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Abstract

Full Bayesian posteriors are rarely analyt-
ically tractable, which is why real-world
Bayesian inference heavily relies on approx-
imate techniques. Approximations generally
differ from the true posterior and require di-
agnostic tools to assess whether the infer-
ence can still be trusted. We investigate a
new approach to diagnosing approximate in-
ference: the approximation mismatch is at-
tributed to a change in the inductive bias
by treating the approximations as exact and
reverse-engineering the corresponding prior.
We show that the problem is more compli-
cated than it appears to be at first glance,
because the solution generally depends on
the observation. By reframing the problem
in terms of incompatible conditional distri-
butions we arrive at a natural solution: the
Gibbs prior. The resulting diagnostic is based
on pseudo-Gibbs sampling, which is widely
applicable and easy to implement. We il-
lustrate how the Gibbs prior can be used
to discover the inductive bias in a controlled
Gaussian setting and for a variety of Bayesian
models and approximations.

1 INTRODUCTION

Bayesian inference is based on the posterior distribu-
tion p(θ|y) over latent variables θ given an observation
y. Bayes’ theorem gives an explicit formula for com-
puting the posterior, but is often infeasible in practice
because the latent space is too large to work with,
the appearing integrals are intractable, or the likeli-
hood function cannot be evaluated. In these cases,
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practitioners revert to approximating the posterior in-
stead. This approach comprises a cornucopia of meth-
ods, which can be divided into two groups. The first
group consists of deterministic approximation meth-
ods that compute a feasible approximating distribu-
tion 1 q(θ|y) to the exact posterior p(θ|y) and includes
methods such as variational inference (Hinton and van
Camp, 1993; Jordan et al., 1999; Blei et al., 2017;
Hoffman et al., 2013; Ranganath et al., 2014; Kucukel-
bir et al., 2017), Laplace approximations (Spiegelhal-
ter and Lauritzen, 1990; MacKay, 1992; Rue et al.,
2009, 2017; Daxberger et al., 2021), and expectation
propagation (Minka, 2001). The second group consists
of stochastic sampling methods that generate samples
from (an approximation to) the posterior and includes
methods such as Markov chain Monte Carlo (Casella
and George, 1992; Hoffman and Gelman, 2014; Bar-
denet et al., 2017) and approximate Bayesian compu-
tation (Diggle and Gratton, 1984; Sisson et al., 2018;
Beaumont, 2019). For a general introduction to ap-
proximate methods in Bayesian inference see Bishop
(2006). While approximate methods make Bayesian
inference feasible, they come at the cost of a distortion
in the posterior. The resulting approximate inference
can deviate significantly from exact Bayesian infer-
ence. This calls for diagnostic tools to assess whether
the result can still be trusted. Most existing diag-
nostics suffer from one or more of the following weak-
nesses: they are specific to a particular setting, they
require evaluating the density of the approximation,
which is unavailable for sampling-based methods, or
they are restricted to the marginal distributions of a
multivariate posterior. An overview of diagnostic tools
is given in Section 2.

Existing diagnostics describe the difference to exact
Bayesian inference by assessing the mismatch between
approximation and true posterior. In contrast, we in-
vestigate a new perspective for diagnostic tools: we de-
scribe the approximate inference directly by attribut-

1While standard notation for the approximation is q(θ),
it will be useful in the context of this paper to think of it
as a conditional distribution.
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Figure 1: Left: a posterior approximation is biased to-
wards solutions of small norm. Right: the approxima-
tion corresponds to the exact posterior under another
implicitly defined prior, which is itself biased towards
solutions of small norm.

ing this mismatch to a change in the inductive bias. In
a fully Bayesian setting, the inductive bias is specified
explicitly by the model, which consists of the prior
(a priori preference for solutions) and the likelihood
(data generating process). Approximating the poste-
rior can introduce additional bias that is not reflected
in the model specification. We fix the likelihood and
only allow the prior to change. The main idea of this
work is to treat the approximation as an exact pos-
terior to the same likelihood and reverse-engineer the
corresponding implicitly used prior:
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This implicit prior describes the inductive bias of the
approximation in terms of an a priori preference for so-
lutions. Figure 1 shows an example of inference based
on posterior approximations that are biased towards
solutions of small norm. This corresponds to effec-
tively using a different prior with more mass on solu-
tions of small norm than the explicitly chosen prior.

Let (f(·|θ))θ be the likelihood and (q(·|y))y the ap-
proximations to the posteriors (p(·|y))y. It is reason-
able to define the implicit prior to the approximations
by fixing an observation y and simply reverting Bayes’
theorem2 πy(θ) ∝θ q(θ|y)/f(y|θ). Unfortunately, πy
generally depends on the observation y. This means
that the approximations to different observations can

2Note that πy can be improper, that is, not integrable.

correspond to different implicit priors, in which case
no single distribution π̃ satisfies q(θ|y) ∝θ π̃(θ)f(y|θ).
We only have the following weaker interpretation:

Inference based on the approximate posteriors
(q(·|y))y is exact Bayesian inference with the same
likelihood (f(·|θ))θ, but the prior is chosen from the
family (πy)y depending on the observation y.

Of course, the prior should not depend on the ob-
servation if we want to interpret it as the a priori
preference for solutions. To understand the inductive
bias of the approximations, we need an observation-
independent distribution to compromise between this
family of priors. We look at this problem through the
lens of incompatible conditional distributions (Arnold
and Press, 1989). This yields a natural solution based
on pseudo-Gibbs sampling, which we call the Gibbs
prior. An introduction to incompatible conditionals
and pseudo-Gibbs sampling is given in Appendix A.

Observation-(in)dependent diagnostics A diag-
nostic can either treat an approximation under a fixed
observation q(·|y) or assess the average behavior of the
approximation method across observations (q(·|y))y.
These different tasks can show opposing behavior be-
cause an approximation can be good on specific in-
stances but bad in general, or vice versa. Diagnosing a
single approximation helps to understand and improve
the inference under the fixed observation, but does not
inform about how the approximation method performs
in other cases. In our setting, this task is performed by
the distributions πy. However, we are interested in the
systematic bias of the whole approximation method,
which is why we search for an observation-independent
compromise between the πy. This kind of diagnostic
does not guarantee the same behavior on any fixed ob-
servation, but helps to understand the method itself.

Contributions

• We investigate the novel approach of diagnosing
approximate Bayesian inference methods in terms
of their inductive bias. We show that this requires
a compromise and reframe it as a problem of in-
compatible conditional distributions.

• We propose the Gibbs prior as a natural solution
to the above problem (Section 3) and as a diag-
nostic tool. It is based on pseudo-Gibbs sampling,
which is widely applicable and easy to implement.

• We demonstrate how the Gibbs prior can be
used to discover the inductive bias of approximate
Bayesian inference methods in a Gaussian toy ex-
ample (Section 4) and two intractable Bayesian
models (Section 5).
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2 RELATED WORK

We divide the literature for diagnostics into two broad
categories, depending on how they assess an approx-
imation mismatch. Diagnostics in the first cate-
gory compute a divergence between (quantities re-
lated to) the posterior and its approximation. Gorham
and Mackey (2015, 2017) compute Stein discrepan-
cies between the posterior and its approximation.
Cusumano-Towner and Mansinghka (2017) compute
the symmetric KL divergence between the approxi-
mation and another baseline approximation. Domke
(2021) computes the symmetric KL divergence be-
tween the true joint distribution p(y)p(θ|y) and its ap-
proximation p(y)q(θ|y). Huggins et al. (2020) use the
Wasserstein distance to bound the error of posterior
point estimates. Diagnostics in the second category
consider derived quantities that are known exactly un-
der the true posterior and test whether they deviate
under the approximations. Xing et al. (2020) com-
pare a distortion map for posterior cumulative distri-
bution functions to the identity. Yu et al. (2021) com-
pare average posterior means and covariances to prior
means and covariances. Cook et al. (2006) initiate an-
other line of work based on the distribution of posterior
quantiles, which is tested for uniformity; a corrected
implemenation is presented by Talts et al. (2018). Yao
et al. (2018) relax the uniformity test of Cook et al.
(2006) and only test for symmetry. They also present
another diagnostic based on Pareto-smoothed impor-
tance sampling. Prangle et al. (2014) test for unifor-
mity of p-values related to the coverage property; this
method is extended by Rodrigues et al. (2018). Our
diagnostic also falls into this category where the Gibbs
prior is compared to the original prior. The above di-
agnostics can also be divided by whether they analyze
approximation methods for fixed or general observa-
tions. Our goal of diagnosing average approximation
behavior is shared by Domke (2021); Yu et al. (2021);
Cook et al. (2006); Talts et al. (2018); Yao et al. (2018).

Our diagnostic is based on sampling alternatingly from
likelihood and approximation. The same technique
was originally used by Geweke (2004) under the name
successive-conditional simulator with the same goal of
diagnosing approximations. Although both diagnos-
tics are based on the same technique, they apply it
differently: Geweke (2004) uses the simulator with-
out reference to compatibility for generating tuples
(θ̃i, ỹi)i, which are tested against samples from the
Bayesian model (θi, yi)i to assess whether the approx-
imations are exact; we focus on the marginal values
(θ̃i)i that describe the implicitly used prior to assess
the inductive bias. Our diagnostic is also similar in
spirit to Joshi and Ruggeri (2020) who link distortions
in the likelihood to distortions in the prior.

3 METHOD

3.1 Preliminaries

Let π(θ) be a proper prior distribution on a space of
latent variables θ ∈ Θ and f(y|θ) a positive likelihood
on a space of observations y ∈ Y. The corresponding
posterior distribution is denoted by p(θ|y). For ev-
ery fixed y let q(θ|y) denote the approximation to the
posterior given by the approximate method in ques-
tion. For sampling-based methods this distribution
cannot be evaluated because it is specified only im-
plicitly through samples, which suffices for our diag-
nostic. We denote the families of distributions as F :=
(f(·|θ))θ∈Θ, P := (p(·|y))y∈Y , and Q := (q(·|y))y∈Y .
The families F and Q are called compatible if there
exists a joint distribution on Θ × Y which has F and
Q as conditionals. They are called incompatible if they
are not compatible (Arnold and Press, 1989).

Our goal is to understand the inductive bias of infer-
ence based on the approximations q(θ|y) in terms of
an a priori preference for solutions. The bias is fully
encoded in the original prior π(θ) if the approxima-
tion is perfect. However, a mismatch q(θ|y) 6= p(θ|y)
can introduce additional bias, which is not captured
by the original prior. The main idea of this paper
is to treat the approximation as an exact posterior
and look for the corresponding prior distribution π̃(θ).
This new prior describes the combination of explicitly
encoded bias π(θ) and implicitly incurred bias because
of approximation mismatch. We can then compare
those priors to gain insights into how the approxima-
tion changes the inductive bias.

3.2 Assessing the Inductive Bias of Posterior
Approximations with Gibbs Priors

This section describes the problem of finding a prior
to the approximations from the perspective of incom-
patible conditionals. We first motivate the problem
by considering fixed observations and then propose a
solution based on pseudo-Gibbs sampling.

For a fixed observation y ∈ Y, the implicit pointwise
prior πy corresponding to q(·|y) is defined via

πy(θ) ∝θ
q(θ|y)

f(y|θ)
. (1)

This describes the inductive bias of the approximation
q(·|y) for a fixed observation, but it is not necessarily
the same across different observations. The pointwise
prior πy will depend on y if and only if the condi-
tional families F and Q are incompatible, which is a
simple consequence of the definition. Informally, the
scatter of the family (πy)y∈Y is an indicator for the
degree of compatibility: in the compatible case, all πy
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Figure 2: Schematic diagram of samples from the
Gibbs chain (Definition 1) with auxiliary variables yt.
The distribution of θt converges to the Gibbs prior πG.

are concentrated at some distribution πy ≡ π̃, which
is the implicit prior to the approximations. As the
compatibility decreases, (πy)y∈Y gets more scattered

(see Figure 3a). One possible measure of incompati-
bility is discussed in Appendix C. As a sanity check,
observe that a perfect approximation Q = P recovers
the original prior π = πy for every y.

Ideally, the inductive bias of approximate inference
could be explained by a single prior independent from
the observation, like a prior in fully Bayesian infer-
ence. But as the above considerations show, this is
not possible if the family (πy)y∈Y contains different
members who offer conflicting explanations. There-
fore, we search for a compromise that reasonably rep-
resents the different πy. We do so by looking at the
situation from the perspective of conditional distribu-
tions: a joint distribution on Θ×Y (Bayesian model)
is specified indirectly through the conditionals F (like-
lihood) and Q (posterior approximations). We want to
obtain the corresponding Θ-marginal (prior). A stan-
dard way to access the joint distribution via its condi-
tionals is Gibbs sampling (Geman and Geman, 1984;
Casella and George, 1992). Gibbs sampling starts with
any initial point (θ0, y0) in the joint space and alter-
natingly updates θ given y and then y given θ. Under
some assumptions, this vector converges to a sample
from the joint distribution. Although Gibbs sampling
assumes that the involved conditionals are compatible,
it can be used the same way if they are incompatible.
In this case it is referred to as pseudo-Gibbs sampling, a
term coined by Heckerman et al. (2001). Pseudo-Gibbs
sampling leads us to the following candidate prior:

Definition 1 (Gibbs prior). For two families of dis-
tributions (f(·|θ))θ∈Θ on Y and (q(·|y))y∈Y on Θ con-
sider the discrete-time Markov chain on Θ whose tran-
sition function is given by

r(θ′|θ) = EY∼f(·|θ) [q(θ′|Y )] . (2)

This chain is called the Gibbs chain. Any stationary
distribution of this Markov chain is called a Gibbs prior
and denoted by πG.

The Gibbs chain is illustrated in Figure 2. A single
step of the chain according to Eq. (2) can be simulated
with an auxiliary variable y: first sample from the

likelihood y ∼ f(·|θ) and then from the approximation
θ′ ∼ q(·|y). Under the caveat of incompatibility, we
have the following intuition for the Gibbs prior:

The Gibbs prior describes the a priori preference for
solutions of the approximate inference method.

A simple reformulation of the stationarity condition
for πG offers two alternative representations

πG(θ) =

∫
Y
g(y)q(θ|y) dy (3)

=

∫
Y
g̃(y)f(y|θ)πy(θ) dy , (4)

where g(y) =
∫

Θ
πG(θ̃)f(y|θ̃) dθ̃ and g̃(y) =

g(y)/
∫

Θ
πy(θ̃)f(y|θ̃) dθ̃ are weighting functions and

Eq. (4) requires all πy to be proper. Eq. (3) shows
that the Gibbs prior is a mixture of the pointwise ap-
proximations. This suggests that consistent trends be-
tween approximations and posteriors are reflected in
the Gibbs prior, for example underestimation of the
norm as in Figure 1. Eq. (4) relates back to our origi-
nal motivation of a compromise between (πy)y∈Y and
shows that the Gibbs prior is a mixture of these dis-
tributions, reweighted by the likelihood.

Proposition 2 (Existence and uniqueness of
Gibbs priors). Consider two families of distributions
F = (f(·|θ))θ∈Θ on Y and Q = (q(·|y))y∈Y on Θ. Let
M be the corresponding Gibbs chain from Definition 1.

(i) If F and Q are compatible with joint distribution
p(θ, y), then the marginal p(θ) is a Gibbs prior. If
M is additionally irreducible, then it is the only
Gibbs prior.

(ii) If Θ and Y are finite, then there exists a Gibbs
prior. If additionally F or Q are positive, then
the Gibbs prior is unique.

Proof (sketch). The first statement of part (i) is a
standard Gibbs sampling result; it can be proven by
verifying the detailed balance equation for p(θ), which
implies that M is a reversible Markov chain and p(θ) a
stationary distribution. The statement about unique-
ness is trivial, because Gibbs priors are defined as sta-
tionary distributions of M . A list of sufficient crite-
ria in different settings is given in Arnold and Press
(1989). Part (ii) concerns the existence of a (unique)
stationary distribution. This condition is a standard
result for finite Markov chains, for more general cases
see Norris and Norris (1998).

Proposition 2 admits additional interpretations in our
Bayesian setting, where F is the likelihood and Q some
approximation to the posterior. Part (i) states that if
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Q is the exact posterior under some other prior π̃, then
this prior is recovered by the Gibbs prior πG = π̃. Part
(ii) shows that Gibbs priors exist under much weaker
assumptions than compatibility of F and Q. There are
only few other results about the Gibbs chain and its
Gibbs priors in the general incompatible case. Muré
(2019) shows that Gibbs priors are an optimal com-
promise between incompatible conditionals among a
restricted set of distributions. For discrete distribu-
tions, Kuo and Wang (2019) show that the transitions
of the Gibbs chain can be interpreted as iterative pro-
jections with respect to the KL divergence.

3.3 Sampling from the Gibbs Prior

Algorithm 1: Simulating the Gibbs chain3

Data: Likelihood f , approximate inference
method q, number of steps T

Result: Correlated samples (θ1, . . . , θT ) from πG
θ0 ← Arbitrary initialization, e. g. sample from π(·)
for t← 0 to T − 1 do

yt ← Randomly sample from f(·|θt)
q(·|yt)← Approximation to p(·|yt)
θt+1 ← Randomly sample from q(·|yt)

end

Algorithm 1 describes how to obtain a sequence of cor-
related samples from the Gibbs prior. Since it is de-
fined as the stationary distribution of the Gibbs chain,
this is achieved by simply simulating the chain as in
Figure 2. This approach is very generally applicable
because it only requires sampling from the approxi-
mate posteriors, but not evaluating their density. The
complexity depends largely on the complexity of com-
puting the approximations to the posterior, which has
to be redone every step for a different observation.
The number of steps needed to assure convergence de-
pends on the mixing speed of the Markov chain. Un-
der the exact posterior, the Gibbs chain mixes fast if
there are few observations. Informally, the posterior
p(θ|y) ∝ π(θ)f(y|θ) relies heavily on the the prior π
(the stationary distribution) which ensures that the
chain converges to its stationary distribution quickly.
When there are many observations, the posterior con-
centrates and the high correlation between parameters
and observations leads to slow mixing. In that sense,
Algorithm 1 is more practical under few observations;
this case is arguably more interesting because poste-
rior inference gets easier as the number of observations
increases. To ensure that the resulting samples actu-
ally correspond to the Gibbs prior, we recommend to
monitor convergence of the Gibbs chain (Roy, 2020).

3Code available at https://github.com/tml-
tuebingen/gibbs-prior-diagnostic

3.4 How to Use the Gibbs Prior

There are two principled ways of using the Gibbs prior
to diagnose an approximate inference method. The
first way is to assess the quality of the approximation
by quantifying the distance to the original prior π with
some divergence measure D (πG, π), or testing the hy-
pothesis H0 : πG = π. A large discrepancy between
πG and π indicates a bad approximation, because a
perfect approximation would yield πG = π. The sec-
ond way is to understand the inductive bias that the
approximation imposes by examining the shift in mass
from π to πG. A direct comparison might not be en-
lightening if the latent space Θ is large; instead, one
could visualize their differences (Lloyd and Ghahra-
mani, 2015) or compare the distribution of summary
statistics g : Θ→ R.

Note that there are caveats to this interpretation of the
Gibbs prior due to incompatibility of likelihood and
approximations. Thinking of the Gibbs prior as the ef-
fectively used prior for approximate inference becomes
less valid for stronger incompatibility, because the fam-
ily of pointwise priors (πy)y∈Y requires a stronger com-
promise. This is also demonstrated in the next section.

Summary We conclude this section by summarizing
the three broad cases that can occur when comparing
the Gibbs prior πG with the original prior π:

1. πG ≈ π: the Gibbs prior is close to the original
prior, which suggests that the approximations do
not introduce additional bias. In particular, this
is the case when the approximations are close to
the true posterior. The reverse implication is not
necessarily true (Appendix B.1).

2. πG 6= π: the Gibbs prior differs from the original
prior, which implies that the approximations dif-
fer from the true posterior. This means that the
approximations introduce additional bias, which
can be assessed by interpreting the Gibbs prior
as the effectively used prior. The validity of this
interpretation depends on the compatibility be-
tween likelihood and approximations.

3. The Gibbs chain in Algorithm 1 does not con-
verge. This can have multiple reasons: the ap-
proximations are good but the prior π is improper,
the approximations are bad, or the chain was not
run long enough. We recommend to use the diag-
nostic conservatively and dismiss it in these cases
to avoid falsely rejecting a good approximation.
To exclude the last case of running the Gibbs
chain not long enough, the convergence of the
chain should be monitored.

https://github.com/tml-tuebingen/gibbs-prior-diagnostic
https://github.com/tml-tuebingen/gibbs-prior-diagnostic


Discovering Inductive Bias with Gibbs Priors

-1 0 1

-1

0

1

re
ve

rs
e

correlated prior

-1 0 1

correlated likelihood

-1 0 1

-1

0

1

fo
rw

ar
d

-1 0 1

Original prior π
Gibbs prior πG
Pointwise priors πy

(a) Prior distributions. Original prior, Gibbs prior,
and pointwise priors for different y (same in both plots).
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Figure 3: Distributions of interest for the variational inference settings described in Section 4.1 with d = 2 and
n = 1. The setting correlated prior uses Σ0 = I and a Σ which is strongly correlated along (1 1)>. For
correlated likelihood Σ0 and Σ are interchanged. Colored areas show superlevel density sets with mass 0.3.

4 ILLUSTRATIVE TOY EXAMPLE

We now give a simple example to demonstrate the con-
cepts from the previous section.

4.1 Gaussian Toy Model

Consider the problem of estimating the mean θ ∈ Rd
of a d-dimensional Gaussian distribution with known
covariance matrix based on n independent samples
y1, . . . , yn ∈ Rd. Placing a Gaussian prior on θ yields
the Bayesian model

θ ∼ N (µ0,Σ0) ,

yi|θ
indep.∼ N (θ,Σ) , i = 1, . . . , n ,

(5)

where µ0 ∈ Rd and Σ0,Σ ∈ Rd×d are positive def-
inite. The observations are collected in a matrix
y = (y1, . . . , yn)> ∈ Rn×d. We consider four different
settings for variational inference in this model, which
are determined by the following two choices:

Correlated posterior We choose the prior and like-
lihood covariance matrices such that the posterior dis-
tribution has correlated components. This can be
achieved by either a correlated prior and isotropic
likelihood (referred to as correlated prior) or an
isotropic prior and a correlated likelihood (referred to
as correlated likelihood).

Variational approximation We consider the mean
field variational approximation (Bishop, 2006). This
method approximates the posterior with the varia-
tional family QMF, which consists of all distributions
on Rd with independent components. For the objective
we consider the commonly used reverse KL divergence

q(·|y) := arg min
q∈QMF

KL(q ‖ p(·|y)) (6)

(referred to as reverse) or the forward KL divergence

q(·|y) := arg min
q∈QMF

KL(p(·|y) ‖ q) (7)

(referred to as forward).

These settings are simple enough so that all distribu-
tions of interest are Gaussians and can be computed
in closed form. This includes the posteriors p(·|y), the
approximations q(·|y), the pointwise priors πy, and the
Gibbs prior πG. For details see Appendix D, which
also provides numerical justifications for the following
arguments about biases.

4.2 Bias Discovery Using the Gibbs Prior

Both approximations reverse and forward have two
known biases, compactness and loss of correlation
(Turner and Sahani, 2011). These biases can now also
be discovered with the Gibbs prior. Figure 3a shows
the priors and Gibbs priors and Figure 3b shows the
corresponding posteriors and approximations.
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Bias: compactness One known bias of mean field
variational inference is the compactness of the approx-
imations as measured by the entropy (Turner and Sa-
hani, 2011): comparing the approximations to the true
posterior in Figure 3b shows that they are too compact
for reverse and not compact enough for forward.
The same behavior can be observed on the prior level:
the Gibbs prior is more compact than the prior for
reverse and less compact for forward.

Bias: loss of correlation The variational approxi-
mations cannot capture any correlation between the
coordinates by definition of the variational family
QMF. This bias is easily understood on the poste-
rior level, but it is less obvious what this means in
terms of an a priori preference for solutions. In fact,
this corresponding preference depends on the source of
the posterior correlation and cannot be explained by
the posterior alone. For correlated prior, the pos-
terior correlation is caused by the prior correlation.
Uncorrelated approximations therefore correspond to
an uncorrelated prior. The Gibbs priors confirm this
intuition by being less correlated than the prior. For
correlated likelihood, the posterior correlation is
caused by the likelihood correlation. Here, the Gibbs
priors show that the approximations correspond to a
prior whose correlation is orthogonal to the likelihood
correlation. Intuitively, the orthogonal correlations of
prior and likelihood “cancel out” to produce uncorre-
lated posteriors.

4.3 Is the Gibbs Prior a Prior?

The approximations are exact posteriors under the
Gibbs prior if and only if the approximations are com-
patible to the likelihood. Equivalently, this is the case
when the family of pointwise priors (πy)y∈Y concen-
trates at a single distribution. Figure 3a shows πy for
various y. For correlated prior they differ strongly
and for correlated likelihood they are improper
and therefore not shown. In both settings, this implies
that the conditionals are incompatible as is typically
the case. This is confirmed by Figure 3b, which shows
that the posteriors under the Gibbs prior do not ex-
actly coincide with the approximations. Despite these
incompatibilities, this example shows that the Gibbs
prior can discover inductive biases of the approximate
methods. The Gibbs prior should therefore be thought
of as a summary statistic for the inductive bias (see
Appendix B for more details).

5 EXPERIMENTS

We experiment with the Gibbs prior as a diagnostic
tool for various approximations in two Bayesian mod-
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Figure 4: Marginal distributions of prior and Gibbs
prior for the sum of log-normals model. A compari-
son shows that the approximation overestimates µ and
puts more mass on extreme values for σ2.

els. For more details and convergence monitoring of
the Gibbs chains see Appendix E.

Baseline We compare our findings to the diagnostic
Talts et al. (2018). This diagnostic is based on the
stationarity equation of the prior π under the Gibbs
chain, but only considers 1-step transitions with some
test statistics f : Θ → R. Under random samples
θ̃ ∼ π, ỹ ∼ f(·|θ̃), and θ1, . . . θL ∼ q(·|ỹ), the rank
of f(θ̃) in {f(θ1), . . . , f(θL)} is computed. This is re-
peated over multiple draws of (θ̃, ỹ), which gives a his-
togram of the ranks. Since the histogram is uniform
under the exact posterior, any deviations from unifor-
mity indicate an approximation mismatch. We allo-
cate this method the same computational resources in
terms of posterior draws as our Gibbs chain.

5.1 Sum of log-normals

Setup Our first model describes the sum of L = 10
independent samples from a log-normal distribution
and is given by

µ ∼ N (0, 1), σ2 ∼ Gamma(1, 1) ,

xl|θ = (µ, σ2)
indep.∼ LogNormal(µ, σ2), y =

L∑
l=1

xl .

Since the corresponding likelihood is infeasible we ap-
proximate the posterior in a two-step procedure: first,
we replace the likelihood by its Fenton-Wilkinson ap-
proximation (Fenton, 1960), which is another log-
normal distribution with matching first two moments,
and then we use a Laplace approximation to the pos-
terior of this new model.

Bias discovery To discover the bias of this approx-
imation we simulate the Gibbs prior based on 10,000
iterations of Algorithm 1 and show it alongside the
original prior in Figure 4. The first observation is that
the Gibbs prior does not coincide with the original
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value of a time series. Methods that are closer to the prior introduce less bias.

prior, which implies that the approximation is not ex-
act. Furthermore, the deviation between the two dis-
tributions is systematic. For the mean µ, the Gibbs
prior has a similar shape as the original prior, but is
shifted to the right. This implies that the approxima-
tions systematically overestimate µ. For the variance
σ2, the Gibbs prior puts more mass on extreme val-
ues, which means that there is no systematic under- or
overestimation. Compare these findings to Rodrigues
et al. (2018) who consider a fixed approximation to an
observation y drawn from θ = (0, 1). They confirm
that µ is overestimated, but also find that σ2 is un-
derestimated. This does not contradict our findings,
because they analyze the approximation to a fixed ob-
servation, while we analyze the approximations across
observations. The other baseline Talts et al. (2018) is
shown in the first two histograms of Figure 6 for the
coordinates of θ = (µ, σ2) as summary statistics, that
is, fi(θ) = θi. The histogram for µ exceeds the confi-
dence region at the smallest rank, which also suggests
overestimation. For σ2, the deviation from uniformity
is not strong enough to deduce a systematic approxi-
mation mismatch.

5.2 Stochastic Volatility

Setup Stochastic volatility models are used in math-
ematical finance for time series to describe the latent
variation of trading price (called the returns). We con-
sider a model similar to Hoffman and Gelman (2014):

θi|θi−1 ∼ N (θi, σ
2), i = 1, . . . , T ,

yi
indep.∼ StudentT(ν, 0, exp θi), i = 1, . . . , T ,

where θ0 = 0, σ = .09, ν = 12, and T = 100. The
latent parameters θ = (θ1, . . . , θT ) follow a Gaus-
sian random walk and describe the log volatility of
the returns y = (y1, . . . , yT ), which are independent
given θ. As posterior inference methods, we inves-
tigate the Hamiltonian Monte Carlo method NUTS
(Hoffman and Gelman, 2014) with different number
of steps (10 for NUTS-short and 40 for NUTS-long)
and the variational inference method ADVI (Kucukel-
bir et al., 2017), which comes in a less powerful mean-
field (ADVI-mf) and more powerful full-rank (ADVI-
fr) variant.

Bias discovery For each approximation method, we
can again use the corresponding Gibbs prior in two
ways: we test whether it deviates from the original
prior to assess exactness of the approximation, and
if it does, we inspect how it deviates to assess the
systematic bias. Figure 5 shows samples from origi-
nal prior and Gibbs priors under the approximations
alongside the distribution of means for each time se-
ries as a summary statistic. Each Gibbs chain was
simulated for 10,000 steps, which took 13 hours for
ADVI-fr and roughly 5 hours for the other methods
on a GPU. We observe that the Gibbs prior for the
long MCMC chain is almost identical to the prior,
which confirms that this method is accurate; the Gibbs
prior for the corresponding short chain is further away
from the prior and closer to the initialization of the
chain because it has not fully converged. The method
ADVI-mf shows a strong deviation from the prior by
concentrating on less extreme values of the latent vari-
ables. This indicates that the approximation is overly
compact compared to the true posterior. The same
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phenomenon was already observed for mean field varia-
tional inference in Section 4. It can also be observed for
ADVI-fr, but is less pronounced because the method
is strictly more powerful. The baseline Talts et al.
(2018) is shown in the last four histograms of Figure 6
for the same summary statistic as in Figure 5, the
mean value of θ. For NUTS-long, the histogram stays
within the confidence region, which confirms that this
method is accurate. The other three methods show a
∪-shape, which is most pronounced for ADVI-mf. This
indicates that the methods are overly compact and is
in line with our findings. While this baseline can in
principle also discover systematic approximation mis-
matches in terms of over-/underestimation and com-
pactness, the Gibbs prior provides a more complete
and nuanced picture.

6 CONCLUSION AND FUTURE
WORK

Conclusion We describe a novel diagnostic ap-
proach for assessing the inductive bias of approximate
Bayesian inference methods. A reformulation of this
problem leads to a natural solution, which we call the
Gibbs prior. We demonstrate how it can be used to
discover the inductive bias in various examples.

Future work The Gibbs prior compromises between
many pointwise priors. The precise nature of this com-
promise is intricate, offering several avenues for fu-
ture analysis. While we introduced the Gibbs prior
in the context of approximate Bayesian methods, it
can be defined for any generative method returning
a distribution over latent variables given an observa-
tion. Another direction is using the pointwise priors as
observation-dependent diagnostics. They do not suffer
from incompatibility, but can be more challenging to
sample from if the approximation density is unknown.

Broader impact Recently, there has been a surge
of interest in interpretable and explainable machine

learning algorithms. One principled way of explaining
an algorithm is to inspect its inductive bias, which de-
scribes the preferred solutions independent of the data.
While the inductive bias is specified only implicitly for
most algorithms, it is made explicit in Bayesian infer-
ence through prior and likelihood. Unfortunately, this
transparency is concealed for approximate Bayesian in-
ference, because approximations introduce additional
hidden bias. We present a method to uncover this in-
ductive bias again, which opens up a new paradigm
for the practical evaluation of approximate inference.
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