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Abstract

This paper presents convergence analysis of kernel-based quadrature rules in misspecified
settings, focusing on deterministic quadrature in Sobolev spaces. In particular, we deal with
misspecified settings where a test integrand is less smooth than a Sobolev RKHS based on
which a quadrature rule is constructed. We provide convergence guarantees based on two
different assumptions on a quadrature rule: one on quadrature weights, and the other on
design points. More precisely, we show that convergence rates can be derived (i) if the sum of
absolute weights remains constant (or does not increase quickly), or (ii) if the minimum distance
between distance design points does not decrease very quickly. As a consequence of the latter
result, we derive a rate of convergence for Bayesian quadrature in misspecified settings. We
reveal a condition on design points to make Bayesian quadrature robust to misspecification,
and show that, under this condition, it may adaptively achieve the optimal rate of convergence
in the Sobolev space of a lesser order (i.e., of the unknown smoothness of a test integrand),
under a slightly stronger regularity condition on the integrand.

MSC 2010 subject classification: Primary: 65D30, Secondary: 65D32, 65D05, 46E35, 46E22.
Keywords and phrases: kernel-based quadrature rules, misspecified settings, Sobolev spaces,
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1 Introduction

This paper discusses the problem of numerical integration (or quadrature), which has been a
fundamental task in numerical analysis, statistics, computer science including machine learning
and other areas. Let P be a (known) Borel probability measure on the Euclidean space R

d with
support contained in an open set Ω ⊂ R

d, and f be an integrand on Ω. Suppose that the
integral

∫
f(x)dP (x) has no closed form solution. We consider quadrature rules that provide an

approximation of the integral, in the form of a weighted sum of function values
n∑

i=1

wif(Xi) ≈
∫
f(x)dP (x),
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where X1, . . . ,Xn ∈ Ω are design points and w1, . . . , wn ∈ R are quadrature weights. Throughout
this paper, the integral of f and its quadrature estimate are denoted by Pf and Pnf , respectively;
namely,

Pf :=

∫
f(x)dP (x), Pnf :=

n∑

i=1

wif(Xi).

Examples of such quadrature rules include Monte Carlo methods, which make use of a random
sample from a suitable proposal distribution as X1, . . . ,Xn, and importance weights as w1, . . . , wn.
A limitation of standard Monte Carlo methods is that a huge number of design points (i.e., large
n) may be needed for providing an accurate approximation of the integral; this comes from the
fact that the rate of convergence of Monte Carlo methods is typically of the order O(n−1/2). The
need for large n is problematic, when an evaluation of the function value f(x) is expensive for each
input x. Such situations appear in modern scientific and engineering problems where the mapping
x 7→ f(x) involves complicated computer simulation. In applications to time-series forecasting, for
instance, x may be a parameter of an underlying system, f(x) a certain quantity of interest in
future, and P a prior distribution on x. Then the target integral

∫
f(x)dP (x) is the predictive

value of the future quantity. The evaluation of f(x) for each x may require numerically solving an
initial value problem for the differential equation, which results in time-consuming computation
[7]. Similar examples can be seen in applications to statistics and machine learning, as mentioned
below. In these situations, one can only use a limited number of design points, and thus it is
desirable to have quadrature rules with a faster convergence rate, in order to obtain a reliable
solution [42].

1.1 Kernel-based quadrature rules

How can we obtain a quadrature rule whose convergence rate is faster than O(n−1/2)? In prac-
tice, one often has prior knowledge or belief on the integrand f , such as smoothness, periodicity,
sparsity, and so on. Exploiting such knowledge or assumption in constructing a quadrature rule
{(wi,Xi)}ni=1 may achieve faster rates of convergence, and such methods have been extensively
studied in the literature for decades; see e.g. [16] and [9] for review.

This paper deals with quadrature rules using reproducing kernel Hilbert spaces (RKHS) explic-
itly or implicitly to achieve fast convergence rates; we will refer to such methods as kernel-based
quadrature rules or simply kernel quadrature. As discussed in Section 2.4, notable examples include
Quasi Monte Carlo methods [25, 39, 16, 17], Bayesian quadrature [44, 9], and Kernel herding [10, 5].
These methods have been studied extensively in recent years [49, 8, 41, 42, 4] and have recently
found applications in, for instance, machine learning and statistics [3, 30, 20, 9, 29].

In kernel quadrature, we make use of available knowledge on properties of the integrand f by
assuming that f belongs to a certain RKHS Hk that possesses those properties (where k is the
reproducing kernel), and then constructing weighted points {(wi,Xi)}ni=1 such that the worst case
error in the RKHS

en(P ;Hk) := sup
f∈Hk :‖f‖Hk

≤1
|Pf − Pnf | (1)

is made small, where ‖ · ‖Hk
is the norm of Hk. The use of RKHS is beneficial when compared to

other function spaces, as it leads to a closed form expression of the worst case error (1) in terms of
the kernel, and thus one may explicitly use this expression for designing {(wi,Xi)}ni=1 (see Section
2.3).
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Note that, in a well-specified case, that is, the integrand f satisfies f ∈ Hk, the quadrature
error is bounded as

|Pnf − Pf | ≤ ‖f‖Hk
en(P ;Hk).

This guarantees that, if a quadrature rule satisfies en(P ;Hk) = O(n−b) as n→ ∞ for some b > 0,
then the quadrature error also satisfies |Pnf − Pf | = O(n−b). Take a Sobolev space Hr(Ω) of
order r > d/2 on Ω as the RKHS Hk, for example. It is known that optimal quadrature rules
achieve en(P ;Hk) = O(n−r/d) [37], and thus |Pnf − Pf | = O(n−r/d) holds for any f ∈ Hk. As we
have r/d > 1/2, this rate is faster than Monte Carlo integration; this is the desideratum that has
been discussed.

1.2 Misspecified settings

This paper focuses on situations where the assumption f ∈ Hk is violated, that is, misspecified
settings. As explained above, convergence guarantees for kernel quadrature rules often assume that
f ∈ Hk. However, in practice one may lack the full knowledge on the properties on the integrand,
and therefore misspecification of the RKHS (via the choice of its reproducing kernel k) may occur,
that is, f /∈ Hk.

Such misspecification is likely to happen when the integrand is a black box function. An
illustrative example can be found in applications to computer graphics such as the problem of
illumination integration (see e.g. [9]), where the task is to compute the total amount of light arriving
at a camera in a virtual environment. This problem is solved by quadrature, with integrand f(x)
being the intensity of light arriving at the camera from a direction x (angle). However, the value
of f(x) is only given by simulation of the environment for each x, so the integrand f is a black
box function. Similar situations can be found in application to statistics and machine learning. A
representable example is the computation of marginal likelihood for a probabilistic model, which
is an important but challenging task required for model section (see e.g. [43]). In modern scientific
applications where complex phenomena are dealt with (e.g. climate science), we often encounter
situations where the evaluation of a likelihood function, which forms the integrand in marginal
likelihood computation, involves an expensive simulation model, making the integrand complex
and even black box.

If the integrand is a black box function, there is a trade-off between the risk of misspecification
and gain in the rate of convergence for kernel-based quadrature rules; for a faster convergence rate,
one may want to use a quadrature rule for a narrower Hk such as of higher order differentiability,
while such a choice may cause misspecification of the function class. Therefore it is of great
importance to elucidate their convergence properties in misspecified situations, in order to make
use of such quadrature rules in a safe manner.

1.3 Contributions

This paper provides convergence rates of kernel-based quadrature rules in misspecified settings,
focusing on deterministic rules (i.e., without randomization). The focus of misspecification is
placed on the order of Sobolev spaces: the unknown order s of the integrand f is overestimated as
r, that is, s ≤ r.

Let Ω ⊂ R
d be a bounded domain with a Lipschitz boundary (see Section 3 for definition). For

r > d/2, consider a positive definite kernel kr on Ω that satisfies the following assumption;
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Assumption 1. The kernel kr on Ω satisfies kr(x, y) := Φ(x − y), where Φ : Rd → R is a positive
definite function such that

C1(1 + ‖ξ‖2)−r ≤ Φ̂(ξ) ≤ C2(1 + ‖ξ‖2)−r

for some constants C1, C2 > 0, where Φ̂ is the Fourier transform of Φ. The RKHS Hkr(Ω) is the
restriction of Hkr(R

d) to Ω (see Section 2).

The resulting RKHS Hkr(Ω) is norm-equivalent to the standard Sobolev space Hr(Ω). The
Matérn and Wendland kernels satisfy Assumption 1 (see Section 2).

Consider a quadrature rule {(wi,Xi)}ni=1 with the kernel kr such that

en(P ;Hkr(Ω)) = O(n−b) (n→ ∞). (2)

We do not specify how the weighted points are generated, but assume (2) aiming for wide appli-
cability. Suppose that an integrand f : Ω → R has partial derivatives up to order s and they are
bounded and uniformly continuous. If s ≤ r, the integrand may not belong to the assumed RKHS
Hkr , in which case a misspecification occurs.

Under this misspecified setting, two types of assumptions on the quadrature rule {(wi,Xi)}ni=1

will be considered: one on the quadrature weights w1, . . . , wn (Section 4.1), and the other on the
design points X1, . . . ,Xn (Section 4.2). In both cases, a rate of convergence of the form

|Pnf − Pf | = O(n−bs/r), (n→ ∞) (3)

will be derived under some additional conditions. The results guarantee the convergence in the
misspecified setting, and the rate is determined by the ratio s/r between the true smoothness s and
the assumed smoothness r. As discussed in Section 2, the optimal rate of deterministic quadrature
rules for the Sobolev space Hr(Ω) is O(n−r/d) [37]. If a quadrature rule satisfies this optimal rate
(i.e., b = r/d), then the rate (3) becomes O(n−s/d) for an integrand f ∈ Hs(Ω) (s < r), which
matches the optimal rate for Hs(Ω).

The specific results are summarized as follows:

• In Section 4.1, it is assumed that
∑n

i=1 |wi| = O(nc) as n → ∞ for some constant c ≥ 0.
Note that c = 0 is taken if the weights satisfy maxi=1,...,n |wi| = O(n−1), an example of
which is the equal weights w1 = · · · = wn = 1/n. Under this assumption and other suitable
conditions, Corollary 7 shows

|Pnf − Pf | = O(n−bs/r+c(r−s)/r) (n→ ∞).

The rate O(n−bs/r) in (3) holds if c = 0. Therefore this result provides convergence guarantees
in particular for equal-weight quadrature rules, such as quasi Monte Carlo methods and kernel
herding, in the misspecified setting.

• Section 4.2 uses an assumption on design points Xn := {X1, . . . ,Xn} in terms of separation
radius qXn , which is defined by

qXn :=
1

2
min
i 6=j

‖Xi −Xj‖. (4)

Corollary 9 shows that, if qXn = Θ(n−a) as n → ∞ for some a > 0, under other regularity
conditions,

|Pnf − Pf | = O(n−min(b−a(r−s),as)) (n→ ∞).
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The best possible rate is O(n−bs/r) when a = b/r. This result provides a convergence
guarantee for quadrature rules that obtain the weights w1, . . . , wn to give O(n−b) for the worst
case error with X1, . . . ,Xn fixed beforehand. We demonstrate this result by applying it to
Bayesian quadrature, as explained below. Our result may also provide the following guideline
for practitioners: in order to make a kernel quadrature rule robust to misspecification, one
should specify the design points so that the spacing is not too small.

• Section 5 discusses a convergence rate for Bayesian quadrature under the misspecified setting,
demonstrating the results of Section 4.2. Given design points Xn = {X1, . . . ,Xn}, Bayesian
quadrature defines weights w1, . . . , wn as the minimizer of the worst case error (1), which
can be obtained by solving a linear equation (see Section 2.4 for more detail). For points
Xn = {X1, . . . ,Xn} in Ω, the fill distance hXn,Ω is defined by

hXn,Ω := sup
x∈Ω

min
i=1,...,n

‖x−Xi‖. (5)

Assume that there exists a constant cq > 0 independent of Xn such that

hXn,Ω ≤ cqqXn ,

and that hXn,Ω = O(n−1/d) as n → ∞. Then Corollary 11 shows that with Bayesian
quadrature weights based on the kernel kr we have

|Pnf − Pf | = O(n−s/d) (n → ∞).

Note that the rate O(n−s/d) matches the minimax optimal rate for deterministic quadrature
rules in the Sobolev space of order s [37], which implies that Bayesian quadrature can be
adaptive to the unknown smoothness s of the integrand f . The adaptivity means that it can
achieve the rate O(n−s/d) without the knowledge of s; it only requires the knowledge of the
upper bound of the true smoothness s ≤ r.

• Section 3 establishes a rate of convergence for Bayesian quadrature in the well-specified case,
which serves as a basis for the results in the misspecified case (Section 5). Corollary 5 asserts
that if the the design points satisfy hXn,Ω = O(n−1/d) as n→ ∞, then

en(P ;Hkr(Ω)) = O(n−r/d) (n→ ∞).

This rate O(n−r/d) is minimax optimal for deterministic quadrature rules in Sobolev spaces.
To the best of our knowledge, this optimality of Bayesian quadrature has not been established
before, while recently there has been extensive theoretical analysis on Bayesian quadrature
[8, 9, 40, 4].

This paper is organized as follows. Section 2 provides various definitions, notation and preliminaries
including reviews on kernel-based quadrature rules. Section 3 then establishes a rate of convergence
for the worst case error of Bayesian quadrature in a Sobolev space. Section 4 presents the main
contributions on the convergence analysis in misspecified settings, and Section 5 demonstrates
these results by applying them to Bayesian quadrature. Finally Section 6 concludes the paper
with possible future directions.

Preliminary results. This paper expands on preliminary results reported in a conference paper
by the authors [28]. Specifically, this paper is a complete version of the results presented in Section
5 of [28]. The current paper contains significantly new topics mainly in the following points: (i)
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We establish the rate of convergence for Bayesian quadrature with deterministic design points, and
show that it can achieve minimax optimal rates in Sobolev spaces (Section 3); (ii) We apply our
general convergence guarantees in misspecified settings to the specific case of Bayesian quadrature,
and reveal the conditions required for Bayesian quadrature to be robust to misspecification (Section
5); To make the contribution (ii) possible, we derive finite sample bounds on quadrature error in
misspecified settings (Section 4). These results are not included in the conference paper.

We also mention that this paper does not contain the results presented in Section 4 of the
conference paper [28], which deal with randomized design points. For randomized design points,
theoretical analysis can be done based on an approximation theory developed in the statical learn-
ing theory literature [11]. On the other hand, the analysis in the deterministic case makes use of
the approximation theory developed by [35], which is based on Calderón’s decomposition formula
in harmonic analysis [18]. This paper focuses on the deterministic case, and we will report a com-
plete version of the randomized case in a forthcoming paper.

Related work. The setting of this paper is complementary to that of [41], in which the integrand
is smoother than assumed. That paper proposes to apply the control functional method by [42] to
Quasi Monte Carlo integration, in order to make it adaptable to the (unknown) greater smoothness
of the integrand.

Another related line of research is the proposals of quadrature rules that are adaptive to less
smooth integrands [13, 14, 15, 19, 22]. For instance, [19] proposed a kernel-based quadrature rule
on a finite dimensional sphere. Their method is essentially a Bayesian quadrature using a specific
kernel designed for spheres. They derive convergence rates for this method both in well-specified
and misspecified settings, and obtain results similar to ours. The current work differs from [19] in
mainly two aspects: (i) quadrature problems considered in standard Euclidean spaces, as opposed
to spheres; (ii) a generic framework is presented, as opposed to the analysis of a specific quadrature
rule.

Quasi Monte Carlo rules based on a certain digit interlacing algorithm [13, 14, 15, 22] are also
shown to be adaptive to the (unknown) lower smoothness of an integrand. These papers assume
that an integrand is in an anisotropic function class in which every function possesses (square-
integrable) partial mixed derivatives of order α ∈ N in each variable. Examples of such spaces
include Korobov spaces, Walsh spaces, and Sobolev spaces of dominating mixed smoothness (see
e.g. [39, 16]). In their notation, an integer d, which is a parameter called an interlacing factor, can
be regarded as an assumed smoothness. Then, if an integrand belongs to an anisotropic function
class with smoothness α ∈ N such that α ≤ d, the rate of the form O(n−α+ε) (or O(n−α−1/2+ε)
in a randomized setting) is guaranteed for the quadrature error for arbitrary ε > 0. The present
work differs from these works in that (i) isotropic Sobolev spaces are discussed, where the order
of differentiability is identical in all directions of variables, and that (ii) theoretical guarantees are
provided for generic quadrature rules, as opposed to analysis of specific quadrature methods.

2 Preliminaries

2.1 Basic definitions and notation

We will use the following notation throughout the paper. The set of positive integers is denoted
by N, and N0 := N ∪ {0}. For α := (α1, . . . , αd)

T ∈ N
d
0, we write |α| :=

∑d
i=1 αi. The d-

dimensional Euclidean space is denoted by R
d, and the closed ball of radius R > 0 centered at
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z ∈ R
d by B(z,R). For a ∈ R, ⌊a⌋ is the greatest integer that is less than a. For a set Ω ⊂ R

d,
diam(Ω) := supx,y∈Ω ‖x− y‖ is the diameter of Ω.

Let p > 0 and µ be a Borel measure on a Borel set Ω in R
d. The Banach space Lp(µ) of

p-integrable functions is defined in the standard way with norm ‖f‖Lp(µ) = (
∫
|f(x)|pdµ(x))1/p,

and L∞(Ω) is the class of essentially bounded measurable functions on Ω with norm ‖f‖L∞(Ω) :=

ess supx∈Ω |f(x)|. If µ is the Lebesgue measure on Ω ⊂ R
d, we write Lp(Ω) := Lp(µ) and further

Lp := Lp(R
d) for p ∈ N ∪ {∞}. For f ∈ L1(R

d), its Fourier transform f̂ is defined by

f̂(ξ) :=

∫

Rd

f(x)e−iξ
T xdx, ξ ∈ R

d,

where i :=
√
−1.

For s ∈ N and an open set Ω in R
d, Cs(Ω) denotes the vector space of all functions on Ω

that are continuously differentiable up to order s, and CsB(Ω) ⊂ Cs(Ω) the Banach space of all
functions whose partial derivatives up to order s are bounded and uniformly continuous. The norm
of CsB(Ω) is given by ‖f‖Cs

B
(Ω) :=

∑
α∈Nd

0 :|α|≤s supx∈Ω |∂αf(x)|, where ∂α is the partial derivative

with multi-index α ∈ N
d
0. The Banach space of the continuous functions that vanish at infinity is

denoted by C0 := C0(R
d) with sup norm. Let Cs0 := Cs0(R

d) := C0(R
d) ∩ CsB(Rd) be a Banach

space with the norm ‖f‖Cs
0 (R

d) := ‖f‖Cs
B
(Rd).

For function f and a measure µ on R
d, the support of f and µ are denoted by supp(f) and

supp(µ), respectively. The restriction of f to a subset Ω ∈ R
d is denoted by f |Ω.

Let F and F ∗ be normed vector spaces with norms ‖ · ‖F and ‖ · ‖F ∗ , respectively. Then F and
F ∗ are said to be norm-equivalent, if F = F ∗ as a set, and there exists constants C1, C2 > 0 such
that C1‖f‖F ∗ ≤ ‖f‖F ≤ C2‖f‖F ∗ for all f ∈ F . For a Hibert space H with inner product 〈·, ·〉H,
the norm of f ∈ H is denoted by ‖f‖H.

2.2 Sobolev spaces and reproducing kernel Hilbert spaces

Here we briefly review key facts regarding Sobolev spaces necessary for stating and proving our
contributions; for details we refer to [1, 53, 6]. We first introduce reproducing kernel Hilbert spaces.
For details, see, e.g., [52, Section 4] and [55, Section 10].

Let Ω be a set. A Hilbert space H of real-valued functions on Ω is a reproducing kernel Hilbert
space (RKHS) if the functional f 7→ f(x) is continuous for any x ∈ Ω. Let 〈·, ·, 〉H be the inner
product of H. Then, there is a unique function kx ∈ H such that f(x) = 〈f, kx〉H. The kernel
defined by k(x, y) := kx(y) is positive definite, and called reproducing kernel of H. It is known
(Moore-Aronszajn theorem [2]) that for every positive definite kernel k : Ω × Ω → R there exists
a unique RKHS H with k as the reproducing kernel. Therefore, the notation Hk is used to the
RKHS associated with k.

In the following, we will introduce two definitions of Sobolev spaces, i.e., (6) and (7), as both
will be used throughout our analysis. For a measurable set Ω ⊂ R

d and r ∈ N, a Sobolev space
W r

2 (Ω) of order r on Ω is defined by

W r
2 (Ω) := {f ∈ L2(Ω) : D

αf ∈ L2(Ω) exists for all α ∈ N
d
0 with |α| ≤ r}, (6)

where Dαf denotes the α-th weak derivative of f . This is a Hilbert space with inner-product

〈f, g〉W r
2 (Ω) =

∑

|α|≤r
〈Dαf,Dαg〉L2(Ω) , f, g ∈W r

2 (Ω).
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For a positive real r > 0, another definition of Sobolev space of order r on R
d is given by

Hr(Rd) :=

{
f ∈ L2(R

d) :

∫
|f̂(ξ)|2Φ̂(ξ)−1dξ <∞

}
, (7)

where the function Φ̂ : Rd → R is defined by

Φ̂(ξ) := (1 + ‖ξ‖2)−r, ξ ∈ R
d.

The inner product of Hr(Rd) is defined by

〈f, g〉Hr(Rd) :=

∫
f̂(ξ)ĝ(ξ)Φ̂(ξ)−1dξ, f, g ∈ Hr(Rd),

where ĝ(ξ) denotes the complex conjugate of ĝ(ξ).

For a measurable set Ω in Rd, the (fractional order) Sobolev space Hr(Ω) is defined by the
restriction of Hr(Rd); namely (see, e.g., [53, Eq. (1.8) and Definition 4.10])

Hr(Ω) :=
{
f : Ω → R : f = g|Ω, ∃ g ∈ Hr(Rd)

}

with its norm defined by

‖f‖Hr(Ω) := inf
{
‖g‖Hr(Rd) : g ∈ Hr(Rd) s.t. f = g|Ω

}
.

If r ∈ N and Ω is an open set with Lipschitz boundary (see Definition 3), then Hr(Ω) is norm-
equivalent to W r

2 (Ω) (see, e.g., [53, Eqs. (1.8), (4.20)]).

If r > d/2, the Sobolev space Hr(Rd) is an RKHS [55, Section 10]. In fact, the condition
r > d/2 guarantees that the function Φ̂(ξ) = (1+‖ξ‖2)−r is integrable, so that Φ̂(ξ) has a (inverse)
Fourier transform

Φ(x) =
21−r

Γ(r)
‖x‖r−d/2Kr−d/2(‖x‖),

where Γ denotes the Gamma function and Kr−d/2 is the modified Bessel function function of the
third kind of order r − d/2. The function Φ is positive definite, and the kernel Φ(x − y) gives
Hr(Rd) as an RKHS. This kernel Φ(x − y) is essentially a Matérn kernel [31, 32] with specific
parameters. A Wendland kernel [54] also defines an RKHS that is norm-equivalent to Hr(Rd).

2.3 Kernel-based quadrature rules

We briefly review basic facts regarding kernel-based quadrature rules necessary to describe our
results. For details we refer to [9, 16].

Let Ω ⊂ R
d be an open set, k be a measurable kernel on Ω, and Hk(Ω) be the RKHS of k

with inner-product 〈·, ·〉Hk(Ω). Suppose P is a Borel probability measure on R
d with its support

contained in Ω, and {(wi,Xi)}ni=1 ⊂ (R×Ω)n is weighted points, which serve for quadrature. For
an integrand f , define Pf and Pnf by the integral and a quadrature estimate, respectively; namely,

Pf :=

∫
f(x)dP (x), Pnf :=

n∑

i=1

wif(Xi).
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As mentioned in Section 1, a kernel quadrature rule aims at minimizing the worst case error

en(P ;Hk(Ω)) := sup
f∈Hk:‖f‖Hk(Ω)≤1

|Pf − Pnf | . (8)

Assume
∫ √

k(x, x) dP (x) <∞, and define mP ,mPn
1 ∈ Hk(Ω) by

mP (y) :=

∫
k(y, x)dP (x), mPn(y) :=

n∑

i=1

wik(y,Xi), y ∈ Ω, (9)

where the integral for mP is understood as the Bochner integral. It is easy to see that, for all
f ∈ H,

Pf = 〈f,mP 〉Hk(Ω), Pnf = 〈f,mPn〉Hk(Ω).

The worst case error (8) can then be written as

en(P ;Hk(Ω)) = ‖mP −mPn‖Hk(Ω), (10)

and for any f ∈ Hk(Ω)
|Pnf − Pf | ≤ ‖f‖Hk(Ω)en(P ;Hk(Ω)).

It follows from (10) that

e2n(P ;Hk(Ω)) =

∫ ∫
k(x, x̃)dP (x)dP (x̃)− 2

n∑

i=1

wi

∫
k(x,Xi)dP (x)

+

n∑

i=1

n∑

j=1

wiwjk(Xi,Xj). (11)

The integrals in (11) are known in closed form for many pairs of k and P (see e.g. Table 1 of [9]);
for instance, it is known if k is a Wendland kernel and P is the uniform distribution on a ball in
R
d. One can then explicitly use the formula (11) in order to obtain weighted points {(wi,Xi)}

that minimizes the worst case error (8).

2.4 Examples of kernel-based quadrature rules

Bayesian quadrature. This is a class of kernel-based quadrature rules that has been studied
extensively in literature on statistics and machine learning [12, 44, 33, 21, 45, 26, 24, 8, 9, 7, 46, 4,
42]. In Bayesian quadrature, design points X1, . . . ,Xn may be obtained jointly in a deterministic
manner [12, 44, 33, 9, 46], sequentially (adaptively) [45, 26, 24, 8], or randomly [21, 9, 7, 4, 42]. For
instance, [9] proposes to generate design points randomly as a Markov Chain Monte Carlo sample,
or deterministically by a Quasi Monte Carlo rule, specifically as a higher-order digital net [14].

Given the design points being fixed, quadrature weights w1, . . . , wn are then obtained by the
minimization of the worst case error (11), which can be done analytically by solving a linear
system of size n. To describe this, let X1, . . . ,Xn be design points such that the kernel matrix
G := (k(Xi,Xj))

n
i,j ∈ R

n×n is invertible. The weights are then given by

w := (w1, . . . , wn)
T = K−1z ∈ R

n, (12)

1In the machine learning literature, the function mP is known as kernel mean embedding, and the worst case
error is called the maximum mean discrepancy, which have been used in a variety of problems including two-sample
testing [50, 23, 34].
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where z := (mP (Xi))
n
i=1 ∈ R

n, with mP defined in (9).

This way of constructing the estimate Pnf is called Bayesian quadrature, since Pnf can be seen
as a posterior estimate in a certain Bayesian inference problem with f generated as sample of a
Gaussian process (see, e.g., [26] and [9]).

Quasi Monte Carlo. Quasi Monte Carlo (QMC) methods are equal-weight quadrature rules
designed for the uniform distribution on a hyper-cube [0, 1]d [16]. Modern QMC methods make
use of RKHSs and the associated kernels to define and calculate the worst case error in order to
obtain good design points (e.g. [25, 48, 13, 17]). Therefore, such QMC methods are instances of
kernel-based quadrature rules; see [39] and [16] for a review.

Kernel herding. In the machine learning literature, an equal-weight quadrature rule called kernel
herding [10] has been studied extensively [26, 5, 30, 27]. It is an algorithm that greedily searches
for design points so as to minimize the worst case error in an RKHS. In contrast to QMC methods,
kernel herding may be used with an arbitrarily distribution P on a generic measurable space, given
that the integral

∫
k(·, x)dP (x) admits a closed form solution with a reproducing kernel k. It has

been shown that a fast rate O(n−1) is achievable for the worst case error, when the RKHS is finite
dimensional [10]. While empirical studies indicate that the fast rate would also hold in the case of
an infinite dimensional RKHS, its theoretical proof remains an open problem [5].

3 Convergence rates of Bayesian quadrature

This section discusses the convergence rates of Bayesian quadrature in well-specified settings. It is
shown that Bayesian quadrature can achieve the minimax optimal rates for deterministic quadra-
ture rules in Sobolev spaces. The result also serves as a preliminary to Section 5, where misspecified
cases are considered.

Let Ω be an open set in R
d and Xn := {X1, . . . ,Xn} ⊂ Ω. The main notion to express the

convergence rate is fill distance hXn,Ω (5), which plays a central role in the literature on scattered
data approximation [55], and has been used in the theoretical analysis of Bayesian quadrature in
[9, 40]. However, it is necessary to introduce some conditions on Ω. The first one is the interior
cone condition [55, Definition 3.6], which is a regularity condition on the boundary of Ω. A cone
C(x, ξ(x), θ, R) with vertex x ∈ R

d, direction ξ(x) ∈ R
d (‖ξ(x)‖ = 1), angle θ ∈ (0, 2π) and radius

R > 0 is defined by

C(x, ξ(x), θ, R) := {x+ λy : y ∈ R
d, ‖y‖ = 1, 〈y, ξ(x)〉 ≥ cos θ, λ ∈ [0, R]}.

Definition 1 (Interior cone condition). A set Ω ⊂ R
d is said to satisfy an interior cone condition

if there exist an angle θ ∈ (0, 2π) and a radius R > 0 such that every x ∈ Ω is associated with a
unit vector ξ(x) so that the cone C(x, ξ(x), θ, R) is contained in Ω.

The interior cone condition requires that there is no ‘pinch point’ (i.e. a ≺-shape region) on
the boundary of Ω; see also [40]. Next, the notions of special Lipschitz domain [51, p.181] and
Lipschitz boundary2 are defined as follows (see [51, p.189]; [6, Definition 1.4.4]).

Definition 2 (Special Lipschitz domain). For d ≥ 2, an open set Ω ⊂ R
d is called a special

Lipschitz domain, if there exists a rotation of Ω, denoted by Ω̃, and a function ϕ : Rd−1 → R that
satisfy the following:

2The definition of the Lipschitz boundary in [6] is identical to the definition of the minimally smooth boundary

in [51, p.189]. This boundary condition was introduced by Elias M. Stein to prove the so-called Stein’s extension

theorem for Sobolev spaces [51, p.181].
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1. Ω̃ = {(x, y) ∈ R
d : y > ϕ(x)};

2. ϕ is a Lipschitz function such that |ϕ(x) − ϕ(x′)| ≤ M‖x − x′‖ for all x, x′ ∈ R
d−1, where

M > 0.

The smallest constant M for ϕ is called the Lipschitz bound of Ω.

Definition 3 (Lipschitz boundary). Let Ω ⊂ R
d be an open set and ∂Ω be its boundary. Then

∂Ω is called a Lipschitz boundary, if there exist constants ε > 0, N ∈ N, M > 0, and open sets
U1, U2, . . . , UL ⊂ R

d, where L ∈ N ∪ {∞}, such that the following conditions are satisfied:

1. For any x ∈ ∂Ω, there exists an index i such that B(x, ε) ⊂ Ui, where B(x, ε) is the ball
centered at x and radius ε;

2. Ui1 ∩ · · · ∩ UiN+1
= ∅ for any distinct indices {i1, . . . , iN+1};

3. For each index i, there exists a special Lipschitz domain Ωi ⊂ R
d with Lipschitz bound b such

that Ui ∩ Ω = Ui ∩ Ωi and b ≤M .

Examples of a set Ω having a Lipschitz boundary include: (i) Ω is an open bounded set whose
boundary ∂Ω is C1 embedded in R

d; (ii) Ω is an open bounded convex set [51, p.189].

Proposition 4. Let Ω ⊂ R
d be a bounded open set such that an interior cone condition is satisfied

and the boundary ∂Ω is Lipschitz, and P be a probability distribution on R
d with a bounded density

function p such that supp(P ) ⊂ Ω. For r ∈ R with ⌊r⌋ > d/2, kr is a kernel on R
d that satisfies

Assumption 1 and Hkr(Ω) is the RKHS of kr restricted on Ω. Suppose that Xn := {X1, . . . ,Xn} ⊂
Ω are finite points such that G := (kr(Xi,Xj))

n
i,j=1 ∈ R

n×n is invertible, and w1, . . . , wn are the
quadrature weights given by (12). Then there exist constants C > 0 and h0 > 0 independent of Xn,
such that

en(P ;Hkr(Ω)) ≤ ChrXn,Ω,

provided that hXn,Ω ≤ h0, where en(P ;Hkr(Ω)) is the worst case error for the quadrature rule
{(wi,Xi)}ni=1.

Proof. The proof idea is borrowed from [9, Theorem 1]. Let f ∈ Hkr(Ω) be arbitrary and fixed.
Define a function fn ∈ Hkr(Ω) by

fn :=

n∑

i=1

αikr(·,Xi)

where α := (α1, . . . , αn)
T = G−1f ∈ R

n and f := (f(X1), . . . , f(Xn)) ∈ R
n. This function is an

interpolant of f on Xn such that f(Xi) = fn(Xi) for all Xi ∈ Xn

It follows from the norm-equivalence that f ∈ Hr(Ω) and

‖f‖Hr(Ω) ≤ C1‖f‖Hkr (Ω), (13)

where C1 > 0 is a constant.

We see that
∑n

i=1wif(Xi) =
∫
fn(x)dP (x). In fact, recalling that the weights w := (w1, . . . , wn)

T

are defined as w = G−1z, where z := (z1, . . . , zn)
T with zi :=

∫
kr(x,Xi)dP (x), it follows that

n∑

i=1

wif(Xi) = wTf = zTG−1f = zTα

=

n∑

i=1

αi

∫
kr(x,Xi)dP (x) =

∫
fn(x)dP (x).

11



Using this identity, we have

∣∣∣∣∣

∫
f(x)dP (x)−

n∑

i=1

wif(Xi)

∣∣∣∣∣ =
∣∣∣∣
∫
f(x)dP (x)−

∫
fn(x)dP (x)

∣∣∣∣

≤ ‖f − fn‖L1(Ω)‖p‖L∞(Ω)

≤ C0‖f‖Hr(Ω)h
r
Xn,Ω‖p‖L∞(Ω) (14)

≤ C0C1‖f‖Hkr (Ω)h
r
Xn,Ω‖p‖L∞(Ω), (15)

where (14) follows from Theorem 11.32 and Corollary 11.33 in [55] (where we set m := 0, p := 2,
q := 1, k := ⌊r⌋ and s := r−⌊r⌋), and (15) from (13). Note that constant C0 depends only on r, d
and the constants in the interior cone condition (which follows from the fact that Theorem 11.32
in [55] is derived from Proposition 11.30 in [55]). Setting C := C0C1‖p‖∞ completes the proof.

Remark 1. • Typically the fill distance hXn,Ω decreases to 0 as the number n of design points
increases. Therefore the upper bound ChrXnΩ provides a faster rate of convergence for
en(P ;W

r
2 (Ω)) by a larger value of the degree r of smoothness.

• The condition hXn,Ω ≤ h0 requires that the design points Xn = {X1, . . . ,Xn} must cover
the set Ω to a certain extent in order to guarantee the error bound to hold. This requirement
arises since we have used a result from the scattered data approximation literature [55,
Corollary 11.33] to derive the inequality (14) in our proof. In the literature such a condition
is necessary and we refer an interested reader to Section 11 of [55] and references therein.

• The constant h0 > 0 depends only on the constants θ and R in the interior cone condition
(Definition 1). The explicit form is h0 := Q(⌊r⌋, θ)R, where Q(⌊r⌋, θ) := sin θ sinψ

8⌊r⌋2(1+sin θ)(1+sinψ)

with ψ := 2 arcsin sin θ
4(1+sin θ) [55, p.199].

The following is an immediate corollary to Proposition 4.

Corollary 5. Assume that Ω, P and r satisfy the conditions in Proposition 4. Suppose that
Xn := {X1, . . . ,Xn} ⊂ Ω are finite points such that G := (kr(Xi,Xj))

n
i,j=1 ∈ R

n×n is invertible
and hXn,Ω = O(n−α) for some 0 < α ≤ 1/d as n→ ∞, and w1, . . . , wn are the quadrature weights
given by (12) based on Xn. Then we have

en(P ;Hkr (Ω)) = O(n−αr) (n→ ∞), (16)

where en(P ;Hkr(Ω)) is the worst case error of the quadrature rule {(wi,Xi)}ni=1.

Remark 2. • The result (16) implies that the same rate is attainable for the Sobolev space
Hr(Ω) (instead of Hkr(Ω)):

en(P ;H
r(Ω)) = O(n−αr) (n→ ∞)

with (the sequence of) the same weighted points {(wi,Xi)}∞i=1. This follows from the norm-
equivalence between Hkr(Ω) and Hr(Ω).

• If the fill distance satisfies hXn,Ω = O(n−1/d) as n → ∞, then en(P ;H
r(Ω)) = O(n−r/d).

This rate is minimax optimal for the deterministic quadrature rules for the Sobolev space
Hr(Ω) on a hyper-cube [37, Proposition 1 in Section 1.3.12]. Corollary 5 thus shows that
Bayesian quadrature achieves the minimax optimal rate in this setting.
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• The decay rate for the fill distance hXn,Ω = O(n−1/d) holds when, for example, the design
points Xn = {X1, . . . ,Xn} are equally-spaced grid points in Ω. Note that this rate cannot
be improved: if the fill distance decreased at a rate faster than O(n−1/d), then en(P ;H

r(Ω))
would decrease more quickly than the minimax optimal rate, which is a contradiction.

4 Main results

This section presents the main results on misspecified settings. Two results based on different
assumptions are discussed: one on the quadrature weights in Section 4.1, and the other on the
design points in Section 4.2. The approximation theory for Sobolev spaces developed by [35] is
employed in the results.

4.1 Convergence rates under an assumption on quadrature weights

Theorem 6. Let Ω ⊂ R
d be an open set whose boundary is Lipschitz, P be a probability distribution

on R
d with supp(P ) ⊂ Ω, r be a real number with r > d/2, and s be a natural number with s ≤ r.

Let kr denote a kernel on R
d satisfying Assumption 1, and Hkr(Ω) the RKHS of kr restricted on

Ω. Then, for any {(wi,Xi)}ni=1 ∈ (R× Ω)n, f ∈ CsB(Ω) ∩Hs(Ω) ∩ L1(Ω), and σ > 0, we have

|Pnf − Pf | ≤ c1

(
n∑

i=1

|wi|+ 1

)
σ−s‖f‖Cs

B
(Ω)

+c2(1 + σ2)
r−s
2 en(P ;Hkr(Ω))‖f‖Hs(Ω), (17)

where c1, c2 > 0 are constants independent of {(wi,Xi)}ni=1, f and σ.

Proof. We first derive some inequalities used for proving the assertion. It follows from norm-
equivalence that f ∈ W s

2 (Ω), where W s
2 (Ω) is the Sobolev space defined via weak derivatives.

Since Ω has a Lipschitz boundary, Stein’s extension theorem [51, p.181] guarantees that there
exists a bounded linear extension operator E :W s

2 (Ω) →W s
2 (R

d) such that

E(f)(x) = f(x), ∀x ∈ Ω, (18)

‖E(f)‖W s
2 (R

d) ≤ C1‖f‖W s
2 (Ω), (19)

where C1 is a constant independent of the choice of f . From the norm-equivalence and (19), there
is a constant C2 such that

‖Ef‖Hs(Rd) ≤ C2‖f‖Hs(Ω). (20)

Since f ∈ L1(Ω), the extension also satisfies E(f) ∈ L1(R
d) [51, p.181]. In addition, by the

construction of E [51, Eqs.(24)(31) on p.191], one can show [36, Section 3.2.2] that E is also a
linear bounded operator from CsB(Ω) to Cs0(R

d), that is,

‖Ef‖Cs
0 (R

d) ≤ C3‖f‖Cs
B
(Ω), (21)

for some constant C3 > 0. Below we write f̃ := E(f) for notational simplicity.

Let gσ ∈ Hr(Rd) be the approximate function of f̃ defined as (49) by Calderón’s formula
(Appendix B.2; we set f := f̃). The property f̃ ∈ Cs0(R

d) ∩Hs(Rd) ∩ L1(R
d) enables the use of

13



Proposition 3.7 of [35] (where we set k := s and α := 0; see Proposition A.2 in Appendix A for a
review), which gives in combination with (21) that

‖f̃ − gσ‖L∞(Rd) ≤ Cσ−s‖f̃‖Cs
0(R

d) ≤ C4σ
−s‖f‖Cs

B
(Ω), (22)

for some constant C4 > 0 which is independent of f .

From f̃ ∈ Cs0(R
d) ∩Hs(Rd) ∩ L1(R

d), Lemma B.6 in Appendix B.2 can be applied, by which
together with (20) we have

‖gσ‖Hr(Rd) ≤ C ′
5(1 + σ2)

r−s
2 ‖f̃‖Hs(Rd) ≤ C5(1 + σ2)

r−s
2 ‖f‖Hs(Ω) (23)

for some constants C5 and C ′
5, which are independent of σ and f̃ .

With the decomposition

|Pnf − Pf | ≤ |Pnf − Pngσ|︸ ︷︷ ︸
(A)

+ |Pngσ − Pgσ|︸ ︷︷ ︸
(B)

+ |Pgσ − Pf |︸ ︷︷ ︸
(C)

,

each of the terms (A), (B) and (C) will be bounded below.

First, the term (A) is bounded as

(A) ≤
n∑

i=1

|wi| |f(Xi)− gσ(Xi)|

=
n∑

i=1

|wi|
∣∣∣f̃(Xi)− gσ(Xi)

∣∣∣ (∵ {Xi}ni=1 ⊂ Ω and (18))

≤
(

n∑

i=1

|wi|
)
‖f̃ − gσ‖L∞(Rd)

(22)

≤ C4

(
n∑

i=1

|wi|
)
σ−s‖f‖Cs

B
(Ω).

For the term (B), it follows from the norm equivalence and restriction that for some constant
D

‖gσ |Ω‖Hkr (Ω) ≤ D‖gσ‖Hr(Rd). (24)

This inequality and (23) give

(B) ≤ ‖gσ|Ω‖Hkr (Ω) ‖mPn −mP ‖Hkr (Ω)

≤ D‖gσ‖Hr(Rd)en(P ;Hkr(Ω))

≤ DC5(1 + σ2)
r−s
2 en(P ;Hkr(Ω))‖f‖Hs(Ω).

Finally, the term (C) is bounded as

(C) ≤
∫ ∣∣∣gσ(x)− f̃(x)

∣∣∣ dP (x) ≤ ‖gσ − f̃‖L∞(Rd)
(22)
= C4σ

−s‖f‖Cs
B
(Ω).

Combining these three bounds, the assertion is obtained.

Remark 3. • The integrand f is assumed to satisfy f ∈ Hs(Ω) ∩ CsB(Ω) ∩ L1(Ω), which is
slightly stronger than just assuming f ∈ Hs(Ω).
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• In the upper-bound (17), the constant σ > 0 controls the trade-off between the two terms:

c2(1 + σ2)
r−s
2 en(P ;Hkr(Ω))‖f‖Hs(Ω) and c1 (

∑n
i=1 |wi|+ 1) · σ−s‖f‖Cs

B
(Ω). In the proof, the

integrand f is approximated by a band-limited function gσ ∈ Hr(Ω), where σ is the highest
spectrum that gσ possesses. Thus the trade-off in the upper-bound corresponds to the trade-
off between the accuracy of approximation of f by gσ and the penalty incurred on the
regularity of gσ.

The following result, which is a corollary of Theorem 6, provides a rate of convergence for the
quadrature error in a misspecified setting. It is derived by assuming certain rates for the quantity∑n

i=1 |wi| and the worst case error en(P ;Hkr).

Corollary 7. Let Ω, P , r, s, kr, and Hkr(Ω) be the same as Theorem 6. Suppose that {(wi,Xi)}ni=1 ∈
(R × Ω)n satisfies en(P ;Hkr(Ω)) = O(n−b) and

∑n
i=1 |wi| = O(nc) for some b > 0 and c ≥ 0, re-

spectively, as n→ ∞. Then for any f ∈ CsB(Ω) ∩Hs(Ω) ∩ L1(Ω), we have

|Pnf − Pf | = O(n−bs/r+c(r−s)/r) (n→ ∞). (25)

Proof. Let σn := nθ > 0, where θ > 0 will be determined later. Plugging en(P ;Hkr(Ω)) = O(n−b)
and

∑n
i=1 |wi| = O(nc) to (17) with σ := σn leads

|Pnf − Pf | = O(nc−θs) +O(nθ(r−s)−b).

Setting θ = (b + c)/r, which balances the two terms in the right hand side, completes the proof.

Remark 4. • The exponent of the rate in (25) consists of two terms: −bs/r and c(r − s)/r.
The first term −bs/r corresponds to a degraded rate from the original O(n−b) by the factor
of smoothness ratio s/r, while the second term c(r − s)/r makes the rate slower. The effect
of the second term increases as the constant c or the gap (r − s) of misspecification gets
larger.

• The obtained rate recovers O(n−b) for r = s (well-specified case) regardless of the value of c.

• Consider the misspecified case r > s. If c > 0, the term c(r − s)/r always makes the rate
slower. It is thus better to have c = 0, as in this case we have the rate O(n−bs/r) in the
misspecified setting. The weights with maxi=1,...,n |wi| = O(n−1), such as equal weights
wi = 1/n, realize c = 0.

• As mentioned earlier, the minimax optimal rate for the worst case error in the Sobolev space
Hr(Ω) with Ω being a cube in R

d and P being the Lebesgue measure on Ω is O(n−r/d) [37,
Proposition 1 in Section 1.3.12]. If design points satisfy b = r/d and c = 0 in this setting,
Corollary 7 provides the rate O(n−s/d) for f ∈ Hs(Ω)∩CsB(Ω)∩L1(Ω). This rate is the same
as the minimax optimal rate for Hs(Ω), and hence implies some adaptivity to the order of
differentiability.

• The assumption
∑n

i=1 |wi| = O(nc) can be also interpreted from a probabilistic viewpoint.
Assume that the observation involves noise, Yi := f(Xi) + εi (i = 1, . . . , n), where εi is
independent noise with E[ε2i ] = σ2noise (σnoise > 0 is a constant) for i = 1, . . . , n, and that Yi
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are used for numerical integration. The expected squared error is decomposed as

Eε1,...,εn



(

n∑

i=1

wiYi − Pf

)2

 = Eε1,...,εn



(
Pnf − Pf +

n∑

i=1

wiεi

)2



= |Pnf − Pf |2 + σ2noise

n∑

i=1

w2
i .

In the last expression, the first term |Pnf − Pf |2 is the squared error in the noiseless case,
and the second term σ2noise

∑n
i=1w

2
i is the error due to noise. Since

∑n
i=1w

2
i ≤ (

∑n
i=1 |wi|)2 =

O(n2c), the error in the second term may be larger as c increases. Hence quadrature weights
having smaller c are preferable in terms of robustness to the existence of noise; this in turn
makes the quadrature rule more robust to the misspecification of the degree of smoothness.

Theorem 6 and Corollary 7 require a control on the absolute sum of the quadrature weights∑n
i=1 |wi|. This is possible with, for instance, equal-weight quadrature rules that seek for good

design points. However, the control of
∑n

i=1 |wi| could be difficult for quadrature rules that obtain
the weights by optimization based on pre-fixed design points. This includes the case of Bayesian
quadrature that optimizes the weights without any constraint. To deal with such methods, in
the next section we will develop theoretical guarantees that do not rely on the assumption on the
quadrature weights, but on a certain assumption on the design points.

4.2 Convergence rates under an assumption on design points

This subsection provides convergence guarantees in a misspecified settings under an assumption
on the design points. The assumption is described in terms of separation radius (4), which is
(the half of) the minimum distance between distinct design points. The separation radius of points
Xn := {X1, . . . ,Xn} ⊂ R

d is denoted by qXn . Note that if Xn ⊂ Ω for some Ω, then the separation
radius lower bounds the fill distance, i.e., qXn ≤ hXn,Ω. Henceforth we will consider a bounded
domain Ω, and without loss of generality, we assume that it satisfies diam(Ω) ≤ 1.

Theorem 8. Let Ω ⊂ R
d be an open bounded set with diam(Ω) ≤ 1 such that the boundary

is Lipschitz, P be a probability distribution on R
d such that supp(P ) ⊂ Ω, r be a real number

with r > d/2, and s be a natural number with s ≤ r. Let kr denote a kernel on R
d satisfying

Assumption 1, and Hkr(Ω) the RKHS of kr restricted on Ω. For any {(wi,Xi)}ni=1 ∈ (R×Ω)n and
f ∈ CsB(Ω) ∩Hs(Ω), we have

|Pnf − Pf | ≤ Cmax
(
‖f‖Cs

B
(Ω), ‖f‖Hs(Ω)

)(
q
−(r−s)
Xn en(P ;Hkr(Ω)) + qsXn

)
, (26)

where C > 0 is a constant depending neither on {(wi,Xi)}ni=1 nor on the choice of f , and
en(P ;Hkr(Ω)) is the worst case error in Hkr(Ω) for {(wi,Xi)}ni=1.

Proof. By the same argument as the first part of the proof for Theorem 6, there exists an extension
of f to f̃ ∈W s

2 (R
d) ∩Cs0(Rd) such that

f̃(x) = f(x), ∀x ∈ Ω,

‖f̃‖Hs(Rd) ≤ C1‖f‖Hs(Ω),

‖f̃‖Cs
0 (R

d) ≤ C2‖f‖Cs
B
(Ω),
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for some positive constants Ci (i = 1, 2). Note also that f ∈ L1(Ω), since f ∈ CsB(Ω) and Ω is
bounded. This implies f̃ ∈ L1(R

d) [51, p.181].

From the above inequalities, there is a constant C3 > 0 independent of the choice of f such
that

max
(
‖f̃‖Cs

0 (R
d), ‖f̃‖Hs(Rd)

)
≤ C3 max

(
‖f‖Cs

B
(Ω), ‖f‖Hs(Ω)

)
. (27)

For notational simplicity, write

σn :=
Cd
qXn

where Cd := 24(
√
π
3 Γ(d+2

2 ))
2

d+1 with Γ being the Gamma function. From Theorems A.1 and A.3
in Appendix A (which are restatements of Theorems 3.5 and 3.10 of [35]), there exists a function
f̃σn ∈ Hr(Rd) such that

f̃σn(Xi) = f̃(Xi), (i = 1, . . . , n), (28)

‖f̃ − f̃σn‖L∞(Rd) ≤ Cs,dσ
−s
n max(‖f̃‖Cs

0 (R
d), ‖f̃‖Hs(Rd)), (29)

where Cs,d is a constant depending only on s and d. Combining (29) and (27) obtains

‖f̃ − f̃σn‖L∞(Rd) ≤ C4σ
−s
n max

(
‖f‖Cs

B
(Ω), ‖f‖Hs(Ω)

)
,

where C4 := Cs,dC3.

From Assumption 1 and f̃ ∈ CsB(R
d) ∩Hs(Rd) ∩ L1(R

d), Lemma A.5 (see Appendix A) gives

‖f̃σn‖Hkr (R
d) ≤ Cs,d,krσ

r−s
n max(‖f̃‖Cs

0 (R
d), ‖f̃‖Hs(Rd)),

where Cs,d,kr is a constant only depending on r, s, d, and kr. It follows from this inequality and
(27) that

‖f̃σn‖Hkr (R
d) ≤ C5σ

r−s
n max

(
‖f‖Cs

B
(Ω), ‖f‖Hs(Ω)

)
, (30)

where C5 := Cs,d,krC3.

We are now ready to prove the assertion. In the decomposition

|Pnf − Pf | = |Pnf̃ − P f̃ | ≤ |Pnf̃ − Pnf̃σn |︸ ︷︷ ︸
(A)

+ |Pnf̃σn − P f̃σn |︸ ︷︷ ︸
(B)

+ |P f̃σn − P f̃ |︸ ︷︷ ︸
(C)

,

the term (A) is zero from (28).

With ‖f̃σn |Ω‖Hkr (Ω) ≤ ‖f̃σn‖Hkr (R
d) ([2], Section 5), the term (B) can be bounded as

(B) =

∣∣∣∣∣
n∑

i=1

wif̃σn |Ω(Xi)−
∫
f̃σn |Ω(x)dP (x)

∣∣∣∣∣

≤
∣∣∣∣
〈
f̃σn |Ω,mPn −mP

〉
Hkr (Ω)

∣∣∣∣ (∵ f̃σn |Ω ∈ Hkr(Ω))

≤
∥∥∥f̃σn |Ω

∥∥∥
Hkr (Ω)

en(P ;Hkr(Ω))

≤
∥∥∥f̃σn

∥∥∥
Hkr (R

d)
en(P ;Hkr(Ω))

(30)

≤ C5σ
r−s
n max

(
‖f‖Cs

B
(Ω), ‖f‖Hs(Ω)

)
en(P ;Hkr(Ω)).
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The term (C) is upper-bounded as

(C) ≤ ‖f̃σn − f̃‖L∞(Rd)

(29)

≤ C4σ
−s
n max

(
‖f‖Cs

B
(Ω), ‖f‖Hs(Ω)

)
.

These bounds complete the proof.

Remark 5. • From qXn ≤ hXn , the separation radius qXn typically converges to zero as n→ ∞.

For the upper bound in (26), the factor q
−(r−s)
Xn in the first term diverges to infinity as n→ ∞,

while the second term goes to zero. Thus qXn should decay to zero in an appropriate speed
depending on the rate of en(P ;Hkr(Ω)), in order to make the quadrature error small in the
misspecified setting.

• Note that as the gap between r and s becomes large, the effect of the separation radius

becomes serious; this follows from the expression q
−(r−s)
Xn .

Based on Theorem 8, we establish below a rate of convergence in a misspecified setting by
assuming a certain rate of decay for the separation radius as the number of design points increases.

Corollary 9. Let Ω, P, r, s, kr,Hkr(Ω) be the same as in Theorem 8. Suppose {(wi,Xi)}ni=1 ∈
(R × Ω)n is design points such that en(P ;Hkr(Ω)) = O(n−b) and qXn = Θ(n−a) for some b > 0
and a > 0, respectively, as n→ ∞. Then for any f ∈ CsB(Ω) ∩Hs(Ω), we have

|Pnf − Pf | = O(n−min(b−a(r−s),as)) (n→ ∞). (31)

In particular, the rate in the right hand side is optimized when a = b/r, which gives

|Pnf − Pf | = O(n−
bs
r ) (n→ ∞). (32)

Proof. Plugging en(P ;Hkr(Ω)) = O(n−b) and qXn = Θ(n−a) into (26) yields

|Pnf − Pf | = O(na(r−s)−b) +O(n−as) = O(n−min(b−a(r−s),as)),

which proves (31). The second assertion is obvious.

Remark 6. As stated in the assertion, the best rate for the bound is achieved when a = b/r.
The resulting rate in (32) coincides with that of Corollary 7 (see (25)) with c = 0. Therefore
observations similar to those for Theorem 6 can be made with the rate in (32).

5 Bayesian quadrature in misspecified settings

To demonstrate the results of Section 4, a rate of convergence for Bayesian quadrature in mis-
specified settings is derived. To this end, an upper-bound on the integration error of Bayesian
quadrature is first provided, when the smoothness of an integrand is overestimated. It is obtained
by combining Theorem 8 in Section 4 and Proposition 4 in Section 3.

Theorem 10. Let Ω ⊂ R
d be a bounded open set with diam(Ω) ≤ 1 such that an interior cone

condition is satisfied and the boundary is Lipschitz, P be a probability distribution on R
d with

a bounded density function p such that supp(P ) ⊂ Ω, r be a real number with ⌊r⌋ > d/2, and
s be a natural number with s ≤ r. Suppose that kr is a kernel on R

d satisfying Assumption 1,
Xn := {X1, . . . ,Xn} ⊂ Ω is design points such that G := (kr(Xi,Xj))

n
i,j=1 ∈ R

n×n is invertible,
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and w1, . . . , wn are the Bayesian quadrature weights in (12) based on kr. Assume that there exist
constants cq > 0 and δ > 0 independent of Xn, such that 1− s/r < δ ≤ 1 and

hXn,Ω ≤ cqq
δ
Xn . (33)

Then there exist positive constants C and h0 independent of Xn, such that for any f ∈ CsB(Ω) ∩
Hs(Ω), we have

|Pnf − Pf | ≤ Cmax
(
‖f‖Cs

B
(Ω), ‖f‖Hs(Ω)

)
h
r−(r−s)/δ
Xn,Ω , (34)

provided that hXn,Ω ≤ h0.

Proof. Under the assumptions, Theorem 8 gives that

|Pnf − Pf | ≤ C1max
(
‖f‖Cs

B
(Ω), ‖f‖Hs(Ω)

)(
q
−(r−s)
Xn en(P ;Hkr(Ω)) + qsXn

)
, (35)

where C1 > 0 is a constant, and en(P ;Hkr(Ω)) is the worst case error of {(wi,Xi)}ni=1 in Hkr(Ω).
On the other hand, Proposition 4 implies that there exist constants C2 > 0 and h0 > 0 independent
of the choice of Xn, such that

en(P ;Hkr(Ω)) ≤ C2h
r
Xn,Ω, (36)

provided that hXn,Ω ≤ h0. Note also that (33) implies that

q−1
Xn ≤ c1/δq h

−1/δ
Xn,Ω. (37)

From qXn ≤ hXn,Ω and the above inequalities, it follows that

|Pnf − Pf |
(35)

≤ C1 max
(
‖f‖Cs

B
(Ω), ‖f‖Hs(Ω)

)(
q
−(r−s)
Xn en(P ;Hkr (Ω)) + qsXn

)

(36)

≤ C1 max
(
‖f‖Cs

B
(Ω), ‖f‖Hs(Ω)

)(
C2q

−(r−s)
Xn hrXn,Ω + qsXn

)

(37)

≤ C1 max
(
‖f‖Cs

B
(Ω), ‖f‖Hs(Ω)

)(
C2c

(r−s)/δ
q h

r−(r−s)/δ
Xn,Ω + qsXn

)

(⋆)

≤ C1 max
(
‖f‖Cs

B
(Ω), ‖f‖Hs(Ω)

)(
C2c

(r−s)/δ
q h

r−(r−s)/δ
Xn,Ω + hsXn

)

(†)
≤ C3 max

(
‖f‖Cs

B
(Ω), ‖f‖Hs(Ω)

)
h
r−(r−s)/δ
Xn,Ω ,

where C1, C2 and C3 are positive constants independent of the choice of design points Xn, and we
used qXn ≤ hXn,Ω in (⋆), 0 < hXn ≤ 1 and 0 < r − (r − s)/δ ≤ s in (†).

Remark 7. • The condition (33) implies that

c′h1/δXn,Ω ≤ qXn ≤ hXn,Ω, (38)

where c′ := c
−1/δ
q is independent of Xn. This condition is stronger for a larger value of δ,

requiring that distinct design points should not be very close to each other. Note that the
lower-bound 1− s/r < δ is necessary for the upper-bound of the error (34) to have a positive
exponent, while the upper-bound δ ≤ 1 follows from qXn ≤ hXn,Ω, which holds by definition.
The constraint 1− s/r < δ and (38) thus imply that a stronger condition is required for Xn

as the degree of misspecification gets more serious (i.e., as the ratio s/r gets smaller).
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• If the condition (33) is satisfied for δ = 1, then the design points Xn are called quasi-uniform
[47, Section 7.3]. In this case, the bound in (34) is

|Pnf − Pf | ≤ Cmax
(
‖f‖Cs

B
(Ω), ‖f‖Hs(Ω)

)
hsX,Ω. (39)

This is the same order of approximation as that of Proposition 4 when r = s. Proposition 4
provides an error bound for Bayesian quadrature in a well-specified case, where one knows the
degree of smoothness s of the integrand. Therefore, (39) suggests that, if the design points
are quasi-uniform, then Bayesian quadrature can be adaptive to the (unknown) degree of the
smoothness s of the integrand f , even in a situation where one only knows its upper-bound
r ≥ s.

We obtain the following as a corollary of Theorem 10. The proof is obvious, and omitted.

Corollary 11. Let Ω, P, r, s, kr,X
n, G and wi (i = 1, . . . , n) be the same as Theorem 10. Assume

that there exist constants cq > 0 and δ > 0 independent of Xn, such that 1− s/r < δ ≤ 1 and

hXn,Ω ≤ cqq
δ
Xn ,

and further hXn,Ω = O(n−α) as n → ∞ for some 0 < α ≤ 1/d. Then for all f ∈ CsB(Ω) ∩Hs(Ω),
we have

|Pnf − Pf | = O(n−α[r−(r−s)/δ]) (n → ∞).

In particular, the best possible rate in the right hand side is achieved when δ = 1 and α = 1/d,
giving that

|Pnf − Pf | = O(n−s/d) (n→ ∞). (40)

Remark 8. • The rate O(n−s/d) in (40) matches the minimax optimal rate of deterministic
quadrature rules for the worst case error in the Sobolev space Hs(Ω) with Ω being a cube
[37, Proposition 1 in Section 1.3.12]. Therefore, it is shown that the optimal rate may be
achieved by Bayesian quadrature, even in the misspecified setting (under a slightly stronger
assumption that f ∈ Hs(Ω)∩CsB(Ω)). In other words, Bayesian quadrature may achieve the
optimal rate adaptively, without knowing the degree s of smoothness of a test function: one
just needs to know its upper bound r ≥ s.

• The main assumptions required for the optimal rate (40) are that (i) hXn,Ω = O(n−1/d) and
that (ii) hXn,Ω ≤ cqq

δ
Xn for δ = 1. Recall that (i) is the same assumption that is required

for the optimal rate O(n−r/d) in the well-specified setting f ∈ Hr(Ω) (Corollary 5). On the
other hand, (ii) is the one required for the finite sample bound in Theorem 10. Both these
assumptions are satisfied, for instance, if X1, . . . ,Xn are grid points in Ω.

6 Discussion

In this paper, we have discussed the convergence properties of kernel quadratures with deterministic
design points in misspecified settings. In particular, we have focused on settings where quadrature
weighted points are generated based on misspecified assumptions on the degree of smoothness, that
is, the situation where the integrand is less smooth than assumed.

We have revealed conditions for quadrature rules under which adaptation to the unknown
lesser degree of smoothness occurs. In particular we have shown that a kernel quadrature rule

20



is adaptive if the sum of absolute weights remains constant, or if the spacing between design
points is not too small (as measured by the separation radius). Moreover, by focusing on Bayesian
quadratures as working examples, we have shown that they can achieve minimax optimal rates
of the unknown degree of smoothness, if the design points are quasi-uniform. We expect that
this result provides a practical guide for developing kernel quadratures that are robust to the
misspecification of the degree of smoothness; such robustness is important in modern applications
of quadrature methods, such as numerical integration in sophisticated Bayesian models, since they
typically involve complicated or black box integrands and thus misspecification is likely to happen.

There are several important topics to be investigated as part of future work.

Other RKHSs. This paper has dealt with Sobolev spaces as RKHSs of kernel quadrature. How-
ever, there are many other important RKHSs of interest where similar investigation can be carried
out. For instance, Gaussian RKHSs (i.e. the RKHSs of Gaussian kernels) have been widely used in
the literature on Bayesian quadrature. Such an RKHS consists of functions with infinite degree of
smoothness. This makes theoretical analysis challenging: our analysis relies on the approximation
theory by [35], which only applies to the standard Sobolev spaces. Similarly, the theory of [35] is
also not applicable to Sobolev spaces with dominating mixed smoothness, which have been popular
in the QMC literature. In order to analyze quadrature rules in these RKHSs, we therefore need to
extend the approximation theory of [35] to such spaces. This will be an important but challenging
theoretical problem.

Sequential (adaptive) quadrature. Another important direction is the analysis for kernel
quadratures that sequentially select design points. Such methods are also called adaptive, since
the selection of the next pointXn+1 depends on the function values f(X1), . . . , f(Xn) of the already
selected points X1, . . . ,Xn. Note that the adaptability here is different from that of the current
paper where we used it in the context of adaptability of quadrature to unknown degree of smooth-
ness. For instance, the WSABI algorithm by [24] is an example of adaptive Bayesian quadrature
which is considered as state-of-the-art for the application of Bayesian model evidence calculation.
Such adaptive methods have been known to be able to outperform non-adaptive methods in the
following case: the hypothesis space is imbalanced or non-convex (see e.g. Section 1 of [38]). In
the worst case error, the hypothesis space is the unit ball in the RKHS H, which is balanced and
convex and so adaptation does not help. In fact, it is known that the optimal rate can be achieved
without adaptation. However, if the hypothesis space is imbalanced (i.e. f being in the hypothesis
space does not imply that −f is in the hypothesis space), then adaptive methods may perform
better. For instance, the WSABI algorithm focuses on non-negative integrands, which means that
the hypothesis is imbalanced and thus adaptive selection helps. Our analysis in this paper has
focused on the worst case error defined by the unit ball in an RKHS, which is balanced and convex.
A future direction is thus to consider the setting of imbalanced or non-convex hypothesis spaces,
such as the one consisting of non-negative functions, which will enable us to analyze the conver-
gence behavior of sequential or adaptive Bayesian quadrature in misspecified settings.

Random design points. We have focused on deterministic quadrature rules in this paper. In the
literature, however, the use of random design points has also been popular. For instance, the de-
sign points of Bayesian quadrature might be i.i.d. with a certain proposal distribution or generated
as an MCMC sequence. Likewise, QMC methods usually apply randomization to deterministic
design points. Our forthcoming paper will deal with such situations and provide more general
results than the current paper.
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A Key results from [35]

Here we review some key results from [35], which are needed in the proofs for our results.

For σ > 0, below we denote by Bσ a subset of L2(R
d) such that each f ∈ Bσ has a spectral

density whose support is contained in the (closed) ball B(0, σ) with radius σ, i.e.,

Bσ :=
{
f ∈ L2(R

d) : supp(f̂) ⊂ B(0, σ)
}
.

This is a Paley-Weiner class of band-limited functions. Thus the functions in Bσ are analytic (and
thus they are continuous), and vanish at infinity. Therefore Bσ ⊂ L2(R

d) ∩ C0(R
d).

The following theorem is a restatement of Theorem 3.5 of [35].

Theorem A.1. Let Xn := {X1, . . . ,Xn} ⊂ R
d be n distinct points with separation radius qXn :=

1
2 mini 6=j ‖Xi −Xj‖, such that diam(Xn) := maxi,j ‖Xi −Xj‖ ≤ 1. Let σ > 0 be a constant such
that

σ ≥ σ0 :=
24

qXn

{√
π

3
Γ

(
d+ 2

2

)} 2
d+2

.

Then for any f ∈ C0(R
d) ∩ L2(R

d), there exists fσ ∈ Bσ that satisfies

f(Xi) = fσ(Xi), i = 1, . . . , n,

and

max
(
‖f − fσ‖C0(Rd), ‖f − fσ‖L2(Rd)

)
≤ Cd inf

g∈Bσ

max
(
‖f − g‖C0(Rd), ‖f − g‖L2(Rd)

)

with Cd := 5 + 2d+3.

In the above theorem, fσ is an interpolant of f on Xn. Thus the theorem guarantees that
such a fσ can be taken as a band-limited function with a sufficiently large band-length σ. More
precisely, the lower bound σ0 for σ is proportional to the reciprocal of the separation radius qXn .
This means that the band-length σ should increase as the minimum distance between distinct
design points decreases.

The following proposition is a restatement of Proposition 3.7 of [35], which establishes an
upper-bound on the L1-error for the approximate function defined in (49)—see Appendix B.2.

Proposition A.2. Let s ∈ N and α ∈ N
d
0 be a multi-index such that |α| < s. Suppose f ∈

Cs0(R
d) ∩ Hs(Rd) ∩ L1(R

d) and gσ is the approximate function defined in (49). Then for any
σ > 0,

‖∂αf − ∂αgσ‖L∞(Rd) ≤ Cs−|α|σ
|α|−s‖f‖Cs

0 (R
d),

where Ck−|α| > 0 is a constant depending only on the value of k−|α| and the function ψ of Lemma
B.1 in Appendix B.1.
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The following theorem, which is Theorem 3.10 in [35], provides an upper-bound on the approx-
imation error of the interpolant fσ.

Theorem A.3. Let s ∈ N and α ∈ N
d
0 be a multi-index such that |α| < s. Suppose f ∈ Cs0(R

d) ∩
Hs(Rd) ∩ L1(R

d), fσ is the interpolant from Theorem A.1 with σ > 0 and Xn := {X1, . . . ,Xn}
satisfies the conditions in Theorem A.1. Then there is a constant C|α|,s,d that depends only on |α|,
s and d such that

‖∂αf − ∂αfσ‖L∞(Rd) ≤ C|α|,s,dσ
|α|−smax

(
‖f‖Cs

0(R
d), ‖f‖Hs(Rd)

)
.

The following proposition, which is Proposition 3.11 in [35], provides an upper-bound on a
Sobolev norm of the interpolant fσ.

Proposition A.4. Let s ∈ N and α ∈ N
d
0 be a multi-index such that |α| < s. Suppose f ∈ Cs0(R

d)∩
Hs(Rd) ∩ L1(R

d), fσ is the interpolant from Theorem A.1 with σ > 0 and Xn := {X1, . . . ,Xn}
satisfies the conditions in Theorem A.1. Then there is a constant Cs,d that depends only on s and
d such that

‖fσ‖Hs(Rd) ≤ Cs,dmax
(
‖f‖Cs

0(R
d), ‖f‖Hs(Rd)

)
.

Remark A.1. We have the following comments on Propositions A.2, A.4 and Theorem A.3.

• In the original statement of Proposition 3.7 in [35], the assumption f ∈ L1(R
d) is missing.

However, since this assumption is required for the function gσ to be well-defined (see Lemma
B.4), we have included it in Proposition A.2. Since Theorem 3.10 and Proposition 3.11 of
[35] depend on Proposition 3.7, we have included the assumption f ∈ L1(R

d) in Theorem A.3
and Proposition A.4.

• In the original statement of Proposition 3.11 in [35], the condition σ ≥ 1 is required. This
condition is implicitly satisfied by σ in Proposition A.4 as the condition on σ in Theorem A.1
implies σ ≥ 1, which can be seen from the fact that qXn ≤ 1/2 (follows from the assumption
diam(Xn) ≤ 1) and the definition of the lower-bound σ0 of σ.

A.1 The Sobolev norm of the interpolant fσ

Here we provide an upper-bound on the Sobolev (RKHS) norm of the interpolant fσ in Theo-
rem A.1. The result essentially follows from an argument in p.298 of [35], but we prove it for
completeness.

Lemma A.5. Let r ∈ R, r > d/2 and s ∈ N, r ≥ s. Let kr be a kernel on R
d such that

kr(x, y) := Φ(x− y), where Φ : Rd → R satisfies

C1(1 + ‖ξ‖2)−r ≤ Φ̂(ξ), ξ ∈ R
d

for some constant C1 > 0 independent of ξ. Suppose f ∈ Cs0(R
d) ∩ Hs(Rd) ∩ L1(R

d), fσ is the
interpolant from Theorem A.1 with σ > 0 and Xn := {X1, . . . ,Xn} satisfies the conditions in
Theorem A.1. Then we have

‖fσ‖Hkr
≤ Cs,d,krσ

r−smax
(
‖f‖Cs

0 (R
d), ‖f‖Hs(Rd)

)
,

where Cs,d,kr is a constant only depending on r, s, d, and kr (note that the dependency on the
kernel kr is via the constant C1).
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Proof. Note that, since σ satisfies the conditions in Theorem A.1, it follows that σ ≥ 1. We then
have

‖fσ‖2Hkr
=

∫
|f̂σ(ξ)|2Φ̂(ξ)−1dξ

=

∫

‖ξ‖≤σ
|f̂σ(ξ)|2Φ̂(ξ)−1dξ (∵ f ∈ Bσ)

≤ C−1
1

∫

‖ξ‖≤σ
|f̂σ(ξ)|2(1 + ‖ξ‖2)rdξ

= C−1
1

∫

‖ξ‖≤σ
|f̂σ(ξ)|2(1 + ‖ξ‖2)r−s(1 + ‖ξ‖2)sdξ

≤ C−1
1 (1 + σ2)r−s

∫

‖ξ‖≤σ
|f̂σ(ξ)|2(1 + ‖ξ‖2)sdξ (∵ r − s ≥ 0)

≤ C−1
1 (1 + σ2)r−s

∫
|f̂σ(ξ)|2(1 + ‖ξ‖2)sdξ

= C−1
1 (1 + σ2)r−s‖fσ‖2Hs(Rd) ≤ C−1

1 2r−sσ2(r−s)‖fσ‖2Hs(Rd) (∵ σ ≥ 1).

Therefore, by using Proposition A.4, it follows that

‖fσ‖Hkr
≤ C

−1/2
1 2(r−s)/2σr−s‖fσ‖Hs(Rd)

≤ C
−1/2
1 2(r−s)/2σr−sCs,dmax

(
‖f‖Cs

0(R
d), ‖f‖Hs(Rd)

)
,

where Cs,d is a constant only depending on s and d. The proof completes by setting Cs,d,kr :=

C
−1/2
1 2(r−s)/2Cs,d.

B Approximation in Sobolev spaces

B.1 Fundamental lemma

In the proof of Theorem 6, we used Proposition 3.7 of [35], which assumes the existence of a
function ψ : Rd → R satisfying the properties in Lemma B.1. Since the existence of this function
is not proved in [35], we will first prove it for completeness. Lemma B.1 is a variant of Lemma 1.1
of [18], from which we borrowed the proof idea.

Lemma B.1. Let s ∈ N. Then there exists a function ψ : R
d → R satisfying the following

properties:

(a) ψ is radial;

(b) ψ is a Schwartz function;

(c) supp(ψ̂) ⊂ B(0, 1);

(d)
∫
Rd x

βψ(x)dx = 0 for every multi-index β satisfying |β| :=
∑d

i=1 βi ≤ s, where xβ :=∏d
i=1 x

βi
i .

(e) ψ satisfies ∫ ∞

0
|ψ̂(tξ)|2 dt

t
= 1, ∀ξ ∈ R

d\{0}. (41)
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Proof. Define a function u ∈ L1(R
d) as the inverse Fourier transform of a function û ∈ L1(R

d)
defined by

û(ξ) :=

{
exp

(
− 1

1−‖ξ‖

)
, if ‖ξ‖ < 1

0, otherwise
.

Then û is radial, Schwartz, and satisfies supp(û) ⊂ B(0, 1). Also note that u is real-valued, since
û is symmetric.

Let m ∈ N satisfy m > s/2. Define a function h : Rd → R by

h := ∆mu,

where ∆ denotes the Laplacian defined by ∆f :=
∑d

i=1
∂2f
∂x2i

. Note that we have (see e.g. p.117 of

[51])
ĥ(ξ) = Cm‖ξ‖2mû(ξ), (42)

where Cm is a constant depending only on m. From this expression, it follows that ĥ is radial and
Schwartz (and so is h), and that supp(ĥ) ⊂ B(0, 1). Thus the function h satisfies the required
properties (a) (b) and (c). Later we will define the function ψ in the assertion based on h.

We next show that h satisfies the property (d). Let β ∈ N
d
0 be any multi-index satisfying |β| ≤ s,

and let pβ(x) := xβ be a monomial. It follows that pβh is Schwartz, and thus pβh ∈ L1(R
d). Then

we have ∫
xβh(x)dx = (p̂βh)(0), (43)

which follows from pβh ∈ L1(R
d) and from the definition of Fourier transform. Note that we have

(see e.g. Theorem 5.16 of [55])

p̂βh(ξ) = i|β|∂β ĥ(ξ). (44)

The mixed partial derivative in the right side can be expanded as

∂β ĥ(ξ)
(42)
= ∂β

[
Cm‖ξ‖2mû(ξ)

]
= Cm

∑

γ∈Nd
0:γ≤β

(
β

γ

)
∂γ
[
‖ξ‖2m

]
∂β [û(ξ)] , (45)

where, in the last equality, we used the Leibniz rule for mixed partial derivatives, γ ≤ β is defined

by that γi ≤ βi for all i = 1, . . . , d, and
(
β
γ

)
:=

∏d
i=1 βi!∏d
i=1 γi!

. Using the multinomial theorem, the mixed

partial derivative ∂γ
[
‖ξ‖2m

]
in the above equation can be further expanded as

∂γ
[
‖ξ‖2m

]
= ∂γ

[(
d∑

i=1

ξ2i

)m]
= ∂γ


 ∑

α∈Nd
0:|α|=m

m!
∏d
i=1 αi!

d∏

i=1

ξ2αi

i




=
∑

α∈Nd
0:|α|=m

m!
∏d
i=1 αi!

d∏

i=1

dγi

dξγii

[
ξ2αi

i

]
. (46)

Note that we have
dγi

dξγii

[
ξ2αi

i

]
=

{
(2αi)!

(2αi−γi)!ξ
2αi−γi
i , if 2αi ≥ γi

0, otherwise
.
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Also note that, since |α| = m and |γ| ≤ |β| ≤ s < 2m, we have |γ| < 2|α|. This implies that there
exists at least one index ℓ ∈ {1, . . . , d} such that 2αℓ > γℓ. For this ℓ we then have

dγℓ

dξγℓℓ

[
ξ2αℓ

ℓ

]∣∣∣∣
ξ=0

=
(2αℓ)!

(2αℓ − γℓ)!
ξ2αℓ−γℓ
ℓ

∣∣∣∣
ξ=0

= 0.

From this and (46), it follows that ∂γ
[
‖ξ‖2m

]∣∣
ξ=0

= 0, and thus (45) gives that ∂βĥ(0) = 0.

Therefore, from (43) and (44), it holds that
∫

R

xβh(x)dx = 0,

which is the property (d).

Next, we show that
∫∞
0 |ĥ(tξ)|2 dtt < ∞ for all ξ ∈ R

d\{0}. Since ĥ is bounded and supp(ĥ) ⊂
B(0, 1), we have

∫∞
1 |ĥ(tξ)|2 dtt < ∞. Also, since |ĥ(tξ)| = O(t2m) as t → +0 (which follows

from ĥ(tξ) = (−1)m‖tξ‖2mû(tξ) with û being bounded), we have
∫ 1
0 |ĥ(tξ)|2 dtt < ∞. Therefore∫∞

0 |ĥ(tξ)|2 dtt <∞.

Note that since ĥ is radial,
∫∞
0 |ĥ(tξ)|2 dtt only depends on the norm ‖ξ‖. Furthermore,

∫∞
0 |ĥ(tξ)|2 dtt

remains the same for different values of the norm ‖ξ‖ > 0 due to the property of the Haar mea-
sure dt/t. In other words, there is a constant 0 < C < ∞ satisfying

∫∞
0 |ĥ(tξ)|2 dtt = C for all

ξ ∈ R
d\{0}. The proof is completed by defining ψ in the assertion as ψ(x) := C−1/2h(x).

Notation. Note that ψ being radial implies that ψ̂ is radial, so ψ̂(tξ) in (41) depends on ξ only
through its norm ‖ξ‖. Therefore we may henceforth use the notation

ψ̂(t‖ξ‖)

to denote ψ̂(tξ), to emphasize its dependence on the norm. Similarly, we use the notation ψ̂(t) to
imply ψ̂(tξ) for some ξ ∈ R

d with ‖ξ‖ = 1.

B.2 Approximation via Calderón’s formula.

If ψ ∈ L1 is radial and satisfies (41), Calderón’s formula [18, Theorem 1.2] guarantees that any
f ∈ L2 can be written as

f(x) =

∫ ∞

0
(ψt ∗ ψt ∗ f)(x)

dt

t
, (47)

where

ψt(x) :=
1

td
ψ(x/t). (48)

Note that the integral in (47) is improper, and should be interpreted in the following L2 sense: if

0 < ε < δ < ∞ and fε,δ(x) :=
∫ δ
ε (ψt ∗ ψt ∗ f)(x)dtt , then ‖f − fε,δ‖L2 → 0 as ε → +0 and δ → ∞

independently. It is easy to verify from (48) that

‖ψ‖L1 = ‖ψt‖L1 , ∀t > 0.

Let ψ be the function in Lemma B.1. Following Section 3.2 of [35], we consider the following
approximation of f based on Calderón’s formula (47):

gσ(x) :=

∫ ∞

1/σ
(ψt ∗ ψt ∗ f)(x)

dt

t
. (49)
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The integral in (49) is also improper and should be interpreted as follows. Let δ > 1/σ and define

gσ,δ :=

∫ δ

1/σ
(ψt ∗ ψt ∗ f)(x)

dt

t
. (50)

Then gσ in (49) is defined to be a function in L2 such that limδ→∞ ‖gσ − gσ,δ‖L2 = 0. Such gσ
exists (as a limit of gσ,δ), as shown in Lemma B.4 below. Since there is no proof of this result
in [35], we provide a proof for the sake of completeness. To this end, we first need the following
lemma.

Lemma B.2. Let gσ,δ be defined as in (50) with δ > 1/σ. If f ∈ Lp, then gσ,δ ∈ Lp for all
p ∈ {1, 2}.

Proof. For p ∈ {1, 2}, note that

‖gσ,δ‖Lp =

∥∥∥∥∥

∫ δ

1/σ
ψt ∗ ψt ∗ f

dt

t

∥∥∥∥∥
Lp

≤
∫ δ

1/σ
‖ψt ∗ ψt ∗ f‖Lp

dt

t
(∵ Minkowski’s inequality)

≤
∫ δ

1/σ
‖ψt‖2L1

‖f‖Lp

dt

t
(∵ Young’s inequality)

=

∫ δ

1/σ
‖ψ‖2L1

‖f‖Lp

dt

t
= ‖ψ‖2L1

‖f‖Lp(log(δ) − log(1/σ)) < +∞,

where in the last line we used the assumption f ∈ Lp and the fact ψ ∈ L1, which is a consequence
of ψ being a Schwartz function (see Lemma B.1).

Lemma B.3. Assume f ∈ L1, and let gσ,δ be defined as in (50) with δ > 1/σ. Then the Fourier
transform of gσ,δ is given by

ĝσ,δ(ξ) =

{
f̂(ξ)

∫ min(1,‖ξ‖δ)
‖ξ‖/σ (ψ̂(t))2 dtt , if ‖ξ‖ < σ

0, otherwise
.

Proof. We have

ĝσ,δ(ξ) =

∫ ∫ δ

1/σ
(ψt ∗ ψt ∗ f)(x)

dt

t
e−iξ

T xdx

=

∫ δ

1/σ

∫
(ψt ∗ ψt ∗ f)(x)e−iξ

T xdx
dt

t
(∵ Fubini’s theorem)

= f̂(ξ)

∫ δ

1/σ
(ψ̂t(ξ))

2 dt

t
= f̂(ξ)

∫ δ

1/σ
(ψ̂(tξ))2

dt

t
.

In the above derivation, Fubini’s theorem is applicable since ψt ∗ ψt ∗ f ∈ L1 (which follows from
ψ ∈ L1, f ∈ L1 and Minkowski’s inequality; see the proof of Lemma B.2).

Recall that ψ̂ is radial, so that the value of ψ̂(tξ) only depends on the norm of its argument
‖tξ‖ = t‖ξ‖. By a change of variables τ := t‖ξ‖, and recalling the notation ψ̂(t‖ξ‖) := ψ̂(tξ), it
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holds that

∫ δ

1/σ
(ψ̂(t‖ξ‖))2 dt

t
=

∫ ‖ξ‖δ

‖ξ‖/σ
(ψ̂(τ))2

dτ

τ

=

{∫min(1,‖ξ‖δ)
‖ξ‖/σ (ψ̂(τ))2 dττ , if ‖ξ‖ < σ

0, otherwise
,

where the last line follows from the property supp(ψ) ⊂ B(0, 1). The proof is completed by
combining this and the above expression of ĝσ,δ(ξ).

We are now ready to show that the improper integral in (49) is well-defined as a limit of gσ,δ
in L2.

Lemma B.4. Assume f ∈ L1 ∩ L2, and let gσ,δ be defined as in (50) with δ > 1/σ. Then there
exists gσ ∈ L2 such that

lim
δ→∞

‖gσ − gσ,δ‖L2 = 0.

Proof. For constants δ1 > δ2 > 1/σ, define gσ,δ1 and gσ,δ2 as in (50) with δ = δ1 and δ = δ2,
respectively. We want to show that ‖gσ,δ1 − gσ,δ2‖L2 → 0 as δ1, δ2 → ∞. This concludes that gσ,δ
with increasing δ yields a Cauchy sequence in L2, and therefore the desired gσ exists as a limit of
gσ,δ .

First we have

‖gσ,δ1 − gσ,δ2‖2L2

=

∫
|ĝσ,δ1(ξ)− ĝσ,δ2(ξ)|2 dξ (∵ Plancherel theorem)

(∗)
=

∫

‖ξ‖<σ

∣∣∣∣∣f̂(ξ)
∫ min(1,‖ξ‖δ1)

‖ξ‖/σ
(ψ̂(t))2

dt

t
− f̂(ξ)

∫ min(1,‖ξ‖δ2)

‖ξ‖/σ
(ψ̂(t))2

dt

t

∣∣∣∣∣

2

dξ

=

∫

‖ξ‖<σ
|f̂(ξ)|2

∣∣∣∣∣

∫ min(1,‖ξ‖δ1)

min(1,‖ξ‖δ2)
(ψ̂(t))2

dt

t

∣∣∣∣∣

2

dξ,

where we invoked Lemma B.3 in (∗). Here the Plancherel theorem is applicable since we have
gσ,δ1 , gσ,δ2 ∈ L1 ∩ L2, which follows from Lemma B.2 and the assumption f ∈ L1 ∩ L2. It then
follows that

lim
δ1,δ2→∞

‖gσ,δ1 − gσ,δ2‖2L2

= lim
δ1,δ2→∞

∫

‖ξ‖<σ
|f̂(ξ)|2

∣∣∣∣∣

∫ min(1,‖ξ‖δ1)

min(1,‖ξ‖δ2)
(ψ̂(t))2

dt

t

∣∣∣∣∣

2

dξ

=

∫

‖ξ‖<σ
|f̂(ξ)|2 lim

δ1,δ2→∞

∣∣∣∣∣

∫ min(1,‖ξ‖δ1)

min(1,‖ξ‖δ2)
(ψ̂(t))2

dt

t

∣∣∣∣∣

2

dξ (51)

=

∫

‖ξ‖<σ
|f̂(ξ)|2

∣∣∣∣
∫ 1

1
(ψ̂(t))2

dt

t

∣∣∣∣
2

dξ = 0, (52)
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where (51) follows from the dominated convergence theorem. To see how the dominated conver-
gence theorem applies to (51), define

hδ1,δ2(ξ) := |f̂(ξ)|2
∣∣∣∣∣

∫ min(1,‖ξ‖δ1)

min(1,‖ξ‖δ2)
(ψ̂(t))2

dt

t

∣∣∣∣∣

2

and

u(ξ) := |f̂(ξ)|2
∣∣∣∣
∫ ∞

0
(ψ̂(t))2

dt

t

∣∣∣∣
2

=
∣∣∣f̂(ξ)

∣∣∣
2
,

where the second identity follows from (41). Then we have (i) |hδ1,δ2(ξ)| ≤ u(ξ) for all δ1 > δ2 > 0

and ξ ∈ R
d with ‖ξ‖ < 1, and (ii) ‖u‖L1 = ‖f̂‖2L2

= ‖f‖2L2
< ∞, which follows from f ∈ L2

and Plancherel theorem. These conditions (i) (ii) enable the use of the dominated convergence
theorem.

(52) shows that gσ,δ with δ → ∞ is Cauchy in L2. Therefore there exists gσ ∈ L2 such that
limσ→∞ ‖gσ − gσ,δ‖L2 = 0, which completes the proof.

The following lemma provides an expression for the Fourier transform of the function gσ ∈ L2.

Lemma B.5. Assume f ∈ L1 ∩ L2, and let gσ ∈ L2 be the function in Lemma B.4. Then the
Fourier transform of gσ is given by

ĝσ(ξ) =

{
f̂(ξ)

∫ 1
‖ξ‖/σ(ψ̂(t))

2 dt
t , if ‖ξ‖ < σ

0, otherwise
.

Proof. As shown in Lemma B.4, the function gσ is given as a limit in L2 of functions gσ,δ as δ → ∞.
Therefore, the Fourier transform of gσ is given as a limit in L2 of the Fourier transforms of gσ,δ:

lim
δ→∞

‖ĝσ − ĝσ,δ‖L2 = 0.

We will show that this is satisfied by ĝσ as given in the assertion. By Lemma B.3, the Fourier
transform of gσ,δ with δ > 1/σ is given by

ĝσ,δ(ξ) =

{
f̂(ξ)

∫ min(1,‖ξ‖δ)
‖ξ‖/σ (ψ̂(t))2 dtt , if ‖ξ‖ < σ

0, otherwise
.

It then follows that

‖ĝσ − ĝσ,δ‖L2 =

∫
|ĝσ(ξ)− ĝσ,δ(ξ)|2 dξ

=

∫

‖ξ‖<σ
|f̂(ξ)|2

∣∣∣∣∣

∫ 1

‖ξ‖/σ
(ψ̂(t))2

dt

t
−
∫ min(1,‖ξ‖δ)

‖ξ‖/σ
(ψ̂(t))2

dt

t

∣∣∣∣∣

2

dξ

=

∫

‖ξ‖<σ
|f̂(ξ)|2

∣∣∣∣∣

∫ 1

min(1,‖ξ‖δ)
(ψ̂(t))2

dt

t

∣∣∣∣∣

2

dξ.
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Therefore,

lim
δ→∞

‖ĝσ − ĝσ,δ‖L2 = lim
δ→∞

∫

‖ξ‖<σ
|f̂(ξ)|2

∣∣∣∣∣

∫ 1

min(1,‖ξ‖δ)
(ψ̂(t))2

dt

t

∣∣∣∣∣

2

dξ

=

∫

‖ξ‖<σ
|f̂(ξ)|2 lim

δ→∞

∣∣∣∣∣

∫ 1

min(1,‖ξ‖δ)
(ψ̂(t))2

dt

t

∣∣∣∣∣

2

dξ (53)

=

∫

‖ξ‖<σ
|f̂(ξ)|2

∣∣∣∣
∫ 1

1
(ψ̂(t))2

dt

t

∣∣∣∣
2

dξ = 0,

where (53) follows from the dominated convergence theorem. Here the applicability of the domi-
nated convergence theorem can be checked in a similar manner as in the proof of Lemma B.4.

B.3 The Sobolev norm of the approximate function

In the main body of the paper, we use the following lemma, which is not provided in [35].

Lemma B.6. Let r, s ∈ R, r, s > 0 such that r ≥ s and let σ > 0 be a constant. If f ∈
Hs(Rd) ∩ L1(R

d), the function gσ defined in (49) satisfies

‖gσ‖Hr ≤ (1 + σ2)
r−s
2 ‖f‖Hs ,

where C > 0 is a constant independent of f and σ.

Proof. By Lemma B.5, the Fourier transform of gσ can be written as

ĝσ(ξ) = f̂(ξ)

{∫ 1
‖ξ‖/σ |ψ̂(t)|2 dtt , if ‖ξ‖ < σ

0, otherwise
.

In other words, supp(ĝσ) ⊂ B(0, σ). Also note that from (41), if ‖ξ‖ < σ, we have

∫ 1

‖ξ‖/σ
|ψ̂(t)|2 dt

t
≤
∫ 1

0
|ψ̂(t)|2 dt

t
≤ 1.

Therefore,

‖gσ‖2Hr =

∫

B(0,σ)
(1 + ‖ξ‖2)r|ĝσ(ξ)|2dξ

≤
∫

B(0,σ)
(1 + ‖ξ‖2)r|f̂(ξ)|2dξ

=

∫

B(0,σ)
(1 + ‖ξ‖2)r−s(1 + ‖ξ‖2)s|f̂(ξ)|2dξ

≤ (1 + σ2)r−s
∫

B(0,σ)
(1 + ‖ξ‖2)s|f̂(ξ)|2dξ

≤ (1 + σ2)r−s‖f‖2Hs ,

yielding the result.
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