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Abstract

All current theories of auditory comprehension assume that the segmentation of speech into word
forms is an essential prerequisite to understanding. We present a computational model that does
not seek to learn word forms, but instead decodes the experiences discriminated by the acoustic
contrasts in the input. At the heart of this model is a discrimination learning network (Ramscar
et al., 2010; Ramscar and Baayen, 2013), trained not on isolated words, but on full utterances. This
network constitutes an atemporal long-term memory system. A fixed-width short term memory
buffer projects a constantly updated moving window over the incoming speech onto the network’s
input layer. In response, the memory generates temporal activation functions for each of the output
units. Output units (lexical contrasts, or lexomes) with high extended activation reflect a high de-
gree of confidence that the cues that discriminate it from other possible lexomes are present in the
external world. Lexomes that are not encoded in the signal give rise to little or no interference. We
show that this new discriminative perspective on auditory comprehension is consistent with young
infants’ sensitivity to the statistical structure of the input. Simulation studies, both with artificial
language and with English child directed speech, provide a first computational proof of concept and
demonstrate the importance of utterance-wide co-learning.

keywords discriminative learning, auditory comprehension, word segmentation, phonotactics, Res-
corla-Wagner equations

1 Introduction

The writing technology with which English and related languages encode speech in the form of
structured patterns of ink has had a pervasive influence on the conceptualization of auditory com-
prehension. When rendering an utterance in written form in alphabetic writing systems, the speech
signal has to undergo two processes of discretization: segmentation into a sequence of words, to be
divided by spaces, and segmentation of these words into a sequence of letters. For auditory com-
prehension, it is likewise assumed that listeners have to segment the speech stream into phonemes,
and segment the stream of phonemes into words. For example, the ShortList-B model (Norris and
McQueen, 2008) characterizes lexical access in auditory comprehension as targeting a path in a
word form lattice in which the word forms, represented by strings of phonemes, are properly lined
up but without the spaces familiar from writing.
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The absence of delimiters in the speech signal raises the question of how children learn where
words begin and end, and how listeners partition of the speech signal into the correct sequence
of word forms. For example, in Saffran et al. (1996) and many subsequent studies, children learn
to segment the speech stream into words with the help of low-probability phonotactic transitions.
Based on infants’ looking behavior when presented with sequences of simple syllables, they concluded
that with only 2 minutes of exposure, 8-month old infants segment the speech stream into words
using only the statistical relationships between neighboring phonemes. According to Norris and
McQueen, the correct segmentation into words is obtained by making optimal rational decisions on
the basis of Bayesian probabilities that are continuously updated as the speech signal unfolds over
time.

The present study outlines a completely different, non-decompositional, computational perspec-
tive on auditory comprehension. Our approach eschews the structuralist two-tiered perspective on
language that is axiomatic for models such as Shortlist-B. According to Martinet (1965), a core
design principle of language is its “double articulation”. The structuralists and their descendents
argue that on a first tier, sounds group together to form words, independently of meaning, and that
at a second tier, words — the basic meaning bearing units — group together to form sentences.
However, it is well known that this division of labor falls apart on closer inspection. The sign is
not arbitrary (Bolinger, 1949), as becomes clear immediately to any student of onomatopea, sound
symbolism, ideophones, and phonaesthemes. Moreover, phonaesthemes (e.g., gl in words such as
glow, glimmer, glitter, glisten, and gleam, which all relate to light and its perception) show priming
effects similar to those for regular morphemes (Bergen, 2004; Pastizzo and Feldman, 2009). More
recently, Monaghan et al. (2014) provided further evidence for the non-independence of formal and
semantic similarity in the lexicon. Whereas those committed to the double articulation of language
will dismiss these findings as just not diagnostic, we accept, as an essential tenet of the scientific
method, that evidence that inconveniences standard theory should not be not ignored, but rather
that it should be used to develop more adequate theories. Instead of marginalizing these phenomena,
we therefore take them as evidence against a two-tiered model of language.

Accordingly, our investigations examine what can be achieved when the relationship between
form and meaning is the product of discriminative learning within a system of forms and meanings.
This contrasts with traditional approaches in which this relationship is indirect, with mediating
abstract representations such as phonemes and word forms. Earlier work Baayen et al. (2011)
in this vein showed that for reading, a two-layer Rescorla-Wagner network correctly successfully
accounts for a wide range of the effects observed in experimental studies of reading. In the present
study, we extend their approach to lexical processing in auditory comprehension.

The algorithmic core of our model is a simple network architecture with two layers of localist
representations with connection weights that are estimated with the help of the Rescorla-Wagner
equations (Rescorla and Wagner, 1972).

1.1 The input layer: triphone cues

The input layer has units (henceforth cues) for n-phones. We have several reasons for opting for
cues larger than the phoneme.

First, although the phoneme plays a prominent role in many models, its status as an abstract
unit is highly problematic (see, e.g., Port and Leary, 2005). Phonemes are inadequate from the point
of view of perception, so that, for instance, voiceless stops are discriminated primarily by contrasts
in the formant transitions in adjacent vowels rather than by the contrasts that the phonemes posited
for these stops are supposed to represent, while from the point of view of production, it has long been
clear that a phonemic representation is inadequate to encode the detail of actual speech signals. In
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order to do better justice to the pervasive consequences of co-articulation in the speech signal (see
also Browman and Goldstein, 1992; Wickelgren, 1969), our input units span multiple phonemes,
and critically, rather than assuming a binary mapping between notional representational units and
phonetic “units”, these units combine to enable continuous representational values to accrue across
multiple input units in a discrimination learning network. In what follows, we make use of triphones
as inputs, but other choices are demi-syllables or diphones.

Second, various units that are both larger and smaller than single phonemes or single letters
are found in many other models of lexical processing (Taft, 1994; Levelt et al., 1999; Dell, 1986).
These are often motivated by theories about the internal structure of the syllable. However, an
important property of distributed representations for learning is that because informative patterns
among cues develop competitively during learning, it enables us to investigate the development of
a child’s perception of a continuous phenomenon such as speech without having to overcommit to
an ontology of discrete acoustic “units” that do not actually exist in the speech stream.

Third, the adoption of larger input units allows us to avoid the problem of overfitting: For ex-
ample, if a model is built with letter unigrams and letter digraphs as cues, the digraphs have greater
discriminative power than the letters: The a and q in qaid and quad do not tell these words apart,
whereas the digraphs qa and qu do so perfectly. Due to cue competition, the learning algorithm will
send the weights on the connections from a and q to qaid and quad towards zero, while strength-
ening the corresponding weights for qa and qu. Similarly, once trigrams are used, both unigrams
and digrams become superfluous. In our experience, when working with English, triphones pro-
vide excellent discrimination without overfitting: longer n-phones would become too word-specific,
causing the model to loose productivity. For other languages with different phonotactics, such as
Vietnamese, diphones may be more appropriate than triphones (see Pham and Baayen, 2015, for
the case of visual comprehension). In summary, using triphones instead of phonemes offers the
important advantages of doing better justice to the continuous acoustic properties of speech, and of
providing insight into the actual nature of the discrimination learning that takes place during the
development of speech perception, without overfitting.

A nice, and very relevant example of the dangers posed by overfitting for theory is provided by
the widespread belief in the existence of abstract perceptual categories inferred from, for instance,
the phenomenon of categorical perception. Although there is a body of evidence that is consistent
with abstract categories such as phonemes in the literature (see, e.g., Lisker and Abramson, 1964),
it is not the case that this evidence can only be explained by assuming that discrete phoneme
categories exist. Figure 1 illustrates that categorical discrimination can occur with a two-layer
network trained with the Rescorla-Wagner equations. Two output units (henceforth outcomes)
are connected to 20 input cues that partition a phonetic continuum x. The two outcomes are
characterized by distributions on x with different means (4 and 6) and the same standard deviation
(top panel). A constant background cue and some 20 random cues representing further sources
of variation were added. As shown in the bottom panel of Figure 1, the model’s support for the
outcomes (its activation, see below for further details on Rescorla-Wagner networks) shows the
typical cross-over pattern characterizing categorical perception. It is important to note here that
the outcomes can be any of the words that differ minimally on a phonetic continuum, such as the
frication in the segments f and s. The network can be extended with any number of additional
pairs differing on this continuum, and the network will show categorical discrimination for each
pair, without the help of abstract phonemic categories.

This network model is also able to explain the disambiguation of ambiguous segments and
adaptation, two other phenomena that are put forward as evidence for the existence of “categor-
ical perception”. For example, McQueen et al. (2006) trained subjects on ambiguous constructed
segments that were midway between f and s. When subjects are trained on words in which the
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Figure 1: Categorical perception in a discriminative learning model with 20 cues partitioning a
phonetic continuum x and two outcomes with distributions (top panel) with different means (4 and
6) on this dimension, and the same standard deviation (0.5). The bottom panel shows activation
of the two outcomes as a function of x.

f is replaced by this ambiguous segment, and are simultaneously also trained on words with an
unambiguous s, the ambiguous segment affords facilitation when used as a prime in a subsequent
lexical decision task. Of special interest is that this effect was observed for words that had not
been presented during training. The authors take this as evidence for the modulation of abstract
prelexical phoneme categories.

However, the effect arises straightforwardly in a discriminative framework. We defined a simple
lexicon with two pairs of words contrasting f and s. Using the Dutch examples of McQueen et al.
(2006), we refer to the first pair as naaldbos and witlof, and the second pair as doof and doos.
We first trained the Rescorla-Wagner network on a 100 tokens of each of these four words, using
the distributions illustrated in Figure 1. We then trained the network with the first pair of words
(naaldbos and witlof ), using the same (unambiguous) distribution for s, but making the f ambigu-
ous by narrowing down the distribution for f to a small interval around the midpoint of the two
distributions (5). Finally, we examined the predictions of the network at this midpoint value for
the second pair of words (doof and doos), that had not been seen during the second training phase.
After the second training phase, the probability of doof at the midpoint of the phonetic dimension
phase was significantly higher than it was after the first training phase. In other words, adaptation
took place in the network, exactly in the direction observed by McQueen et al. (2006), even though
there were no prelexical phoneme units in the model. These simulation examples show how discrim-
ination learning can provide an alternative perspective on the categoricity of perception that does
not require the psychological reification of phonemes. This point is particularly salient given that
although empirical studies of categorization offer abundant evidence of the remarkable flexibility of
human discrimination learning, this evidence does not provide conclusive support for the idea of
discrete categorical representations . Further, while the computational and neuroscience literatures
on categorization both provide consistent evidence in support of the kind of processes simulated in
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the example above, they also provide a wealth of reasons to doubt the neuropsychological reality of
the discrete categorical units that are thought to be driving categorical perception (Ramscar and
Port, 2015).

We should note also that the triphones that we use as input cues for our model are by themselves
too coarse to capture the full range of low-level phonetic detail (see, e.g., Gaskell and Marslen-
Wilson, 1996; Davis et al., 2002; Salverda et al., 2003; Ernestus and Baayen, 2006; Kemps et al.,
2005a,b). One solution would be to specify lower-level models discriminating between triphones on
the basis of phonetic cues. Another option would be to replace triphones by acoustically motivated
cues (see, e.g., Gold and Scassellati, 2006). We leave these issues for further research.

1.2 The output layer: lexome outcomes

The output layer contains units that we refer to as lexomes. Following Milin et al. (2015), we define
the lexome as a theoretical construct at the interface of language and a world that is in constant
flux with the flow of experience. Lexomes are the lexical dimensions in the system of knowledge
that an individual acquires and constantly modifies as the outcome of discriminatively learning from
experience within a culture. Because lexomic contrasts serve as communicative counterparts to the
specific experiences individuals and cultures discriminate for practical and communicative purposes,
they can be evoked in context either by language use or real world experience. Accordingly, the
more that a lexome is activated in a given context, the greater the degree of confidence that the
cues that culturally discriminate it from other outcomes are present in the external world. Lexomes
can be compared, following De Saussure (1966, p. 88), to the pieces in a game of chess.

. . . a state of the set of chessmen corresponds closely to a state of language. The re-
spective value of the pieces depends on their position on the chessboard just as each
linguistic term derives its value from its opposition to all the other terms.

The strategic value of a pawn depends on where it is on the board and the positions of the other
pieces. Similarly, the value of a lexome such as walk depends on the other lexomes encoded
in the language signal, and their relation to the other lexomes and experiences in a speaker or
listeners’ current system of knowledge. In an utterance such as I’ll walk home, the lexome walk
thus correlates with a cultural and behavioral discrimination between between bipedal locomotion
and other ways of transportation. In I’ll walk the dog, the same lexome, together with the lexome
dog, discriminates between the daily exercise regime required to keep a dog healthy, and other
activities such as recreational walking.

Expectations about the strategic moves that might unfold in a game of chess change with each
turn taken. Similarly, a listener’s expectations about the experiential contrast being communicated
in a signal change with each next word read or listened to: when home follows I’ll walk, both
the structure of the available cues and the outcomes discriminated by the actualized aspects of the
message change, which has the effect of altering the interpretation of the signal as compared to when
the dog follows. A lexome is, in some ways, similar to the lexeme as defined by Aronoff (1994, p. 11)
as ‘a (potential or actual) member of a major lexical category, having both form and meaning but
being neither, and existing outside of any particular syntactic context’. However, from a theoretical
perspective, it is important to note that we conceptualize lexomes within a discriminative account
of meaning, in which signals serve to reduce a listener’s uncertainty about what a message means
(a process that relies on having learned a predictive system of lexical and conceptual contrasts,
Ramscar et al., 2010). Given the discriminative framing of lexomes, we should note that unlike
lexemes, the term lexome can apply to any systematic lexicalized contrast, including grammatical
dimensions such as tense, aspect, and number, and combinations thereof.
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In this light, it is worth emphasizing that lexomes are not containers of meaning, even though in
English and related languages structural metaphors are pervasive that see language as a conveyor
belt transporting boxes with meanings from speaker to listener (Reddy, 1979). There are many
good reasons to believe that meanings do not reside in words or sentences (Ramscar et al., 2010;
Ramscar and Port, 2015). Accordingly, we do not assume that learners are faced with the task
of associating word forms with concepts, but rather, we see language learning as a systematic
process that occurrs continuously in context, such that language learners simultaneously master
both the relevant distinctions in their environments along with the lexical distinctions with which
they correlate. To reflect this, in the model we present below, the weights on the n-phone units
feeding into a lexome are subject to continuous change. We assume that this holds just as well for
the experiences (at least those that we have learned to discriminate in the world) that are associated
with any given lexome (Ramscar et al., 2013b,a,d), even though in our simulations we do not address
this aspect of the dynamics of learning. In other words, the ‘scope’ of a system of lexomes — and
the lexomes within it — changes constantly with experience, both with respect to the objects and
events in the world, and with respect to the phonetic cues, which are constantly being updated
while speaking and listening.

1.3 Estimating weights and activations

Each n-phone cue is connected to every lexome. Connection strengths (weights) are estimated
with the learning equations of Rescorla and Wagner (1972), which specify the following recurrence
relation in discretized time for a weight wij from cue i to outcome j at time t+ 1,

wt+1
ij = wt

ij + ∆wt
ij . (1)

Weights are updated for the learning event at times t = 1, 2, . . .. A learning event comprises a set
of unique cues and a set of unique outcomes. (If a cue or outcome occurs more than once, it is
included only once.) Let present(Ci, t) denote the presence of a cue Ci in a given learning event
Et taking place at time t, and let present(Oj , t) denote the presence of outcome Oj in Et. The
weight wt

ij from Ci to Oj at time t is updated at t+ 1 by ∆wt
ij , defined as

∆wt
ij =


0 if absent(Ci, t),

αiβ1

(
λ−

∑
present(Ck, t)

wkj

)
if present(Ci, t) & present(Oj , t),

αiβ2

(
0−

∑
present(Ck, t)

wkj

)
if present(Ci, t) & absent(Oj , t).

(2)

Here, αi denotes the salience of the cues, and βj the strength of positive versus negative learning.
The parameter λ denotes the maximum amount of learning. In all models reported below, we use
the default values αi = βj = 0.1 and λ = 1.0.

The activation aOj ,t of an outcome (in the models below, a lexome) at time t is given by the
sum of the weights on the connections from the cues {Ct} in the input signal at t to that outcome:

aOj ,t =
∑

Ci∈{Ct}
wt
ij . (3)

Unlike in standard connectionist models, we do not make use of activation functions such as
sigmoid squashing functions or hyperbolic tangents to normalize activations. There are no hidden
layers of any kind. As we do not use backpropagation, there is no need to ensure differentiability.
At any particular point in the continuing development of the system of lexomes, a high activation
of a specific lexome simply reflects a high degree of confidence that the cues that discriminate it
from other lexomes are present in the external world (compare the fifth dogma of Barlow, 1972).
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A Rescorla-Wagner network can be trained in two ways. Both training regimes have in common
that a set of learning events has to be defined. For instance, an utterance in a film subtitle corpus
can be taken as a learning event, with trigraphs or triphones as cues and lexomes as outcomes. When
there is an intrinsic order to the learning events, equation 2 can be used, updating weights for each
successive event. When there is no such intrinsic order, an alternative is to use the equilibrium
equations for the Rescorla-Wagner equations developed by Danks (2003). In the present study, we
use the equilibrium equations only for simulated data without order to the learning events. For such
data, they show the endstate of learning, after infinite learning experience. For real data, weights
are best estimated learning event by learning event.

1.4 Temporal dynamics

The temporal dynamics of auditory comprehension, as revealed by, e.g., gating tasks and the visual
world paradigm (Grosjean, 1980; Salverda et al., 2003) arise in the model as a consequence of the
temporal unfolding of the speech signal over time. Although the Rescorla-Wagner network itself
captures minimal temporal sequences by means of the triphone cues, no other mechanisms are built
in to represent time. Thus, there is no recurrent hidden layer as in the pdp model of Gaskell and
Marslen-Wilson (1997a), nor are networks duplicated for successive time steps as in the trace
model. For practical and explanatory purposes, the network itself (as evolved after a given number
of learning events) can be conceptualized as a-temporal. However, when a speech signal is presented
incrementally to the network, the cues in the input change as time unfolds. This, in turn, leads to
changes in the extent to which different lexomes are supported by the input. We return in more
detail to this aspect of our model below.

1.5 Discrimination instead of hierarchical decomposition

Fundamental to our approach is the argument that it is counterproductive to seek to segment the
speech signal into a hierarchy of increasingly smaller bits of signal. The deconstruction of the signal
into hierarchies of form units is fundamentally at odds with the central insights of information
theory (Shannon, 1948, 1956). To see this, consider Figure 2. Four experiences of the world, one
of a fountain, one of a fountain pen, one of an orange, and one of a glass of orange juice, are coded
with two binary digits. Table 1 lists the amount of information in each picture, estimated by the file
size of the jpg pictures. Only two bits are required to discriminate between these four experiences
(see Table 1). Notably, the experiences (i.e., the pictures in Figure 2) are much more complex than
the simple code that can discriminate between them.

Importantly, the four two-bit signals can be randomly assigned without the communication code
incurring a loss in effectiveness. Even more importantly, it is not necessary to decompose the code
into ‘meaning-ful’ parts. In Figure 2, one could seek to interpret the first zero as a linguistic sign
for fountain, that then re-occurs in fountain pen. Likewise, an initial one could be taken to signify
oranges. However, objects referred to as fountain pens are not compositional functions of objects
referred to as fountains. The function of the initial zero is to discriminate between the experiences
on the top row and those on the bottom row of Figure 2. If we reverse the order of the digits, an
initial zero eliminates fountain pens and orange juice from the set of experiences potentially encoded
in the signal, and the second digit then eliminates remaining uncertainty with respect to fountain
and orange. In short, the successive digits in the binary code serve to zoom in on the experience
encoded in the signal by successively eliminating the other experiences that the code supports.

In current standard theories of lexical processing, by contrast, the signals (digits/constituents)
encoding fountain pen (or orange juice) are first split into their constituents, which supposedly
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Figure 2: Binary coding for four experiences (images from Wikipedia).

signal size experience compression size

00 2 bits fountain 9.3 kB
01 2 bits fountain pen 11.7 kB
10 2 bits orange 11.8 kB
11 2 bits orange juice 14.6 kB

Table 1: Binary coding for four experiences with different information loads, estimated by the file
compression sizes.

activate their constituent meanings (fountains and pens, or oranges and juice). However, since
fountains do not contribute in an obvious way to the semantics of fountain pens, one then has to
assume that the constituents provide pointers to the intended meaning of fountain pen.

Intuitively, it seems entirely rational to think that of course a fire engine is a truck carrying
equipment for putting out fires, but speakers of Vietnamese feel equally rational about the juxtapo-
sition of fire and engine denoting the vehicle that produces the power that pulls a train. Languages
are economical in their use of lexical forms, and re-use words in other words. Since reusing shorter
sequences in longer sequences cannot be avoided (1 reoccurs in two positions in 11), it makes sense
that as languages evolve, this re-use has some partial, albeit from a cross-linguistic perspective,
clearly idiosyncratic, motivation. But, as folk etymologies illustrate, the bewilderment that we of-
ten experience at why complex words are what they are, can lead to explanations that have little
to do with the actual historical origins of a given onomasiological convention (e.g., ‘fountain’ in
‘fountain pen’ originally denoted the reservoir in which ink is stored). However, folk etymologies
as well as our rationalizations of the supposed logic of language have little to say about how the
language code actually works. Instead, they are informative about our cultural pre-conceptions
about the supposed logical nature of our language.

When a video camera records a fountain pen and its cap (as in the upper right panel of Figure 2),
and communicates the recording to a display screen through an electrical wire, it is not the case
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that the electrical signal in the wire first decompositionally transmits the pen and then its cap.
The electrical signal encodes, to the outside observer, encrypts, the visual scene using an error-
corrected optimized code that transmitter and receiver share, and which allows the display screen
to discriminate the steps that result in the reproduction of the recording. It is this code, the set
of algorithms that make it possible for speakers to use linguistic signals to discriminate the various
experiences they wish to communicate about, that we believe is central to a proper understanding
language and language processing.

With its rejection of any segmentation operations on the signal, our approach distinguishes itself
from other computational models of lexical access in auditory comprehension. For instance, both
the trace model (McClelland and Elman, 1986), and Shortlist-B are supplied with a lexicon with
pre-segmented word forms and their frequencies. Both models are designed to recover word forms
and their order from a stream of phonemes obtained by concatenation of word forms. Neither model
offers insights as to how these word forms are learned. A similar problem arises with the recurrent
pdp model of Gaskell and Marslen-Wilson (1997b), which represents the speech signal as a sequence
of phonetic feature bundles, which is paired, bundle by bundle, with matching bundles of semantic
features. How this model comes to know about this pairing of phonetic feature bundles and semantic
feature bundles is left unexplained. Furthermore, it is unclear what exactly the semantic features
actually represent (Ramscar and Port, 2015), or how the coupling of these constructs to word forms
is supposed to take place in learning. In fact, given that the effectiveness of features as diagnostics
for categories is subject to continuous modulation (see, e.g., Love et al., 2004; Marsolek, 2008;
Ramscar and Port, 2015), the assumption of a time-invariant, Platonic, semantic vector prototype
is highly implausible.

In our model, word forms are never learned. Instead, learners acquire and learn to use a lexical
system. As we shall see, not only is it not necessary to learn words forms, it is even counterpro-
ductive to do so. Much of the “heavy lifting” that can make language acquisition seem so puzzling
when considered as a word-at-a-time process is actually a straightforward product of this system.
Importantly, it does not make sense within our approach to hope for form representations being
implicitly coded in the connection weights. The forms themselves have no theoretical relevance
whatsoever in the model. There is no need to re-represent the signal ‘internally’: It is the (rich)
experiences of the world that we have learned to discriminate between (such as the pictures in
Figure 2) that the comprehension system is decoding from the signal.

Of course, training in literacy adds further layers of complexity, with knowledge of words’ or-
thographic forms generating expectations about corresponding phonological forms. These added
complexities are beyond the current scope of our model, which addresses the learning of auditory
comprehension before the onset of literacy.

Of the substantial literature on segmentation in auditory processing (see, e.g., McQueen et al.,
1994, 1995; Vroomen and De Gelder, 1995; Johnson and Jusczyk, 2001), the study by Saffran et al.
(1996) has been particularly influential. These authors obtained evidence congruent with the possi-
bility that young infants are using transition probabilities between phonemes (or other sound units)
to segment the speech stream into words. Like Saffran et al., we agree that their results demon-
strate impressive learning capabilities of young infants, and suggest that experience-dependent (i.e.,
learning) processes have been underappreciated in many theories of language acquisition. However,
we argue that taking a “discriminative” stance — rather than a “decompositional” stance as is com-
monly assumed by most research — may offer a better characterization of the language acquisition
problem.

This paper is not intended to be a comprehensive presentation of our approach to lexical pro-
cessing. However, whereas previous work in this area addressed visual comprehension (Baayen
et al., 2011, 2013; Milin et al., 2015), the present study outlines a very simple but highly effective
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computational architecture for auditory comprehension that is inspired by the discriminative stance.
In what follows, we first discuss the phenomenon of low-probability phonotactic transitions

(n-phone troughs) by means of a series of simulation studies using artificial grammars. We then
clarify how the evidence from infant looking behavior that appears to support segmentation can
be understood from the perspective of discrimination learning. We then illustrate, using the En-
glish child-directed speech in the childes database (MacWhinney, 2000), how comprehension can
proceed perfectly well without segmentation.

2 Segmentation and discrimination

Within-word phoneme transition probabilities tend to be higher than between-word phoneme tran-
sition probabilities. Low transitional probabilities have been put forward, together with prosodic
and co-articulatory information, as cues for segmenting the speech stream into words (Christiansen
et al., 1998; Johnson and Jusczyk, 2001; Thiessen and Saffran, 2003; Saffran et al., 1996), and for
segmenting words into their constituent morphemes (Seidenberg, 1987; Hay, 2002, 2003).

From a discriminative perspective, low-transitional probabilities are not ‘separators’, but ‘binders’:
They are excellent cues for discriminating between lexomes. Consider the word sequence klejpOt,
clay pot , i.e., a pot made of clay. Of the triphones for this word pair, kle, lej, ejp, jpO, pOt, the
first two are unique to clay, the last is unique to pot, and the third and fourth are unique to the
phrase. Since clay and pot are much more frequent than clay pot, the cues kle, lej will develop strong
weights for clay and weak or even negative weights to clay pot. Similarly, the cue pOt will predict
pot, but will provide only weak evidence for clay pot. By contrast, the low-frequency cues ejp, jpO
will be learned to support clay pot. They constitute the only evidence in the signal that supports
the specific meaning ‘pot made of clay’.

Decompositional theories first segment klejpOt into klej and pOt. At this point, these theories
have to deal with the problem that the meaning of clay pot is not a-priori predictable from the
meanings of its parts — a clay pot could also mean a pot for storing clay. As a consequence,
decompositional theories are forced to view clay and pot as pointers in a hash table to ‘a pot
made of clay’. By first taking the signal apart and then putting it together again, processing
becomes much more complex than it need be: the boundary n-phones ejp, jpO provide exactly
the critical information for targeting the appropriate interpretation. Since many words have highly
context-dependent meanings (compare eat your porridge with eat your hat), segmentation into words
systematically ignores valuable information in the signal, and gives rise to exacerbated problems of
disambiguation at ‘post-lexical’ stages of processing.

How does this approach deal with novel words such as polka-dot dingo? Let us assume that
the constituents dingo (an Australian wild dog) and polka-dot (being covered with colorful circles
or spots, as in polka-dot dress, polka-dot plant, and polka-dot man) have been encountered. In this
case, polka-dot is associated with three lexomes, one discriminating between dresses patterned with
large colored dots and other dresses, one discriminating between plants with spotted leaves and
other plants, and one discriminating between a criminal in batman comics wearing an outfit with
large colored circles and other men. The simultaneous availability of these three lexomes, and the
lexome for dingo, is what our current implementation produces. Returning to de Saussure’s chess
metaphor: Our model identifies several potential pieces, but it necessarily remains silent about how
these pieces contribute to the game, as this depends on the other pieces and their positions in the
game. In other words, context and the prior experience of an interpreter have to be taken into
consideration.

Depending on this prior experience, modification of dingo by polka-dot might reduce uncertainty
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to dingos characterized either by spots or by colorful circles. In most cases, because an interpreter’s
prior learning will result in a given context implicitly reducing the likelihood of alternative interpre-
tations such that one interpretation becomes most salient, context will suffice to bias the interpreter
to one interpretation or the other (see Ramscar et al., 2013d, for an example of the powerful, and
surprisingly uniform effects of this kind in adult paired associate learning). However where sufficient
ambiguity still remains, we assume that higher-order reasoning processes (see, e.g., Ramscar et al.,
2013b) will guide an interpreter in the direction of either a dingo with mud spots, or a dingo in a
comic with brightly colored dots.1

In what follows, we first present a series of simulation studies illustrating why segmentation is
not necessary and non-optimal. We also clarify why it is impossible to bootstrap word boundaries
from transition troughs only. We then explain, using discriminative learning, why infants respond
behaviorally to transitional troughs.

2.1 The non-optimality of segmentation

To illustrate the disadvantages of segmentation, we consider a simple artificial language. The
design of this language is inspired, to some extent, by Vietnamese (see, e.g., Pham and Baayen,
2015). As in Vietnamese, words in this language consist of one or two syllables. Each syllable
has a highly constrained CV structure, limited here to the pattern CCVC. The first consonant
was selected randomly from the set {p, t, k, b, d, g}, the second consonant was selected from the
set of fricatives {f, s, x, v, z,G}. The vowel was one of the 5 cardinal vowels {a, e, i, o, u}, and the
final consonant was selected randomly from the set {p, t, k, b, d, g, f, s, x, v, z,G, r, l, h}. A total of
100 monosyllabic words was generated, and assigned frequencies sampled from a lognormal(4,2)
distribution. Next, a total of 900 two-syllable words was constructed by concatenation of two
syllables sampled from the monosyllabic words, with a probability proportional to their frequency.
The sampling frequencies of these 900 two-syllable words were combined with frequencies sampled
from a lognormal(4,2) distribution. This resulted in a list with 100 monosyllabic and 900 bisyllabic
words. Word frequencies and syllable family sizes approximately followed Zipf’s rank-frequency
power law.

Forms Lexemes Parse

pfehdvazdGatpsugtGap 100, 837, 924 pfeh+dvazdGat+psugtGap
tGupgvalgsukdvazkzuptsok 340, 745, 493 tGupgval+gsukdvaz+kzuptsok
dvoskzuppzehtfiGbxuxksub 773, 982, 533 dvoskzup+pzehtfiG+bxuxksub
pvopdsobgsukdsazpzizksub 892, 189, 898 pvopdsob+gsukdsaz+pzizksub
dviGdvazpzehtfiGbfahpvop 998, 982, 801 dviGdvaz+pzehtfiG+bfahpvop
pzizgvaldviGksubbsusdzel 694, 677, 312 pzizgval+dviGksub+bsusdzel

Table 2: Phrase forms, lexomes, and segmentation for simulation 1.

A total of 500 three-word phrases was generated by randomly selecting three words from the
list of words, in proportion to their frequency. These 500 phrases are all that we make available for
learning. The list of words itself, from which the words in the phrases were sampled, was withheld.

1 Note that we associate the modifier polka-dot with three different lexomes. When a particular lexome is expe-
rienced especially frequently (e.g., in a series such as polka-dot dress, polka-dot shirt, polka-dot pants, . . . ), it will
acquire stronger associations during learning, and hence will dominate understanding. This is how our approach
explains the experimental results that CARIN theory (Gagné and Shoben, 1997; Gagné, 2001) accounts for by means
of abstract decontextualized concepts (such as “polka dot”) and an associated probability distribution over a set of
abstract conceptual relations.
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Table 2 lists examples of the phrases, their constituent lexomes (indexed by integers), and the
segmentation of the phrases into word forms. Of the 88 constituents in the complex words, 18 are
bound stems that occur in at least one other word (compare English mit in transmit, commit, emit,
submit) and 7 are cranberry morphs that are attested in only a single complex word (compare cran
in English cranberry). The phrases were assigned a uniform frequency distribution. The task for
a computational model is to discriminate the lexomes based on the information in the signal, i.e.,
from the unsegmented phrases, without any further information such as a the original list of word
forms.

First consider what might be done using a segmentation-driven approach. For this particular
simulated language, phonotactic constraints on words provide very strong cues for syllable bound-
aries: A boundary follows the initial C in any CCC sequence. However, syllables have to be grouped
into words. The problem that has to be addressed is that many of the phrases can be segmented in
multiple ways (median: 3). For instance, the third phrase in Table 2 has five different segmentations:

dvos kzuppzeh tfiG bxuxksub
dvos kzup pzehtfiG bxux ksub
dvos kzup pzehtfiG bxuxksub
dvoskzup pzehtfiG bxuxksub
dvoskzup pzehtfiG bxux ksub

As a first step, one could select that parse for which the product of the sample probabilities of
its constituent is maximal. The resulting proportion of correctly selected segmentations is 0.322.
Accuracy can be improved to 0.978 by calculating the probabilities of word forms on the basis
of their occurrences across all possible segmentations, and then selecting that parse for which the
product of these constituent probabilities is greatest. (The resulting accuracy is identical to the
accuracy obtained when the population probabilities of the constituents in the original list of words
are used.)

Thus, given a simulated language with highly restricted phonotactics, and a correct guess about
the syllable structure, probabilistic reasoning makes it possible to get the word forms right almost
all of the time. Given a one-to-one mapping of word forms to lexomes, this high accuracy extends
to the identification of the lexomes.

What can be accomplished by capitalizing on low transitional diphone probabilities as segmen-
tation cues? The crucial question here is what low is. Figure 3 illustrates that as the threshold for
a ‘low’ frequency diphone is increased, the number of correctly detected boundaries increases (left
panel) to its maximum (2), as expected. At the same time (center panel), the number of spurious
boundaries increases as well, and more rapidly to a higher number. The proportion of correctly
identified boundaries is highest for thresholds around 60 occurrences, and then deteriorates. The
highest proportion of correct syllable boundaries is 0.25. Unfortunately, there is not a single in-
stance across the 500 phrases for which both boundaries are identified correctly. The problem is
that languages typically come with many low-frequency segment transitions that are not boundary
transitions. For any given frequency threshold, boundary transitions with a frequency exceeding
the threshold will not be available for segmentation, resulting in actual word boundaries being
missed. Conversely, non-boundary transitions below the threshold will give rise to spurious word
boundaries. Bootstrapping from phonotactics only simply does not work.

Very different results are obtained with discriminative learning. Using the ndl package (Shaoul
et al., 2013) in R version 3.0.2 (R Core Team, 2014), a Rescorla-Wagner network, with weights
estimated by the equilibrium equations, was trained on the 500 phrases. This network predicts,
when presented with all the cues of a given phrase (below, we will consider the temporal dynamics),
the highest activations for each of the three words across all 500 phrases. Clearly, subword cues can
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Figure 3: Accuracy of detection of word boundaries as a function of frequency threshold.

discriminate perfectly between the lexomes that are encoded in the signal, and those that are not.
This illustrates that the scope of error-driven learning is not restricted to animal learning (Rescorla,
1988) but extends to the challenges encountered in human learning (Ramscar and Yarlett, 2007;
Ramscar et al., 2010, 2011, 2013a,c, 2014). .

Forms Lexemes Parse

fubaerouboggGoGvaha 176, 175, 37 fubaero+uboggGoG+vaha
fubagGoradaotuadaGebe 505, 922, 665 fubagGor+adaotu+adaGebe
isorkoxoosogGoGodas 74, 827, 891 isor+koxooso+gGoGodas
kxoGgokurivukiisahkiG 785, 754, 825 kxoGgok+urivuki+isahkiG
gGokaxaGgGoksufi 77, 933, 83 gGok+axaGgGok+sufi
ivefubavahasufi 187, 37, 83 ivefuba+vaha+sufi

Table 3: Phrase forms, lexomes, and segmentations for simulation 2.

Let’s now consider a simulated language with more variable phonotactics. Table 3 provides
examples of phrases generated using a word list in which simple words can have not only CCVC
structure, but also CVC, CVCV, VCVC, or VCV structures. Again, a Rescorla-Wagner network
assigned the highest activations to the correct lexomes across all 500 phrases.

Does discriminative learning scale up? Using the same varied phonotactics, we increased the
number of simple words to 2700, the total number of words to 30,000, and the number of phrases
to 10,000. For 94.5% of the phrases, the model correctly predicts the highest activations for the
lexomes encoded in the signal, and for 99.4% of the phrases, the three correct lexomes are among
the top four most highly activated lexomes.

By contrast, the percentage of correctly identified boundaries on the basis of low-probability
transitions, for the optimal threshold, is a mere 0.4%. As before, none of the phrases is correctly
segmented. We anticipate that more sophisticated segmentation induction techniques such as adap-
tor grammars (see, e.g., Synnaeve et al., 2014) will yield much better performance.

Adaptor grammars make assumptions about the grammar generating the phrases. We therefore
also considered a simulated data set where all information useful to adaptor grammars is removed.
For this final set of phrases, words have no phonotactic structure whatsoever. Instead of assigning
a lognormal distribution to word frequencies, word frequencies follow a uniform distribution. Fur-
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thermore, a random half of the phrases have four words instead of three, obtained by splitting one
two-syllable word into two one-syllable words. Under the assumption that an adaptor grammar gets
all the syllable boundaries right, 92.2% of the segmentations can be reconstructed. The accuracy
of our Rescorla-Wagner network is at 100%.2

This final simulation illustrates that phonotactic restrictions are not necessary for making sense
of the signal. Phonotactic restrictions arise due to constraints on the coordination of our articulators
in speech production. Similarly, a Zipfian power law is not necessary for discriminative learning
to be effective. Word frequency distributions follow, albeit typically only approximately (see, e.g.,
Baayen, 2001), a power law because the events, states, objects and properties in the world tend
to follow power laws (see, e.g. Good, 1953; MacArthur, 1957). Since discriminative learning as
formalized by Rescorla and Wagner benefits from diversity in the signal, the comprehension-external
forces shaping and condensing the lexicon actually render discrimination in comprehension more
difficult: Words become more similar than they would have been otherwise, and phrases become
more ambiguous.

2.2 Low-probability phonotactics and infant looking behavior

We have seen that Rescorla-Wagner networks are able to discriminate the lexomes from the signal
with very high accuracy, whereas theories assuming that segmentation into words is the gateway
to understanding perform less well. Bootstrapping word forms from troughs in transitional proba-
bilities was shown to be especially problematic. This raises the question of why young infants are
paying attention to low-probability phonotactic transitions (Saffran et al., 1996). Several models
have been put forward that demonstrate that transitional probabilities can inform the discovery of
word boundaries (see, e.g., Cairns et al., 1997, for an implementation using a recurrent network). In
what follows, we show that the data of Saffran et al. are equally consistent with a scenario in which
infants are not seeking to discover word boundaries at all. In this scenario, their looking behavior
reflects the unexpectedness of syllables and the concomitant stronger learning experience requiring
greater adjustments of weights in the network.

To illustrate this point, we constructed simulated data that approximates the experimental
design of Saffran et al. (1996). A total of 440 CV syllable tokens (representing 15 syllable types)
was presented one after the other to a Rescorla-Wagner network (ba sa hi bo si ho bi se he bu . . . ).
Some syllables were always followed by exactly the same next syllable (e.g., ba was always followed
by sa). Some syllables were followed by one syllable in two thirds of the cases, and by another in
one third of the cases (e.g., ha was followed by bi two thirds of the time, and by bo one third of the
time). Finally, some syllables were followed by any of three syllables with equal probability (e.g.,
hi by be, bo, bu). The task of the network was to predict the next syllable (the outcome) given the
current syllable (the cue).

The rationale for this set-up of the simulation is that infants participating in experiments such
as described by Saffran et al. (1996) are listening to a sequence of meaningless syllables. We assume
that the minima in spectral energy in the speech signal demarcate boundaries on the individual
speech events. In other words, we assume that the infants are sensitive to syllable identity. In
the absence of any meaningful communication taking place in the course of the experiment, the
implicit learning system predicts upcoming syllables. At each subsequent syllable, we adjust weights
according to the Rescorla-Wagner equations.

2 Milin et al. (2015) report a computational modeling study in which a Rescorla-Wagner network was trained on
4.8 million utterances (subtitles accompanying movie scenes) from an English subtitle corpus. With only a year’s
worth of reading experience (some 22 million word tokens, 84,000 types) the model correctly predicted the highest
activations for all lexomes in an utterance for 65% of the utterances.
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hi > be: p = 1/3
ha > bi: p = 2/3
ba > sa: p = 1

Figure 4: Surprise, measured as change in weight (×100) for a Rescorla-Wagner network (λ =
1, α = 0.1, β = 0.1) with the current CV syllable as cue and the next CV as outcome, for three CV
syllables with transitional probabilities of 1/3, 2/3, and 1, across 440 learning events. Time on the
horizontal axis is in learning event units.

Figure 4 summarizes the changes in the weights. These reflect the model’s surprise about its
prediction error, as it develops over the course of the experiment. The model results mirror the data
from Saffran et al. closely. For the syllable transitions with probability 1, the weight adjustments
decrease most quickly. For the most uncertain transitions, the adjustments in the weights decrease
slowly. The transitions with medium uncertainty pattern in between. Since the surprise at having
made a wrong prediction is greatest for the low-probability transitions, it is no wonder that infants
look at these more. There is strong evidence that the type of implicit learning involved here is
mediated by dopaminergic cells in specific areas of the human brain (Schultz, 1998). How exactly
changes in the firing rate of these dopaminergic cells give rise to infants’ head-turning behavior
we do not know. But at the functional level, the Rescorla-Wagner equations offer a simple and
straightforward explanation for the observed head-turning behavior.

3 The time-course of signal-lexome decoding

Thus far, we have evaluated the performance of the Rescorla-Wagner networks by inspection of
the activations of the lexomes in simple phrases. Across simulations, the networks successfully
discriminated between the pertinent lexomes encoded in the signal and other lexomes by assigning
the former the highest activations. In this section, we consider in more detail the timecourse of
lexome activation.

For predicting the timecourse of lexome activation, we take a moving window of the incoming
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t window cue1 cue2 cue3 cue4 cue5 cue6 cue7 cue8
1 pv #pv pv#
2 pvo #pv pvo vo#
3 pvop #pv pvo vop op#
4 pvopd #pv pvo vop opd pd#
5 pvopds #pv pvo vop opd pds ds#
6 pvopdso #pv pvo vop opd pds dso so#
7 pvopdsob #pv pvo vop opd pds dso sob ob#
8 vopdsobg #vo vop opd pds dso sob obg bg#
9 opdsobgs #op opd pds dso sob obg bgs gs#

10 pdsobgsu #pd pds dso sob obg bgs gsu su#
11 dsobgsuk #ds dso sob obg bgs gsu suk uk#
12 sobgsukd #so sob obg bgs gsu suk ukd kd#

Table 4: Short-term moving window of width 8 for the initial part of sentence 4 of simulation 1.
The # represents the absence of signal.

speech signal in discretized time and use it as the input to a pre-trained Rescorla-Wagner network.
The unit of time is the segment, i.e., it takes three time steps for the moving window to slide over
a triphone. Triphones become active only when they are fully supported by the information in the
moving window. The moving window that we use spans 8 segments. This implementation of time
involves obvious simplifications, as actual acoustic durations of triphones can vary substantially
both between and within triphones. (An alternative implementation, that however requires access
to the audio, is to define a window in milliseconds, to move this window across the acoustic signal
by a fixed increment, and to collect those triphones that are supported by the acoustic signal in the
window.)

The network serves as a memory that is itself a-temporal, but that, due to the sequential
nature of the cues (n-phones), implicitly captures rich temporal information. The moving window,
illustrated for the fourth simulated sentence in Table 4, represents the part of the incoming signal
that can be held in a short-term memory buffer. As with other domains of temporal cognition,
whether it be navigation through space, listening to music, or remembering a story or a film,
complete paths of non-trivial length are impossible to hold in mind at once. Typically, we have to
replay these paths step by step, where any given small segment that we can hold in mind at time t
in the sequence becomes the stepping stone to the next small segment at time t+ 1.

The moving window defines the set of n-phone cues that are available at a given point in time,
henceforth the active cues. A cue is active when it fully matches a (three segment long) substring in
the current window. The active cues are connected, with individual weights, to all lexome outcomes.
The activation of a given lexome is defined by the sum of the weights on the connections from the
active cues to that lexome. As the length of the window is fixed and independent of the lengths
of the words in the signal, lexomes will tend to be activated when the window moves into the area
where their triphone cues are located, and they will tend to de-activate when the window passes
out of their cue region. Figure 5 illustrates this pattern for the fourth sentence in Table 2.

Time is displayed on the horizontal axis, with segments as units of time. Along the vertical
axis, a subset of the lexomes is shown. This subset contains any lexome that, at any point in time,
belongs to the six highest activated outcomes at that point in time. The activations of these lexomes
are represented by discs coded with grayscales, with darker shades of gray representing higher
activations. For ease of visual inspection, activations exceeding a threshold of 0.5 are presented in
red. Horizontal gray lines highlight the lexomes encoded in the signal. The polygons highlight the
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● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 5: Activation as a function of time for the fourth simulated phrase in Table 2. Numbers in
the left margin indicate lexomes. Darker shades of gray indicate greater activation of these lexomes.
Activations exceeding a threshold set at 0.5 are highlighted in red. Polygons highlight time intervals
where the signal provides continuous support for words’ lexomes.
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intervals of time at which the triphone cues in the signal activate their lexomes above the threshold.
The timecourse of lexome activation illustrated in Figure 5 is one in which the lexomes of the

three words are activated in order. Word polygons have a rightwards orientation, consistent with
the accumulation of evidence as the sliding window covers more of the words’ cues. We note here
that word forms (as displayed above the polygons) do not have any theoretical status in our model.
They are shown only to facilitate interpretation.

The details of the timecourse of activation as predicted by our model can be quite subtle.
Consider, for instance, the polygon for the first lexome, 892 (encoded as pvopdsob). The first point
in time where this lexome is highly activated is when the sliding window has moved over to the first
segment of the second lexome, the g of gsukdsaz. This is because the boundary triphones, obg and
bgs, are the most powerful discriminators for lexome 892. What we see here is a phenomenon that
we call co-learning. Lexomes are not learned in isolation, but in the context of utterances with other
triphone cues and lexome outcomes. Lexomes are thus part of a system, a system that is much
richer and informative than expected given segmentation-driven theories. Co-learning on the basis
of co-occurrences of subword units like n-phones across different word forms lies at the heart of the
parsimoneous explanation of frequency effects for word n-grams given by Baayen et al. (2013).

The effects of co-learning can be much more salient, as illustrated in Figure 6 for the first
phrase in Table 2. Here, we see that strong support for the first two lexomes arises only when the
moving window has reached the triphone cues of the third. This example illustrates a long-distance
dependency (see, e.g., Schreuder, 1990, for examples from morphology), with uncertainty about
the first two lexomes only being resolved once the cues of the third lexome become available. To
understand why the first lexome is activated without its triphones being supported by the signal,
it is crucial to keep in mind that the model is trained not on single words, but on utterances. In
the course of training, the boundary triphone tps (and subsequent triphones in the initial stretch
of psugtGap) happened to acquire strong weights to lexomes 100 (pfeh) and 837 (dvazdGat). Given
the distributional properties of this artificial language, these triphones are much more powerful as
discriminators for these lexomes than the triphones in pfeh and dvazdGat themselves.

An important aspect of discriminative decoding of the signal, illustrated in both Figure 6 and
Figure 5, is that strong activations for lexome competitors are short-lived. Competitor activations
above threshold are typically restricted to one time unit. The only exception in Figure 6 is for lexome
207 (encoded as tGaptGuz), which in this simulated language has a high frequency of occurrence
and has a first syllable that is identical to the second syllable of the third lexome (encoded as
psugtGap). But even for this strong competitor, the temporal extension of strong activation is more
restricted than that of the lexomes that are actually encoded in the signal.

Results thus far are based on small samples of simple artificial languages, which raises the
question of whether this approach scales up to real language. Our experience with modeling visual
lexical decision latencies suggests it does. We have trained Rescorla-Wagner networks on corpora
of up to 9 billion words, and obtained excellent predictions for response latencies.

In what follows, we focus on a much smaller but still non-trivial data set, consisting of the child-
directed speech in the English section of the childes database (MacWhinney, 2000), comprising
6,653,023 word tokens representing 34,082 word types, instantiated across 1,674,811 utterances. We
ordered utterances chronologically by the age of the children addressed. A Rescorla-Wagner mem-
ory was constructed by applying the Rescorla-Wagner equations, rather than the Danks equilibria
equations, with as learning events the 1,674,811 utterances, using a development version of the ndl
package (Shaoul et al., 2014). Each utterance was converted into a segment stream of ipa symbols,
using the cmu dictionary (Weide, 1998). For a given learning event, the cues were the set of unique
triphones in the segment stream. The total number of unique triphone cues across all utterances
was 23,229. In this exploratory study, the word strings were used as outcomes. For future work,
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p f e h d v a z d G a t p s u g t G a p

time in segments

5
6
18
20
26
31
37
49
51
55
61
62
70
72
77
78
81
100
121
126
161
207
215
220
247
340
354
369
373
424
482
490
494
495
547
550
557
564
584
592
612
660
684
703
735
754
824
828
837
849
859
867
889
897
924
963
965
998

pfeh dvazdGat psugtGap

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 6: Activation as a function of time for the first phrase in Table 2. Darker shades of gray
indicate greater activation. Activations exceeding a threshold set at 0.5 are highlighted in red.
Polygons highlight time intervals where the signal provides continuous support for words’ lexomes.
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we plan to pre-process the word strings so that inflectional variants such as play, plays and playing
will be represented by a common lexome for the experience of playing, as well as by additional
grammatical lexomes for number, tense, and aspect.

Figure 7 presents the activation dynamics when a seven segment wide sliding window is moved
over the sentence can I please play with the little piggy on the chair, a made-up sentence that
does not occur in the corpus and serves as an illustration of the productivity of a Rescorla-Wagner
memory. As in the preceding figures, the left axis lists any lexome that at a given point in time
belonged to the set of 6 lexomes with the highest activations. Target lexomes are highlighted.

Several aspects of this example are noteworthy. First, lexomes become highly activated in
roughly the same order as their triphone cues are arranged in the utterance. The only lexome
that fails to be sufficiently activated to appear in the signal-to-lexome decoding time map is play.
However, played and especially playing are highly activated. We anticipate that in a future im-
plementation of the model in which inflected words are linked to both content and grammatical
lexomes, this problem will not arise.

Second, pig and piggy are strongly activated, with strong activation for pig emerging one timestep
earlier than for piggy, and with strong activation continuing one timestep longer for the diminutive.
That a base and its derivative show co-temporal activation is not surprising, and both can be
argued to contribute to the semantic percept of the diminutive. A more sensitive coding of the
lexomes, with piggy sharing the category-denoting content lexome pig with its base, but in addition
having a separate lexome for, e.g., affectiveness, will of course change the activation dynamics of
the two words. A more important shortcoming of our present implementation is that acoustically,
the independent word pig and the base pig in piggy have different acoustic characteristics (Hawkins,
2003; Salverda et al., 2003; Kemps et al., 2005a,b). As a consequence, there is discriminative
information in the speech signal that is lost in our current implementation of cues operationalized
as triphones.

Third, it is an embedded word in little. Even though of a very high frequency, it is not as
well supported as little, with only two adjacent timesteps with strong activation. All other lexical
competitors, such as eat in the chair (which our text-to-phone system converted to DitSEr), have
only short-lived high activations.

Fourth, words that appear more than once in an utterance, such as the definite article in the
present example, straightforwardly activate their lexome at disjunct time intervals. Finally, the
model predicts that lexomes can be strongly co-activated for overlapping time intervals. The present
example illustrates this for can I and for on the chair. Since languages may express abstract features
such as number, person, case, etc. by means of suprasegmentals such as stress, segmental duration,
glottalization, tone, and nasalization (Hyman and Leben, 2000), we know that grammatical lexomes
and content lexomes can be activated simultaneously. (The same point can be made on the basis of
English irregular verbs such as run and ran, where present versus past tense is activated cotemporally
with the lexical meaning.)

It is important, when building a Rescorla-Wagner memory, to use full utterances as training
events, and not isolated words. This point is illustrated by Figure 8, which presents the same sen-
tence played to a network exposed to single-word learning events. Many things now go wrong. The
function words I, the and on have strong activations only at single timesteps, making it impossible
to distinguish them on the basis of temporal span from spurious intruding lexomes such as a, an,
to and it. Furthermore, many other words now receive extensive temporal support, such as night,
think, feeling, helping, wipe and each. By withholding contextual information in the utterance, the
weights from a word’s cues to its lexomes are overfitted, and bereft of the moderating benefits that
accrue thanks to cue competition in contextual learning.

We note here that the threshold we use here is nothing else but a tool for evaluating the perfor-
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with
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wish
wipe
why
to
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taste
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plate
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pick
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in

i
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helping
help
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can i please play with the little piggy on the chair
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Figure 7: Activation as a function of time for a Rescorla-Wagner memory trained on full utterances
in childes. Darker shades of gray indicate greater activation. Activations exceeding a threshold
set at 0.2 are highlighted in red.
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● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 8: Activation as a function of time for a Rescorla-Wagner memory trained on isolated words
in childes. Darker shades of gray indicate greater activation. Activations exceeding a threshold
set at 0.2 are highlighted in red.

22



mance of the network given current evaluation metrics in natural language processing. It allows us
to assess the performance of the network with respect to the question whether the correct lexomes
are ‘identified’ by inspecting extent of activation and duration of extended activation. However, the
conception that underlies our model does not fit well with the idea of identifying lexomes as winners
in a competitive selection process, because lexomes are seen as part of a system. It is the system
of lexomes and the amount of support that all lexomes receive within that system that determines
meaning, just as the potential and beauty of a chess problem is not defined by the collection of
pieces on the board, or by the piece that has just been moved, but rather by the configuration of
all the pieces on the board. When listening to the English word hamster, one other piece in the
game that is especially important is the lexome ham (Salverda et al., 2003), whereas the German
word Hamster is positioned against the lexomes for Hamburg and Hammer, as the German word
for ham, Schinken, is phonologically completely different. Given that availability of non-targeted
lexomes is detectable in semantic categorization tasks (Bowers et al., 2005), our working hypothesis
is that the meaning of a signal at time t is defined by the degrees of activations at t of all lexomes
in the multidimensional space of contrasts that have been discriminated through experience with
the world and language. Therefore, for comparison with other modeling technologies, the thresh-
old serves only to guage which lexomes dominate, as well as the intervals in time when they are
dominant.

Above, when evaluating the performance of our approach for artificial languages, we considered
how effective a Rescorla-Wagner network is as a memory for utterances it had been exposed to.
However, one desideratum for a lexical memory is that it be productive, in the sense that it works
well also for unseen utterances. Shaoul et al. (2015) therefore calculated precision, recall, and the
F score for a discriminative model, very similar to the one sketched above, for the 6.6 million
words of the childes data, using cross-validation. Precision was between 0.75 and 0.80, recall
was around 0.95. F scores varied between 0.80 and 0.85. It seems reasonable to suppose that
further improvements can be anticipated when lexome-to-lexome predictivity is integrated into
future models.

4 Discussion

Standard approaches to language assume grammar to be a form of calculus, a formal system com-
prising an alphabet of elementary symbols such as stems and morphemes, stored in a mental lexicon,
that is combined with a set of rules defining the well-formed symbol sequences of a language. In
the context of these standard approaches, it makes sense to consider algorithms that segment the
signal into its constituent symbols. Thus, models such as Shortlist-B set out to partition the speech
stream into a sequence of word forms that jointly completely cover the speech stream without
overlap. By combining Bayesian updating with a path-based search through a word lattice, input
such as D9kæt9l6gIn9laIbrI is segmented into the sequence of word forms the catalogue in a library,
succesfully discarding alternative sequences such as the cat a log in a library.

The theory we have outlined in this study explicitly rejects the conceptualization of language as a
formal calculus. Taking inspiration from Shannon’s theory of information, our focus shifts from the
internal constituency of the signal to the code encrypting and decrypting the experiences conveyed
by the signal. We understand the encoding and decoding processes as fundamentally discriminative
in nature, and have found the functional characterization of discriminative learning provided by the
Rescorla-Wagner equations to provide an excellent basis for computational implementation.

By means of several simulation studies, we showed that a Rescorla-Wagner network can discrim-
inate the lexomes encoded in a signal without segmenting the signal into word forms, outperforming
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segmentation-based models. It is also capable of replicating behaviors seen in categorical percep-
tion. We also showed that a Rescorla-Wagner network, exposed to learning events which comprise
all sublexical cues and all lexome outcomes present in full utterances, is an effective atemporal
long-term memory system. In combination with a short-term memory buffer that projects a mov-
ing window over the incoming speech signal onto the network’s input layer, the memory generates
activation functions for the lexomes over time. Lexomes encoded in the speech signal are identified
by monitoring for temporally extended high activation. Potential lexomic competitors give rise to
little or no interference, as long as the Rescorla-Wagner memory is trained on whole utterences
and not on isolated words. This architecture, which is much simpler than those of the trace and
Shortlist-B models, offers as additional advantage, thanks to co-learning, the possibility of capturing
long-distance dependencies and resolving ambiguities that in decompositional models can only be
addressed post-lexically.

Experiments with young infants have been taken as evidence for segmentation of the speech
stream into words. Saffran et al. (1996) concluded that apparently with only two minutes of expo-
sure, 8-month old infants were able to find the word boundaries in an artificial language. This evi-
dence is consistent with a Rescorla-Wagner network predicting next syllables. Furthermore, as has
been pointed out by numerous people including Saffran and colleagues (Johnson and Jusczyk, 2001;
Thiessen and Saffran, 2003), bootstrapping word boundaries from transition probability troughs is
computationally infeasible, due to many word boundaries having high-transition probabilities. By
contrast, Rescorla-Wagner networks designed to predict the lexomes encoded in the signal instead
of the boundaries between word forms, do so with a very high accuracy.

Our approach differs from current approaches in machine learning (see, e.g., Brent and Cartwright,
1996; Brent, 1999; Johnson, 2008; Goldwater et al., 2009; Robinet et al., 2011; Synnaeve et al., 2014)
in two important ways. First, these studies set the goal of finding the word form boundaries in ut-
terances, whereas we aim at identifying the lexomes in these utterances. It is worth noting that
by doing so, we avoid the many problems that arise in the context of “reduced” words that are
ubiquitous in actual speech (Johnson, 2004). Ernestus et al. (2002) showed that many such reduced
forms are not understood in isolation, and critically depend on sufficient context for comprehension
to be succesful. Furthermore, Kemps et al. (2004) observed that the form listeners assume they
have heard can be quite different from the form that was actually in the speech signal. Whereas
these findings raise all kinds of questions for segmentation-driven approaches, they dovetail well
with our approach.

Interestingly, approaches using machine learning techniques report enhanced results when pre-
dictivity from word and context is taken into consideration (e.g., Goldwater et al., 2009; Synnaeve
et al., 2014). This brings us to the second way in which our approach differs. Machine learning stud-
ies on speech segmentation address the segmentation problem using unsupervised learning. If one
accepts the axiom of the double articulation of language and if one believes that it is profitable to
study form by itself (see, e.g., the phonological component of both traditional descriptive grammars
and of generative linguistic theory), then it makes some sense to assume that in language acquisition
word forms have to be acquired first and that this acquisition process must be unsupervised. Un-
fortunately, to our knowledge, evidence that the word forms of a language can be learned effectively
(or at least, effective enough to be implementable for second language acquisition programmes) just
by attending to a stream of speech has not been forthcoming. The abovementioned studies docu-
menting the importance of lexical and contextual predictivity for word segmentation are consistent
with our position that a form-only approach is too restrictive. Importantly, rejection of the axiom
of the double articulation of language creates the novel opportunity to zoom in straightforwardly
on how form relates to meaning, and, crucially, to switch from unsupervised learning to supervised
learning. The extensive sharing of attention that is part of human enculturation (Tomasello, 2009)
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in general and language learning in particular is consistent with effective learning to be contingent
on meaningful communication.

From the discriminative perspective, phrasing the acquisition problem in terms of unsupervised
learning makes the problem much harder than it actually is. As a consequence, strong assumptions
have to be made. For instance, the model developed by Goldwater et al. (2009) requires the entire
data to be available in memory for the learning algorithm to iterate over, an assumption that the
authors themselves are not entirely comfortable with, and which they hope to sidestep with the
help of algorithms using particle filters (Doucet et al., 2001). The mbdp-1 model of Brent (1999)
and models using adaptor grammars (Johnson, 2008; Synnaeve et al., 2014) make use of advanced
probability models that define which of the many possible segmentations for a given utterance is
optimal. When learning is supervised, no such assumptions about a-priori available probability
models or grammars are necessary. All that is required is the straightforward local updating of
weights using the Rescorla-Wagner equations.

We conclude with a comparison of our discriminative learning approach with the Shortlist-B
model of Norris and McQueen (2008). These authors argue that word recognition closely approx-
imates optimal Bayesian decision making. However, in Shortlist-B, Bayesian decision making is
restricted to a static probability space that does not take the sequence of learning events into ac-
count. As such, it must fail to properly predict the phenomenon of blocking (see, e.g. Kamin, 1969;
Rescorla and Holland, 1982).

For example, a dog is first trained to expect food when a bell rings, and subsequently trained
to expect food when a bell is rung together with a flashing light. However, the dog does not learn
to expect food when the light is flashed without ringing the bell. The flashing light is blocked as a
predictive cue for food. Bayesian decision making that has access only to the accumulated counts
of events fails to predict the dog’s expectations. For instance, consider a training sequence in which
food is presented half of the time (always with a bell ringing), a light is flashed a quarter of the time
together with the bell (all in the second part of the training sequence), and in which the probability
of light given food is 0.5 (of all trials with food, half had a light flashing). Then, according to Bayes
rule,

Pr(food|light) =
Pr(light|food) Pr(food)

Pr(light)
=

1
2 ·

1
2

1
4

= 1.

For a model that does not take learning and cue competition over time into account, this is the
only rational prediction, and the prediction of anyone unfamiliar with the empirical findings. Im-
portantly, blocking is not just a curiosity from the animal learning literature: The difficulties of
acquiring a second language in the presence of a first language bear eloquent witness to the pervasive
effects of blocking in language processing (see Ellis, 2006a,b; Arnon and Ramscar, 2012).

The Rescorla-Wagner equations correctly predict blocking. Several proposals are available for
explaining blocking using insights from Bayesian modeling (see Holyoak and Cheng, 2011, for a
review). Typically, the probability of light is discounted by arguing that the light is not being
attended to. These accounts are more complex than the explanation provided by the Rescorla-
Wagner model, and parsimony should prefer the latter explanation. Furthermore, it has been
argued that a learning rule that is ‘optimal’ in the Bayesian sense may be favored less by natural
selection in biological systems than the Rescorla-Wagner learning rule, because the latter, as a
greedy algorithm, is more robust to different configurations of parameters (Trimmer et al., 2012).
Importantly, whatever the mathematical characterization of the biologically optimal way of dealing
with prediction error may ultimately turn out to be, it is clear that learning and cue competition
must be part of any experience-driven model of language processing.

Once this discriminative aspect of learning is taken seriously, questions must be answered about
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the appropriate grain size of learning events and the particulars of the cues and outcomes in these
learning events. The grain size of learning events emerged from the present study as much wider
than we had originally anticipated — the model of Baayen et al. (e.g., 2011) restricted itself to
learning events with only three words. The other side of the same coin is that studies of language
acquisition and processing appear to have massively underestimated the importance, and indeed,
the ubiquity of co-learning at every level.
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