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Abstract

The ability of Baboons (papio papio) to distinguish between English words and nonwords

has been modeled using a deep learning convolutional network model that simulates a ven-

tral pathway in which lexical representations of different granularity develop. However,

given that pigeons (columba livia), whose brain morphology is drastically different, can also

be trained to distinguish between English words and nonwords, it appears that a less spe-

cies-specific learning algorithm may be required to explain this behavior. Accordingly, we

examined whether the learning model of Rescorla and Wagner, which has proved to be

amazingly fruitful in understanding animal and human learning could account for these data.

We show that a discrimination learning network using gradient orientation features as input

units and word and nonword units as outputs succeeds in predicting baboon lexical decision

behavior—including key lexical similarity effects and the ups and downs in accuracy as

learning unfolds—with surprising precision. The models performance, in which words are

not explicitly represented, is remarkable because it is usually assumed that lexicality deci-

sions, including the decisions made by baboons and pigeons, are mediated by explicit lexi-

cal representations. By contrast, our results suggest that in learning to perform lexical

decision tasks, baboons and pigeons do not construct a hierarchy of lexical units. Rather,

they make optimal use of low-level information obtained through the massively parallel pro-

cessing of gradient orientation features. Accordingly, we suggest that reading in humans

first involves initially learning a high-level system building on letter representations acquired

from explicit instruction in literacy, which is then integrated into a conventionalized oral com-

munication system, and that like the latter, fluent reading involves the massively parallel pro-

cessing of the low-level features encoding semantic contrasts.

Introduction

It has recently been shown that Guinea baboons can be trained to discriminate between four-

letter words (e.g., TORE, WEND, BOOR, TARE, KRIS) and nonwords (e.g., EFTD, ULKH,
ULNX, IMMF) [1] simply by rewarding them for correct lexicality decisions. The number of

words learned by the six baboons ranged from 81 to 307 (after some 60,000 trials), and they
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were reported to respond correctly to both novel words and nonwords with above chance per-

formance. Further, these responses exhibited characteristic error patterns: nonwords that were

more similar to words elicited more errors; and nonwords that were derived from words by

transposing the middle two letters elicited more errors as compared to controls derived from

words by letter substitutions [2]. These results have been taken to show that, even in the

absence of other human linguistic knowledge, baboons are capable of learning a full ortho-

graphic code of letters and letter n-grams.

A deep learning, convolutional neural network (CNN) model has been proposed to explain

the baboons’ performance, and the learning processes that underlie it [3]. The model success-

fully captures many aspects of average baboon learning across training trials. It also broadly

simulated the baboons’ performance on lexical generalization, showing above chance accuracy

for novel words and nonwords. Like baboons, the model also showed a trend to produce more

word responses for nonwords with transposed middle letters compared to controls.

Convolutional neural networks (CNNs), which comprise a succession of alternating simple

convolution and complex pooling levels, are considered to be particularly attractive models of

visual processing because activations in their hidden layers have been shown to correlate with

activations in areas in the ventral stream of primates and humans [4], findings that have been

taken to suggest that like a CNN, visual processing can be characterised as a hierarchical sys-

tem that extracts features from the environment at increasing levels of abstraction across its

architecture. Analysis of CNN’s internal representations revealed that its performance relied

on the development of “extremal units” that are selectively sensitive to position-specific letters,

bigrams and trigrams, prompting the authors to conclude that the baboons’ reading abilities

were mediated by a similar hierarchical processing system. And since the ventral stream of pri-

mates and humans share similar structure, [3] suggest that a similar system of hierarchical pro-

cessing and orthographic codes underlies human reading.

However, the generality of this view is challenged by the results of a recent study [5] show-

ing similar orthographic processing capacities in pigeons (columba livia) in a similar experi-

mental setup. The pigeons successfully mastered between 26 and 58 words, and also exhibited

both letter transposition and orthographic similarity effects, indicating that the avian visual

system is also capable of learning to hierarchically represent and discriminate orthographically

coded words. Notably, since pigeons’ brains lack a ventral pathway, this suggests that this

structure itself may not be a necessary prerequisite for orthographic learning.

Further, although the reading abilities of both baboons and pigeons have been explained in

terms of hierarchical processing and the extraction of orthographic representations, it is argu-

able that these presuppositions have been largely shaped by researchers’ introspective perspec-

tive on the process of human reading. The process of reading makes very different demands

on orthographic processing than the simple lexical discrimination task completed by these ani-

mals. Whereas reading comprises a highly over-trained skill that integrates semantic and

acoustic information with visual processing, baboons and pigeons are confronted with novel

stimuli in which neither the letter strings as wholes nor even individual letters coded semantic

or acoustic information, such that the task these animals were confronted with is better sum-

marised as a discrimination task involving complex visual stimuli.

From this perspective, it is notable that experiments examining the hierarchical processing

of visual stimuli (shapes made of shapes), manipulated for density and display size [6, 7] have

shown that humans and baboons differ in their ability to perceive the higher level patterns in

that baboons rely more on local, lower-level patterns. Further, baboons trained in discriminat-

ing same/different relationships perform worse when the number of discriminating cues is

reduced [8].

A wide learning model of reading baboons
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Moreover, adult human subjects asked to identify a target stimulus from a set of distractor

stimuli (visual search paradigm) show an asymmetry in response times: searching for a salient

target between a set of distractors that violate expectations (closure, direction, e.g. elephants

with feet up) yields longer response times than when the opposite is the case [9, 10], indicating

that experience affects what is perceived at a local level. However, experiments aimed at exam-

ining asymmetry in responses on symmetric designs based on experience [11] show that here

baboon performance again departs from that of humans. Humans respond faster to shared fea-

tures within the category that was learned first, while only distinctive features appear to be

strongly associated with the category learned subsequently. Unlike humans, baboons appear to

process novel compound stimuli as a group of local features, rather than attending to the novel

features exclusively [12]. Similar differences in category learning are found between children

and adults [13]. Children, who (like baboons) lack critical brain structures to employ a

resource preserving approach of attending to novel stimulus features exclusively [14], instead

use all sensory cues present in their environment. Consequently, we can expect both the atten-

tional resources of the baboons and their previous experience in learning to categorize sensory

input to affect the representation of the stimulus features [15]. It is thus also notable that 4 of 6

baboons tested by [2] had previously participated in a visual categorization experiment prior

to their lexical decision task, such that it is likely that not all of the stimuli in the latter experi-

ment were equally available to all of the baboons.

So what lessons can be can be drawn from this body of research? The present study seeks to

answer this question by characterising the information present in the task in the simplest,

most biologically plausible way and establishing the minimal set of representational and

computational capacities that are required in order to complete it. Stepping back from

assumptions about hierarchical processing and orthographic codes, we sought to develop a

model based on the most basic and objective principles. Beginning with a set of representations

that can clearly be assumed to be shared by pigeons, baboons, and humans, we sought to

examine the extent to which the performance of the baboons reported by [2] could be

accounted for in the absence of any specific presuppositions about reading. We show that

these baboons did not respond in a way that might be considered optimal, from the perspective

of a model learning under perfect conditions. Further, we show that model performance

improved markedly—especially at the level of the individual baboon—when we explicitly

inform the model of the baboons’ behaviour on a trial by trial basis. Finally, our results ques-

tion the necessity of sophisticated letter string representations or any kind of pre-linguistic

visual systems, and instead offer an alternative explanation to hierarchical processing, provid-

ing a simpler and more parsimonious account of the animals’ behaviour.

A wide learning approach

While the necessary characteristics of the system that subserves visual processing and its varia-

tions among species are still poorly understood, a large body of literature supports the finding

that baboons, humans, and pigeons share cells that respond selectively to edges in the visual

input [16–18]. Consequently, summarising visual information of letter stimuli by a set of edge

sensitive features serves to represent the information content available to all three species at

some point of the decision process.

In a first exploration of this approach, we successfully modeled visual word response in

humans, finding that activations from a model trained on low-level visual cues for words from

the written part of the British National Corpus explain 37,4% of variation in response latencies

in the lexical decison data from the British Lexicon Project [19].

A wide learning model of reading baboons
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In the present study, we characterise stimuli by 14,476 discrete low-level visual features that

approximate the encoding of orientation and contrast. They serve as input cues to a wide

learning network [20, 21] based on the Rescorla-Wagner learning rule [22] which was trained

to classify the input into words and nonwords.

Even this simplistic model predicts that performance should reach perfection after very lit-

tle training. This indicates that the classification problem established by the stimulus material

can be trivially learned by machine learning methods (see also [23–25]). However, these meth-

ods benefit from perfect learning conditions. In contrast, given their strong deviation from

optimal learning, other factors must have affected the animals’ performance. The factors that

presumably contribute to this discrepancy are hard to quantify, and include, among others,

previous training experience [26], the motivations of the animals, their degree of attention, as

well as their internal representation of the task [14]. Given that trial-by-trial baboon behaviour

was clearly dominated by such factors, any model applied to the data should account for these

effects in order to avoid the model from merely displaying the signature imposed by the inter-

play of a model’s hand-crafted architecture and a specific input sequence. By contrast, the

Rescorla-Wagner model as well as deep neural networks are, in their classic application, data

independent models, whose performance is driven by the stimuli only.

It thus follows that a mechanism is required that allows a learning model to be informed by

both the task environment and the observed behavior of the animal. The behavior of individual

baboons followed clear trends over the course of the experiment, and consequently it follows

that to model individual baboon behavior, learning should be informed in a trial-by-trial fash-

ion to yield more reliable insight into the inner workings of the actual process. Typically such

methods include inducing noise when updating weights, or the optimisation of free model

parameters in the pooling and convolution steps as was done in case of the CNN. However,

none of these methods provides a principled approach to modelling the specificities of trial-by-

trial behaviour as their effects are unspecifically distributed over the entire set of stimuli and tri-

als instead of tailored to the actual temporal dynamics. For this reason, we applied an alternative

mechanism inspired by the fact that learning not only happens in the presence of explicit feed-

back, but can be also reinforced by an agent’s own decision in the absence of feedback [14, 27,

28]. This amounts to a two-stage update of the model’s weights in learning. First, the model is

correcting its predictions by the actual lexical decision made by the baboon, in order to account

for imperfect learning. Second, the model is updated by the feedback that is received as a matter

of course from the experimental apparatus. That is, this two-step process enables us to examine

a possible explanation of imperfect learning while exploiting a training signal that remains faith-

ful to the information that can be objectively extracted from the experimental trial structure.

Technical details about the implementation of the model are available in the supporting

information section.

Analysis

We trained six networks, one for each baboon, updating the learning weights of each model

on each trial with exactly the same stimulus sequence as presented to the individual baboons.

Fig 1 summarizes results for baboon and model accuracy. The top panel shows that the model

still performs the discrimination task with greater accuracy. Importantly, block-to-block

changes in accuracy for baboons were matched by similar changes in model accuracy (second

panel). Significant crosscorrelations at lags other than 0 (third panel) provide further support

that the model captures significant aspects of baboon performance.

Generalization performance on novel words and nonwords is summarized in Fig 2. As

novel words are very sparse, we graph cumulative accuracy for words against novel word

A wide learning model of reading baboons
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index (top panel). The extent to which curves extend to the right reflects the number of words

learned: Baboon CAU mastered 112 words, whereas baboon DAN learned 307 words to crite-

rion. Although overall baboon (and model) accuracy is above chance on novel words, the per-

formance of, e.g., baboon CAU reveals a strong nonword decision bias that reduces in the

course of learning, but leaves performance of this baboon only at chance by the end of the

experiment: accuracy is exactly at 0.5 on the last 10,000 trials. For DAN, performance over the

last 10,000 trials is slightly above chance (44/80 = 0.55), and shows an upward trend that is

lacking for CAU (Fig 2). Spearman correlations of the first derivatives of baboon and model

learning curves again indicate that model predictions shift up and down in tandem with

baboon performance.

Performance on novel nonwords is shown in the bottom panel of Fig 2. Baboon CAU

shows an initial increase in accuracy, followed by a decrease, resulting in a final overall

Fig 1. Baboon and model accuracy. Upper panel: discrimination accuracy for bins of 100 trials. Second panel: Change in accuracy for successive bins

(all p� 0.0001). Third panel: crosscorrelations. As initial baboon behavior is idiosyncratic, panels 2–3 are based on analyses excluding the first 5000 trials.

https://doi.org/10.1371/journal.pone.0183876.g001

A wide learning model of reading baboons
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accuracy for novel nonwords close to chance. DAN, by contrast, shows more consistent behav-

ior. First derivative tests indicate that the models are predicting the ups and downs in baboon

learning to some extent also for the subset of nonwords.

In order to compare the performance of the present discrimination network with the CNN

of [3], we extracted deep learning accuracy from Fig 2 in [3] using digitizeR [29]. The cor-

relation between the first derivative of baboon and model performance functions does not

reach significance (r = 0.39, p = 0.0639, rs = 0.22, p = 0.1762), and there were no significant

cross-correlations. This further underlines that it is not sufficient to simply assume a learning

model purely driven by the stimulus input, but that baboon behaviour was significantly influ-

enced by the internal state of the baboon.

To move away from dependency on bin size, the top panel of Fig 3 shows the probability of

observing sequences of more than k correct responses. Again, model performance closely

resembles baboon performance. In addition to characterising overall performance, we tested

whether our model could account for the specificities in the error patterns observed for the sti-

muli. The center panel of Fig 3 shows that nonwords that are less similar to words, as indexed

by a higher value of the OLD20 neighborhood measure [30], are more likely to elicit correct

nonword decisions. Here, the discrimination models provide tight predictions for baboon

performance.

In a follow-up experiment [2], baboons were more likely to make erroneous word responses

to nonwords obtained from words by transposition of the center letters, as compared to

Fig 2. Generalization in baboons and model at first encounter of a novel word (upper panel) or nonword (lower panel). Upper panels show

cumulative accuracy as novel words are encountered. Lower panels show accuracy on first encounters of nonwords by blocks of 100 trials. Correlations

are Spearman correlations based on the empirical first derivatives of baboon performance and model predictions.

https://doi.org/10.1371/journal.pone.0183876.g002

A wide learning model of reading baboons
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nonwords obtained by substituting vowels or consonants. To explore the basis of this effect,

we constructed multiple sets of stimuli following the instructions in [2], including transposi-

tion and substitution nonwords and visually similar and dissimilar targets. The results from 10

simulation runs revealed a similar trend to that reported by [2]. For visual similarity targets,

no effect was present (b̂ ¼ � :09;Z ¼ � 1:14; p ¼ 0:2533). Thus, the predictions of the model

and the baboon behavior are consistent with findings showing that illiterate humans [31] and

baboons [8] have difficulties discriminating visual stimuli when only small alterations are

Fig 3. Upper panel: probability of sequences of more than k correct responses. Center panel: partial effect of OLD20 on nonword accuracy in a

generalized additive mixed model with by-baboon factor smooths for trial, for observed baboon performance (red) and model predictions (blue). For both

baboons and model, greater dissimilarity from words (greater OLD20) predicts higher nonword accuracy. Lower panel: Probability of word response

predicted by the models for the baboons, subcategorized by type of nonword. Transp: nonword obtained from a word by transposition of the center letters;

subst: nonword obtained from a word by exchanging a vowel for a vowel or a consonant for a consonant.

https://doi.org/10.1371/journal.pone.0183876.g003

A wide learning model of reading baboons
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made to their internal structure. Furthermore, as illustrated in the bottom panel of Fig 3,

which depicts one simulation run, across runs the baboon models predicted more erroneous

word responses for nonwords derived through transposition (b̂ ¼ � 0:77;Z ¼ � 3:67;

p ¼ 0:0002). We should note that this effect was severely attenuated for 2 of the baboon mod-

els (b̂ARI ¼ � 0:22, b̂ART ¼ � 0:25). (We should further note that these follow-up simulations

were not informed by double learning, because we did not have the baboon trial to trial perfor-

mance at our disposal.)

The variability in model performance is hardly surprising given that we know that effects of

letter transpositions are reduced in sequences of pseudoletters or letters from an unfamiliar

alphabet [32] and that their strength varies depending on whether the transposed letters are

vowels or consonants [33]. Importantly, although high tolerance for letter-position pertuba-

tion is displayed by readers of English and other languages with high orthographic redun-

dancy, this effect does not generalize to a language like Hebrew [34, 35], where information is

packed more densely. While English readers can make sense of words with letter transposi-

tions and words with omitted vowels, readers of Hebrew fail to do so for words with Semitic

root structure. Previous modeling using discrimination learning correctly predicts letter trans-

positions to have detrimental effects in Hebrew [36], but not in English. After transposing let-

ters, sufficient low-level orthographic cues remain in English to support the intended readings,

whereas in Hebrew critical cues are absent and recognition collapses.

Following on from this line of reasoning, an analysis of visual cue weights from the

simulations reported here revealed that cues positioned at the first letter slot (n = 2586,

Mdnw = 0.00022) tended to provide stronger support for word/nonword responses, as com-

pared to the slots in the middle of the word (n = 2246, Mdnw = 0.00012). Thus, these results

further suggest that the baboons’ sensitivity to stimulus type is simply a function of the stimu-

lus set that they were exposed to (in the same way that the behavior of English and Hebrew

speakers is a function of the stimulus set they have been exposed to). Accordingly, it cannot be

taken as evidence for the existence of representational units as [2] claim.

So far, we have shown that a foundational learning algorithm [22, 37–39] implemented

with just a single free parameter the value of which was fixed beforehand on the basis of earlier

results on modeling human lexical decision behavior [40], succeeds surprisingly well in pre-

dicting baboon lexical decision behavior. The model predicts the ups and downs in baboon

accuracy, it generalizes, produces more nonword decisions for nonword stimuli that are less

similar to words, and it reproduces the letter transposition effect.

Based on the selected model architecture, the CNN developed extremal units that showed

sensitivity to letter bigrams and trigrams. It was claimed, furthermore, that baboons did not

base their decisions on holistic word-shape information [2, 41], the idea being that it would be

computationally more efficient to solve shape-invariance at the level of individual letters and

letter combinations than at the level of whole words. However, the deep learning network

could have been set up with further layers and with more extremal units to allow word-specific

representations to emerge. The question therefore remains to what extent the behavioral data

themselves support letter n-grams and holistic word units as explanatory variables. A danger

inherent in imputing holistic lexical representations to the baboon brain is that properties of

the input to which the baboon is exposed can be reflected in the baboon’s behavior, without

mediation in the brain by (sub)lexical representations. And indeed, our ability to predict

baboon behaviour based on simple low-level visual features without any explicit representation

of letter strings, suggest that the latter are not necessary components in order to solve this dis-

crimination task.

A wide learning model of reading baboons
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We therefore analyzed the trial-to-trial choice behavior of the six baboons with the general-

ized additive mixed model [42–48]. For each baboon, logistic GAMMs were fitted to the word

data, each using a thin plate regression spline predicting choice behavior from experimental

time (training trials), but with different random-effect factors. One model included word stim-

ulus as random-effect factor (e.g., TORE), a second model included the first and second tri-

grams (e.g., TOR and ORE) as random-effect factors, and a third model included the three

bigrams (e.g., TO, OR, RE) as random effects. Each model included an autoregressive AR(1)

process in the errors, with correlation parameters ranging across baboons from 0.066 to 0.110.

A total of 36 tests for significance of random effects [48] (for each of 6 baboons, one test for

word, two tests for trigrams, and three tests for bigrams) were evaluated with a Bonferroni-

adjusted α = 0.05/36 = 0.0014. A random effect of word was supported for each baboon, the

first trigram was never significant, the second was significant for 1 baboon, the first bigram

was significant for 5 baboons, the second for 2, and the third for 3. However, the goodness of

fit of the 6 models with bigrams as random effect was worse than that of the model with word

as random effect for 5 out of 6 baboons, while requiring fewer degrees of freedom.

Discussion

These results cast new light on the claim [2, 41] that the word is an irrelevant unit for under-

standing baboon discrimination behavior. If one takes the results of the statistical analysis at

face value, one sees strong evidence that one could take as support for internal representations

of orthographic words. In fact, a simple objective interpretation of the statistical analysis sug-

gests that orthographic word representations better explain baboon behavior than letter pairs

and letter trigrams. However, it should be noted that this is hardly surprising since both words

and letter pairs are objective parts of the input stimuli. Despite the fact that our models’ inter-

nal representation contains neither word forms nor letter pairs or letter trigrams, when we

apply the exact same statistical analysis to its predictions, we find exactly the same patterns of

evidence (Fig 4) that traditionally are taken to reveal internal representations of word forms,

letter pairs, and letter trigrams. That is, although none of these levels of orthographic represen-

tation is present in our model, it yields the same patterns of evidence that have been taken to

support mediation by orthographic representations at one level or another.

Instead of assuming that baboons and pigeons learn lexical representations [3, 5], the most

straightforward and parsimonious explanation is that both baboons and pigeons optimize

their chances of reward not by constructing a hierarchy of lexical units, but rather by making

optimal use of the strengths that come with a massively parallel processing system driven by

low-level visual features. Furthermore, models suggest that even human behaviour observed in

visual detection tasks can simply be predicted from population activity in the primary visual

cortex [49]. This does not rule out the possibility that visual processing proceeds in a hierarchi-

cal manner which is necessary to solve tasks in which low-level features are not sufficient in

order to make robust decisions. However, skilled fluent reading in humans may likewise be

grounded in massive parallel processing from low-level visual features to semantics. From this

perspective, the function of letter by letter learning during the acquisition of literacy is a means

for bootstrapping into the subliminal yet powerful low-level parallel processing systems that

we share with baboons and pigeons.

Finally, we should acknowledge that although our model captures many aspects of the

baboons’ behavior, primate brains have a complex architecture comprising many subsystems

such that it is unlikely that any behavior, including the present baboon behavior, is the product

of just one of these. This point is beautifully illustrated by Fig 5, which depicts a rendering of

two simple stimuli as presented independently to either hemisphere of a split brain patient [50].

A wide learning model of reading baboons
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For this patient, “seeing”, a cross or a box appears to be a function of the right hemisphere

who’s internal representation seems to bear some resemblance to reality, as illustrated in Fig 5

by the drawings to the left. By contrast, the rendering to the right would appear to suggest that

when these stimuli are represented in the left hemisphere, which subserves naming, sorting,

and discrimination, what can be inferred about this patient’s internal representations bears little

resemblance to what the right hemisphere perceives, or indeed, what appears to be objectively

in the environment. Of course, behaviorally, someone with an intact corpus collosum would

see a cross and a box, and draw a cross and a box. What Fig 5 suggests is that no single system

subserves these abilities. Similarly, it is unlikely that reading tout court is entirely subserved by

the ventral pathway or any other single neural structure. Consistent with this, our simulation

results suggest not that there are no orthographic representations, but rather that the systems

and representations involved in reading are likely to be similarly distributed. Accordingly,

Fig 4. Number of baboons for which random effect factors (words, bigrams, trigrams) were significant

according to the test described in [48], for baboon responses and responses predicted by the model.

https://doi.org/10.1371/journal.pone.0183876.g004
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depending on context and task, numerous sources of information at various levels of abstrac-

tion can be expected to contribute to the process, including direct associations between low-

level visual features and higher-level knowledge. Indeed, the very fact that humans, baboons,

and pigeons can all learn this lexical discrimination task seems to underline this point.
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Validation: Maja Linke, Franziska Bröker, Michael Ramscar, Harald Baayen.

Visualization: Maja Linke, Harald Baayen.

Writing – original draft: Maja Linke, Franziska Bröker, Michael Ramscar, Harald Baayen.
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