
COBOSLAB
Cognitive Bodyspaces: Learning and Behavior

Technical Report No. CoboslabY2011N002

July 12, 2011

Installing the iCub Simulator on Ubuntu

Patrick O. Stalph

COBOSLAB, Psychologie III

Universität Würzburg

Röntgenring 11

97270 Würzburg, Germany

Serena Ivaldi

Institut des Systèmes Intelligents

et de Robotique

Universitè Pierre et Marie Curie

4 place Jussieu, CC 173

75252 Paris cedex 05, France

Installing the iCub Simulator on Ubuntu

Patrick O. Stalph∗ Serena Ivaldi†

Abstract

The iCub is an open source platform for research in cognitive and
developmental robotics. The humanoid robot is build as a 3.5 year
old child. Its mechanical design, as well as its hardware and software
specifications, are fully open-source, and released with a GPL license.
As the software is a continuously growing research-based project, it is
not distributed as a single ready-to-use package, but instead it is based
on various other open source projects. Although this is a good thing,
it can be very time-consuming to install the iCub simulator and all its
dependencies for the first time. This report shall guide through the
installation procedure of the iCub simulator on Ubuntu Linux and it
was tested on a fresh install of Ubuntu 10.4.

1 Introduction

The guide assumes some basic Linux knowledge, e.g. how to open a terminal,
changing directories, the meaning of sudo and apt-get. Furthermore it is
required to manually install some packages, that is, downloading, compiling,
and installing manually. All necessary commands are given in this guide,
however, it can be troublesome to debug a failed make and further expertise
is advantageous. Often the main problem is a version conflict: Refactoring
in one package leads to compile errors of another one. First, a different
version should be tested (not necessarily the latest), if something does not
work out of the box.

Root privileges are assumed, as packages are installed system-wide. If
root privileges are not available, everything can be installed into the users
$HOME directory. Finally, a short note about commands within this docu-
ment. A leading dollar symbol indicates that the subsequent code can be
run from within a terminal. Longish commands are broken into several lines
with a trailing backslash. This allows to copy&paste a command from the
document to a terminal directly. For example, the following two commands
have the same effect.

∗patrick.stalph@psychologie.uni-wuerzburg.de
†ivaldi@isir.upmc.fr

1

1.1 Compiling with make and cmake

$ echo Break the line.

$ echo Break \

the line.

This guide is not minimal – some packages might not be necessary for
the iCub simulation to work. However, some optional packages allow for
quicker computations (e.g. optimized code from alternative packages, multi-
threaded computations) or may allow for a broader use of the compiled
packages (OpenCV is built with video capturing, decoding, and encoding
capabilities).

Two main components are required for the iCub simulation:

• YARP – Yet Another Robot Platform, an open source project for a
middleware that mainly focuses on the iCub

http://eris.liralab.it/yarp/

• iCub – the iCub software package itself which includes the simulator

http://icub.org/

http://eris.liralab.it/wiki/

Both require several dependencies. All of them are available in the Ubuntu
repositories, but some have to be compiled manually, because the latest
versions in the repository is not up-to-date and may not be supported by
some iCub modules.

1.1 Compiling with make and cmake

Often open source projects only provide the source code for download and
the user has to compile it manually. Code written in C often comes with
a configure script and a so called Makefile. After the script determined
which packages are available on your system and successfully finished with-
out errors, the source code can be compiled with make. For large projects
this may take quite a while and an immense speedup can be gained by using
all cores of the CPU. This is accomplished with make’s -j n option, where
n should be the number of available cores, e.g.

$ make -j 4

for a quadcore CPU. Finally, if a system wide installation is desired, make
install puts the executables and libraries into the respective system direc-
tories. If an installation is not desired, path variables should point to the
respective executable and library files.

In order to create platform independent projects, the cmake tool is an
alternative to the configure script. On Linux, ccmake provides a textual

2

http://eris.liralab.it/yarp/
http://icub.org/
http://eris.liralab.it/wiki/

2 Dependencies

user interface that guides through the iterative configuration process and
allows to monitor the current options of the project. It is common to create
a separate build directory and run ccmake from there. The configure step
(key: c) has to be repeated until all asterisks are gone. Then, the Makefile

can be generated (key: g). From now on, it is again the plain make and make

install procedure.

2 Dependencies

The following list briefly outlines the tools and dependencies that can be
installed conveniently from Ubuntu’s repository.

• build-essential, cmake, and subversion – to checkout and build projects
manually

• autoconf, automake, libtool – for ODE

• TBB, avformat, swscale, and python-numpy – for OpenCV

• ACE – communication library for YARP and iCub

• libncurses, GTK and QT (libgtkmm, libglademm, libqt3), Gnu Scien-
tific Library (libgsl), and python-tk – for iCub

• Simple Direct Media Layer (libsdl) and OpenGL (libglut) – for the
iCub simulator

The exact package names may vary on your system. For Ubuntu 10.4 the
copy-and-paste command to install all of them is as follows.

$ sudo apt-get install build-essential cmake \

cmake-curses-gui subversion autoconf automake libtool \

libtbb2 libtbb-dev libavformat-dev libswscale-dev \

python-numpy libace-dev libncurses5-dev libgtkmm-2.4-dev \

libglademm-2.4-dev libqt3-mt-dev libgsl0-dev python-tk \

libsdl1.2-dev libglut3 libglut3-dev

Two more necessary components are available in the repository, but must
be installed on the machine manually for different reasons. One is ODE
(Open Dynamics Engine) and the other is OpenCV (Open Source Computer
Vision). A detailed description follows.

2.1 Open Dynamics Engine (ODE)

The iCub simulator is based on the Open Dynamics Engine. The latest
stable version can be downloaded from

http://sourceforge.net/projects/opende/

3

http://sourceforge.net/projects/opende/

2.2 Open Source Computer Vision (OpenCV)

Extract the file (e.g. into /opt) and change to that directory. It is strongly
recommended to compile ODE with double precision, thus this option is
given to the configure command. Next, the code is compiled and installed.

$./configure --enable-double-precision

$ make

$ sudo make install

More information about ODE can be found at:

http://ode.org/

2.2 Open Source Computer Vision (OpenCV)

Although YARP and iCub are fine with OpenCV from Ubuntu’s repository,
the version is outdated and it is suggested to use the latest release. The
latest stable OpenCV release (2.2 or higher) is available at

http://sourceforge.net/projects/opencvlibrary/

Extract to a directory of choice (e.g. /opt) and change to that directory.
Next, create a build folder, and change to the build folder.

$ mkdir build; cd build

Run cmake with the following options.

$ ccmake -D CMAKE_BUILD_TYPE=RELEASE -D WITH_TBB=ON ..

Optionally, enable the SSE and SSSE support depending on the available
instruction set on your CPU. Configure until the asterisks are gone and
generate the Makefile. Finally, compile and install OpenCV.

$ make

$ sudo make install

More information about OpenCV can be found at:

http://opencv.willowgarage.com/wiki/

3 Installation of YARP and iCub

We assume an installation into /opt and the following structure:

/opt

/opt/iCub

/opt/yarp2

4

http://ode.org/
http://sourceforge.net/projects/opencvlibrary/
http://opencv.willowgarage.com/wiki/

3.1 Path Variables

Typically, the user does not have write access to /opt and, consequently, root
access is required to create and own the directories. In some cases, it is desir-
able to install everything in the local user folder, e.g. /home/user/software.
By changing the installation prefix in the CMake files it is also possible to
install all the code (bin,lib,share,include) in a specific folder. The fol-
lowing commands have to be modified accordingly, if a different structure is
desired (i.e. the installation prefix is different).

$ BASE_DIR=/opt # modify to your needs

$ cd $BASE_DIR

$ sudo mkdir yarp2 # sudo only without write access

$ sudo mkdir icub

$ sudo chown $USER yarp2 # only without write access

$ sudo chown $USER iCub

Next, checkout the YARP and iCub source code.

$ cd $BASE_DIR

$ svn co https://yarp0.svn.sourceforge.net/\

svnroot/yarp0/trunk/yarp2

$ svn co https://robotcub.svn.sourceforge.net/\

svnroot/robotcub/trunk/iCub

The remaining directory structure can be created with the following com-
mands.

$ cd $BASE_DIR/yarp2

$ mkdir server-conf # here the yarp configuration resides

$ mkdir build # here we run cmake and make for yarp

$ cd $BASE_DIR/iCub/main

$ mkdir build # cmake + make directory for iCub

3.1 Path Variables

Path variables can be set at various places in Linux with different effect. A
simple way is to put additional variables in the users .bashrc file. These
variables are only available to one particular user and only within a bash
terminal (the standard Ubuntu terminal runs bash). For example, when
directly executing a script from desktop or a launcher the variables are not
registered. Open the file with your favorite editor, e.g.

$ gedit ~/.bashrc

and add the following lines (modify accordingly) to the end of the file.

export YARP_ROOT=/opt/yarp2

export YARP_DIR=/opt/yarp2/build

5

3.2 YARP

export YARP_CONF=/opt/yarp2/server-conf

export ICUB_ROOT=/opt/iCub

export ICUB_DIR=/opt/iCub/main/build

export PATH=$PATH:$YARP_DIR/bin:$ICUB_DIR/bin

Save and restart all your terminals to reload the .bashrc file.

3.2 YARP

The YARP project is using cmake for its configuration. Change to the YARP
build directory and run ccmake with the following options. Finally, compile
and install the project.

$ cd $YARP_DIR

$ ccmake -D CMAKE_BUILD_TYPE=Release -D CREATE_GUIS=ON \

-D CREATE_LIB_MATH=ON -D INSTALL_WITH_RPATH=TRUE $YARP_ROOT

$ make

$ sudo make install

To check if YARP is properly installed, type

$ yarp

It should return “This is the YARP network companion”. Then try with

$ yarp check

It should return something like “YARP seems okay, but there is no name
server available”. The name server defines the network where YARP ports
and modules are connected: By default, it is /root. The configuration
for the name server – that is, IP and communication port – is stored in
$YARP CONF/yarp.conf. The first time you launch the server locally on
your PC via

$ yarpserver

the localhost IP with port 10000 are automatically stored in the configu-
ration file.

3.3 iCub

Again, cmake is used for the project and the procedure is similar. Apart
from the regular install, one more call for the applications is required.

$ cd $ICUB_DIR

$ ccmake -D CMAKE_BUILD_TYPE=Release \

-D ICUB_INSTALL_WITH_RPATH=TRUE $ICUB_ROOT/main

$ make

$ sudo make install

$ sudo make install_applications

6

3.4 Test your Installation

3.4 Test your Installation

If everything compiled without errors, the iCub simulator should be installed
on the system. First, the YARP name server must be running.

$ yarpserver

The server and corresponding YARP ports and YARP connections can be
monitored from a browser at

http://localhost:10000/

In another terminal, the simulation can be started:

$ iCub_SIM

The robot visualization should come up. In yet another terminal connect to
the left arm of the robot and set its position.

$ yarp rpc /icubSim/left_arm/rpc:i

> set pos 0 -80

The second command is not a shell command, but is run from within the
YARP rpc connection (depicted with >). The robot should lift its left arm.
Now, the iCub simulator is successfully installed. For more information, the
interested reader is referred to the YARP and iCub wiki.

http://eris.liralab.it/yarpdoc/index.html

http://eris.liralab.it/iCub/main/dox/html/index.html

7

http://localhost:10000/
http://eris.liralab.it/yarpdoc/index.html
http://eris.liralab.it/iCub/main/dox/html/index.html

	Introduction
	Compiling with make and cmake

	Dependencies
	Open Dynamics Engine (ODE)
	Open Source Computer Vision (OpenCV)

	Installation of YARP and iCub
	Path Variables
	YARP
	iCub
	Test your Installation

