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Abstract

Curvature in form of the Hessian or its generalized Gauss-Newton (GGN) approximation
is valuable for algorithms that rely on a local model for the loss to train, compress, or
explain deep networks. Existing methods based on implicit multiplication via automatic
differentiation or Kronecker-factored block diagonal approximations do not consider noise in
the mini-batch. We present ViViT, a curvature model that leverages the GGN’s low-rank
structure without further approximations. It allows for efficient computation of eigenvalues,
eigenvectors, as well as per-sample first- and second-order directional derivatives. The
representation is computed in parallel with gradients in one backward pass and offers a fine-
grained cost-accuracy trade-off, which allows it to scale. We demonstrate this by conducting
performance benchmarks and substantiate ViViT’s usefulness by studying the impact of
noise on the GGN’s structural properties during neural network training.

1 Introduction & Motivation

The large number of trainable parameters in deep neural networks imposes computational constraints on
the information that can be made available to optimization algorithms. Standard machine learning libraries
(Abadi et al., 2015; Paszke et al., 2019) mainly provide access to first-order information in the form of average
mini-batch gradients. This is a limitation that complicates the development of novel methods that may
outperform the state-of-the-art: They must use the same objects to remain easy to implement and use, and
to rely on the highly optimized code of those libraries. There is evidence that this has led to stagnation in
the performance of first-order optimizers (Schmidt et al., 2021). Here, we thus study how to provide efficient
access to richer information, namely higher-order derivatives and their distribution across the mini-batch.

Recent advances in automatic differentiation (Bradbury et al., 2020; Dangel et al., 2020) have made such
information more readily accessible through vectorization of algebraic structure in the differentiated loss.
We leverage and extend this functionality to efficiently access curvature in form of the Hessian’s generalized
Gauss-Newton (GGN) approximation. It offers practical advantages over the Hessian and is established
for training (Martens, 2010; Martens & Grosse, 2015), compressing (Singh & Alistarh, 2020), or adding
uncertainty to (Ritter et al., 2018b;a; Kristiadi et al., 2020) neural networks. It is also linked theoretically to
the natural gradient method (Amari, 2000) via the Fisher information matrix (Martens, 2020, Section 9.2).

Traditional ways to access curvature fall into two categories. Firstly, repeated automatic differentiation allows
for matrix-free exact multiplication with the Hessian (Pearlmutter, 1994) and GGN (Schraudolph, 2002).
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Iterative linear and eigensolvers can leverage such functionality to compute Newton steps (Martens, 2010;
Zhang et al., 2017; Gargiani et al., 2020) and spectral properties (Sagun et al., 2017; 2018; Adams et al., 2018;
Ghorbani et al., 2019; Papyan, 2019b; Yao et al., 2019; Granziol et al., 2021) on arbitrary architectures thanks
to the generality of automatic differentiation. However, repeated matrix-vector products are potentially
detrimental to performance.

Secondly, K-FAC (Kronecker-factored approximate curvature) (Martens & Grosse, 2015; Grosse & Martens,
2016; Botev et al., 2017; Martens et al., 2018) constructs an explicit light-weight representation of the GGN
based on its algebraic Kronecker structure. The computations are streamlined via gradient backpropagation
and the resulting matrices are cheap to store and invert. This allows K-FAC to scale: It has been used
successfully with large mini-batches (Osawa et al., 2019). One reason for this efficiency is that K-FAC only
approximates the GGN’s block diagonal, neglecting interactions across layers. Such terms could be useful,
however, for applications like uncertainty quantification with Laplace approximations (Ritter et al., 2018b;a;
Kristiadi et al., 2020; Daxberger et al., 2021) that currently rely on K-FAC. Moreover, due to its specific
design for optimization, the Kronecker representation does not become more accurate with more data. It
remains a simplification, exact only under assumptions unlikely to be met in practice (Martens & Grosse,
2015). This might be a downside for applications that depend on a precise curvature proxy.

Here, we propose ViViT (inspired by V V ⊤ in Equation (3)), a curvature model that leverages the GGN’s
low-rank structure. Like K-FAC, its representation is computed in parallel with gradients. But it allows
a cost-accuracy trade-off, ranging from the exact GGN to an approximation that has the cost of a single
gradient computation. Our contributions are as follows:

• We present how to compute various GGN properties efficiently by exploiting its low-rank structure:
The exact eigenvalues, eigenvectors, and per-sample directional derivatives (Figure 1). In contrast to
other methods, these quantities allow modeling curvature noise.

• We introduce approximations that allow a flexible trade-off between computational cost and accuracy,
and provide a fully-featured efficient implementation in PyTorch (Paszke et al., 2019) on top of the
BackPACK (Dangel et al., 2020) package at https://github.com/f-dangel/vivit.

• We empirically demonstrate scalability and efficiency of leveraging the GGN’s low-rank structure
through benchmarks on different deep architectures. Finally, we use the previously inaccessible
properties of the GGN to study how it is affected by noise during training.

The main focus of this work is demonstrating that many interesting curvature properties, including uncertainty,
can be computed efficiently. Practical applications are discussed in Section 5.

2 Notation & Method

Setting: Consider a model f : Θ × X → Y and a dataset D of tuples (x, y) ∈ X × Y. The network,
parameterized by θ ∈ Θ, maps a sample x to a prediction ŷ = f(θ, x). Predictions are scored by a convex
loss function ℓ : Y × Y → R (e.g. cross-entropy or square loss), which compares to the ground truth y.
The training objective is the empirical risk 1

|D|
∑

(x,y)∈D ℓ(f(θ, x), y). In the following, we consider the loss
L : Θ → R

L(θ) = 1
N

∑N
n=1 ℓ(f(θ, xn), yn) , (1)

evaluated on a mini-batch {(xn, yn) ∈ X × Y}N
n=1 ⊂ D with N samples. We use ℓn(θ) = ℓ(f(θ, xn), yn)

and fn(θ) = f(θ, xn) for per-sample losses and predictions. For gradients, we write gn(θ) = ∇θℓn(θ) and
g(θ) = ∇θL(θ), suppressing θ if unambiguous. We also set Θ = RD and Y = RC with D, C the model
parameter and prediction space dimension, respectively. For classification, C is the number of classes.

Hessian & GGN: Two-fold chain rule application to the split ℓ ◦ f decomposes the Hessian of Equation (1)
into two parts ∇2

θL(θ) = G(θ) + R(θ) ∈ RD×D; the positive semi-definite GGN

G = 1
N

∑N
n=1 (Jθfn)⊤ (∇2

fn
ℓn

)
(Jθfn) = 1

N

∑N
n=1 Gn (2)
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Figure 1: Overview of ViViT’s quantities: (a) GGN eigenvalue distribution of DeepOBS’ 3c3d
architecture on CIFAR-10 (Schneider et al., 2019) for settings with different costs on a mini-batch of size
N = 128. From left to right: Exact GGN, exact GGN on a mini-batch fraction, MC approximation of the
GGN. (b) Pictorial illustration of ViViT’s quantities in the loss landscape: the contour lines visualize the
loss function L (Equation (1)) and its quadratic model q around θt ∈ R2 (Equation (6)). The low-rank
structure provides efficient access to the GGN’s eigenvectors {ek}. The quadratic model’s one-dimensional
projections along the eigenvectors (black axes) are parabolas characterized by the directional derivatives
γk, λk and their per-sample contributions γnk, λnk (Equation (8)). E is the GGN’s top-1 eigenspace.

and a residual R = 1/N
∑N

n=1
∑C

c=1(∇2
θ[fn]c) [∇fnℓn]c. Here, we use the Jacobian Jab that contains partial

derivatives of b with respect to a, [Jab]ij = ∂[b]i/∂[a]j . As the residual may alter the Hessian’s definiteness –
undesirable in many applications – we focus on the GGN.

Low-rank structure: By basic inequalities, Equation (2) has rank(G) ≤ NC.1 To make this explicit,
we factorize the positive semi-definite Hessian ∇2

fn
ℓn =

∑C
c=1 sncs⊤

nc, where snc ∈ RC and denote its
backpropagated version by vnc = (Jθfn)⊤snc ∈ RD. Absorbing sums into matrix multiplications, we arrive
at the GGN’s outer product form that lies at the heart of the ViViT concept,

G = 1
N

∑N
n=1

∑C
c=1 vncv⊤

nc = V V ⊤ with V = 1√
N

(v11, v12, . . . , vNC) ∈ RD×NC . (3)

V allows for exact computations with the explicit GGN matrix, at linear rather than quadratic memory cost
in D. We first formulate the extraction of relevant GGN properties from this factorization, before addressing
how to further approximate V to reduce memory and computation costs.

2.1 Computing the full GGN eigenspectrum

Each GGN eigenvalue λ ∈ R≥0 is a root of the characteristic polynomial det(G − λID) with identity
matrix ID ∈ RD×D. Leveraging the factorization of Equation (3) and the matrix determinant lemma, the
D-dimensional eigenproblem reduces to that of the much smaller Gram matrix G̃ = V ⊤V ∈ RNC×NC which
contains pairwise scalar products of vnc (see Appendix A.1),

det(G − λID) = 0 ⇔ det(G̃ − λINC) = 0 . (4)

With at least D − NC trivial solutions, the GGN curvature is zero along most directions in parameter space.
Nontrivial solutions that give rise to curved directions are fully-contained in the Gram matrix, and hence
much cheaper to compute.

Despite various Hessian spectral studies which rely on iterative eigensolvers and implicit matrix multiplication
(Sagun et al., 2017; 2018; Adams et al., 2018; Ghorbani et al., 2019; Papyan, 2019b; Yao et al., 2019; Granziol
et al., 2021), we are not aware of works that efficiently extract the exact GGN spectrum from its Gram

1We assume the overparameterized deep learning setting (NC < D) and suppress the trivial rank bound D.
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matrix. In contrast to those techniques, this matrix can be computed in parallel with gradients in a single
backward pass, which results in less sequential overhead. We demonstrate in Section 3.1 that exploiting the
low-rank structure for computing the leading eigenpairs is superior to a power iteration based on matrix-free
multiplication in terms of runtime.

Eigenvalues themselves can help identify reasonable hyperparameters, like learning rates (LeCun et al.,
1993). But we can also reconstruct the associated eigenvectors. These are directions along which curvature
information is contained in the mini-batch. Let S̃+ = {(λk, ẽk) | λk ≠ 0, G̃ẽk = λkẽk}K

k=1 denote the
nontrivial Gram spectrum2 with orthonormal eigenvectors ẽ⊤

j ẽk = δjk (δ represents the Kronecker delta and
K = rank(G)). Then, the transformed vectors ek = 1/

√
λkV ẽk (k = 1, ..., K) are orthonormal eigenvectors of

G associated to eigenvalues λk (see Appendix A.2), i.e.

∀(λk, ẽk) ∈ S̃+ : G̃ẽk = λkẽk =⇒ Gek = λkek . (5)

The eigenspectrum also provides access to the GGN’s pseudo-inverse based on V and S̃+, required by e.g.
second-order methods.3

2.2 Computing directional derivatives

Various algorithms rely on a local quadratic approximation of the loss landscape. For instance, optimization
methods adapt their parameters by stepping into the minimum of the local proxy. Curvature, in the form of
the Hessian or GGN, allows to build a quadratic model given by the Taylor expansion. Let q denote the
quadratic model for the loss around position θt ∈ Θ that uses curvature represented by the GGN,

q(θ) = const + (θ − θt)⊤g(θt) + 1
2 (θ − θt)⊤G(θt)(θ − θt) . (6)

At its base point θt, the shape of q along an arbitrary normalized direction e ∈ Θ (i.e. ∥e∥ = 1) is determined
by the local gradient and curvature. Specifically, the projection of Equation (6) onto e gives rise to the
(scalar) first-and second-order directional derivatives

γe = e⊤∇θq(θt) = e⊤g(θt) ∈ R and λe = e⊤∇2
θq(θt) e = e⊤G(θt) e ∈ R . (7)

As G’s characteristic directions are its eigenvectors, they form a natural basis for the quadratic model.
Denoting γk = γek

and λk = λek
the directional gradient and curvature along eigenvector ek, we see from

Equation (7) that the directional curvature indeed coincides with the GGN’s eigenvalue.

Analogous to the gradient and GGN, the directional derivatives γk and λk inherit the loss function’s sum
structure (Equation (1)), i.e. they decompose into contributions from individual samples. Let γnk and λnk

denote these first- and second-order derivatives contributions of sample xn in direction k,

γnk = e⊤
k gn = ẽ⊤

k V ⊤gn√
λk

and λnk = e⊤
k Gnek = ∥V ⊤

n V ẽk∥2

λk
, (8)

where Vn ∈ RD×C is a scaled sub-matrix of V with fixed sample index. Note that directional derivatives can
be evaluated efficiently with the Gram matrix eigenvectors without explicit access to the associated directions
in parameter space.

In Equation (7), gradient g and curvature G are sums over gn and Gn, respectively. This implies the
relationships between directional derivatives and per-sample contributions γk = 1/N

∑N
n=1 γnk and λk =

1/N
∑N

n=1 λnk. Figure 1b shows a pictorial view of the quantities provided by ViViT. Access to per-sample
directional gradients γnk and curvatures λnk along G’s natural directions is one distinct feature of ViViT.
These quantities provide geometric information about the local loss landscape as well as about the model’s
directional curvature stochasticity over the mini-batch.

2In the following, we assume ordered eigenvalues, i.e. λ1 ≥ λ2 ≥ . . . ≥ λK , for convenience.
3Appendix C.2 describes implicit multiplication with G−1.
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2.3 Computational complexity

So far, we have formulated the computation of the GGN’s eigenvalues (Equation (4)), including eigenvectors
(Equation (5)), and per-sample directional derivatives (Equation (8)). We now analyze their computational
complexity to identify critical performance factors. Those limitations can effectively be addressed with
approximations that allow the costs to be decreased in a fine-grained fashion. We substantiate our theoretical
analysis with empirical benchmarks in Section 3.1.

Relation to gradient computation: Machine learning libraries are optimized to backpropagate signals
1/N∇fn

ℓn and accumulate the result into the mini-batch gradient g = 1/N
∑N

n=1(Jθfn)⊤∇fn
ℓn. Each column

vnc of V also involves applying the Jacobian, but to a different vector snc from the loss Hessian’s symmetric
factorization. For popular loss functions, like square and cross-entropy loss, this factorization is analytically
known and available at negligible overhead. Hence, computing V basically costs C gradient computations as
it involves NC backpropagations, while the gradient requires N . However, the practical overhead is expected
to be smaller: Computations can re-use information from BackPACK’s vectorized Jacobians and enjoy
additional speedup on GPUs.

Stage-wise discarding V : The columns of V correspond to backpropagated vectors. During backpropa-
gation, sub-matrices of V , associated to parameters in the current layer, become available once at a time and
can be discarded immediately after their use. This allows for memory savings without any approximations.

One example is the Gram matrix G̃ formed by pairwise scalar products of {vnc}N,C
n=1,c=1 in O((NC)2D)

operations. The spectral decomposition S̃+ has additional cost of O((NC)3). Similarly, the terms for the
directional derivatives in Equation (8) can be built up stage-wise: First-order derivatives {γnk}N,K

n=1,k=1 require
the vectors {V ⊤gn ∈ RNC}N

n=1 that cost O(N2CD) operations. Second-order derivatives are basically for
free, as {V ⊤

n V ∈ RC×NC}N
n=1 is available from G̃.

GGN eigenvectors: Transforming a Gram matrix eigenvector ẽk to the GGN eigenvector ek by application
of V (Equation (5)) costs O(NCD) operations. However, repeated application of V can be avoided for sums
of the form

∑
k(ck/

√
λk)ek with arbitrary weights ck ∈ R. The summation can be performed in the Gram

space at negligible overhead, and only the resulting vector
∑

k ckẽk needs to be transformed. For a practical
example – computing damped Newton steps – see Appendix B.1.

2.4 Approximations & Implementation

Although the GGN’s representation by V has linear memory cost in D, it requires memory equivalent to NC
model copies.4 Of course, this is infeasible for many networks and data sets, e.g. ImageNet (C = 1000). So
far, our formulation was concerned with exact computations. We now present approximations that allow N ,
C and D in the above cost analysis to be replaced by smaller numbers, enabling ViViT to trade-off accuracy
and performance.

MC approximation & curvature sub-sampling: To reduce the scaling in C, we can approximate the
factorization ∇2

fn
ℓn(θ) =

∑C
c=1 sncs⊤

nc by a smaller set of vectors. One principled approach is to draw MC
samples {s̃nm} such that Em [̃snms̃⊤

nm] = ∇2
fn

ℓn(θ) as in Dangel et al. (2020). This reduces the scaling of
backpropagated vectors from C to the number of MC samples M (M = 1 in the following if not specified
otherwise). A common independent approximation to reduce the scaling in N is computing curvature on a
mini-batch subset (Byrd et al., 2011; Zhang et al., 2017).

Parameter groups (block-diagonal approximation): Some applications, e.g. computing Newton steps,
require V to be kept in memory for performing the transformation from Gram space into the parameter

4Our implementation uses a more memory-efficient approach that avoids expanding V for linear layers by leveraging structure
in their Jacobian. We describe additional optimizations in Appendix C.1, and demonstrate a 50 x speed-up for computing the
Gram matrix over naive computation via vectorized Jacobians. The additional backpropagations are carried out in 50 % of the
expected time due to parallelism on the GPU.
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space. Still, we can reduce costs by using the GGN’s diagonal blocks {G(i)}L
i=1 of each layer, rather than

the full matrix G. Such blocks are available during backpropagation and can thus be used and discarded
step by step. In addition to the previously described approximations for reducing the costs in N and C, this
technique tackles scaling in D.

Implementation details: BackPACK’s functionality allows us to efficiently compute individual gradients
and V in a single backward pass, using either an exact or MC-factorization of the loss Hessian. To reduce
memory consumption, we extend its implementation with a protocol to support mini-batch sub-sampling and
parameter groups. By hooks into the package’s extensions, we can discard buffers as soon as possible during
backpropagation, effectively implementing all discussed approximations and optimizations.

Next, we specifically address how the above approximations affect runtime and memory requirements, and
study their impact on structural properties of the GGN.

3 Experiments

For the practical use of the ViViT concept, it is essential that (i) the computations are efficient and (ii)
that we gain an understanding of how sub-sampling noise and the approximations introduced in Section 2.4
alter the structural properties of the GGN. In the following, we therefore empirically investigate ViViT’s
scalability and approximation properties in the context of deep learning, where it can serve as a monitoring
tool of novel quantities that have not been explored previously to analyze training and other phenomena.
The code used for the experiments is available at https://github.com/f-dangel/vivit-experiments.

Experimental setting: Architectures include three deep convolutional neural networks from DeepOBS
(Schneider et al., 2019) (2c2d on Fashion-MNIST, 3c3d on CIFAR-10 and All-CNN-C on CIFAR-100),
as well as residual networks from He et al. (2016) on CIFAR-10 based on Idelbayev (2018) – all are equipped
with cross-entropy loss. Based on the approximations presented in Section 2.4, we distinguish the following
cases:

• mb, exact: Exact GGN with all mini-batch samples. Backpropagates NC vectors.

• mb, mc: MC-approximated GGN with all mini-batch samples. Backpropagates NM vectors with
M the number of MC-samples.

• sub, exact: Exact GGN on a subset of mini-batch samples (⌊N/8⌋ as in Zhang et al. (2017)).
Backpropagates ⌊N/8⌋C vectors.

• sub, mc: MC-approximated GGN on a subset of mini-batch samples. Backpropagates ⌊N/8⌋M
vectors with M the number of MC-samples.

3.1 Scalability

We now complement the theoretical computational complexity analysis from Section 2.3 with empirical
studies. Results were generated on a workstation with an Intel Core i7-8700K CPU (32 GB) and one NVIDIA
GeForce RTX 2080 Ti GPU (11 GB). We use M = 1 in the following.

Memory performance: We consider two tasks:

1. Computing eigenvalues: The nontrivial eigenvalues {λk | (λk, ẽk) ∈ S̃+} are obtained by forming
and eigen-decomposing the Gram matrix G̃, allowing stage-wise discarding of V (see Sections 2.1
and 2.3).

2. Computing the top eigenpair: For (λ1, e1), we compute the Gram matrix spectrum S̃+, extract its
top eigenpair (λ1, ẽ1), and transform it into parameter space by Equation (5), i.e. (λ1, e1 = 1/

√
λ1V ẽ1).

This requires more memory than task 1 as V must be stored.
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As a comprehensive measure for memory performance, we use the largest batch size before our system runs
out of memory – we call this the critical batch size Ncrit.

Figure 2a tabularizes the critical batch sizes on GPU for the 3c3d architecture on CIFAR-10. As expected,
computing eigenpairs requires more memory and leads to consistently smaller critical batch sizes in comparison
to computing only eigenvalues. Yet, they all exceed the traditional batch size used for training (N = 128,
see Schneider et al. (2019)), even when using the exact GGN. With ViViT’s approximations, the memory
overhead is reduced to significantly increase the applicable batch size. We report similar results for more
architectures, a block-diagonal approximation (as in Zhang et al. (2017)), and on CPU in Appendix B.1,
where we also benchmark a third task – computing damped Newton steps.

In the large-batch regime, computing the Gram matrix and its spectrum becomes a run time bottleneck,
see Section 2.3. As we show next, ViViT is highly efficient in the mini-batch setting. However, for spectral
analyses on the entire dataset, iterative eigensolvers, like power iterations, should be preferred.

Runtime performance: Here, we consider the task of computing the k leading eigenvectors and eigenvalues
of a matrix. A power iteration that computes eigenpairs iteratively via matrix-vector products serves as a
reference. For a fixed value of k, we repeat both approaches 20 times and report the shortest time.

For the power iteration, we adapt the implementation from the PyHessian library (Yao et al., 2019)
and replace its Hessian-vector product by a matrix-free GGN-vector product (Schraudolph, 2002) through
PyTorch’s automatic differentiation. We use the same default hyperparameters for the termination criterion.5
Similar to task 1, our method obtains the top-k eigenpairs6 by computing S̃+, extracting its leading eigenpairs
and transforming the eigenvectors ẽ1, ẽ2, . . . , ẽk into parameter space by application of V .

Figure 2b shows the GPU runtime for the 3c3d architecture on CIFAR-10, using a mini-batch of size
N = 128. Without any approximations to the GGN, our method already outperforms the power iteration
for k > 1 and increases much slower in run time as more leading eigenpairs are requested. This means that,
relative to the transformation of each eigenvector from the Gram space into the parameter space through
V , the run time mainly results from computing V , G̃, and eigendecomposing the latter. This is consistent
with the computational complexity of those operations in NC (compare Section 2.3) and allows for efficient
extraction of a large number of eigenpairs. The run time curves of the approximations confirm this behavior
by featuring the same flat profile. Additionally, they require significantly less time than the exact mini-batch
computation. Appendix B.1 reports additional results for more architectures, a block-diagonal approximation,
and on CPU.

3.2 Approximation quality

ViViT is based on the Hessian’s generalized Gauss-Newton approximation (see Equation (2)). In practice, the
GGN is only computed on a mini-batch which yields a statistical estimator for the full-batch GGN (i.e. the
GGN evaluated on the entire training set). Additionally, we introduce curvature sub-sampling and an MC
approximation (see Section 2.4), i.e. further approximations that alter the curvature’s structural properties.
In this section, we compare quantities at different stages within this hierarchy of approximations. We use the
test problems from above and train the networks with both SGD and Adam (details in Appendix B.2).

GGN vs. Hessian: First, we empirically study the relationship between the GGN and the Hessian in
the deep learning context. To capture solely the effect of neglecting the residual R (see Equation (2)), we
consider the noise-free case and compute H and G on the entire training set.

We characterize both curvature matrices by their top-C eigenspace: the space spanned by the C leading
eigenvectors. This is a C-dimensional subspace of the parameter space Θ, on which the loss function is
subject to particularly strong curvature. The overlap between these spaces serves as the comparison metric.
Let {eU

c }C
c=1 be the set of orthonormal eigenvectors to the C largest eigenvalues of some symmetric matrix

U and EU = span(eU
1 , ..., eU

C ). The projection onto this subspace EU is given by the projection matrix

5We find similar results with relaxed convergence hyperparameters, see Appendix B.1.
6The power iteration computes the leading eigenpairs. Our approach allows choosing arbitrary eigenpairs.
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(a) Ncrit (eigenvalues)

GGN
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Figure 2: GPU memory and run time performance: Performance measurements for the 3c3d architecture
(D = 895,210) on CIFAR-10 (C = 10). (a) Critical batch sizes Ncrit for computing eigenvalues and the top
eigenpair. (b) Run time comparison with a power iteration for extracting the k leading eigenpairs using a
batch of size N = 128.

P U = (eU
1 , ..., eU

C )(eU
1 , ..., eU

C )⊤. As in Gur-Ari et al. (2018), we define the overlap between two top-C
eigenspaces EU and EV of the matrices U and V by

overlap(EU , EV ) = Tr (P U P V )√
Tr (P U ) Tr (P V )

∈ [0, 1] . (9)

If overlap(EU , EV ) = 0, then EU and EV are orthogonal; if the overlap is 1, they are identical.

Figure 3a shows the overlap between the full-batch GGN and Hessian during training of the 3c3d network
on CIFAR-10 with SGD. Except for a short phase at the beginning of the optimization procedure (note the
log scale for the epoch-axis), it shows a strong agreement (overlap ≥ 0.85) between the top-C eigenspaces.
We make similar observations with the other test problems (see Appendix B.3), yet to a slightly lesser extent
for CIFAR-100. Consequently, we identify the GGN as an interesting object, since it consistently shares
relevant structure with the Hessian matrix.

Eigenspace under noise and approximations: ViViT uses mini-batching to compute a statistical
estimator of the full-batch GGN. This approximation alters the top-C eigenspace, as shown in Figure 3b:
With decreasing mini-batch size, the approximation carries less and less structure of its full-batch counterpart,
as indicated by dropping overlaps. In addition, at constant batch size, a decrease in approximation quality
can be observed over the course of training. This might be a valuable insight for the design of second-order
optimization methods, where this structural decay could lead to performance degradation over the course of
the optimization, which has to be compensated for by a growing batch-size (e.g. Martens (2010) reports that
the optimal batch size grows during training).

In order to allow for a fine-grained cost-accuracy trade-off, ViViT introduces further approximations to the
mini-batch GGN (see Section 2.4). Figure 3c shows the overlap between these GGN approximations and the
full-batch GGN.7 The order of the approximations is as expected: With increasing computational effort,
the approximations improve and, despite the greatly reduced computational effort compared to the exact
mini-batch GGN, significant structure of the top-C eigenspace is preserved. Details and results for the other
test problems are reported in Appendix B.4.

So far, our analysis is based on the top-C eigenspace of the curvature matrices. We extend this analysis by
studying the effect of noise and approximations on the curvature magnitude along the top-C directions in
Appendix B.5.

7A comparison with the mini-batch GGN as ground truth can be found in Appendix B.4
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(d) Directional curvature SNRs
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Figure 3: Curvature monitoring during training 3c3d on CIFAR-10 with SGD: (a) Overlap between
the top-C eigenspaces of the full-batch GGN and full-batch Hessian during training. (b) Overlap between
the top-C eigenspaces of the mini-batch GGN and full-batch GGN during training. For each mini-batch size,
5 different mini-batches are drawn. (c) Overlap between the top-C eigenspaces of the mini-batch GGN and
ViViT’s approximations with the full-batch GGN during training. Each approximation is evaluated on 5
mini-batches. (d) Curvature SNRs along each of the mini-batch GGN’s top-C eigenvectors during training.
At fixed epoch, the SNR for the most curved direction is shown in and the SNR for the direction with the
smallest curvature is shown in .

3.3 Per-sample directional derivatives

A unique feature of ViViT’s quantities is that they provide a notion of curvature uncertainty through per-
sample first- and second-order directional derivatives (see Equation (8)). To quantify noise in the directional
derivatives, we compute their signal-to-noise ratios (SNRs). For each direction ek, the SNR is given by
the squared empirical mean divided by the empirical variance of the N mini-batch samples {γnk}N

n=1 and
{λnk}N

n=1, respectively.

Figure 3d shows curvature SNRs during training the 3c3d network on CIFAR-10 with SGD. The curvature
signal along the top-C eigenvectors decreases from SNR > 1 by two orders of magnitude. This might be a
challenging setting for second-order methods because the noise varies dramatically during different stages of
training. In comparison, the directional gradients do not exhibit such a pattern (see Appendix B.6). Results
for the other test cases can be found in Appendix B.6.

In this section, we gave a glimpse of the very rich quantities that are efficiently computed via ViViT. Section 5
discusses the practical use of this information, in particular curvature uncertainty.

4 Related work

GGN spectrum & low-rank structure: Other works point out the GGN’s low-rank structure. Botev
et al. (2017) present the rank bound and propose an alternative to K-FAC based on backpropagating a
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decomposition of the loss Hessian. Papyan (2019a) presents the factorization in Equation (3) and studies
the eigenvalue spectrum’s hierarchy for cross-entropy loss. In this setting, the GGN further decomposes
into summands, some of which are then analyzed through similar Gram matrices. These can be obtained
as contractions of G̃, but our approach goes beyond them as it does not neglect terms. We are not aware
of works that obtain the exact spectrum and leverage a highly-efficient fully-parallel implementation. This
may be because, until recently (Bradbury et al., 2020; Dangel et al., 2020), vectorized Jacobians required to
perform those operations efficiently were not available.

Efficient operations with large-scale matrices in deep learning: Chen et al. (2021) use Equation (3)
for element-wise evaluation of the GGN in fully-connected feed-forward neural networks. They also present a
variant based on MC sampling. This element-wise evaluation is then used to construct hierarchical matrix
approximations of the GGN. ViViT instead leverages the global low-rank structure that also enjoys efficient
eigen-decomposition.

A special case of ViViT’s Gram matrix extraction is computing empirical neural tangent kernel (NTK)
matrices, like Novak et al. (2022). While the NTK only requires a model (its Jacobian (Jacot et al., 2018)), the
GGN also incorporates the loss function via its Hessian. For mean squared error, this Hessian in Equation (2)
is proportional to the identity, and the GGN Gram matrix coincides with the scaled empirical NTK.

Another prominent low-rank matrix in deep learning is the un-centered gradient covariance (sometimes called
empirical Fisher). Singh & Alistarh (2020) describe implicit multiplication with its inverse and apply it for
neural network compression, assuming the empirical Fisher as Hessian proxy. However, this assumption has
limitations, specifically for optimization (Kunstner et al., 2019). In principle though, the low-rank structure
also permits the application of our methods from Section 2.

5 Use cases

Our efficient implementation enables the community to explore deep learning through richer information that
would previously have been costly. Here, we want to briefly address possible use cases – their full development
and assessment, however, will amount to separate paper(s). They include:

• Second-order optimization: Second-order methods use curvature to build a local quadratic model
of the loss. Established curvature proxies neglect the sampling-induced noise and therefore the
quadratic model’s reliability. ViViT provides access to this information in the form of per-sample
quantities. This offers a new dimension for improving second-order methods: Through statistics on
the mini-batch distribution of directional derivatives, we might be able to adapt to the dynamics of
noise (e.g. via variance-adapted step sizes).

• Monitoring tool: However, to develop conceptually novel second-order optimizers, we believe that
a crucial intermediate step is to better understand the setting they operate in. The techniques
we present primarily tackle this intermediate step. Sections 3.2 and 3.3 are examples of ViViT’s
application as a monitoring tool. Due to its efficiency, ViViT could be integrated into live diagnostic
tools like Cockpit (Schneider et al., 2021) that aim at debugging optimizers or gaining insights into
the inner workings of deep learning.

6 Conclusion

We have presented ViViT, a curvature model based on the low-rank structure of the Hessian’s generalized
Gauss-Newton (GGN) approximation. This structure allows for efficient extraction of exact curvature
properties, such as the GGN’s full eigenvalue spectrum and directional gradients and curvatures along the
associated eigenvectors. ViViT’s quantities scale by approximations that allow for a fine-grained cost-accuracy
trade-off. In contrast to alternatives, these quantities offer a notion of curvature uncertainty across the
mini-batch in the form of directional derivatives.

We empirically demonstrated the efficiency of leveraging the GGN’s low-rank structure and substantiated its
usefulness by studying characteristics of curvature noise on various deep learning architectures. The low-rank
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representation is efficiently computed in parallel with gradients during a single backward pass. As it mainly
relies on vectorized Jacobians, it is general enough to be integrated into existing machine learning libraries in
the future. For now, we provide an efficient open-source implementation in PyTorch (Paszke et al., 2019)
by extending the existing BackPACK (Dangel et al., 2020) library.
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A Mathematical details

A.1 Reducing the GGN eigenvalue problem to the Gram matrix

For Equation (4), consider the left hand side of the GGN’s characteristic polynomial det(G − λID) = 0.
Inserting the ViViT factorization (Equation (3)) and using the matrix determinant lemma yields

det(−λID + G) = det
(
−λID + V V ⊤) (Low-rank structure (3))

= det
(
INC + V ⊤(−λID)−1V

)
det(−λID) (Matrix determinant lemma)

= det
(

INC − 1
λ

V ⊤V

)
(−λ)D

=
(

− 1
λ

)NC

det
(
V ⊤V − λINC

)
(−λ)D

= (−λ)D−NC det
(
G̃ − λINC

)
. (Gram matrix)

Setting the above expression to zero reveals that the GGN’s spectrum decomposes into D − NC zero
eigenvalues and the Gram matrix spectrum obtained from det(G̃ − λINC) = 0.

14



Published in Transactions on Machine Learning Research (02/2023)

A.2 Relation between GGN and Gram matrix eigenvectors

Assume the nontrivial Gram matrix spectrum S̃+ = {(λk, ẽk) | λk ≠ 0, G̃ẽk = λkẽk}K
k=1 with orthonormal

eigenvectors ẽ⊤
j ẽk = δjk (δ represents the Kronecker delta) and K = rank(G). We now show that ek =

1/
√

λkV ẽk are normalized eigenvectors of G and inherit orthogonality from ẽk.

To see the first, consider right-multiplication of the GGN with ek, then expand the low-rank structure,

Gek = 1√
λk

V V ⊤V ẽk (Equation (3) and definition of ek)

= 1√
λk

V G̃ẽk (Gram matrix)

= λk
1√
λk

V ẽk (Eigenvector property of ẽk)

= λkek .

Orthonormality of the ek results from the Gram matrix eigenvector orthonormality,

e⊤
j ek =

(
1√
λj

ẽ⊤
j V ⊤

)(
1√
λk

V ẽk

)
(Definition of ej , ek)

= 1√
λjλk

ẽ⊤
j G̃ẽk (Gram matrix)

= λk√
λjλk

ẽ⊤
j ẽk (Eigenvector property of ẽk)

= δjk . (Orthonormality)

B Experimental details

Throughout this section, we use the notation introduced in Section 3 (see Table S.1). The code used for the
experiments is available at https://github.com/f-dangel/vivit-experiments.

Table S.1: Notation for curvature approximations: The notation is introduced in Section 3. This table
recapitulates the abbreviations (referring to the approximations introduced in Section 2.4) and provides
corresponding explanations.

Abbreviation Explanation
mb, exact Exact GGN with all mini-batch samples.

Backpropagates NC vectors.
mb, mc MC-approximated GGN with all mini-batch samples.

Backpropagates NM vectors with M the number of MC-samples.
sub, exact Exact GGN on a subset of mini-batch samples (⌊N/8⌋ as in Zhang et al. (2017)).

Backpropagates ⌊N/8⌋C vectors.
sub, mc MC-approximated GGN on a subset of mini-batch samples.

Backpropagates ⌊N/8⌋M vectors with M the number of MC-samples.

GGN spectra (Figure 1a): To obtain the spectra of Figure 1a we initialize the respective architecture,
then draw a mini-batch and evaluate the GGN eigenvalues under the described approximations, clipping the
Gram matrix eigenvalues at 10−4. Figures S.4 and S.5 provide the spectra for all used architectures with
both the full GGN and a per-layer block-diagonal approximation.
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Figure S.4: GGN spectra of different architectures under ViViT’s approximations: Left and
right columns contain results with the full network’s GGN and a per-layer block-diagonal approximation,
respectively. The column labels are explained in Table S.1.
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Figure S.5: GGN spectra of different architectures under ViViT’s approximations: Left and
right columns contain results with the full network’s GGN and a per-layer block-diagonal approximation,
respectively. The column labels are explained in Table S.1.

B.1 Performance evaluation

Hardware specifications: Results in this section were generated on a workstation with an Intel Core
i7-8700K CPU (32 GB) and one NVIDIA GeForce RTX 2080 Ti GPU (11 GB).

Note: ViViT’s quantities are implemented through BackPACK, which is triggered by PyTorch’s gradient
computation. Consequently, they can only be computed together with PyTorch’s mini-batch gradient.

Architectures: We use untrained deep convolutional and residual networks from DeepOBS Schneider
et al. (2019) and Idelbayev (2018). If a net has batch normalization layers, we set them to evaluation mode.
Otherwise, the loss would not obey the sum structure of Equation (1). The batch normalization layers’
internal moving averages, required for evaluation mode, are initialized by performing five forward passes with
the current mini-batch in training mode before.

In experiments with fixed mini-batches the batch sizes correspond to DeepOBS’ default value for training
where possible (CIFAR-10: N = 128, Fashion-MNIST: N = 128). The residual networks use a batch size
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of N = 128. On CIFAR-100 (trained with N = 256), we reduce the batch size to N = 64 to fit the exact
computation on the full mini-batch, used as baseline, into memory. If the GGN approximation is evaluated
on a subset of the mini-batch (sub), ⌊N/8⌋ of the samples are used (as in Zhang et al. (2017)). The MC
approximation is always evaluated with a single sample (M = 1).

Memory performance (critical batch sizes): Two tasks are considered (see Section 3.1):

1. Computing eigenvalues: Compute the nontrivial eigenvalues {λk | (λk, ẽk) ∈ S̃+} .

2. Computing the top eigenpair: Compute the top eigenpair (λ1, e1).

We repeat the tasks above and vary the mini-batch size until the device runs out of memory. The largest
mini-batch size that can be handled by our system is denoted as Ncrit, the critical batch size. We determine
this number by bisection on the interval [1; 32768].

Figures S.8 to S.17a,b present the results. As described in Section 2.3, computing eigenvalues is more
memory-efficient than computing eigenvectors and exhibits larger critical batch sizes. In line with the
description in Section 2.4, a block-diagonal approximation is usually more memory-efficient and results in a
larger critical batch size. Curvature sub-sampling and MC approximation further increase the applicable
batch sizes.

In summary, we find that there always exists a combination of approximations which allows for critical batch
sizes larger than the traditional size used for training (some architectures even permit exact computation).
Different accuracy-cost trade-offs may be preferred, depending on the application and the computational
budget. By the presented approximations, ViViT’s representation is capable to adapt over a wide range.

Runtime performance: Here, we consider the task of computing the k leading eigenvectors and eigenvalues
of a matrix. ViViT’s eigenpair computation is compared with a power iteration that computes eigenpairs
iteratively via matrix-vector products. The power iteration baseline is based on the PyHessian library Yao
et al. (2019) and uses the same termination criterion (at most 100 matrix-vector products per eigenvalue;
stop if the eigenvalue estimate’s relative change is less than 10−3). In contrast to PyHessian, we use a
different data format and stack the computed eigenvectors. This reduces the number of for-loops in the
orthonormalization step. We repeat each run time measurement 20 times and report the shortest execution
time as result.

Figures S.8 to S.17c,d show the results. For most architectures, our exact method outperforms the power
iteration for k > 1 and increases only marginally in runtime as the number of requested eigenvectors grows.
The proposed approximations share this property, and further reduce run time.

Power iteration with relaxed hyperparameters: When ViViT’s approximations are used for computing
eigenvalues, a power iteration with relaxed hyperparameters might be an alternative. We thus extend the
runtime experiment from Section 3.1 in the following way: We consider the task of computing the top-10
eigenpairs of the mini-batch GGN on CIFAR-10 3c3d, with the same batch size N = 128, on GPU using
both ViViT and the power iteration. The resulting approximations of the eigenvalues λ̂k, k = 1, . . . , 10 are
compared with the exact eigenvalues λk, k = 1, . . . , 10 using

1 − 1
10

10∑
k=1

|λ̂k − λk|
|λk|

as a measure of accuracy. We run the power iteration with 20 different convergence tolerances varying on
a logarithmic grid from 10−5 to 10−1, and disable termination due to exceeded iterations. Each setting is
repeated 20 times, and we report the best run time and corresponding accuracy in Figure S.6.

In this setting, computing the exact top-10 eigenvalues with ViViT is faster than approximating them with a
power iteration, even when using the largest tested tolerance. Also, when using ViViT with approximations
through sub-sampling and MC-approximation, these runs require less run time than the power iteration
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Figure S.6: Accuracy per run time performance: Comparison of ViViT and its approximations to the
power iteration for computing the top-10 eigenvalues for the 3c3d architecture (D = 895,210) on CIFAR-10
(C = 10). For the power iteration, different tolerances ranging from 10−5 to 10−1 are used. The red star
shows the result for the default tolerance.

at similar accuracy. In the plot, we also highlighted the power iteration run with PyHessian’s default
convergence parameters (red star marker). It seems to yield a relatively good trade-off between time and
accuracy for the power iteration.

These results show that, also in terms of “accuracy per run time”, ViViT is superior to a power iteration in
the mini-batch setting due to its increased parallelism.

Power iteration on the GGN versus power iteration on the GGN Gram matrix: In the run time
evaluation of our method (Section 3.1) we compute the k leading GGN eigenpairs by computing the full GGN
Gram matrix spectrum and discarding all but the leading eigenpairs. Here, we present additional results
where we exchange the full diagonalization by a power iteration with identical convergence hyperparameters
as the baseline; a power iteration on the GGN.

Figure S.7 visualizes the comparison for the same setting as Figure 2b in the main text. In case of no
approximations (mb, exact) where the Gram matrix dimension is largest, the power iteration can further
reduce the run time shown in Figure 2b. However, for the GGN approximations through sub-sampling
or MC approximation, the power iteration on the (rather small) Gram matrix, deteriorates performance
in comparison to the results reported in Figure 2b as the number of leading eigenvalues increases. In this
regime (small Gram matrix, many requested eigenvalues), the simplistic power iteration can require more
matrix-vector products than a sophisticated eigensolver that computes the full spectrum. As in the main
text, these findings show that ViViT (even in the exact version) outperforms the power iteration for k ≥ 2.

Note on CIFAR-100 (large C): For data sets with a large number of classes, like CIFAR-100 (C = 100),
computations with the exact GGN are costly. In particular, constructing the Gram matrix G̃ has quadratic
memory cost in C, and its eigendecomposition has cubic cost in time with C (see Section 2.3).

As a result, the exact computation only works with batch sizes smaller than DeepOBS’ default (N = 256
for CIFAR-100, see Figures S.16 and S.17a,b). For the GGN block-diagonal approximation, which fits into
CPU memory for N = 64, the exact computation of top eigenpairs is slower than a power iteration and only
becomes comparable if a large number of eigenpairs is requested, see Figure S.17d.

For such data sets, the approximations proposed in Section 2.4 are essential to reduce costs. The most effective
approximation to eliminate the scaling with C is using an MC approximation. Figures S.16 and S.17 confirm
that the approximate computations scale to batch sizes used for training and that computing eigenpairs takes
less time than a power iteration.
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Figure S.7: Power iteration on the GGN versus power iteration on the Gram matrix: The figure
considers the same setting as Figure 2b (3c3d on CIFAR-10 and GPU). However, we exchange the full
diagonalization of the GGN’s Gram matrix by a power iteration with identical convergence hyperparameters
as the baseline power iteration on the GGN (at most 100 matrix-vector producst per eigenvalue; stop if the
eigenvalue estimate’s relative change is less than 10−3).

Computing damped Newton steps: A Newton step −(G + δI)−1g with damping δ > 0 can be
decomposed into updates along the eigenvectors of the GGN G,

−(G + δI)−1g =
K∑

k=1

−γk

λk + δ
ek +

D∑
k=K+1

−γk

δ
ek . (S.10)

It corresponds to a Newton update along nontrivial eigendirections that uses the first- and second-order
directional derivatives described in Section 2.2 and a gradient descent step with learning rate 1/δ along trivial
directions (with λk = 0). In the following, we refer to the first summand of Equation (S.10) as Newton step.
As described in Section 2.3, we can perform the weighted sum in the Gram matrix space, rather than the
parameter space, by computing

K∑
k=1

−γk

λk + δ
ek =

K∑
k=1

−γk

λk + δ

1√
λk

V ẽk = V

(
K∑

k=1

−γk

(λk + δ)
√

λk

ẽk

)
.

This way, only a single vector needs to be transformed from Gram space into parameter space.

Table S.2 shows the critical batch sizes for the Newton step computation (first term on the right-hand side of
Equation (S.10)), using Gram matrix eigenvalues larger than 10−4 and constant damping δ = 1. Second-order
directional derivatives λk are evaluated on the same samples as the GGN eigenvectors, but we always use all
mini-batch samples to compute the directional gradients γn. Using our approximations, the Newton step
computation scales to batch sizes beyond the traditional sizes used for training.
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Figure S.8: GPU memory and run time performance for the 2c2d architecture on Fashion-MNIST:
Left and right columns show results with the full network’s GGN (D = 3,274,634, C = 10) and a per-layer
block-diagonal approximation, respectively. (a, b) Critical batch sizes Ncrit for computing eigenvalues and
the top eigenpair. (c, d) Run time comparison with a power iteration for extracting the k leading eigenpairs
using a mini-batch of size N = 128.
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Figure S.9: CPU memory and run time performance for the 2c2d architecture on Fashion-MNIST:
Left and right columns show results with the full network’s GGN (D = 3,274,634, C = 10) and a per-layer
block-diagonal approximation, respectively. (a, b) Critical batch sizes Ncrit for computing eigenvalues and
the top eigenpair. (c, d) Run time comparison with a power iteration for extracting the k leading eigenpairs
using a mini-batch of size N = 128.
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Figure S.10: GPU memory and run time performance for the 3c3d architecture on CIFAR-10:
Left and right columns show results with the full network’s GGN (D = 895,210, C = 10) and a per-layer
block-diagonal approximation, respectively. (a, b) Critical batch sizes Ncrit for computing eigenvalues and
the top eigenpair. (c, d) Run time comparison with a power iteration for extracting the k leading eigenpairs
using a mini-batch of size N = 128.
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Figure S.11: CPU memory and run time performance for the 3c3d architecture on CIFAR-10:
Left and right columns show results with the full network’s GGN (D = 895,210, C = 10) and a per-layer
block-diagonal approximation, respectively. (a, b) Critical batch sizes Ncrit for computing eigenvalues and
the top eigenpair. (c, d) Run time comparison with a power iteration for extracting the k leading eigenpairs
using a mini-batch of size N = 128.
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Figure S.12: GPU memory and run time performance for the ResNet-32 architecture on CIFAR-
10: Left and right columns show results with the full network’s GGN (D = 464,154, C = 10) and a per-layer
block-diagonal approximation, respectively. (a, b) Critical batch sizes Ncrit for computing eigenvalues and
the top eigenpair. (c, d) Run time comparison with a power iteration for extracting the k leading eigenpairs
using a mini-batch of size N = 128.
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Figure S.13: CPU memory and run time performance for the ResNet-32 architecture on CIFAR-
10: Left and right columns show results with the full network’s GGN (D = 464,154, C = 10) and a per-layer
block-diagonal approximation, respectively. (c, d) Run time comparison with a power iteration for extracting
the k leading eigenpairs using a mini-batch of size N = 128.
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Figure S.14: GPU memory and run time performance for the ResNet-56 architecture on CIFAR-
10: Left and right columns show results with the full network’s GGN (D = 853,018, C = 10) and a per-layer
block-diagonal approximation, respectively. (a, b) Critical batch sizes Ncrit for computing eigenvalues and
the top eigenpair. (c, d) Run time comparison with a power iteration for extracting the k leading eigenpairs
using a mini-batch of size N = 128.
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Figure S.15: CPU memory and run time performance for the ResNet-56 architecture on CIFAR-
10: Left and right columns show results with the full network’s GGN (D = 853,018, C = 10) and a per-layer
block-diagonal approximation, respectively. (c, d) Run time comparison with a power iteration for extracting
the k leading eigenpairs using a mini-batch of size N = 128.
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Figure S.16: GPU memory and run time performance for the All-CNN-C architecture on
CIFAR-100: Left and right columns show results with the full network’s GGN (D = 1,387,108, C = 100)
and a per-layer block-diagonal approximation, respectively. (a, b) Critical batch sizes Ncrit for computing
eigenvalues and the top eigenpair. (c, d) Run time comparison with a power iteration for extracting the k
leading eigenpairs using a mini-batch of size N = 64.
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Figure S.17: CPU memory and run time performance for the All-CNN-C architecture on
CIFAR-100: Left and right columns show results with the full network’s GGN (D = 1,387,108, C = 100)
and a per-layer block-diagonal approximation, respectively. (a, b) Critical batch sizes Ncrit for computing
eigenvalues and the top eigenpair. (c, d) Run time comparison with a power iteration for extracting the k
leading eigenpairs using a mini-batch of size N = 64.
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Table S.2: Memory performance for computing damped Newton steps: Left and right columns
show the critical batch sizes with the full network’s GGN and a per-layer block-diagonal approximation,
respectively.

Fashion-MNIST 2c2d
Full network Block-diagonal approximation

Ncrit (GPU)

GGN
Data mb sub

exact 66 159
mc 362 528

Ncrit (CPU)

GGN
Data mb sub

exact 202 487
mc 1107 1639

Ncrit (GPU)

GGN
Data mb sub

exact 68 159
mc 368 528

Ncrit (CPU)

GGN
Data mb sub

exact 210 487
mc 1137 1643

CIFAR-10 3c3d
Full network Block-diagonal approximation

Ncrit (GPU)

GGN
Data mb sub

exact 208 727
mc 1055 1816

Ncrit (CPU)

GGN
Data mb sub

exact 667 2215
mc 3473 5632

Ncrit (GPU)

GGN
Data mb sub

exact 349 795
mc 1659 2112

Ncrit (CPU)

GGN
Data mb sub

exact 1046 2423
mc 4997 6838

CIFAR-10 ResNet-32
Full network Block-diagonal approximation

Ncrit (GPU)

GGN
Data mb sub

exact 344 1119
mc 1205 1535

-

Ncrit (GPU)

GGN
Data mb sub

exact 1051 1851
mc 2048 2208

.

CIFAR-10 ResNet-56
Full network Block-diagonal approximation

Ncrit (GPU)

GGN
Data mb sub

exact 209 640
mc 687 890

.

Ncrit (GPU)

GGN
Data mb sub

exact 767 1165
mc 1232 1255

.

CIFAR-100 All-CNN-C
Full network Block-diagonal approximation

Ncrit (GPU)

GGN
Data mb sub

exact 13 87
mc 640 959

Ncrit (CPU)

GGN
Data mb sub

exact 43 309
mc 2015 2865

Ncrit (GPU)

GGN
Data mb sub

exact 35 135
mc 1079 1536

Ncrit (CPU)

GGN
Data mb sub

exact 95 504
mc 3360 3920
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B.2 Training of neural networks

Procedure: We train the following DeepOBS (Schneider et al., 2019) architectures with SGD and Adam:
3c3d on CIFAR-10, 2c2d on Fashion-MNIST and All-CNN-C on CIFAR-100 – all are equipped with
cross-entropy loss. To ensure successful training, we use the hyperparameters from Dangel et al. (2020) (see
Table S.3).

We also train a residual network ResNet-32 He et al. (2016) with cross-entropy loss on CIFAR-10 with both
SGD and Adam. For this, we use a batch size of 128 and train for 180 epochs. Momentum for SGD was
fixed to 0.9, and Adam uses the default parameters (β1 = 0.9, β2 = 0.999, ϵ = 10−8). For both optimizers,
the learning rate was determined via grid search. Following (Schneider et al., 2019), we use a log-equidistant
grid from 10−5 to 102 and 36 grid points. As performance metric, the best test accuracy during training
(evaluated once every epoch) is used.

Results: The results for the hyperparameter grid search are reported in Table S.3. The training metrics
training/test loss/accuracy for all eight test problems are shown in Figure S.18 and S.19.

Table S.3: Hyperparameter settings for training runs: For both SGD and Adam, we report their
learning rates α (taken from the baselines in Dangel et al. (2020) or, for ResNet-32, determined via grid
search). Momentum for SGD is fixed to 0.9. Adam uses the default parameters β1 = 0.9, β2 = 0.999,
ϵ = 10−8. We also report the batch size used for training and the number of training epochs.

Problem SGD Adam Batch size Train epochs
Fashion-MNIST 2c2d α ≈ 2.07 · 10−2 α ≈ 1.27 · 10−4 N = 128 100
CIFAR-10 3c3d α ≈ 3.79 · 10−3 α ≈ 2.98 · 10−4 N = 128 100
CIFAR-10 ResNet-32 α ≈ 6.31 · 10−2 α ≈ 2.51 · 10−3 N = 128 180
CIFAR-100 All-CNN-C α ≈ 4.83 · 10−1 α ≈ 6.95 · 10−4 N = 256 350

B.3 GGN vs. Hessian

Checkpoints: During training of the neural networks (see Appendix B.2), we store a copy of the model
(i.e. the network’s current parameters) at specific checkpoints. This grid defines the temporal resolution for
all subsequent computations. Since training progresses much faster in the early training stages, we use a
log-grid with 100 grid points between 1 and the number of training epochs and shift this grid by −1.

Overlap: Recall from Section 3.2: For the set of orthonormal eigenvectors {eU
c }C

c=1 to the C largest
eigenvalues of some symmetric matrix U , let P U = (eU

1 , ..., eU
C )(eU

1 , ..., eU
C )⊤. As in Gur-Ari et al. (2018),

the overlap between two subspaces EU = span (eU
1 , ..., eU

C ) and EV = span (eV
1 , ..., eV

C ) of the matrices U
and V is defined by

overlap(EU , EV ) = Tr (P U P V )√
Tr (P U ) Tr (P V )

∈ [0, 1] .

The overlap can be computed efficiently by using the trace’s cyclic property: It holds Tr (P U P V ) =
Tr (W ⊤W ) with W = (eU

1 , ..., eU
C )⊤(eV

1 , ..., eV
C ) ∈ RC×C . Note that this is a small C × C matrix, whereas

P U , P V ∈ RD×D. Since

Tr (P U ) = Tr ((eU
1 , ..., eU

C )(eU
1 , ..., eU

C )⊤)
= Tr ((eU

1 , ..., eU
C )⊤(eU

1 , ..., eU
C )) (Cyclic property of trace)

= Tr (IC) (Orthonormality of the eigenvectors)
= C

(and analogous Tr (P V ) = C), the denominator simplifies to C.
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Fashion-MNIST 2c2d Adam
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CIFAR-10 3c3d SGD
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CIFAR-10 3c3d Adam
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Figure S.18: Training metrics (1): Training/test loss/accuracy for all test problems.
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CIFAR-10 ResNet-32 SGD
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CIFAR-10 ResNet-32 Adam
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CIFAR-100 All-CNN-C SGD
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CIFAR-100 All-CNN-C Adam
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Figure S.19: Training metrics (2): Training/test loss/accuracy for all test problems.
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Procedure: For each checkpoint, we compute the top-C eigenvalues and associated eigenvectors of the
full-batch GGN and Hessian (i.e. GGN and Hessian are both evaluated on the entire training set) using an
iterative matrix-free approach. We then compute the overlap between the top-C eigenspaces as described
above. The eigspaces (i.e. the top-C eigenvalues and associated eigenvectors) are stored on disk such that
they can be used as a reference by subsequent experiments.

Results: The results for all test problems are presented in Figure S.20. Except for a short phase at the
beginning of the optimization procedure (note the log scale for the epoch-axis), a strong agreement (note the
different limits for the overlap-axis) between the top-C eigenspaces is observed. We make similar observations
for all test problems, yet to a slightly lesser extent for CIFAR-100. A possible explanation for this would be
that the 100-dimensional eigenspaces differ in the eigenvectors associated with relatively small curvature.
The corresponding eigenvalues already transition into the bulk of the spectrum, where the "sharpness of
separation" decreases. However, since all directions are equally weighted in the overlap, overall slightly lower
values are obtained.

B.4 Eigenspace under noise and approximations

Procedure (1): We use the checkpoints and the definition of overlaps between eigenspaces from Ap-
pendix B.3. For the approximation of the GGN, we consider the cases listed in Table S.4.

Table S.4: Considered cases for approximation of the eigenspace: We use a different set of cases for
the approximation of the GGN’s full-batch eigenspace depending on the test problem. For the test problems
with C = 10, we use M = 1 MC-sample, for the CIFAR-100 All-CNN-C test problem (C = 100), we use
M = 10 MC-samples in order to reduce the computational costs by the same factor.

Problem Cases
Fashion-MNIST 2c2d
CIFAR-10 3c3d and
CIFAR-10 ResNet-32

mb, exact with mini-batch sizes N ∈ {2, 8, 32, 128}
mb, mc with N = 128 and M = 1 MC-sample
sub, exact using 16 samples from the mini-batch
sub, mc using 16 samples from the mini-batch and M = 1

MC-sample
CIFAR-100 All-CNN-C mb, exact with mini-batch sizes N ∈ {2, 8, 32, 128}

mb, mc with N = 128 and M = 10 MC-samples
sub, exact using 16 samples from the mini-batch
sub, mc using 16 samples from the mini-batch and M = 10

MC-samples

For every checkpoint and case, we compute the top-C eigenvectors of the respective approximation to the
GGN. The eigenvectors are either computed directly using ViViT (by transforming eigenvectors of the Gram
matrix into parameter space, see Section 2.1) or, if not applicable (because memory requirements exceed
Ncrit, see Section 3.1), using an iterative matrix-free approach. The overlap is computed in reference to
the GGN’s full-batch top-C eigenspace (see Appendix B.3). We extract 5 mini-batches from the training
data and repeat the above procedure for each mini-batch (i.e. we obtain 5 overlap measurements for every
checkpoint and case). The same 5 mini-batches are used over all checkpoints and cases.

Results (1): The results can be found in Figure S.21 and S.22. All test problems show the same
characteristics: With decreasing computational effort, the approximation carries less and less structure of its
full-batch counterpart, as indicated by dropping overlaps. In addition, for a fixed approximation method, a
decrease in approximation quality can be observed over the course of training.

Procedure (2): Since ViViT’s GGN approximations using curvature sub-sampling and/or the MC
approximation (the cases mb, mc as well as sub, exact and sub, mc in Table S.4) are based on the
mini-batch GGN, we cannot expect them to perform better than this baseline. We thus repeat the analysis
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Figure S.20: Full-batch GGN vs. full-batch Hessian: Overlap between the top-C eigenspaces of the
full-batch GGN and full-batch Hessian during training for all test problems.
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Figure S.21: ViViT vs. full-batch GGN (1): Overlap between the top-C eigenspaces of different GGN
approximations and the full-batch GGN during training for all test problems. Each approximation is evaluated
on 5 different mini-batches.
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Figure S.22: ViViT vs. full-batch GGN (2): Overlap between the top-C eigenspaces of different GGN
approximations and the full-batch GGN during training for all test problems. Each approximation is evaluated
on 5 different mini-batches.
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from above but use the mini-batch GGN with batch-size N = 128 as ground truth instead of the full-batch
GGN. Of course, the mini-batch reference top-C eigenspace is always evaluated on the same mini-batch as
the approximation.

Results (2): The results can be found in Figure S.23. Over large parts of the optimization (note the log
scale for the epoch-axis), the MC approximation seems to be better suited than curvature sub-sampling
(which has comparable computational cost). For the CIFAR-100 All-CNN-C test problem, the MC
approximation stands out particularly early from the other approximations and consistently yields higher
overlaps with the mini-batch GGN.

B.5 Curvature under noise and approximations

GGN and Hessian are predominantly used to locally approximate the loss by a quadratic model q (see
Equation (6)). Even if the curvature’s eigenspace is completely preserved in spite of the approximations, they
can still alter the curvature magnitude along the eigenvectors.

Procedure: Table S.5 gives an overview over the cases considered in this experiment.

Table S.5: Considered cases for approximation of curvature: We use a different set of cases for the
approximation of the GGN depending on the test problem. For the test problems with C = 10, we use
M = 1 MC-sample, for the CIFAR-100 All-CNN-C test problem (C = 100), we use M = 10 MC-samples
in order to reduce the computational costs by the same factor.

Problem Cases
Fashion-MNIST 2c2d
CIFAR-10 3c3d and
CIFAR-10 ResNet-32

mb, exact with mini-batch size N = 128
mb, mc with N = 128 and M = 1 MC-sample
sub, exact using 16 samples from the mini-batch
sub, mc using 16 samples from the mini-batch and M = 1

MC-sample
CIFAR-100 All-CNN-C mb, exact with mini-batch size N = 128

mb, mc with N = 128 and M = 10 MC-samples
sub, exact using 16 samples from the mini-batch
sub, mc using 16 samples from the mini-batch and M = 10

MC-samples

Due to the large computational effort needed for the evaluation of full-batch directional derivatives, a subset
of the checkpoints from Appendix B.3 is used for two test problems: We use every second checkpoint for
CIFAR-10 ResNet-32 and every forth checkpoint for CIFAR-100 All-CNN-C.

For each checkpoint and case, we compute the top-C eigenvectors {ek}C
k=1 of the GGN approximation

G(ap) either with ViViT or using an iterative matrix-free approach (as in Appendix B.4). The second-
order directional derivative of the corresponding quadratic model along direction ek is then given by
λ

(ap)
k = e⊤

k G(ap)ek (see Equation (7)). As a reference, we compute the full-batch GGN G(fb) and the
resulting directional derivatives along the same eigenvectors {ek}C

k=1, i.e. λ
(fb)
k = e⊤

k G(fb)ek. The average
(over all C directions) relative error is given by

ϵ = 1
C

C∑
k=1

|λ(ap)
k − λ

(fb)
k |

λ
(fb)
k

.

The procedure above is repeated on 3 mini-batches from the training data (i.e. we obtain 3 average relative
errors for every checkpoint and case) – except for the CIFAR-100 All-CNN-C test problem, where we
perform only a single run to keep the computational effort manageable.
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Figure S.23: ViViT vs. mini-batch GGN: Overlap between the top-C eigenspaces of different GGN
approximations and the mini-batch GGN during training for all test problems. Each approximation is
evaluated on 5 different mini-batches.

40



Published in Transactions on Machine Learning Research (02/2023)

Results: The results can be found in Figure S.24. We observe similar results as in Appendix B.4: With
increasing computational effort, the approximated directional derivatives become more precise and the overall
approximation quality decreases over the course of the optimization. For the ResNet-32 architecture, the
average errors are particularly large.

B.6 Directional derivatives

Procedure: We use the checkpoints from Appendix B.3. For every checkpoint, we compute the top-C
eigenvectors of the mini-batch GGN (with a mini-batch size of N = 128) using an iterative matrix-free
method. We also compute the mini-batch gradient. The first- and second-order directional derivatives of the
resulting quadratic model (see Equation (6)) are given by Equation (8).

We use these directional derivatives {γnk}N,C
n=1,k=1, {λnk}N,C

n=1,k=1 to compute signal-to-noise ratios (SNRs)
along the top-C eigenvectors. The curvature SNR along direction ek is given by the squared sample mean
divided by the empirical variance of the samples {λnk}N

n=1, i.e.

SNR = λ2
k

1/N−1
∑N

n=1(λnk − λk)2
where λk = 1

N

N∑
n=1

λnk .

(and similarly for {γnk}N
n=1).

Results: The results can be found in Figure S.25 and S.26. These plots show the SNRs in C distinct colors
that are generated by linearly interpolating in the RGB color space from black ( ) to light red ( ). At each
checkpoint, the colors are assigned based on the order of the respective directional curvature λk: The SNR
that belongs to the direction with the smallest curvature is shown in black and the SNR that belongs to the
direction with the largest curvature is shown in light red. The color thus encodes only the order of the top-C
directional curvatures – not their magnitude. We use this color encoding to reveal potential correlations
between SNR and curvature.

We find that the gradient SNR along the top-C eigenvectors is consistently small (in comparison to the
curvature SNR) and remains roughly on the same level during the optimization. The curvature signal
decreases as training proceeds. The SNRs along the top-C eigendirections do not appear to show any
significant correlation with the corresponding curvatures. Only for the CIFAR-100 test problems we can
suspect a correlation between strong curvature and small curvature SNR.

C Implementation details

Layer view of backpropagation: Consider a single layer T
(i)
θ(i) that transforms inputs z

(i−1)
n ∈ Rh(i−1) into

outputs z
(i)
n ∈ Rh(i) by means of a parameter θ(i) ∈ Rd(i) . During backpropagation for V , the layer receives

vectors s
(i)
nc = (J

z
(i)
n

fn)⊤snc from the previous stage (recall ∇2
f ℓn =

∑C
c=1 sncs⊤

nc). Parameter contributions
v

(i)
nc to V are obtained by application of its Jacobian,

v(i)
nc = (Jθ(i)fn)⊤

snc

=
(

Jθ(i)z(i)
n

)⊤ (
J

z
(i)
n

fn

)⊤
snc (Chain rule)

=
(

Jθ(i)z(i)
n

)⊤
s(i)

nc . (Definition of s(i)
nc) (S.11)

Consequently, the contribution of θ(i) to V , denoted by V (i) ∈ Rd(i)×NC , is

V (i) = 1√
N

(
v

(i)
11 v

(i)
12 . . . v

(i)
NC

)
with v(i)

nc = (Jθ(i)fn)⊤
snc . (S.12)
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Figure S.24: ViViT’s vs. full-batch quadratic model: Comparison between approximations to the
quadratic model and the full-batch model in terms of the average relative error for the directional curvature
during training for all test problems.
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Figure S.25: Directional SNRs (1): SNR along each of the mini-batch GGN’s top-C eigenvectors during
training for all test problems. At fixed epoch, the SNR for the most curved direction is shown in and for
the least curved direction in .
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Figure S.26: Directional SNRs (2): SNR along each of the mini-batch GGN’s top-C eigenvectors during
training for all test problems. At fixed epoch, the SNR for the most curved direction is shown in and for
the least curved direction in .
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C.1 Optimized Gram matrix computation for linear layers

Our goal is to efficiently extract θ(i)’s contribution to the Gram matrix G̃, given by

G̃(i) = V (i)⊤
V (i) ∈ RNC×NC . (S.13)

Gram matrix via expanding V (i): One way to construct G(i) is to first expand V (i) (Equation (S.12))
via the Jacobian Jθ(i)z

(i)
n , then contract it (Equation (S.13)). This can be a memory bottleneck for large

linear layers which are common in many architectures close to the network output. However if only the Gram
matrix rather than V is required, structure in the Jacobian can be used to construct G̃(i) without expanding
V (i) and thus reduce this overhead.

Optimization for linear layers: Now, let T
(i)
θ(i) be a linear layer with weights W (i) ∈ Rh(i)×h(i−1) , i.e.

θ(i) = vec(W (i)) ∈ Rd(i)=h(i)h(i−1) with column stacking convention for vectorization,

T
(i)
θ(i) : z(i)

n = W (i)z(i−1)
n .

The Jacobian is

Jθ(i)z(i)
n = z(i−1)

n

⊤ ⊗ Ih(i) . (S.14)

Its structure can be used to directly compute entries of the Gram matrix without expanding V (i),[
G̃(i)

]
(nc)(n′c′)

= v(i)
nc

⊤
v

(i)
n′c′ (Equation (S.13))

= s(i)
nc

⊤ (
Jθ(i)z(i)

n

)(
Jθ(i)z

(i)
n′

)⊤
s

(i)
n′c′

= s(i)
nc

⊤ (
z(i−1)

n

⊤ ⊗ Ih(i)

)(
z

(i−1)
n′

⊤
⊗ Ih(i)

)⊤

s
(i)
n′c′ (Equation (S.14))

= s(i)
nc

⊤ (
z(i−1)

n

⊤
z

(i−1)
n′ ⊗ Ih(i)

)
s

(i)
n′c′ (Equation (S.11))

= z(i−1)
n

⊤
z

(i−1)
n′ s(i)

nc

⊤
Ih(i)s

(i)
n′c′ (z(i−1)

n

⊤
z

(i−1)
n′ ∈ R)

=
(

z(i−1)
n

⊤
z

(i−1)
n′

)(
s(i)

nc

⊤
s

(i)
n′c′

)
.

We see that the Gram matrix is built from two Gram matrices based on {z
(i−1)
n }N

n=1 and {s
(i)
nc}N,C

n=1,c=1, that
require O(N2) and O((NC)2) memory, respectively. In comparison, the naïve approach via V (i) ∈ Rd(i)×NC

scales with the number of weights, which is often comparable to D. For instance, the 3c3d architecture on
CIFAR-10 has D = 895,210 and the largest weight matrix has d(i) = 589,824, whereas NC = 1,280 during
training (Schneider et al., 2019).

Run time comparison: To evaluate the efficiency of our optimization for linear layers, we consider a
multi-layer perceptron with 1024 → 512 → 256 → 128 → 64 → 32 → C = 10 units, each activated by ReLU
except for the last, and mean squared error as loss function. We set the batch size to N = 128 and randomly
generate synthetic inputs and labels. The following tasks are considered (results are for GPU, reporting the
smallest run time over 20 repetitions):

• T1: Mini-batch gradient computation: tgrad ≈ 0.774 ms (1.0 x)

• T2: Naive computation of explicit V : tV ≈ 9.25 ms (11.9 x)

• T3: Naive computation of the Gram matrix G̃ via explicit V : tV ,G̃ ≈ 233 ms (301 x)

• T4: Optimized computation of G̃ via implicit V : tV ,G̃,opt ≈ 4.28 ms (5.5 x)
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The main finding of this comparison is that, for this setting, our optimized approach (T4) computes
the Gram matrix >50 x faster than the naive approach (T3), and requires less than C gradient
computations (T1). Detailed description:

• Naive computations of V (T2) and G̃ (T3) are slow: From the complexity analysis in
Section 2.3, we expect tV ≈ Ctgrad. Empirically, we observe a factor of 11.9. Despite the use of
a GPU, performance does not improve. We believe this may be because the operation requires
allocating and writing large amounts of data into memory for V . Naively expanding this explicit V ,
then computing G̃ (T3), would cost tV ,G/tgrad ≈ 301 gradients.

• Our optimized approach to implicitly work with V in combination with exploiting
structure in the Jacobian (T4) is fast: With our optimizations, we observe tV ,G̃,opt/tgrad ≈ 5.5.
This is a > 50 x speed-up over the naive approach (T3)! It also requires less than C gradient
computations, i.e. almost 50% of the expected overhead is compensated by parallelism on the GPU.

In our work, we first extended the BackPACK package by the naive operations T2 and T3 described above.
These are already superior to for-loop based approaches with PyTorch’s built-in automatic differentiation
because BackPACK implements vectorized vector-Jacobian products. On top of that, we then further
significantly improved performance through structural tricks (T4), as shown above.

C.2 Implicit multiplication with the inverse (block-diagonal) GGN

Inverse GGN-vector products: A damped Newton step requires multiplication by (G + δID)−1.8 By
means of Equation (3) and the matrix inversion lemma,

(δID + G)−1 =
(
δID + V V ⊤)−1 (Equation (3))

= 1
δ

(
ID + 1

δ
V V ⊤

)−1

= 1
δ

[
ID − 1

δ
V

(
INC + V ⊤ 1

δ
V

)−1
V ⊤

]
(Matrix inversion lemma)

= 1
δ

[
ID − V

(
δINC + V ⊤V

)−1
V ⊤

]
(Gram matrix)

= 1
δ

[
ID − V

(
δINC + G̃

)−1
V ⊤

]
. (S.15)

Inverse GGN-vector products require inversion of the damped Gram matrix as well as applications of V , V ⊤

for the transformations between Gram and parameter space.

Inverse block-diagonal GGN-vector products: Next, we replace the full GGN by its block diagonal
approximation G ≈ GBDA = diag(G(1), G(2), . . . ) with

G(i) = V (i)V (i)⊤ ∈ Rd(i)×d(i)

and V (i) as in Equation (S.12). Then, inverse multiplication reduces to each block,

G−1
BDA = diag

(
G(1)−1

, G(2)−1
, . . .

)
.

If again a damped Newton step is considered, we can reuse Equation (S.15) with the substitutions(
G, D, V , V ⊤, G̃

)
↔
(

G(i), d(i), V (i), V (i)⊤
, G̃(i)

)
to apply the inverse and immediately discard the ViViT factors: At backpropagation of layer T

(i)
θ(i)

8δID can be replaced by other easy-to-invert matrices.
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1. Compute V (i) using Equation (S.12).

2. Compute G̃(i) using Equation (S.13).

3. Compute
(
δINC + G̃(i))−1.

4. Apply the inverse in Equation (S.15) with the above substitutions to the target vector.

5. Discard V (i), V (i)⊤
, G̃(i), and

(
δINC + G̃(i))−1. Proceed to layer i − 1.

Note that the above scheme should only be used for parameters that satisfy d(i) > NC, i.e. dim(G(i)) >
dim(G̃(i)). Low-dimensional parameters can be grouped with others to increase their joint dimension, and to
control the block structure of GBDA.
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