residues (PIR) as the main byproduct. 
However, the PIR still contains valuable metals, particularly gold, which cannot be extracted by conventional methods. Here, 
we evaluated the feasibility of using the 0.5–2.0 mm grain size fraction of PIR containing 28.82 ± 1.62 mg/kg of gold as raw 
material for a two-stage extraction process. In the first stage the alkalic fine-grained PIR was acidified with a solution of 20% 
(v/v) of HCl-containing flue gas cleaning liquid that is obtained by the municipal waste incineration plant itself as a waste 
product. In the second stage we leached the acidified fine-grained PIR by thiourea with  Fe3+ as an oxidant. Application of 
the thiourea-Fe3+ leaching system resulted in recovery of 16.4 ± 1.56 mg/kg of gold from the fine-grained PIR within 6 h of 
incubation. Due to high gold market prices, upscaling of the suggested technology can represent a suitable strategy for gold 
recovery from PIR and other MSWI residues.
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Introduction

Municipal solid waste incineration (MSWI) is one of the 
most common technologies for municipal solid waste 
(MSW) treatment [1–4]. In 2015–2016, there were 512 

MSWI plants operating in Europe. These plants burned a 
total of 80–93 million tons of MSW per year (ca. 27% of the 
total annual amount of MSW) [2, 5, 6]. This amount of waste 
was converted to approximately 20 million tons of MSWI 
residues through incineration, which is about 20–25% of the 
weight of the input MSW [3, 6]. Reduction of weight leads 
to a concentration of scrap metals in the incinerated material 
[7]. Therefore, MSWI residues are commonly used as a sec-
ondary source of ferrous (Fe) and non-ferrous (NFe) metals 
[3, 8]. The amount of scrap in the MSWI residues reaches 
7–15% for the Fe fraction and 1–5% for the NFe fraction [6, 
9, 10]. The main amount of scrap is extracted with magnets 
and eddy current separators [3]. These techniques are effi-
cient for the recovery of metals from MSWI residues with 
particle sizes larger than 2 mm [11]. However, due to dis-
posal of electronic products, the fine-grained fractions of 
MSWI might be enriched with valuable elements [12–16]. 
Nevertheless, the finer particles are often separated from 
MSWI residues and directly mixed with material left after 
recycling, forming processed municipal solid waste incinera-
tion residues (PIR). One of the metals lost in the fine PIR 
fraction is gold (Au), which stems from fine electronics, such 
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as soldering of electronic circuit boards [17]. The content 
of Au in MSWI varies in the range from 0.1 to 21.7 g/ton 
of MSWI residues [12, 13, 16–21]. This range corresponds 
to the Au content in the ore of the world's largest Au mines 
(1.1 g per ton of material on average) [22–24]. Therefore, 
the MSWI residues can be considered as prospective Au 
source. However, potentially recoverable separate pieces of 
Au (e.g., jewelry, coins, etc.) or composite materials (e.g., 
Au plated stainless steel wristbands of watches) are mainly 
present in the coarse-grained fraction [21]. The recovery of 
Au from fine-grained fraction can be performed using tradi-
tional pyrometallurgical and hydrometallurgical processes. 
However, these processes have several limitations. Pyromet-
allurgical processes (e.g., smelting) require high financial 
investments for energy and generate hazardous emissions 
[25]. The density separation cannot be easily adapted for 
the treatment of MSWI residues due to the presence of reac-
tive substances such as calcium oxide (CaO), metal chlo-
rides, and sulfates. These substances enable hardening and 
cementation and therefore facilitate mineral incrustation on 
metal and melt particles that are detrimental to the success 
of separation [3, 11, 26]. The use of cyanide leaching near 
populated areas is of widespread concern due to a series of 
accidents at various gold mines around the world [27].

Steadily rising Au market prices result in a strong motiva-
tion for considering the fine-grained fraction of MSWI as a 
potential source for Au recovery [28, 29]. Although Au is 
extremely valuable and critical for many industries (e.g., 
jewelry, electronics, computers, medical, and aerospace), its 
outstanding chemical resistance becomes a disadvantage in 
hydrometallurgical processes [30]. The organic compound 
thiourea (CS(NH2)2) is a promising Au complexing agent 
[30–32]. Thiourea leaching of Au is typically performed at 
low pH (1–3) and redox potential (Eh) 400–450 mV (vs 
SHE) [33]. The process requires an oxidizing agent to form 
the reactive compound from the thiourea [34, 35]. Ferric 
ion in sulfuric acid solution can serve as one of the most 
effective oxidizing agents for Au leaching [36]. Specifically, 
in acidic solutions, the oxidation of thiourea by  Fe3+ leads 
to the formation of formamidine disulfide (Eq. 1). Subse-
quently, Au is oxidized by formamidine and forms a cationic 
Au thiourea complex (Eq. 2) [34, 36].

Thus, formamidine acts as an oxidant and as a complex-
ing agent. Application of thiourea for Au extraction from 
several materials such as domestic ore, chalcopyrite ore, 
crushed electronic waste, and ceramic wastes allows for the 

(1)
2CS

(

NH
2

)

2
+ 2Fe

3+
→ C

2
S
2
(NH)

2

(

NH
2

)

2
+ 2Fe

2+ + 2H
+

(2)
2Au + C2S2(NH)2

(

NH2
)

2 + 2CS
(

NH2
)

2

+ 2H+ → 2Au
(

CS
(

NH2
)

2

)+
2

extraction of up to 90% of Au at optimal conditions (low pH, 
presence of an oxidant) [34, 37–39]. However, unlike most 
typically used Au-containing materials, MSWI residues are 
often characterized by an alkaline pH of 11–13. The increase 
of pH occurs as a result of hydration of MSWI residues via 
lime (Ca(OH)2) formation [40–42]. Therefore, application of 
the thiourea-Fe3+ system for Au leaching requires acidifica-
tion of MSWI residues [34].

The goal of this study was to test the capability of Au 
extraction from PIR. Our previous work demonstrated that 
the 0.5–2.0 mm grain size fraction reached 30.2% of the total 
MSWI residues weight and contained 28.82 ± 1.62 mg of Au 
per kg. Furthermore, this fraction was characterized by less 
buffering capacity compared to the finer fraction (< 0.5 mm) 
and therefore required less acid consumption for neutraliza-
tion [16]. Thus, we sampled PIR from a regional processing 
plant, extracted the fine-grained fraction (0.5–2.0 mm grain 
size) and acidified it with flue gas cleaning liquid produced 
by the MSWI plant. The produced material was then used 
for extraction of Au by the thiourea-Fe3+ system.

Materials and methods

Source of PIR and industrial acid

The PIR was provided by a recycling plant that processes 
regional MSWI residues (bottom ash) from the southwestern 
areas of Germany (States of Hessen and Baden-Württem-
berg) (Fig. 1a). The plant processes this waste by ageing, 
sieving, crushing, magnetic recycling and eddy current sepa-
ration to recover Fe and NFe metal scrap. After recycling, 
the remaining PIR is either disposed in landfills or used fur-
ther as construction material. The PIR used in our study had 
been stored in piles for approximately three months before 
and approximately three months after the recycling process 
(from late spring until late autumn) at an open site, exposed 
to air and precipitation. The PIR consisted of quartz  (SiO2), 
hematite  (Fe2O3), calcite  (CaCO3), magnetite  (Fe3O4), anhy-
drite  (CaSO4), akermanite  (Ca2Mg(Si2O7)) and gehlenite 
 (Ca2Al2SiO7) as it was shown in a previous study [16]. 
Approximately 100 kg of bulk samples were taken from 
different depths of the pile (1–2 m) and kept in five sealed 
plastic buckets in the laboratory at room temperature. Before 
Au leaching, one kg of PIR from each of the five buckets 
was mixed in a plastic container. The mixed PIR was air-
dried for three days, and sieved into fractions of < 0.5 mm, 
0.5–2.0 mm, and > 2 mm with an analytical vibration sieving 
instrument (Vibratory Sieve Shaker Analysette 3, Fritsch 
GmbH). The fine-grained fraction (0.5–2.0 mm) was stored 
at room temperature before acidification and leaching.

The pH value of the PIR was determined using a benchtop 
pH-meter (inoLab pH 7110, WTW GmbH) equipped with a 
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Mettler-Toledo electrode (InLab Easy DIN). A suspension 
of 10 g of the PIR in 25 mL of Milli-Q  H2O was shaken 
manually several times and the pH was directly determined 
in the settling suspension after one hour, 24 h and one week.

Flue gas cleaning liquid (industrial acid; IA) was pro-
vided by the waste-to-energy incineration plant (Fig. 1a). It 
was produced by purification of flue gas from chlorine in wet 
scrubbers. The temporal variation in concentrations of the 
key anions  (Cl−,  SO4

2−,  Br−,  I−,  NO3
− and  F−) in the IA was 

monitored by the waste-to-energy incineration plant using 
ion chromatography (Table 1).

Impact of industrial acid on pH in suspensions 
of fine‑grained PIR

To select the appropriate dilution for the addition of IA to 
the PIR, we prepared solutions of 5, 10, 20, 25 and 30% 
(v/v) of IA in Milli-Q  H2O for acidification of the fine-
grained size fraction of PIR (0.5–2.0 mm). Duplicate IA 
solutions (100 mL for each of five dilutions) were used for 

acidification of 30 g of PIR (solid:liquid ratio (w:w) ca. 
1:3) for 12 days in 200 mL bottles (oxically; non-shaken).

Two‑stage Au‑leaching process

Stage 1. Acidification of fine‑grained PIR

One kg of fine-grained PIR was acidified with 3 L of IA 
solution (solid:liquid ratio (w:w) 1:3) diluted in Milli-Q  H2O 

Fig. 1  Recovery of Au from 
PIR. a PIR formation. b 
Two-step PIR leaching. c Au 
mobilized from PIR

Table 1  Content of key constituents in the flue gas cleaning liquid 
(industrial acid)

Constituent Concentration range Unit

Cl− 80–130 g/L
SO4

2− 0.5–6.0 g/L
Br− 0.1–2.8 g/L
F− 0.4–1.5 g/L
I− 3–43 mg/L
NO3

− 15–450 mg/L
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(20% v/v) (Fig. 1b). The treatment was done in duplicates 
in standing mode (non-shaken) in two plastic containers at 
room temperature. During incubation, we followed pH and 
sampled (in triplicates) the overlying IA solution for Au 
quantification hourly. To quantify the Au content, 3 mL of 
the solution was transferred into 15 mL centrifuge tubes and 
centrifuged for 10 min (7000 g). The supernatant was fil-
tered with 0.2 µm syringe filters (Puradisc FP 30 CA, What-
man) and diluted in 10% Aqua Regia solution to maintain Au 
in the dissolved state. All samples were kept at 4 °C before 
Au quantification with inductively coupled plasma—optical 
emission spectrometry (ICP-OES). After 24 h of incubation, 
the IA solution was decanted completely. The remaining 
acidified PIR was centrifuged for 15 min (7000 g) to remove 
excess liquid. The PIR was dried at room temperature for 
4 days and stored for further processing.

Stage 2. Mobilization of Au from fine‑grained PIR 
with thiourea

After air-drying, 100 g of the fine-grained acid-treated PIR 
was transferred into eight glass beakers with magnetic stir 
bars (Fig. 1b). The acid-treated PIR was extracted with one 
of the following leaching solutions (Milli-Q  H2O): i) 300 mL 
of 5% sulfuric acid (SA; v/v) containing 20 g/L thiourea and 
10 g/L  Fe2(SO4)3 ×  7H2O; ii) 300 mL of 20% IA (v/v); iii) 
300 mL of 5% SA (v/v); or iv) 300 mL of a mixture of 20% 
IA and 5% SA (v/v). The incubation of all setups was per-
formed in duplicates each for six hours at room temperature 
under stirring (300 rpm). Samples for pH and Eh monitoring 
as well as leachate samples for Au quantification were taken 
hourly following the same protocol as described above. Eh 
was determined using a pH-meter (Mettler-Toledo; SG2) 
with Pt and Ag/AgCl electrodes.

The pregnant leaching solutions were removed from 
each of the eight beakers, the residual PIR was collected, 
centrifuged for 15 min (7000 g) to remove excess liquid, 
dried at room temperature for four days, and used for Au 
quantification following the protocol described below. All 
solid-phase samples were stored in a desiccator with silica 
gel at room temperature for further digestion and subsequent 
Au quantification.

Elemental analysis

Triplicates of air-dried samples of the fine-grained PIR as 
well as samples of leaching residuals were milled to a fine 
powder with a planetary mill (Fritsch Pulverisette, Fritsch 
GmbH). To minimize the risk of metal contamination, the 
milling buckets were cleaned with pure sand in a 10 min run 
(at grade 5–6), followed by an additional 10 min run with 
sample material to prime the milling buckets. The samples 

were then milled for 25 min. After milling, the powdered 
samples were dried at 105 °C for 48 h and stored in 50 mL 
polypropylene centrifuge tubes (Orange Scientific or SLG 
Süd-Laborbedarf Gauting) at room temperature in a desic-
cator dryer with silica gel.

Closed microwave digestion of powdered samples was 
performed in a microwave system (Multiwave Go Micro-
wave Digestion System, Anton Paar). To this end, 0.25 g of 
samples were weighed in modified polytetrafluoroethylene 
(PTFE-TFM) digestion vessel and extracted with 0.5 mL 
of Milli-Q  H2O, 3.6 mL of 37% HCl, and 1.2 mL of 65% 
 HNO3. All samples were extracted in triplicates. The fol-
lowing temperature gradient parameters were applied in 
the microwave digestion process: step 1 (10 min, 180 °C), 
step 2 (20 min 200 °C), step 3 (30 min, 180 °C), ventilation 
(> 30 min). After cooling, the samples were subsequently fil-
tered (filter paper, 619 G ¼, Macherey–Nagel) into 100 mL 
measuring flasks. Digestion vessels and the residues were 
rinsed several times with Milli-Q  H2O to a final volume of 
100 mL. Aqua regia digests were stored in polyethylene bot-
tles at 4 °C until further analysis. Before analysis samples 
were filtered with 0.2 µm syringe filters (Puradisc FP 30 
CA, Whatman). ICP-OES (SPECTROBLUE TI, Ametek) 
was used for quantification of Au in PIR digests as well as 
in diluted leachate samples (Online Resource 1).

Materials and solutions

All plasticware and glassware that were used for analyti-
cal work were pre-cleaned with 1 M HCl overnight and 
rinsed with Milli-Q  H2O. The following reagents were 
used for leaching experiments and for subsequent analy-
sis: 25%  H2SO4 (for analysis; Merck); thiourea (99%, extra 
pure; Acros Organics);  Fe2(SO4)3  7H2O (puris p.a. Sigma-
Aldrich); 65%  HNO3 (for analysis; Merck); 37% HCl (puris 
p.a.; Merck); Milli-Q  H2O (18.2 MΩ·cm; Millipore); noble 
metals multi-element standard (VHG labs).

Results and discussion

Gold content in the fine‑grained PIR size fraction

The PIR’s composition was heterogeneous even after recy-
cling, as it still contained large pieces of scrap and NFe met-
als. The fine-grained size fraction (0.5–2.0 mm) of PIR was 
separated and weighed. It constituted 30.2% of the total PIR 
weight. In our previous study we demonstrated that the fine-
grained fraction contained 28.82 ± 1.62 mg of Au per kg of 
PIR compared to an Au content of ca. 21.69 mg per kg in 
the raw PIR material [16]. Therefore, the 0.5–2.0 mm size 
fraction was selected to investigate Au extraction from PIR.
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Acidification of fine‑grained PIR size fraction 
with industrial acid

Storage of PIR in open-air waste piles contributes to 
weathering and capturing atmospheric  CO2 which lowers 
the pH of the material via calcite  (CaCO3) and ettringite 
 (Ca6Al12(SO4)3(OH)12 ×  26H2O) formation [41, 43–45]. 
However, the six-month storage period of the PIR did not 
lead to an appreciable pH decrease. The pH of the fine-
grained fraction remained high (10.5 ± 0.5), indicating the 
presence of hydrated lime. Since the leaching efficiency of 
the thiourea-Fe3+ solution is determined by the formation 
of anionic complexes that dissolve Au, a strong ability of 
the leaching solution to decrease the pH value of the PIR is 
essential [38]. This can be achieved by treatment of PIR with 
acidic solutions, for example with industrial acid. Typically, 
the IA is disposed after neutralization and reduction of the 
heavy metal load [46]. However, due to the high HCl content 
(8–13% v/v; Table 1) it can be used instead for acidification 
of the fine-grained PIR. Therefore, we tested the capability 
of IA solutions (5, 10, 20, 25 and 30%; v/v) to decrease the 
pH of PIR suspension. Low pH values allow  Fe3+ to oxi-
dize thiourea accompanied by the formation of formamidine 
disulfide (Eq. 1), which in turn oxidizes Au forming a cati-
onic Au thiourea complex [34, 36]. Triplicate IA solutions 
were mixed with fine-grained PIR and incubated oxically for 
12 days. The pH of all PIR suspensions increased sharply 
during the first day of incubation (Fig. 2). However, the pH 
of the PIR suspensions containing 10, 20, 25 and 30% of IA 
(v/v) remained low and sufficient for oxidation thiourea by 
 Fe3+. After 12 days of incubation, the pH values of the 5 and 
10% solutions increased above 7 and 5, respectively, while 
the pH values of the 20, 25 and 30% solutions stabilized at 
a range of 2.9 to 3.8. These results demonstrated that treat-
ment with 20–30% IA was sufficient to maintain pH values 

below 4 as required for effective Au extraction using  Fe3+ 
as an oxidant [34, 36].

Based on these results we further acidified 1 kg of fine-
grained PIR material with 3 L of 20% IA solution (Fig. 1b). 
Temporal pH monitoring of PIR suspension demonstrated 
that after six hours of incubation, the pH continued to 
increase but only slightly (Fig. 3). At this time, a sufficient 
portion of salts could be dissolved thereby reducing the alka-
line capacity of PIR. The effect of PIR acidification on Au 
mobilization was also determined (Fig. 3). Quantification 
of dissolved Au demonstrated that 1.74 ± 0.4 mg of Au per 
1 kg of fine-grained PIR were mobilized. This amount of 
Au was equivalent to 5.9 ± 0.5% of the total Au content in 
the fine-grained PIR (28.82 mg/kg) [16]. The mobilization 
of Au by 20% IA solution was supposedly caused by the 
peculiarities of IA composition (Table 1). Specifically, the 
HCl and  HNO3 could partially digest and dissolve the bulk 
PIR material, while lixivalents (e.g., bromide and chloride) 
could potentially have complexed and mobilized the Au [30, 
31, 47]. Chloride and bromide are typically applied together 
for Au leaching. Thus, several studies demonstrated earlier 
that Au can be complexed by chloride (120–210 g/L) and 
bromide (23.7–102.7 g/L) at atmospheric pressure [48, 49]. 
The 20% IA solution contained lower concentrations of both 
chloride (16–23 g/L) and bromide (0.2–0.56 g/L). However, 
they could still partially mobilize Au, while concentrations 
of iodide was not sufficient for complexation of Au [50, 51].

Leaching of Au from acid‑treated fine‑grained PIR 
using the thiourea‑Fe3+ extraction system

At the second step of Au recovery, 300 mg of fine-grained 
acid-treated PIR was resuspended in 100 mL of thiourea 
in 5% sulfuric acid (SA) with  Fe3+ as an oxidant. Leach-
ing was accompanied by mixing of the PIR suspension 

Fig. 2  pH dynamics in suspensions of PIR. PIR was resuspended in 
5, 10, 20, 25 or 30% IA. Markers represent average of duplicate pH 
values (Online Resource 2)

Fig. 3  pH dynamics and Au content in suspension of PIR in 20% IA. 
Markers represent average of duplicate pH and Au concentration val-
ues (Online Resource 3)
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to improve extraction efficiency. Furthermore, to reveal 
the contribution of Au complexation by thiourea, we 
additionally incubated the fine-grained fraction of the 
PIR in 20% IA solution without the thiourea-  Fe3+ sys-
tem. Additionally, to monitor the impact of low pH value 
on Au recovery, the fine-grained fraction of the PIR was 
incubated in 5% SA solution, and in a solution of 20% 
IA and 5% SA (Fig. 1b). The pH and Eh values during 
incubation were clearly dependent on the concentration 
of acids in the leaching solution. Thus, the incubation of 
fine-grained PIR in the solution containing 20% IA and 
5% SA for six hours led to a minor change of the pH and 
Eh values from 0.01 to 0.27 and from + 406 to + 387 mV, 
respectively (Fig. 4a, b). Incubation of fine-grained PIR 
material in 20% IA resulted in more noticeable changes 
of pH and Eh. During six hours of incubation, the Eh 
decreased from + 395 to + 256 mV while the pH increased 
from 0.12 to 2.51. The application of thiourea in 5% SA 
maintained the pH and Eh values comparatively stable 
during incubation, i.e., the Eh value decreased slightly 
from + 393 to + 344 mV while the pH increased from 0.24 
to 0.99. Similar values were observed for incubation in 

5% SA, where the pH value increased from 0.20 to 0.87 
while the Eh value decreased from + 398 to + 369 mV. In 
general, these results correlated well with the total acid 
content where the values showed the largest changes with 
decreasing acid strength, i.e., IA (20%) + SA (5%) < thio-
urea + SA (5%) = SA (5%) < IA (20%), and thus the high-
est acid content maintained the lowest pH and highest Eh 
values.

Ferric iron oxidizes thiourea and leads to the formation of 
formamidine disulfide (Eq. 1), which in turn oxidizes Au and 
forms a cationic Au thiourea complex (Eq. 2) within a Eh 
range from + 350 mV to 450 mV (vs SHE). However, treat-
ment of acidified fine-grained PIR with IA (20%) + SA (5%), 
thiourea + SA (5%) and SA (5%) maintained an Eh value 
from + 340 mV to + 390 mV (from + 539 mV to + 589 mV; 
vs SHE). Higher (more positive) redox potentials can lead 
to undesirable oxidative degradation of thiourea via for-
mamidine disulfide  (NH2(NH)CSSC(NH)NH2) formation, 
which can decompose into thiourea (CS(NH2)2), cyanamide 
 (NH2CN) and elemental sulfur (S°), which covers the Au 
particles and prevents its mobilization [33]. Nevertheless, 
the application of thiourea in 5% SA led to a mobilization 
of 15.1 ± 0.7 mg of Au per kg of fine-grained PIR during 
the first two hours of leaching (5.02 ± 0.22 mg/L of Au in 
the leaching solution). After six hours of leaching, the Au 
concentration reached 5.46 ± 0.52 mg/L, corresponding to 
16.4 ± 1.56 mg Au leached per kg of fine-grained PIR mate-
rial (56.8 ± 5.4% of the total Au content; Fig. 3c). Under 
controlled leaching conditions, the solution of 20% IA con-
tributed to the release of 5.3 ± 0.2 mg/kg of Au (18.4 ± 0.5% 
from the total Au content; Fig. 4c), while the application 
of a mixture of 20% IA and 5% SA led to the release of 
9.1 ± 0.1 mg/kg of Au (31.5 ± 0.2% of the total Au content). 
These results were supposedly achieved due to digestion/
dissolution of the PIR bulk material by the HCl acid and 
complexation of the released Au by the lixiviants (chloride 
and bromide) that were present in the IA (Table 1) [30, 31, 
47]. Finally, the incubation of fine-grained PIR in 5% SA 
resulted in a release of 1.1 ± 0.9 mg/kg of Au (4.0 ± 3.1% 
of the total Au content) supposedly due to dissolution of 
chlorides, nitrates and other salts from the PIR bulk phase 
followed by Au complexation. The concentration of chloride 
in municipal waste incineration residues can reach 1–3 wt% 
[52, 53] and most of the chloride in the MSWI residues is 
present in the fine-grained fraction [54]. The total Au con-
tents consisting of mobilized Au and Au left in the PIR in 
all treatments were equivalent to 30–32 mg/kg (Fig. 1c). 
These concentrations were comparable to the concentra-
tion of Au determined in the original untreated fine-grained 
PIR (28.82 ± 1.62 mg/kg) [16]. Therefore, the application of 
thiourea-Fe3+ system as well as other leaching agents did not 
lead to a complete Au extraction from PIR and more than 
40% of the Au was still left in the remaining PIR material.

Fig. 4  Eh (a), pH (b) and Au content (c) in PIR suspensions. Markers 
represent average of duplicate values (Online Resources 4–6)
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Potential techniques of Au recovery 
from thiourea‑Fe3+ leaching solution

Our results have shown that the efficiency of Au mobilization 
by the thiourea-Fe3+ system from acid-treated fine-grained 
PIR was the highest among the tested treatments. The next 
step after the mobilization of Au is its recovery from the 
pregnant leaching solution. However, the techniques of Au 
recovery from dissolved state are not well-established so 
far. Conventional methods such as the Merill-Crowe process 
wherein Au is recovered from solution by cementation with 
zinc powder or methods that involve the use of activated 
carbon followed by electrolysis were developed for the Au 
cyanidation approach [39, 55–58]. Several studies demon-
strated that Au can be recovered from thiourea leaching solu-
tion by adsorption on activated carbon [59–61] and organic 
materials (e.g., persimmon tannin based sorbents, rice husk 
or chitin) [61–64] or via ion exchange [65, 66]. The adsorp-
tion capacities of activated carbon, rice husk and chitin are 
relatively high and allow to recover ca. 36 mg/g, 28 mg/g 
and 58 mg/g of Au, respectively, from the thiourea leaching 
solution [61, 64]. These methods might be used for recovery 
of Au from leachate produced by treatment of PIR, since the 
application of IA for acidification of PIR can also reduce the 
amount of soluble metals (particularly Fe and Cu) thereby 
reducing the competing adsorption.

The selective recovery of Au from thiourea leaching solu-
tion might be achieved by electrowinning [67]. However, 
the efficient electrowinning requires leachate with high Au 
concentration [67, 68]. This requirement, therefore, does 
not allow considering electrowinning for Au extraction 
from PIR leachate. The precipitation of Au from thiourea 
solution by  H2 reduction is another method that has been 
successfully applied. However, this process is carried out 
at high pressure and temperature and requires the applica-
tion of a catalyst [69]. Nevertheless, the precipitation can 
be also considered as a potential method for recovery of 
Au from PIR leachate. For example, the precipitation of Au 
by sodium borohydride in acidic solution of thiourea may 
facilitate the selective reduction of Au and even allows to 
recycle the thiourea [70]. Finally, cementation can be used 
for recovery of Au. Several metal species have been shown 
to be useful cementing agents for Au from thiourea solu-
tions including Cu, Zn, Ni and Al [71–73]. However, the 
 Fe3+ used as oxidizing agent for leaching of Au from PIR 
can significantly affect the cementation reaction kinetics via 
increasing of redox potential of the solution. Nevertheless, 
the high redox potential can be lowered by supplementation 
of the cementation reaction with sodium citrate which can 
form  Fe3+-citrate complexes [73].

In summary, the recovery of Au from the thiourea com-
plex might be performed by different techniques (e.g., 
adsorption, precipitation, cementation, and electrowinning). 

However, low Au and high  Fe3+ contents of the PIR leachate 
may decrease the efficiency of the extraction process. There-
fore, the acidification of PIR with IA can help to decrease 
concentration of metals that can be mobilized during thio-
urea-Fe3+ leaching of Au. In turn, the lower concentration 
of dissolved metals (primarily Fe and Cu) can potentially 
increase the efficiency of Au extraction by adsorption, via 
reducing the competing adsorption, or by cementation via 
reducing the redox potential of the solution. In addition, the 
application of sodium citrate may help to further neutralize 
the effect of residual  Fe3+ on Au recovery from the leaching 
solution.

Use of secondary materials for Au leaching

Approximately 2551 tons of Au (63.44% of global Au 
demand) were used for production of jewelry and electron-
ics in 2021 [74]. Increasing production of Au-containing 
goods will inevitably lead to increased amounts of Au in the 
various types of waste (e.g., sweeping jewelry, electronic 
wastes, slags, etc.) [12, 13, 25, 75–82]. Therefore, over the 
past decades there have been several attempts to recover Au 
from secondary materials through leaching techniques using 
aqua regia, cyanide, ionic liquids, thiosulfate, or thiourea as 
lixiviants [27, 30, 68]. Among these commonly used lixivi-
ants, thiourea is relatively effective in Au mobilization whilst 
having the least negative impacts on the environment [68, 
83, 84]. Indeed, the application of different thiourea-based 
leaching systems is usually accompanied by a high yield of 
mobilized Au. Thus more than 80% of Au can be mobilized 
by thiourea leaching from such wastes as activated carbon 
(2.9 µg/g of Au) [85], wastes of amalgamation and cyaniding 
processes (1.7–8.5 µg/g of Au) [86], and Cu smelting slag 
(0.44–0.46 µg/g of Au) [87]. Furthermore, thiourea-based 
leaching systems are often used for extraction of Au from 
electronic wastes [14, 68, 76, 83, 84, 88, 89]. For example, 
more than 90% of Au can be leached from dust generated 
during processing of electronic waste (141 µg/g of Au) or 
printed circuit boards (PCBs) (43 µg/g of Au) [88, 89].

The high efficiency of Au recovery by thiourea-based 
leaching often requires the pretreatment of secondary 
materials. In particularly, the size reduction [62, 90], the 
removal of impurities (plastics, metal peace, etc.) [91, 92] 
or pre-leaching of other metals included in the composi-
tion of the Au-containing secondary material [93] help to 
increase the efficiency of the following Au-leaching process. 
Pre-leaching of Fe and Cu is especially important for Au 
mobilization by thiourea since the dissolution of these met-
als increases the redox potential of acidic leachate thereby 
oxidizing thiourea and forming formamidine disulfide [90, 
94–96]. Different inorganic acids HCl,  HNO3 and  H2SO4 
with or without additional oxidants (e.g.,  O2,  H2O2), organic 
acids (e.g., citric acid, oxalic acid and acetic acid), and other 
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lixiviants (e.g., EDTA, sodium acetate and sodium hydrox-
ide) can be used for the recovery of Fe and Cu from Au-
containing secondary materials [68, 97, 98]. These methods 
have consistently demonstrated a high efficiency of Fe and 
Cu leaching and recovery. For example, fly ash from waste 
incineration plants (L/S ratio—20) that was treated with 
5–7 M HCl extracted ca. 80% Fe and 86% of Cu [97]. The 
ammonia (5 M)/ammonium sulphate (2 M) leaching system 
supplemented by oxidants  (O2 or  H2O2) can extract up to 
91% of Cu from PCBs (L/S ratio—20) [99]. EDTA (4 M / 
1 M of total heavy metals content) can facilitate the extrac-
tion of Cu up to 88% from electrostatic precipitator ash from 
an incineration plant (L/S ratio—10) [100], while 0.02 M 
ammonium citrate promoted the mobilization of Cu and Fe 
from MSWI bottom ash (L/S ratio—10) [101]. Copper can 
also be volatilized from the MSW fly ash at 700–900 °C in 
the presence of poly(vinyl chloride). This method enables 
the recovery of ca. 50% of Cu [4]. In addition, the efficiency 
of Fe and Cu recovery can be improved with the application 
of microwave radiation [87]. Bioleaching can be also con-
sidered as a promising method for pretreatment of secondary 
materials. Thus, Acidithiobacillus ferrooxidans in associa-
tion with A. thiooxidans [102] or alone [103] can be used for 
leching of Cu from PCBs. In both cases, the efficiency of Cu 
recovery exceeds 90%.

When considering the existing applications of thiourea-
based leaching as well as the rising price of Au (ca. 57,454 
USD per 1 kg in January 2020) [104], Au recovery from 
fine-grained PIR using the suggested two-step thiourea-Fe3+ 
extraction procedure could represent a new high-profit niche 
for the MSWI residue recycling industry. The high content 
of Au in the PIR (28.82 ± 1.62 mg/kg) and the high extrac-
tion efficiency (more than 50%) allows us to consider the 
fine-grained PIR fraction as a valuable urban ore comparable 
in Au content with other types of secondary materials [27, 
105, 106]. Upscaling of laboratory technology is a complex 
process that can lead to losses in Au-leaching efficiency. 
However, if the efficiency of Au extraction remains at the 
level of 50% thiourea-Fe3+, extraction procedures will mobi-
lize up to 14 g of Au per 1 ton of PIR. This amount of Au 
is equivalent to 804.5 USD according to the current price 
[104]. Further research is needed to assess the operating 
costs of this technology.

Conclusions

The sufficient part of MSW (ca. 27% in Europe) is currently 
burned in incineration plants [2, 5, 6]. The recovery of valu-
able metals (e.g., Au) from MSWI residues (e.g., PIR) by 
conventional methods including ageing, sieving, crushing, 
magnetic separation, density separation and eddy current 
separation have several limitations due to the relatively low 

abundance of precious metals and the high structural and 
compositional complexity of the incineration waste matrix 
[25]. Therefore, there is a strong need to develop and apply 
low-cost and eco-friendly methods to recover precious met-
als. This study presents a two-stage leaching process for Au 
from fine-grained PIR material. Although this fine-grained 
fraction was characterized as a highly alkaline material, it 
was efficiently acidified by a pretreatment with 20% IA, 
resulting in the extraction of up to 6% of the total Au con-
tent. The second extraction step, using a thiourea-Fe3+ leach-
ing system, led to the recovery of a large fraction of Au 
from PIR material (in total 56.8 ± 5.41% of total Au con-
tent) during only six hours of incubation. Due to the high 
Au price and the rising need for Au in electronics, we sug-
gest that upscaling of the thiourea-Fe3+ leaching approach 
can be applied for treatment of the fine-grained fraction of 
PIR and Au extraction. Furthermore, this approach has the 
potential to be not only cost-effective but also environmen-
tally friendly in comparison with cyanide leaching, which 
is highly toxic. Therefore, we can assume that recovery of 
Au with thiourea-Fe3+ system has the potential to become an 
integral part of sustainable waste management in the future.
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