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Abstract There is a growing interest in probabilistic
numerical solutions to ordinary differential equations.
In this paper, the maximum a posteriori estimate is
studied under the class of ν times differentiable linear
time invariant Gauss–Markov priors, which can be com-
puted with an iterated extended Kalman smoother. The
maximum a posteriori estimate corresponds to an opti-
mal interpolant in the reproducing kernel Hilbert space
associated with the prior, which in the present case is
equivalent to a Sobolev space of smoothness ν + 1. Sub-
ject to mild conditions on the vector field, convergence
rates of the maximum a posteriori estmate are then
obtained via methods from nonlinear analysis and scat-
tered data approximation. These results closely resemble
classical convergence results in the sense that a ν times
differentiable prior process obtains a global order of ν,
which is demonstrated in numerical examples.
Keywords Probabilistic numerical methods, Maxi-
mum a posteriori estimation, Kernel methods.

1 Introduction

Let T = [0, T ], T < ∞, f : T × Rd → Rd, y0 ∈ Rd

and consider the following ordinary differential equation
(ODE):

Dy(t) = f(t, y(t)), y(0) = y0, (1)
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where D denotes the time derivative operator. Approxi-
mately solving (1) on a discrete mesh TN = {tn}N

n=0, 0 =
t0 < t1 < . . . < tN = T , involves finding a function ŷ

such that ŷ(tn) ≈ y(tn), n = 0, 1, . . . , N and a proce-
dure for finding ŷ is called a numerical solver. This is an
important problem in science and engineering, and vast
base of knowledge has accumulated on it (Butcher, 2008,
Deuflhard and Bornemann, 2002, Hairer and Wanner,
1996, Hairer et al., 1987).

Classically, the error of a numerical solver is quan-
tified in terms of the worst case error. However, in
applications where a numerical solution is sought as a
component of a larger statistical inference problem (see,
e.g., Kersting et al. 2020, Matsuda and Miyatake 2019),
it is desirable that the error can be quantified with the
same semantic, that is to say, probabilistically (Hennig
et al., 2015, Oates and Sullivan, 2019). Hence the recent
endeavour to develop probabilistic ODE solvers.

Probabilistic ODE solvers can roughly be divided
into two classes, sampling based solvers and determin-
istic solvers. The former class includes classical ODE
solvers that are stochastically perturbed (Abdulle and
Garegnani, 2020, Conrad et al., 2017, Lie et al., 2019,
Teymur et al., 2016, 2018), solvers that approximately
sample from a Bayesian inference problem (Tronarp
et al., 2019b), and solvers that perform Gaussian process
regression on stochastically generated data (Chkrebtii
et al., 2016). Deterministic solvers formulate the prob-
lem as a Gaussian process regression problem, either
with a data generation mechanism (Hennig and Hauberg,
2014, Kersting and Hennig, 2016, Magnani et al., 2017,
Schober et al., 2014, 2019, Skilling, 1992) or by attempt-
ing to constrain the estimate to satisfy the ODE on
the mesh (John et al., 2019, Tronarp et al., 2019b).
For computational reasons it is fruitful to select the
Gaussian process prior to be Markovian (Kersting and
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Hennig, 2016, Magnani et al., 2017, Schober et al., 2019,
Tronarp et al., 2019b), as this reduces cost of inference
from O(N3) to O(N) (Hartikainen and Särkkä, 2010,
Särkkä et al., 2013). Due to the connection between in-
ference with Gauss–Markov processes priors and spline
interpolation (Kimeldorf and Wahba, 1970, Sidhu and
Weinert, 1979, Weinert and Kailath, 1974), the Gaussian
process regression approaches are intimately connected
with the spline approach to ODEs (Schumaker, 1982,
Wahba, 1973). Convergence analysis for the determinis-
tic solvers has been initiated, but the theory is as of yet
not complete (Kersting et al., 2018).

The formal notion of Bayesian solvers was defined
by Cockayne et al. (2019). Under particular conditions
on the vector field, the solvers of Kersting and Hennig
(2016), Magnani et al. (2017), Schober et al. (2019),
Tronarp et al. (2019b) produce the exact posterior, if in
addition a smoothing recursion is implemented, which
corresponds to solving the batch problem as posed by
John et al. (2019). In some cases, the exact Bayesian
solution can also be obtained by exploiting Lie theory
(Wang et al., 2018).

In this paper, the Bayesian formalism of Cockayne
et al. (2019) is adopted for probabilistic solvers and
priors of Gauss–Markov type are considered. However,
rather than the exact posterior, the maximum a pos-
teriori (MAP) estimate is studied. Many of the afore-
mentioned Gaussian inference approaches are related
to the MAP estimate. Due to the Gauss–Markov prior,
the MAP estimate can be computed efficiently by the
iterated extended Kalman smoother (Bell, 1994). Fur-
thermore, the Gauss–Markov prior corresponds to a
reproducing kernel Hilbert space (RKHS) of Sobolev
type and the MAP estimate is equivalent to an opti-
mal interpolant in this space. This enables the use of
results from scattered data approximation (Arcangéli
et al., 2007) to establish, under mild conditions, that
the MAP estimate converges to the true solution at a
high polynomial rate in terms of the fill-distance (or
equivalently, the maximum step size).

The rest of the paper is organised as follows. In Sec-
tion 2, the solution of the ODE (1) is formulated as
a Bayesian inference problem. In Section 3, the associ-
ated MAP problem is stated and the iterated extended
Kalman smoother for computing it is presented (Bell,
1994). In Section 4, the connection between MAP esti-
mation and optimisation in a certain reproducing kernel
Hilbert space is reviewed. In Section 5, the error of the
MAP estimate is analysed, for which polynomial con-
vergence rates in the fill-distance are obtained. These
rates are demonstrated in Section 7, and the paper is
finally concluded by a discussion in Section 8.

1.1 Notation

Let Ω ⊂ R, then for a (weakly) differentiable function
u : Ω → Rd, its (weak) derivative is denoted by Du,
or sometimes u̇. The space of m times continuously
differentiable functions from Ω to Rd is denoted by
Cm(Ω,Rd). The space of absolutely continuous func-
tions is denoted by AC(Ω,Rd). The vector valued Les-
begue spaces are denoted by Lp(Ω,Rd) and the related
Sobolev spaces ofm times weakly differentiable functions
are denoted by Hm

p (Ω,Rd), that is, if u ∈ Hm
p (Ω,Rd)

then Dmu ∈ Lp(Ω,Rd). The norm of y ∈ Lp(Ω,Rd) is
given by

‖y‖Lp(Ω,Rd) =
d∑

i=1
‖yi‖Lp(Ω,R) .

If p = 2, the equivalent norm

‖y‖Lp(Ω,Rd) =

√√√√ d∑
i=1

‖yi‖2
Lp(Ω,R)

is sometimes used. The Sobolev (semi-)norms are given
by (Adams and Fournier, 2003, Valent, 2013)

|y|Hα
p (Ω,R) =‖Dαy‖Lp(Ω,R) ,

‖y‖Hα
p (Ω,R) =

( α∑
m=1

|y|pHm
p (Ω,R)

)1/p

,

‖y‖Hα
p (Ω,Rd) =

d∑
i=1

‖yi‖Hα
p (Ω,R) ,

and an equivalent norm on Hα
p (Ω,Rd) is

‖y‖′
Hα

p (Ω,Rd) =
( d∑

i=1
‖yi‖p

Hα
p (Ω,R)

)1/p

.

Henceforth the domain and codomain of the function
spaces will be omitted unless required for clarity.

For a positive definite matrixΣ, its symmetric square
root is denoted by Σ1/2, and the associated Mahalanobis
norm of a vector a is denoted by ‖a‖Σ = aTΣ−1a.

2 A Probabilistic State-Space Model

The present approach involves defining a probabilistic
state-space model, from which the approximate solution
to (1) is inferred. This is essentially the same approach
as that of Tronarp et al. (2019b). The class of priors
considered is defined in Section 2.1 and the data model
is introduced in Section 2.2.
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2.1 The Prior

Let ν be a positive integer, the solution of (1) is then
modelled by a ν-times differentiable stochastic process
prior Y (t) with a state-space representation. That is,
the stochastic process X(t) defined by

XT(t) =
(
Y T (t) DY T(t) . . . DνY T(t)

)
solves a certain stochastic differential equation. Further-
more, let {em}ν

m=0 be the canonical basis on Rν+1 and
Id is the identity matrix in Rd×d, it is then convenient
to define the matrices Em = em ⊗ Id, 0 ≤ m ≤ ν. That
is, the mth subvector of X is given by

Xm(t) = ET
mX(t) = DmY (t), 0 ≤ m ≤ ν.

Now let Fm ∈ Rd×d, 0 ≤ m ≤ ν and, Γ ∈ Rd×d a posi-
tive definite matrix, and define the following differential
operator

A = Γ−1/2
(

IdD
ν+1 −

ν∑
m=0

FmD
m
)

and the matrix F ∈ Rd(ν+1)×d(ν+1) whose non-zero d×d
blocks are given by

Fij =
{

Id, j = i+ 1, 0 ≤ i, j < ν,

Fj , i = ν, 0 ≤ j ≤ ν.

The class of priors considered herein is then given
by

Y (t) = ET
0 exp(Ft)X(0) +

∫ T

0
GY (t, τ) dW (τ), (3)

where W is a standard Wiener process onto Rd, X(0) ∼
N (0, Σ(t−0 )), and GY is the Green’s function associated
with A on T with initial condition Dmy(t0) = 0, m =
0, . . . , ν. The Green’s function is given by

GY (t, τ) = ET
0GX(t, τ), (4a)

GX(t, τ) = θ(t− τ) exp(F (t− τ))EνΓ
1/2, (4b)

where θ is Heaviside’s step function. By construction,
(3) has a state-space representation, which is given by
the following stochastic differential equation (Øksendal,
2003)

dX(t) = FX(t) dt+EνΓ
1/2 dW (t), X(0) ∼ N (0, Σ(t−0 )),

(5)

where X takes values in Rd(ν+1) and the mth sub-vector
of X is given by Xm = DmY and takes values in Rd for
0 ≤ m ≤ ν. The transition densities for X are given by
(Särkkä and Solin, 2019)

X(t+ h) | X(t) ∼ N (A(h)X(t), Q(h)), (6)

where N (µ,Σ) denotes the Normal distribution with
mean and covariance µ and Σ, respectively, and

A(h) = exp(Fh), (7a)

Q(h) =
∫ T

0
GX(h, τ)GT

X(h, τ) dτ. (7b)

Note that the integrand in (7b) has limited support,
that is, the effective interval of integration is [0, h]. These
parameters can practically be computed via the matrix
fraction decomposition method (Särkkä and Solin, 2019).
Details are given in Appendix A.

2.1.1 The Selection of Prior

While ν determines the smoothness of the prior, the
actual estimator will be of smoothness ν+1 (see Section
4) and the convergence results of Section 5 pertain to
the case when the solution is of smoothness ν + 1 as
well. Consequently, if it is known that the solution is of
smoothness α ≥ 2 then setting ν = α − 1 ensures the
present convergence guarantees are in effect. Though
it is likely convergence rates can be obtained for priors
that are “too smooth” as well (see Kanagawa et al. 2020
for such results pertaining to numerical integration).

Once the degree of smoothness ν has been selected,
the parameters Σ(t−0 ), {Fm}ν

m=0, and Γ need to be
selected. Some common sub-classes of (3) are listed
below.
– (Released ν times integrated Wiener process onto

Rd). The process Y is a ν times integrated Wiener
process if Fm = 0, m = 1, . . . , ν. The parameters
Σ(t−0 ) and Γ are free. Though it is advisable to set
Γ = σ2Id for some scalar σ2. In this case σ2 can be
fit (estimated) to the particular ODE being solved
(see Appendix B). This class of processes is denoted
by Y ∼ IWP(Γ, ν).

– (ν times integrated Ornstein–Uhlenbeck process onto
Rd). The process Y is a ν times integrated Ornstein–
Uhlenbeck process if Fm = 0, m = 1, . . . , ν − 1.
The parameters Σ(t−0 ), Fν , and Γ are free. As with
IWP(Γ, ν), it is advisable to set Γ = σ2Id. These
processes are denoted by Y ∼ IOUP(Fν , Γ, ν).

– (Mateŕn processes of smoothness ν onto R). If d = 1
then Y is a Mateŕn process of smoothness ν if (cf.
Hartikainen and Särkkä 2010)

Fm = −
(
ν + 1
m

)
λν+1−m, m = 0, . . . , ν,

Γ = 2σ2λ2ν+1,

for some λ, σ2 > 0, and Σ(t−0 ) is set to the stationary
covariance matrix of the resulting X process. If d > 1
then each coordinate of the solution can be modelled
by an individual Mateŕn process.
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Remark 1 Many popular choices of Gaussian processes
not mentioned here also have state-space representations
or can be approximated by a state-space model (Har-
tikainen and Särkkä, 2010, Karvonen and Sarkkä, 2016,
Solin and Särkkä, 2014, Tronarp et al., 2018). A notable
example is Gaussian processes with squared exponential
kernel (Hartikainen and Särkkä, 2010). See Chapter 12
of Särkkä and Solin (2019), for a thorough exposition.

2.2 The Data Model

For the Bayesian formulation of probabilistic numerical
methods, the data model is defined in terms of an infor-
mation operator (Cockayne et al., 2019). In this paper,
the information operator is given by

Z = D − Sf , (9)

where Sf is the Nemytsky operator associated with the
vector field f (Marcus and Mizel, 1973),1 that is,

Sf [y](t) = f(t, y(t)). (10)

Clearly, Z maps the solution of (1) to a known quantity,
the zero function. Consequently, inferring Y reduces to
conditioning on

Z[Y ](t) = 0, t ∈ TN .

The function Z[Y ](t) can be expressed in simpler terms
by use of the process X. That is, define the function

z(t, x) := x1 − f(t, x0),

then Z[Y ](t) = Sz[X](t) = z(t,X(t)). Furthermore, it is
necessary to account for the initial condition, X0(0) =
y0, and with small additional cost the initial condition
of the derivative can also be enforced X1(0) = f(0, y0).

Remark 2 The properties of the Nemytsky operator are
entirely determined by the vector field f . For instance,
if f ∈ Cα(T × Rd,Rd), α ≥ 0, then Sf maps Cν(T,Rd)
to Cmin(ν,α)(T,R), which is fine for present purposes.
However, in the subsequent convergence analysis it is
more appropriate to view Sf (and Z) as a mapping
between different Sobolev spaces, which is possible if α
is sufficiently large (Valent, 2013).

1 Nemytsky operators are also known as composition operators
and superposition operators.

3 Maximum A Posteriori Estimation

The MAP estimate for Y , or equivalently for X, is in
view of (6) the solution to the optimisation problem

min
x(t0:N )

V(x(t0:N )) (11a)

subject to ET
0x(t0) − y0 = 0, (11b)

ET
1x(t0) − f(t0, y0) = 0, (11c)

z(tn, x(tn)) = 0, n = 1, . . . , N,
(11d)

where hn = tn − tn−1 is the step size sequence and V is
up to a constant, the negative log-density

V(x(t0:N )) = 1
2

N∑
n=1

∥∥x(tn) −A(hn)x(tn−1)
∥∥2

Q(hn)

+ 1
2
∥∥x(t0)

∥∥2
Σ(t−

0 ) .

(12)

If the vector field is affine in y, then the MAP estimate
and the full posterior can be computed exactly via Gaus-
sian filtering and smoothing (Särkkä, 2013). However,
when this is not the case then, for instance, a Gauss–
Newton method can be used, which can be efficiently
implemented by Gaussian filtering and smoothing as
well. This method for MAP estimation is known as the
iterated extended Kalman smoother (Bell, 1994).

3.1 Inference with Affine Vector Fields

If the vector field is affine

f(t, y) = Λ(t)y + ζ(t),

then the information operator reduces to

z(t, x) = x1 − Λ(t)x0 − ζ(t),

and the inference problem reduces to Gaussian pro-
cess regression (Rasmussen and Williams, 2006) with a
linear combination of function and derivative observa-
tions. In the spline literature this is known as (extended)
Hermite–Birkhoff data (Sidhu and Weinert, 1979). In
this case, the inference problem can be solved exactly
with Gaussian filtering and smoothing (Kalman and
Bucy, 1961, Kalman, 1960, Rauch et al., 1965, Särkkä,
2013, Särkkä and Solin, 2019). Define the information
sets

Z (t) = {z(τ,X(τ)) = 0: τ ∈ TN , τ ≤ t},
Z (t−) = {z(τ,X(τ)) = 0: τ ∈ TN , τ < t}.

In Gaussian filtering and smoothing, only the mean and
covariance matrix of X(t) are tracked. The mean and
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covariance at time t, conditioned on Z (t) are denoted by
µF (t) and ΣF (t), respectively, and µF (t−) and ΣF (t−)
correspond to conditioning on Z (t−), which are limits
from the left. The mean and covariance conditioned
on Z (T ) at time t are denoted by µS(t) and ΣS(t),
respectively.

Before starting the filtering and smoothing recur-
sions, the process X needs to be conditioned on the
initial values

ET
0X(0) = y0, ET

1X(0) = f(t0, y0).

This is can be done by a Kalman update

CT(t0) =
(

E0 E1

)
, (14a)

S(t0) = C(t0)Σ(t−0 )CT(t0), (14b)
K(t0) = Σ(t−0 )CT(t0)S−1(t0), (14c)

µF (t0) = K(t0)
(

y0
f(t0, y0)

)
, (14d)

ΣF (t0) = Σ(t−0 ) −K(t0)S(t0)KT(t0). (14e)

The filtering mean and covariance on the mesh evolve
as

µF (t−n ) = A(hn)µF (tn−1), (15a)
ΣF (t−n ) = A(hn)ΣF (tn−1)AT(hn) +Q(hn). (15b)

The prediction moments at t ∈ TN are then corrected
according to the Kalman update

C(tn) = ET
1 − Λ(tn)ET

0 , (16a)
S(tn) = C(tn)ΣF (t−n )CT(tn), (16b)
K(tn) = ΣF (t−n )CT(tn)S−1(tn), (16c)
µF (tn) = µF (t−n ) +K(tn)

(
ζ(tn) − C(tn)µF (t−n )

)
,

(16d)
ΣF (tn) = ΣF (t−n ) −K(tn)S(tn)KT(tn). (16e)

On the mesh TN , the smoothing moments are given by

G(tn) = ΣF (tn)AT(hn+1)Σ−1
F (t−n+1), (17a)

µS(tn) = µF (tn) +G(tn)(µS(tn+1) − µF (t−n+1)),
(17b)

ΣS(tn) = G(tn)
(
ΣS(tn+1) −ΣF (t−n+1)

)
GT(tn)

+ΣF (tn),
(17c)

with terminal conditions µS(tN ) = µF (tN ), andΣS(tN ) =
ΣF (tN ). The MAP estimate and its derivatives, on the
mesh, are then given by

Dmŷ(t) = ET
mµS(t), t ∈ TN , m = 0, . . . , ν.

Remark 3 The filtering covariance can be written as

ΣF (tn) = Σ
1/2
F (t−n )

(
I − Proj

(
Σ

1/2
F (t−n )CT(tn)

))
×Σ

1/2
F (t−n ),

where Proj(A) = A(ATA)−1AT is the projection matrix
onto the column space of A. By (16a) and ΣF (t−n ) � 0,
the dimension of the column space of Σ1/2

F (t−n )CT(tn)
is readily seen to be d. That is, the null-space of ΣF (tn)
is of dimension d. By (17a) and (17c), it is also seen
that ΣF (tn) and ΣS(tn) share null-space. This rank defi-
ciency is not a problem in principle since the addition of
Q(hn) in (15b) ensures ΣF (t−n ) is of full rank. However,
in practice Q(hn) may become numerically singular for
very small step sizes.

While Gaussian filtering and smoothing only pro-
vides the posterior for affine vector fields, it forms the
template for nonlinear problems as well. That is, the vec-
tor field is replaced by an affine approximation (Magnani
et al., 2017, Schober et al., 2019, Tronarp et al., 2019b).
The iterated extended Kalman smoother approach for
doing so is discussed in the following.

3.2 The Iterated Extended Kalman Smoother

For non-affine vector fields, only the update becomes
intractable. Approximation methods involve different
ways of approximating the vector field with an affine
function

f(t, y) ≈ Λ̂(t)y + ζ̂(t),

whereafter approximate filter means and covariances
are obtained by plugging Λ̂ and ζ̂ into (16). The iter-
ated extended Kalman smoother linearises f around the
smoothing mean in an iterative fashion. That is,

Λ̂l(tn) = Jf (tn,ET
0µ

l
S(tn)), (18a)

ζ̂l(tn) = f(tn,ET
0µ

l
S(tn)) − Jf (tn,ET

0µ
l
S(tn))ET

0µ
l
S(tn).
(18b)

The smoothing mean and covariance at iteration l + 1,
µl+1

S (t) and Σl+1
S (t), are then obtained by running the

filter and smoother with the parameters in (18).
As mentioned, this is just the Gauss–Newton algo-

rithm for the maximum a posteriori trajectory (Bell,
1994), and it can be shown that, under some conditions
on the Jacobian of the vector field, the fixed-point is at
least a local optimum to the MAP problem (11) (Knoth,
1989). Moreover, the IEKS is just a clever implementa-
tion of the method of John et al. (2019) whenever the
prior process has a state-space representation.
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3.2.1 Initialisation

In order to implement the IEKS, a method of initial-
isation needs to be devised. Fortunately, there exists
non-iterative Gaussian solvers for this purpose (Schober
et al., 2019, Tronarp et al., 2019b). These methods
also employ Taylor series expansions to construct an
affine approximation of the vector field. These methods
select an expansion point at the prediction estimates
ET

0µF (t−n ), and consequently the affine approximation
can be constructed on the fly within the filter recur-
sion. The affine approximation due to a zeroth order
expansion gives the parameters (Schober et al., 2019)

Λ̂(tn) = 0, (19a)

ζ̂(tn) = f(tn,ET
0µF (tn)), (19b)

and will be referred to as the zeroth order extended
Kalman smoother (EKS0). The affine expansion due to
a first order expansion (Tronarp et al., 2019b) gives the
parameters

Λ̂(tn) = Jf (tn,ET
0µF (tn)), (20a)

ζ̂(tn) = f(tn,ET
0µF (tn)) − Jf (tn,ET

0µF (tn))ET
0µF (tn),

(20b)

and will be referred to as the first order extended Kalman
smoother (EKS1). Note that EKS0 computes the exact
MAP estimate in the event that the vector field f is
constant in y, while EKS1 computes the exact MAP
estimate in the more general case when f is affine in y.
Consequently, as EKS1 makes a more accurate approxi-
mation of the vector field than EKS0, it is expected to
perform better.

Furthermore, as Jacobians of the vector field will be
computed in the IEKS iteration anyway, the preferred
method of initialisation is EKS1, which is the method
used in the subsequent experiments.

3.2.2 Computational Complexity

The computational complexity of a Gaussian filtering
and smoothing method for approximating the solution of
(1) can be separated into two parts (i) the cost of lineari-
sation and (ii) the cost of inference. The cost of inference
here refers to the computatational cost associated with
the filtering and smoothing recursion, which for affine
systems is O(Nd3ν3). Since EKS0 and EKS1 perform
the filtering and smoothing recursion once, their cost of
inference is the same, O(Nd3ν3). Furthermore, the lin-
earisation cost of EKS0 amounts to N +1 evaluations of
f and no evaluations of Jf , while EKS1 evaluates f N+1
times and Jf N times, respectively. Assuming IEKS is
initialised by EKS1 using L iterations, including the

Table 1 Comparison of the computational cost between EKS0,
EKS1, and IEKS, where L denotes the total number of iterations
for IEKS and it is assumed that IEKS is initialised by EKS1.

EKS0 EKS1 IEKS
Inference cost O(Nd3ν3) O(Nd3ν3) O(LNd3ν3)
# Evals of f N + 1 N + 1 LN + 1
# Evals of Jf 0 N LN

initialisation, then the cost of inference is O(LNd3ν3),
f is evaluated LN + 1 times, and Jf is evaluated LN

times. A summary of the computational costs is given
in Table 1.

4 Interpolation in Reproducing Kernel Hilbert
Space

The correspondence between inference in stochastic pro-
cesses and optimisation in reproducing kernel Hilbert
spaces is well known (Kimeldorf and Wahba, 1970, Sidhu
and Weinert, 1979, Weinert and Kailath, 1974). This
correspondence is indeed present in the current setting
as well, in the sense that MAP estimation as discussed in
Section 3 is equivalent to optimisation in the reproduc-
ing kernel Hilbert space (RKHS) associated with Y and
X (see Kanagawa et al. 2018, Proposition 3.6 for stan-
dard Gaussian process regression). The purpose of this
section is thus to establish that the RKHS associated
with Y , which establishes what function space the MAP
estimator lie in. Furthermore, it is shown that the MAP
estimate is equivalent to an interpolation problem in
this RKHS, which implies properties on its norm. These
results will then be used in the convergence analysis of
the MAP estimate in Section 5.

4.1 The Reproducing Kernel Hilbert Space of the Prior

The RKHS of the Wiener process with domain T and
codomain Rd is the set (cf. van der Vaart and van Zanten
2008, section 10)

W0 = {w : w ∈ AC(T,Rd), w(0) = 0, ẇ ∈ L2(T,Rd)},

with inner product given by

〈w,w′〉W0 =
∫ T

0
ẇT(τ)ẇ′(τ) dτ = 〈ẇ, ẇ′〉L2 .

Let Yν+1 denote the reproducing kernel Hilbert space
associated with the prior process Y as defined by (3),
then Yν+1 is given by the image of the operator (van der
Vaart and van Zanten, 2008, lemmas 7.1, 8.1, and 9.1)

T (y0, ẇy)(t) = ET
0 exp(Ft)y0 +

∫ T

0
GY (t, τ)ẇy(τ) dτ,
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where y0 ∈ Rd(ν+1) and ẇy ∈ L2(T,Rd). That is,

Yν+1 =
{y : y = T (y0, ẇy), y0 ∈ Rd(ν+1), ẇy ∈ L2(T,Rd)},

and inner product is given by

〈y, y′〉Yν+1 = yT
0Σ

−1(t−0 )y′
0 + 〈Ay,Ay′〉L2

= yT
0Σ

−1(t−0 )y′
0 + 〈ẇy, ẇy′〉L2 .

Remark 4 For an element y ∈ Yν+1, the vector y0 con-
tains the initial values for Dmy(t), m = 0, . . . , ν, in
similarity with the vector X(0) in the definition of the
prior process Y in (3). That is, y0 should not be confused
with the initial value of (1).

Since GY is the Green’s function of a differential
operator of order ν + 1 with smooth coefficients, Yν+1

can be identified as follows. A function y : T → Rd is in
Yν+1 if and only if

Dmy ∈ AC(T,Rd), m = 0, . . . , ν, (21a)
Dν+1y ∈ L2(T,Rd). (21b)

Hence by similar arguments as for the released ν times
integrated Wiener process, Proposition 1 holds (see
proposition 2.6.24 and remark 2.6.25 of Giné and Nickl
2016).

Proposition 1 The reproducing kernel Hilbert space
Yν+1 as a set is equal to the Sobolev space Hν+1

2 (T,Rd)
and their norms are equivalent.

The reproducing kernel of Yν+1 is given by (cf. Sidhu
and Weinert 1979)

R(t, s) = ET
0 exp(Ft)Σ(t−0 ) exp(FTs)E0

+
∫ T

0
GY (t, τ)GT

Y (s, τ) dτ,

which is also the covariance function of Y . The linear
functionals

y 7→ vTDmy(s), v ∈ Rd, t ∈ T, m = 0, . . . , ν,

are continuous and their representers are given by

ηm,v
s = R(0,m)(t, s)v,

〈ηm,v
s , y〉Yν+1 = vTDmy(s),

where R(m,k) denotes R differentiated m and k times
with respect to the first and second arguments, respec-
tively. Furthermore, define the matrix

ηm
s =

(
ηm,e1

s . . . ηm,ed
s

)
,

and with notation overloaded in the obvious way, the
following identities hold

Dmy(t) = 〈ηm
t , y〉Yν+1 ,

R(m,k)(t, s) = 〈ηm
t , η

k
s 〉Yν+1 .

Since there is a one-to-one correspondence between the
processes Y and X, the RKHS associated with X is
isometrically isomorphic to Yν+1, and it is given by

Xν+1 = {x : x0 ∈ Yν+1, xm = Dmx0, m = 1, . . . , ν},

where xm is the mth sub-vector of x of dimension d.
The kernel associated with Xν+1 is given by

P (t, s) = exp(Ft)Σ(t−0 ) exp(FTs)

+
∫ T

0
GX(t, τ)GT

X(s, τ) dτ,
(24)

and the d× d blocks of P are given by

Pm,k(t, s) = R(m,k)(t, s),

and ψs = P (t, s) is the representer of evaluation at s,

x(s) = 〈ψs, x〉Xν+1 .

In the following, the short-hands Y = Yν+1 and X =
Xν+1 are in effect.

4.2 Nonlinear Kernel Interpolation

Consider the interpolation problem

ŷ = arg min
y∈IN

1
2‖y‖2

Y , (25)

where the feasible set is given by

IN = {y ∈ Y : y(0) = y0, ẏ(0) = f(0, y0)}
∩ {y ∈ Y : Z[y](t) = 0, t ∈ TN }.

Define the following subspaces of Y

RN (m) = span
{
ηl,ei

tn
}m,N,d

l=0,n=0,i=1, m ≤ ν + 1.

Similarly to other situations (Cox and O’Sullivan, 1990,
Girosi et al., 1995, Kimeldorf and Wahba, 1971) our
optimum can be expanded in a finite sub-space spanned
by representers, which is the statement of Proposition
2.

Proposition 2 The solution to (25) is contained in
RN (1).
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Proof Any y ∈ Y has the orthogonal decomposition
y = y‖ + y⊥, where y‖ ∈ RN (1) and y⊥ ∈ R⊥

N (1).
However, it must be the case that ‖y⊥‖Y = 0, since

1
2‖y‖2

Y = 1
2 ‖y‖‖2

Y + 1
2 ‖y⊥‖2

Y ≥ 1
2 ‖y‖‖2

Y

and

Dmy(0) = 〈ηm
0 , y‖〉Y, m = 0, . . . , ν + 1,

Z[y](t) = 〈η1
t , y‖〉Y − f

(
(t, 〈η0

t , y‖〉Y
)
,

for all t ∈ TN . ut

By Proposition 2 the optimal point of (25) can be
written as

y =
N∑

n=0

(
η0

tn
η1

tn

)(b0(tn)
b1(tn)

)
.

However, it is more convenient to expand the optimal
point in the larger subspace, RN (ν) ⊃ RN (1)

b(tn) =
(
bT

0 (tn) . . . bT
ν (tn)

)T
, (27a)

y =
N∑

n=0

(
η0

tn
. . . ην

tn

)
b(tn), (27b)

x =
N∑

n=0
ψtnb(tn), (27c)

where x is the equivalent element in X and

‖y‖2
Y =‖x‖2

X =
N∑

n,m=0
bT(tn)P (tn, tm)b(tm),

or more compactly

‖x‖2
X = xTP −1x, (28)

where

x =
(
xT(t0) . . . xT(tN )

)T
, P n,m = P (tn, tm).

Here P is the kernel matrix associated with function
value observations of X at TN . That is, (28) is up to a
constant equal to the negative log-density of X restricted
to TN . Proposition 3 immediately follows.

Proposition 3 The optimisation problem (25) is equiv-
alent to the MAP problem (11).

5 Convergence Analysis

In this section, convergence rates of the kernel inter-
polant ŷ as defined by (25), and by Proposition 3 the
MAP estimate are obtained. These rates will be in terms
of the fill-distance of the mesh TN , which is2

δ = sup
t∈T

min
n=0,...,N

|t− tn| . (29)

In the following results from the scattered data approxi-
mation literature (Arcangéli et al., 2007) are employed.
More specifically, for any y ∈ Y, which satisfies the
initial condition y(0) = y0, formally has the following
representation

y(t) = y0 +
∫ t

0
f(τ, y(τ)) dτ + E [y](t),

where the error operator E is defined as

E [y](t) =
∫ t

0
Z[y](τ) dτ.

Of course any reasonable estimator ŷ′ ought to have the
property that Z[ŷ′](t) ≈ 0 for t ∈ TN . The approach is
thus to bound Z[ŷ′](t) in some suitable norm, which in
turn gives a bound on E [ŷ′](t).

Throughout the discussion ν ≥ 1 is some fixed in-
teger, which corresponds to the differentiability of the
prior, that is, the kernel interpolant is in Hν+1

2 (T,Rd).
Furthermore, some regularity of the vector field will be
required, namely Assumption 1, given below.

Assumption 1 Vector field f ∈ Cα+1(T̃×Rd,Rd) with
α ≥ ν and some set T̃ with T ⊂ T̃ ⊂ R.

Assumption 1 will, without explicit mention, be in force
throughout the discussion of this section. It implies that
(i) the model is well specified for sufficiently small T
and (ii) the information operator is well behaved. This
shall be made precise in the following.

5.1 Model Correctness and Regularity of the Solution

Since ν ≥ 1, Assumption 1 implies f is locally Lipschitz,
and the classical existence and uniqueness results for the
solution of Equation (1) apply. The extra smoothness
on f ensures the solution itself is sufficiently smooth
for present purposes. These facts are summarised in
Theorem 1. For proof(s) refer to (Arnol’d, 1992, chapter
4, paragraph 32).

Theorem 1 There exists T ∗ > 0 such that Equation
(1) admits a unique solution y∗ ∈ Cα+1([0, T ∗),Rd).

2 Classically the error of a numerical integrator is assessed in
terms of the maximum step size which is twice the fill-distance.
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Theorem 1 makes apparent the necessity of the next
standing assumption.

Assumption 2 T < T ∗. That is, T ⊂ [0, T ∗).

The model is thus correctly specified in the following
sense.

Corollary 1 (Correct model) The solution y∗ of
Equation (1) on T is in Y.

Proof Firstly, y∗ ∈ Cν+1(T,Rd) due to Assumption 1,
Theorem 1, and Assumption 2. Since Dν+1y∗ is con-
tinuous and T is compact, it follows that Dν+1y∗ is
bounded and Dν+1y∗ ∈ Lp(T,Rd) for any p ∈ [1,∞].
Therefore (see e.g., Nielson 1997, Theorem 20.8)Dmy∗ ∈
AC(T,Rd), m = 0, . . . , ν. ut

Corollary 1 essentially ensures that there is an a priori
bound on the norm of the MAP estimate, that is ‖ŷ‖Y ≤
‖y∗‖Y.

Remark 5 It is in general difficult to determine T ∗ for
a given vector field f and initial condition y0, which
makes Assumption 2 hard to verify in general. However,
additional conditions can be imposed which assures
T ∗ = ∞. An example of such a condition is that the
vector field is uniformly Lipschitz as mapping of R+ ×
Rd → Rd (Kelley and Peterson, 2010, Theorem 8.13).
That is, for any y, y′ ∈ Rd it holds that

sup
t∈R+

∥∥f(t, y) − f(t, y′)
∥∥ ≤ Lip(f)

∥∥y − y′∥∥ ,
where Lip(f) < ∞ is a positive constant.

5.2 Properties of the Information Operator

By Proposition 1, Y correspond to the Sobolev space
Hν+1

2 (T,Rd), hence it is crucial to understand how the
Nemytsky operator Sf , and consequently Z, act on
Sobolev spaces. For the Nemytsky operator, the work has
already been done (Valent, 1985, 2013), and Theorem 2
is immediate.

Theorem 2 Let U be an open subset of Hν+1
2 (T,Rd)

such that y(T) ⊂ U for any y ∈ U , where U some open
subset of Rd. The Nemytsky operator Sfi , associated
with the ith coordinate of f is then C1 mapping from
U onto Hν

2 (T,R) for i = 1, . . . , d. If in addition, U
is convex and bounded, then for any y′ ∈ U there is
number c0(y′) > 0 such that

‖Sfi
[y] − Sfi

[y′]‖Hν
2

≤ c0(y′)|fi|ν+1,U ‖y − y′‖Hν+1
2

,

for all y ∈ U , where

|fi|ν+1,U :=
ν+1∑
m=0

sup
(t,a)∈T×U

∣∣Dmfi(t, a)
∣∣ .

Proof The first claim is just an application of Theorem
4.1 of (Valent, 2013, page 32) and the second claim
follows from (ii) in the proof of Theorem 4.5 in (Valent,
2013, page 37). ut

Theorem 2 establishes that Sfi
as a mapping of

U onto Hν
2 (T,R) is locally Lipschitz. This property is

inherited by the information operator.

Proposition 4 In the same setting as Theorem 2. The
ith coordinate of the information operator, Zi, is a C1

mapping from U onto Hν
2 (T,R), for i = 1, . . . , d. If in

addition, U is convex and bounded, then for any y′ ∈ U
there is number c1(y′, ν, fi, U) > 0 such that

‖Zi[y] − Zi[y′]‖Hν
2

≤ c1(y′, ν, fi, U) ‖y − y′‖Hν+1
2

,

for all y ∈ U .

Proof The differential operator DeT
i is a C1 mapping

of U onto Hν
2 (T,R). Consequently, by Theorem 2 the

same holds for the operator DeT
i − Sfi = Zi. For the

second part, the triangle inequality gives

‖Zi[y] − Zi[y′]‖Hν
2

≤ ‖Dyi −Dy′
i‖Hν

2

+ ‖Sfi [y] − Sfi [y′]‖Hν
2
,

and clearly

‖Dyi −Dy′
i‖Hν

2
≤ ‖y − y′‖Hν+1

2
.

Consequently, by Theorem 2 the statement holds by
selecting

c1(y′, ν, fi, U) = 1 + c0(y′)|fi|ν+1,U .

ut

5.3 Convergence of the MAP Estimate

Proceeding with the convergence analysis of the MAP
estimate can finally be done in view of the regularity
properties of the solution y∗ and the information op-
erator Z established by Corollary 1 and Proposition 4.
Combining these results with Theorem 4.1 of Arcangéli
et al. (2007) leads to Lemma 1.

Lemma 1 Let ρ ∈ Y with‖ρ‖Y > ‖y∗‖Y and q ∈ [1,∞].
Then there are positive constants c2, δ0,ν , r (depending
on ρ), and c3(y∗, ν, fi, r) such that for any y ∈ B(0,‖ρ‖Y)
the following estimate holds for all δ < δ0,ν and m =
0, . . . , ν − 1∣∣Zi[y]

∣∣
Hm

q
≤ c2δ

ν−m−(1/2−1/q)+c3(y∗, ν, fi, r) ‖y − y∗‖Hν+1
2

+ c2δ
−m
∥∥Zi[y] | TN

∥∥
∞ ,

where∥∥Zi[y] | TN

∥∥
∞ := max

t∈TN

∣∣Zi[y](t)
∣∣ .
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Proof Firstly, Cauchy–Schwartz inequality yields∣∣yi(t)
∣∣ = |〈η0,ei

t , y〉Y| ≤
√
Rii(t, t)‖y‖Y ,

hence there is a positive constant c̃ such that

‖yi‖L∞
≤ c̃‖y‖Y .

Consequently, there exists a radius r (depending on ρ)
such that y(T) ⊂ B(0, r) whenever y ∈ B(0,‖ρ‖Y). The
set B(0,‖ρ‖Y) is open in Y and by Proposition 1 it is an
open set in Hν+1

2 (T,Rd). Therefore, all the conditions of
Proposition 4 are met for the sets B(0,‖ρ‖Y) and B(0, r).
In particular, Zi[y] ∈ Hν

2 (T) for all y ∈ B(0,‖ρ‖Y).
Consequently, for appropriate selection of parameters
(Arcangéli et al., 2007, Theorem 4.1 page 193) gives∣∣Zi[y]

∣∣
Hm

q
≤ c2δ

ν−m−(1/2−1/q)+
∣∣Zi[y]

∣∣
Hν

2

+ c2δ
−m
∥∥Zi[y] | TN

∥∥
∞

for all δ < δ0,ν and m = 0, . . . , ν − 1. Since Z[y∗] = 0 it
follows that∣∣Zi[y]

∣∣
Hν

2
= |Zi[y] − Zi[y∗]|Hν

2
≤ ‖Zi[y] − Zi[y∗]‖Hν

2
,

and by Proposition 4 the Lemma holds by selecting

c3(y∗, ν, fi, r) = c1(y∗, ν, fi, B(0, r)),

which concludes the proof. ut

In view of Lemma 1, for any estimator ŷ′ ∈ Y, its con-
vergence rate can be established provided the following
is shown:

(i) There is ρ ∈ Y independent of ŷ′ such that y∗, ŷ′ ∈
B(0,‖ρ‖Y)

(ii) A bound proportional to δγ , γ > 0, of
∥∥Zi[ŷ′] | TN

∥∥
∞

exists.

Neither (i) nor (ii) appear trivial to establish for Gaus-
sian estimators in general (e.g., the methods of Schober
et al. 2019 and Tronarp et al. 2019b). However, (i) and
(ii) hold for the optimal (MAP) estimate ŷ, which yields
Theorem 3.

Theorem 3 Let q ∈ [1,∞], then under the same as-
sumptions as in Lemma 1, there is a constant c4(y∗, ν, fi, r)
such that for δ < δ0,ν the following holds:∣∣Ei[ŷ]

∣∣
H0

q
≤ δνT 1/qc4(y∗, ν, fi, r)‖y∗‖Y ,∣∣Ei[ŷ]

∣∣
Hm

q
≤ δν+1−m−(1/2−1/q)+c4(y∗, ν, fi, r)‖y∗‖Y ,

where m = 1, . . . , ν.

Proof Firstly, note that ‖ŷ‖Y ≤ ‖y∗‖Y and
∣∣Ei[ŷ]

∣∣
Hm

q
=∣∣Zi[ŷ]

∣∣
Hm−1

q
. By definition∥∥Zi[ŷ] | TN

∥∥
∞ = 0,

hence ŷ ∈ B(0,‖ρ‖Y), and Lemma 1 gives for m =
1, . . . , ν∣∣Zi[ŷ]

∣∣
Hm−1

q
≤ δν+1−m−(1/2−1/q)+c2c3(y∗, ν, fi, r)

× ‖ŷ − y∗‖Hν+1
2

.

By Proposition 1, the fact that‖ŷ‖Y ≤‖y∗‖Y, and the tri-
angle inequality, there exists a constant cB (independent
of ŷ and y∗) such that

‖ŷ − y∗‖Hν+1
2

≤ cB‖y∗‖Y

and thus the second bound holds by selecting

c4(y∗, ν, fi, r) = c2cBc3(y∗, ν, fi, r).

For the first bound, the triangle inequality for integrals
gives∣∣Ei[ŷ](t)

∣∣ ≤
∣∣Zi[ŷ]

∣∣
H0

1
,

and hence∣∣Ei[ŷ](t)
∣∣
H0

q
≤ T 1/q

∣∣Zi[ŷ]
∣∣
H0

1
,

which combined with the second bound gives the first.
ut

At first glance, it may appear that there is an ap-
palling absence of dependence on T in the constants
of the convergence rates provided by Theorem 3. This
is not the case, the T dependence have conveniently
been hidden in ‖y∗‖Y and possibly c4(y∗, ν, fi, r). Now
c4(y∗, ν, fi, r) depends on c0(y∗) and |fi|ν+1,B(0,r) and
unfortunately an explicit expression for c0(y∗) is not
provided by Valent (2013), which makes the effect of
c4(y∗, ν, fi, r) difficult to untangle. Nevertheless, the fac-
tor ‖y∗‖Y does indeed depend on the interval length T .
For example, let λ, y0 ∈ R and consider the following
ODE

ẏ(t) = λy(t), y(0) = y0. (31)

Setting Σ(t−0 ) = I and selecting the prior IWP(I, ν)
gives the following (in this case A = Dν+1)

‖y∗‖2
Y = y2

0

( ν∑
m=0

λ2m + λ2ν+1

2
(

exp(2λT ) − 1
))
. (32)

Consequently, the global error can be quite bad when
λ > 0 and T is large even when δ is very small, which
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is the usual situation (cf. Theorem 3.4 of Hairer et al.
(1987)).

In the present context it is instructive to view the
solution of (1) as a family of a quadrature problems

y(t) = y0 +
∫ t

0
f(τ, y(τ)) dτ, (33)

where ẏ(t) = f(t, y(t)) is modelled by an element of
Hν

2 (T,Rd). In view of Theorem 3, Dm ˙̂y converges uni-
formly to Dmẏ∗ at a rate of δν−m−1/2, m = 0, . . . , ν−1,
thus for ˙̂y the same rate as for standard spline interpola-
tion is obtained (Schultz, 1970). Furthermore, the rate
obtained for ŷ by Theorem 3 matches the rate for inte-
gral approximations using Sobolev kernels (Kanagawa
et al., 2020, Proposition 1). That is, although dealing
with a nonlinear interpolation/integration problem, As-
sumption 1 ensures the problem is still nice enough for
the optimal interpolant to enjoy the classical conver-
gence rates.

6 Selecting the Hyperparameters

In order to calibrate the credible intervals, the param-
eters Σ(t−0 ) and Γ need to be appropriately scaled to
the problem being solved. It is practical to work with
the parametrisation Σ(t−0 ) = σ2Σ̆(t−0 ) and Γ = σ2Γ̆ for
fixed Σ(t−0 ) and Γ̆ . In this case, the quasi maximum
likelihood estimate of σ2 can be computed cheaply, see
Appendix B.

In principle, the parameters Fm (0 ≤ m ≤ ν) can
be estimated via quasi maximum likelihood as well but
this would require iterative optimisation. For a given
computational budget this may not be advantageous
since the convergence rate obtained in Theorem 3 holds
for any selection of these parameters. Thus it is not
clear that spending a portion of a computational budget
on estimating Fm (0 ≤ m ≤ ν) will yield a smaller
solution error than solving the MAP problem on a denser
grid (smaller δ) for a fixed parameters, with the same
total computational budget. The IWP(σ2Γ̆ , ν) class of
priors thus seem like a good default choice (Fm = 0,
0 ≤ m ≤ ν).

Nevertheless, the parameters could in principle be
selected to optimise the constant appearing in Theorem
3. That is, solving the following optimisation problem

min
F0,...,Fν

c4(y∗, ν, fi, r) ‖y∗‖2
, (34)

which unfortunately appears to be intractable in general.
However, it might be a good idea to use the the second
factor, ‖y∗‖2 as a proxy. For instance, consider solving
the ODE in (31) again, but this time with the prior set

to IOUP(λ, 1, ν). In this case, A = Dν+1 − λDν , and
the RKHS norm becomes

‖y∗‖2
Y = y2

0

ν∑
m=0

λ2m, (35)

which is strictly smaller than the RKHS norm obtained
by IWP(I, ν) in (32).

7 Numerical Examples

In this section, the MAP estimate as implemented by
the iterated extended Kalmans smoother (IEKS) is com-
pared to the methods of Schober et al. (2019) (EKS0),
and Tronarp et al. (2019b) (EKS1). In particular the
convergence rates of the MAP estimator from Section
5 are verified, which appear to generalise to the other
methods as well.

In Sections 7.1, 7.2, and 7.3 the logistic equation,
Riccati equation, and the Fitz–Hugh–Nagumo model
are investigated, respectively. The vector field is a poly-
nomial in these cases, which means it is infinitely many
times differentiable and Assumption 1 is satisfied for
any ν ≥ 1. Lastly, in Section 7.4, a case where the vec-
tor field is only continuous is given, which means that
Assumption 1 is violated for any ν ≥ 1.

7.1 The Logistic Equation

Consider the logistic equation

ẏ(t) = 10y(t)(1 − y(t)), y(0) = y0 = 15/100,

which has the following solution.

y(t) = exp(10t)
exp(10t) + 1/y0 − 1 .

The approximate solutions are computed by EKS0,
EKS1, and IEKS on the interval [0, 1] on a uniform,
dense using, grid with interval length 2−12 using a prior
in the class IWP(I, ν), ν = 1, . . . , 4. The filter updates
only occur on a decimation of this dense grid by a factor
of 23+m, m = 1, . . . , 8, which yields the fill-distances
δm = 2m−10, m = 1, . . . , 8. The L∞ error of the zeroth
and first derivative estimates of the methods are com-
puted on the dense grid and compared to δν and δν−1/2

(predicted rates), respectively. The errors of the approx-
imate solutions versus fill-distance are shown in Figure
1 and it appears that EKS0, EKS1, and IEKS all attain
at worst the predicted rates once δ is small enough. It
appears the rate for EKS1/IEKS tapers off for ν = 4
and small δ. However, it can be verified that this is due
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Fig. 1 L∞ error of the solution estimate as produced by EKS0
(red), EKS1 (blue), IEKS (green), and the predicted MAP rate
δν (black), versus fill-distance.
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Fig. 2 L∞ error of the derivative estimate as produced by
EKS0 (red), EKS1 (blue), IEKS (green), and the predicted
MAP rate δν−1/2 (black), versus fill-distance.

to numerical instability when computing the smooth-
ing gains as the prediction covariances ΣF (t−n ) become
numerically singular for too small hn (see (17a)). The
results are similar for the derivative of the approximate
solution, see Figure 2.

Solution estimates by EKS0 and EKS1 are illustru-
tated in Figure 3 for ν = 2 and δ = 2−4 (IEKS is very
similar EKS1 and therefore not shown). The credible in-
tervals are calibrated via the quasi maximum likelihood
method, see B. While both methods produce credible
intervals that cover the true solution, those of EKS1
are much tighter. That is, here the EKS1 estimate is of
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Fig. 3 Reconstruction of the logistic map (left) and its deriva-
tive (right) with two standard deviation credible bands for EKS0
(red) and EKS1 (blue).

higher quality than that of EKS0, which is particularly
clear when looking at the derivative estimates.

7.2 A Riccati Equation

The convergence rates are examined for a Riccati equa-
tion as well. That is, consider the following ODE

ẏ(t) = −cy
3(t)
2 , y(0) = y0 = 1,

which has the following solution

y(t) = 1√
ct+ 1/y2

0
.

Just as for the logistic map, the solution is approximated
by EKS0, EKS1, and IEKS on the interval [0, 1], using a
IWP(I, ν), ν = 1, . . . , 4, for various fill-distances δ. The
L∞ errors of the zeroth and first derivative estimates
are shown in Figures 4 and 5, respectively. The general
results are the same as before, EKS1 and IEKS are very
similar, and EKS0 is some orders of magnitude worse
while still appearing to converge at a similar rate as the
former. The numerical instability in the computation of
smoothing gains is still present for large ν and small δ.

Additionally, the output of the solvers for ν = 2 is
visualised for step-sizes of h = 0.125 and h = 0.25 in
Figures 6 and 7, respectively. It can be seen that already
for h = 0.25, the solution estimate and uncertainty
quantification of the IEKS, while EKS0 and EKS1 leave
room for improvement in terms of both accuracy and un-
certainty quantification. By halving the step-size EKS1
and IEKS become near identical (wherefore IEKS is not
shown in Figure 6), though the error of the EKS0 is still
oscillating quite a bit, particularly for the derivative.
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Fig. 6 Reconstruction of the Riccati map (left) and its deriva-
tive (right) with two standard deviation credible bands for EKS0
(red) and EKS1 (blue), using a step size of h = 0.125.
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Fig. 7 Reconstruction of the Riccati map (left) and its deriva-
tive (right) with two standard deviation credible bands for
EKS0 (red), EKS1 (blue), and IEKS (green), using a step size
of h = 0.25.

7.3 The Fitz–Hugh–Nagumo Model

Consider the Fitz–Hugh–Nagumo model, which is given
by

D

(
y1(t)
y2(t)

)
=
(
c(y1(t) − y3

1(t)/3 + y2(t))
− 1

c (y1(t) − a+ by2(t))

)
. (36)

The initial conditions and parameters are set to y2(0) =
−y1(0) = 1, and (a, b, c) = (0.2, 0.2, 2), respectively. The
solution is estimated by EKS0, EKS1, and IEKS with
an IWP(I, ν) prior (1 ≤ ν ≤ 4) on a uniform grid with
212 + 1 points on the interval [0, 2.5], using the same
decimation scheme as previously. As this ODE does
not have a closed form solution, it is approximated with
ode453 in MATLAB, which is called with the parameters
RelTol = 10−14, and AbsTol = 10−14. The approximate
L2 error of the zeroth and first order derivative estimates
of y∗

1 are shown in Figures 8 and 9, respectively. The
results appear to be consistent with the findings from
the previous experiments.

Examples of the solver output of EKS1 and IEKS
for ν = 2 and h = 0.4375 is in Figures 10 and 11 for
the first and second coordinates of y, respectively. The
estimate and uncertainty quantification of the IEKS can
be seen to be quite good, except for a slight undershoot
in the estimate of ẏ1 at t = 1. The performance of EKS1
is poorer, it overshoots quite a bit in its estimate of y1
at around t = 1.5, which is not appropriately reflected
in its credible interval.

7.4 A Non-smooth Example

Let the vector field f be given by

f(y) =
{
κ, y ≤ b,

κ+ λ(y − b), y > b,
(37)

3 This is an adaptive embedded Runge–Kutta 4/5 method.
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|ŷ
1

−
y

∗ 1
| H

0 ∞

ν = 1

10−2 10−1

10−11

10−8

10−5

10−2

101

ν = 2

10−2 10−1

10−11

10−8

10−5

10−2

101

δ

|ŷ
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(red), EKS1 (blue), IEKS (green), and the predicted MAP rate
δν (black), versus fill-distance.
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|ŷ
1

−
y

∗ 1
| H

1 ∞

ν = 1

10−2 10−1
10−11

10−8

10−5

10−2

101

ν = 2

10−2 10−1
10−11

10−8

10−5

10−2

101

δ

|ŷ
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standard deviation credible bands for EKS1 (blue) and IEKS
(green), using a step size of h = 0.25.

0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

t

y
2

0 0.5 1 1.5 2 2.5
−2

−1

0

1

t

ẏ
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Fig. 11 Reconstruction of the first coordinate, y2, in the Fitz–
Hugh–Nagumo model (left) and its derivative (right) with two
standard deviation credible bands for EKS1 (blue) and IEKS
(green), using a step size of h = 0.25.

and consider the following ODE:

ẏ(t) = f(y(t)), y(0) = y0 ≤ b. (38)

If κ > 0, the solution is given by

y∗(t) =
{
y0 + κt, t ≤ τ∗,

b+ 1
λ (exp(λ(t− τ∗)) − 1)κ, t > τ∗,

(39)

where τ∗ = (b − y0)/κ. While f is continuous, it has
a discontinuity in its derivative at y = b and therefore
Assumption 1 is violated for all ν ≥ 1. Nonetheless the
solution is approximated by EKS0, EKS1, and IEKS
using an IWP prior of smoothness 0 ≤ ν ≤ 4, and the
parameters are set to y0 = 0, b = 1, κ = 2(b− y0), and
λ = −5. The L∞ errors of the zeroth and first derivative
of the approximate solutions are shown in Figures 12
and 13, respectively. Additionally, a comparison of the
solver outputs of EKS1 and IEKS is shown in Figure 14
for ν = 2 and h = 0.25.

The estimates still appear to converge as seen in
Figures 12 and 13. However, while the rate predicted by
Theorem 3 appears to still be obtained for ν = 1, a rate
reduction is observed for ν > 1 (in comparison to the
rate of Theorem 3). As Assumption 1 is violated, these
results cannot be explained by the present theory.

However, note that Theorem 3 was obtained us-
ing y∗ ∈ Y (Corollary 1) and Sf is locally Lipschitz
(Theorem 2), together with the sampling inequalities
of Arcangéli et al. (2007). These properties of f and
y∗ may be obtainable by other means than invoking
Assumption 1. This could explain the results for ν = 1.

On the other hand, in the setting of numerical inte-
gration, reduction in convergence rates when the RKHS
is smoother than the integrand has been investigated by
Kanagawa et al. 2020. If these results can be extended to
the setting of solving ODEs, it could explain the results
for ν > 1.
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δν (black), versus fill-distance.

10−2 10−1
10−9

10−7

10−5

10−3

10−1

101

|ŷ
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8 Conclusion

In this paper, the maximum a posteriori estimate associ-
ated with the Bayesian solution of initial value problems
(Cockayne et al., 2019) was examined and it was shown
to enjoy fast convergence rates to the true solution.

In the present setting the MAP estimate is just taken
as a given, in the sense that IEKS is not guaranteed to
produced the global optimum of the MAP problem. It
would therefore be fruitful to study the MAP problem
more carefully. In particular, establishing conditions on
the vector field and the fill-distance under which the
MAP problem admits a unique local optimum would be
a point for future research. On the algorithmic side, other
MAP estimators can be considered, such as Levenberg–
Marquardt (Särkkä and Svensson, 2020) or alternate
direction method of multipliers (Boyd et al., 2011, Gao
et al., 2019).

Furthermore, the empirical findings of Section 7 sug-
gests, although not being MAP estimators, EKS0 and
EKS1 can likely be given convergence statements simi-
lar to Theorem 3. It is not immediately clear what the
most effective approach for this purpose is. On one hand,
one can attempt to significantly extend the results of
Kersting et al. (2018), which is more in line with how
convergence rates are obtained for classical solvers. On
the other hand, it seems like the methodology developed
here can be extended for local convergence analysis as
well by considering the filter update as an interpolation
problem in some RKHS on each interval [tn−1, tn].

Acknowledgements The authors have had productive discus-
sions with Toni Karvonen and Hans Kersting.

A Computing Transition Densities

An effective method for computing the parameters of the transi-
tion density in (7) is the matrix fraction decomposition (Axelsson
and Gustafsson, 2014, Särkkä and Solin, 2019, Van Loan, 1978).
Define the matrix valued function

Ξ(h) = exp

((
F EνΓ ET

ν

0 −F T

)
h

)
.

It can then be shown that Ξ has the following structure

Ξ(h) =
(

Ξ11(h) Ξ12(h)
0 Ξ22(h)

)
,

and (Axelsson and Gustafsson, 2014)

A(h) = Ξ11(h), (40a)

Q(h) = Ξ12(h)ΞT
11(h). (40b)

Furthermore, the Green’s functions can be evaluated by the
same means by noting that (see (4))

GX(t, τ) = θ(t − τ)A(t − τ)EνΓ 1/2.
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B Calibration

For a full statistical treatment of the inference problem, the
parameters Fm m = 0, . . . , ν, Γ and Σ(t−

0 ) need to be estimated.
Of particular importance in terms of calibrating uncertainty
properly are Σ(t−

0 ) and Γ (see (5)), which the present discussion
is just concerned with.

It can be shown that the logarithm of (quasi-) likelihood
as produced by the Gaussian inference methods is, up to an
unimportant constant, given by (cf. Tronarp et al. 2019a)

` = − 1
2 log det S(t0) − 1

2

(
y0

f(0, y0)

)T

S−1(t0)
(

y0
f(0, y0)

)
− 1

2

N∑
n=1

log det S(tn) − 1
2

N∑
n=1

‖ζ(tn) − C(tn)µF (t−
n )‖2

S(tn) .

Additionally, if Σ(t−
0 ) = σ2Σ̆(t−

0 ) and Γ = σ2Γ̆ for some posi-
tive definite matrices Σ̆F (t−

0 ) and Γ̆ , then it can be shown that
the log-likelihood, up to some unimportant constant, reduces to
(see Appendix C of Tronarp et al. 2019b for details)4

`(σ) = − 1
2σ2

(
y0

f(0, y0)

)T

S̆−1(t0)
(

y0
f(0, y0)

)
− 1

2σ2

N∑
n=1

‖ζ(tn) − C(tn)µF (t−
n )‖2

S̆(tn)

− d(N + 2)
2 log σ2,

where ·̆ denotes the output of the filter using the parameters
(Σ̆(t−

0 ), Γ̆ ) rather than (Σ(t−
0 ), Γ ). This yields the following

proposition, which is proven in Appendix C of Tronarp et al.
(2019b), mutatis mutandis.

Proposition 5 Let Σ(t−
0 ) = σ2Σ̆(t−

0 ) and Γ = σ2Γ̆ for some
positive definite matrices Σ̆(t−

0 ) and Γ̆ , then the (quasi-) maxi-
mum likelihood estimate of σ2 is given by

σ̂2
N = 1

d(N + 2)

(
y0

f(0, y0)

)T

S̆−1(t0)
(

y0
f(0, y0)

)
+ 1

d(N + 2)

N∑
n=1

‖ζ(tn) − C(tn)µF (t−
n )‖2

S̆(tn) .

(41)

Bounds for worst case overconfidence and underconfidence
under maximum likelihood estimation of σ2 has recently been
obtained by Karvonen et al. (2020). These results appear to
carry over to the present setting for affine vector fields. However,
it is not immediately clear how to generalise this to a larger
class of vector fields.
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