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Abstract

Gaussian processes scale prohibitively with the size of the dataset. In response,
many approximation methods have been developed, which inevitably introduce
approximation error. This additional source of uncertainty, due to limited com-
putation, is entirely ignored when using the approximate posterior. Therefore in
practice, GP models are often as much about the approximation method as they are
about the data. Here, we develop a new class of methods that provides consistent
estimation of the combined uncertainty arising from both the finite number of data
observed and the finite amount of computation expended. The most common GP
approximations map to an instance in this class, such as methods based on the
Cholesky factorization, conjugate gradients, and inducing points. For any method
in this class, we prove (i) convergence of its posterior mean in the associated RKHS,
(ii) decomposability of its combined posterior covariance into mathematical and
computational covariances, and (iii) that the combined variance is a tight worst-case
bound for the squared error between the method’s posterior mean and the latent
function. Finally, we empirically demonstrate the consequences of ignoring compu-
tational uncertainty and show how implicitly modeling it improves generalization
performance on benchmark datasets.

1 Introduction

Gaussian processes (GPs) are an expressive probabilistic model class, but their prohibitive scaling
necessitates approximation [1]. A range of approximations based on kernel [2–10] or precision matrix
[11–14] estimates, inducing point methods [15–22], and iterative solvers [23–29] have been proposed.
These methods all use an affordable amount of computation to obtain an approximation of the
mathematical posterior, which exists theoretically but cannot be accessed given limited computational
resources. The approximate posterior is then used as a direct replacement of the mathematical
posterior in downstream applications. Doing so, however, completely ignores the fact that we only
expended a limited amount of compute. By analogy to the typical GP operation, where limited data
induces modeling error captured by mathematical uncertainty, our work is motivated by the fact that
limited computation induces approximation error that must be captured by computational uncertainty.

Here, we introduce IterGP, a class of methods which return a combined uncertainty that is the sum of
mathematical and computational uncertainty. Figure 1 illustrates the difference between ignoring
computational uncertainty and explicitly modeling it. We perform GP regression using a Matérn( 32 )
kernel on a toy dataset and compare SVGP ( ) [22] to its analog in our framework, IterGP-PI ( +

), for a fixed set of inducing points. The computational shortcuts of inducing point methods can lead
to unavoidable biases in their posterior mean and covariance [30, 31]. As Figure 1 illustrates, SVGP
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Figure 1: Modeling computational uncertainty improves GP approximation.

may underestimate the marginal variance where inducing points do not coincide with datapoints. In
contrast, IterGP is guaranteed to overestimate the mathematical uncertainty – with the difference
precisely given by the computational uncertainty ( ). Additionally, the computational uncertainty is
a worst-case bound (—) on the error of the approximate posterior mean.

To be clear, this overestimation is desirable: IterGP is not a typical approximation in the sense that its
combined posterior attempts to approximate the mathematical posterior. Rather, IterGP recognizes
that the mathematical posterior exists, but we do not have access to it, given computational constraints.
Finite compute is as true a source of posterior uncertainty as finite data. Taking this view seriously,
the true goal of GPs in the limited compute regime should in fact be to track combined uncertainty.
This intuition motivates IterGP and is formally a feature of our results. We show that, if you update
your GP via computation, specifically matrix-vector multiplication, then the combined uncertainty of
the IterGP algorithm is precisely the correct object to capture your belief (Theorem 2) – in the same
way the mathematical posterior is the correct object given finite data and unlimited computation.

Formally, IterGP is a probabilistic numerical method [32–35]. It treats the (unknown) representer
weights as a latent variable with a prior belief that, when marginalized out, corresponds to a GP prior
conditioned on no data. We then use a computational primitive (matrix-vector multiplication) that
corresponds to tractable Bayesian updates on the representer weight distribution; that is, conditioning
on computations performed on the data. The resulting belief can then be marginalized out to obtain a
closed form, tractable expression for the combined – mathematical plus computational – uncertainty.
This uncertainty quantification can be done exactly in quadratic time and linear space complexity.

Our framework admits three key theoretical properties. First, common GP approximations such as
the partial Cholesky, the method of conjugate gradients and inducing point methods (e.g. SVGP) map
to a corresponding IterGP instance. Therefore, these approaches can either be directly extended or
modified to properly account for computational uncertainty. Second, the approximate posterior mean
of any method in our proposed class converges to the mathematical posterior mean in RKHS norm in
at most n steps, where the convergence rate is determined by the choice of method (Theorem 1). Third,
the combined uncertainty is a tight worst case bound on the relative error between the approximate
posterior mean and the latent function (Theorem 2). To the best of our knowledge no existing GP
approximation has this last property; an analoguous guarantee only holds for exact GPs [36, Sec. 3.4].

Contribution This work introduces IterGP, which defines a new class of GP approximations that
accounts for computational uncertainty arising from limited computation. Some IterGP instances
extend classic methods with improved uncertainty quantification (Table 1). For any method in this
class, we prove that the approximate posterior mean converges to the mathematical posterior mean
(Theorem 1) and that the combined uncertainty is a tight worst-case bound on the relative distance to
the latent function one is trying to learn (Theorem 2, Corollary 1). We demonstrate empirically that
modeling computational uncertainty can either save computation or improve generalization on a set
of regression benchmark datasets. In conclusion, we show that it is possible to exactly quantify the
inevitable error of GP approximations at quadratic cost by propagating said error to the posterior in
the form of computational uncertainty.
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2 Computation-Aware Gaussian Process Inference

We aim to learn a latent function h : X → Y from X ⊆ Rd to Y ⊆ R given a training datasetX =
(x1, . . . ,xn) ∈ Rn×d of n inputs xj ∈ Rd and corresponding outputs y = (y1, . . . , yn)

ᵀ ∈ Rn.

Gaussian Processes A stochastic process f ∼ GP(µ, k) with mean function µ : Rd → R and
kernel k : Rd × Rd → R is called a Gaussian process (GP) if any collection of function values
f = (f(x1), . . . , f(xn))ᵀ ∼ N (µ,K) is jointly Gaussian with µj = µ(xj) and Kij = k(xi,xj).
Assuming observation noise y | f ∼ N (f , σ2I), the posterior distribution at test inputsX� is given
by f� ∼ N (µ∗(X�), k∗(X�,X�)) where the posterior mean and covariance functions are given by

µ∗(·) = µ(·) + k(·,X)

v∗

K̂−1(y − µ), and k∗(·, ·) = k(·, ·)− k(·,X)K̂−1k(X, ·) (1)

where K̂ := K + σ2I ∈ Rn×n. Computing the representer weights v∗ = K̂−1(y − µ) exactly (as
well as the posterior variance) is prohibitive given our limited computational budget.

Learning Representer Weights Consider the conditional distribution of the latent GP given its
representer weights:

p(f� | v∗) = N (µ(X�) + k(X�,X)v∗, k∗(X�,X�)). (2)
When v∗ is known exactly, we recover eq. (1). However, if we instead treat v∗ as a random variable
with the prior p(v∗) = N (v∗; 0, K̂

−1), then the resulting marginal
∫
p(f� | v∗)p(v∗) dv∗ recovers

the GP prior N (µ(X�), k(X�,X�)). Our goal is to update this prior by iteratively applying the
tractable computational primitive (i.e. matrix-vector multiplies). More specifically, each iteration
conditions the current belief distribution p(v∗) = N (v∗;vi−1,Σi−1) on a one-dimensional projec-
tion of the current residual ri−1 = (y−µ)− K̂vi−1, where the projection is defined by an arbitrary
vector si:

αi := sᵀi ri−1 = sᵀi ((y − µ)− K̂vi−1) = sᵀi K̂(v∗ − vi−1). (3)
The choice of actions si, which intuitively weight the approximation error of selected datapoints,
defines different instances of our IterGP framework. Computing eq. (3) requires a single matrix-vector
multiplication. After computing αi, we can perform an exact Bayesian update of p(v∗) via linear
Gaussian identities. The updated p(v∗) (conditioned on αi) is N (v∗ | vi,Σi), with

vi = vi−1 + Σi−1K̂si
=:di

(sᵀi K̂Σi−1K̂si
=:ηi

)−1 sᵀi K̂(v∗ − vi−1)

=αi

= Ci(y − µ) (4)

Σi = Σi−1 −Σi−1K̂si
=di

(sᵀi K̂Σi−1K̂si
=ηi

)−1 sᵀi K̂Σi−1

=dᵀ
i

= K̂−1 −Ci. (5)

where Ci :=
∑i
j=1

1
ηj
djd

ᵀ
j = Si(S

ᵀ
i K̂Si)

−1Sᵀ
i is a rank-i matrix (see Proposition S3 for details).

With each computation, the uncertainty about the representer weights contracts as Ci → K̂−1 = Σ0

as i→ n. After n iterations, Cn = K̂−1, meaning we fully recovered the representer weights with
zero uncertainty. The consistent estimate for the representer weights is consequently vi = Ci(y−µ).

Combining Mathematical and Computational Uncertainty We now have a belief p(v∗) =
N (v∗;vi,Σi) about the representer weights reflecting the expended computation. To account for this
computational uncertainty, we treat the representer weights as a latent variable of the mathematical
posterior by reparameterizing p(f� | y) = p(f� | v∗) and then marginalizing. The resulting marginal
considers all possible representer weights which would have resulted in the same computational
observations and therefore implicitly adds the uncertainty coming from the computation itself. Since
the posterior mean of a GP is a linear function of the representer weights, the marginal distribution is
given by p(f�) =

∫
p(f� | v∗)p(v∗) dv∗ = N (f�;µi(X�), ki(X�,X�)), where

µi(·) = µ(·) + k(·,X)vi

ki(·, ·) = k(·, ·)− k(·,X)K̂−1k(X, ·)
mathematical uncertainty

+ k(·,X)Σik(X, ·)
computational uncertainty

= k(·, ·)− k(·,X)Cik(X, ·)
combined uncertainty

(6)

since Σi = K̂−1 −Ci.1 As we perform more computation, the computational uncertainty reduces
and we approach the mathematical uncertainty. We note that, while the individual terms are com-
putationally prohibitive, the combined uncertainty can be evaluated cheaply since the approximate

1While we derive the combined posterior from a probabilistic numerics perspective, we can alternatively
interpret eq. (6) as the GP prior f conditioned on linearly transformed data Sᵀ

i y | f ∼ N (Sᵀ
i f , σ

2Sᵀ
i Si).
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Figure 2: Decomposition of the combined uncertainty. The combined uncertainty ( ) output by
IterGP decomposes into the mathematical uncertainty ( ) and computational uncertainty ( ). After
i = 4 iterations of Algorithm 1 computational uncertainty is small in parts of the input space where
there either is no data ( ) or computation was “targeted” ( ). Which datapoints are targeted in each
iteration and to what degree is defined by the magnitude of the action vector elements (si)j . Different
instances of IterGP either reduce computational uncertainty locally (e.g. IterGP-Chol, IterGP-PI) or
globally (e.g. IterGP-CG). After n iterations the mathematical uncertainty is recovered.

precision matrix Ci is of low rank. Figure 2 illustrates that computational uncertainty is large where
there are data and we have not targeted computation yet. Different methods from our proposed class
target computation in different parts of the input space. Where there is no data the prior is a good
approximation of the posterior and therefore computational uncertainty is low.

Algorithm 1 computes an estimate of the representer weights vi and the rank-i precision matrix
approximation Ci. A specific instance of IterGP is defined by a sequence of actions si. To gain an
intuition for how Algorithm 1 operates, it helps to interpret it as targeting a given computational budget
towards certain datapoints defined by si. Near datapoints xj that are not targeted, i.e. (si)j = 0,
computational uncertainty remains unchanged. In fact, datapoints (xj , yj) that are never targeted up
to iteration i are not needed to compute GP(µi, ki), meaning that Algorithm 1 is inherently online
and we can observe data sequentially without having to restart the algorithm (see Theorem S7).

Algorithm 1: A Class of Computation-Aware Iterative Methods for GP Approximation
Input: prior mean function µ, prior covariance function / kernel k, training inputsX , labels y
Output: (combined) GP posterior GP(µi, ki)

1 procedure ITERGP(µ, k,X,y)
2 (µ0, k0)← (µ, k) B Initialize mean and covariance function with prior.
3 µ← µ(X) B Prior predictive mean.
4 K̂ ← k(X,X) + σ2I B Prior predictive kernel matrix.
5 while not STOPPINGCRITERION() do B Stopping criterion.
6 si ← POLICY() B Select action via policy (see Table 1 for examples).
7 ri−1 ← (y − µ)− K̂vi−1 B Predictive residual.
8 αi ← sᵀi ri−1 B Observation via information operator.
9 di ← Σi−1K̂si = (I −Ci−1K̂)si B Search direction.

10 ηi ← sᵀi K̂Σi−1K̂si = s
ᵀ
i K̂di B Normalization constant.

11 Ci ← Ci−1 +
1
ηi
did

ᵀ
i B Precision matrix approximationCi ≈ K̂−1.

12 Qi ← Qi−1 +
1
ηi
K̂did

ᵀ
i K̂ B Kernel matrix approximationQi ≈ K̂.

13 vi ← vi−1 +
αi
ηi
di B Representer weights estimate.

14 Σi ← Σ0 −Ci B Computational representer weights uncertainty.

15 p(v∗)← N (v∗;vi,Σi) B Belief about representer weights.
16 µi(·)← µ(·) + k(·,X)vi B Approximate posterior mean function.
17 ki(·, ·)← k(·, ·)− k(·,X)Cik(X, ·) B Combined uncertainty.
18 return GP(µi, ki)

Greyed out quantities are not needed to compute the combined posterior and are only included for clarity of exposition.
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Table 1: Instances of Algorithm 1, which map to commonly used GP approximations.

Method Actions si Classic Analog Reference

IterGP-Chol ei (partial) Cholesky Theorem S3
IterGP-PBR evi(K̂) (partial) EVD / SVD Theorem S4
IterGP-CG sPCG

i or P̂−1ri (preconditioned) CG Theorem S5 and Corollary S2
IterGP-PI k(X,zi) ≈ Nyström (SoR, DTC), SVGP Section 2.1 and Theorem S6

2.1 Connection to Other GP Approximation Methods

IterGP extends the most commonly used GP approximations to include computational uncertainty,
with at most quadratic cost (see Table 1 for a summary and Figure 2, Figure S3 for illustration).

Cholesky Decomposition The (partial) Cholesky decomposition iteratively chooses datapoints or
pivots xi based on a given ordering. The resulting Cholesky factor is lower triangular and increases
in rank each iteration, and a well-chosen ordering achieves fast convergence (cf. [37, Thm. 2.3]). If
one chooses standard unit vectors ei as actions corresponding to the selected datapoint per iteration,
then Algorithm 1 recovers the partial Cholesky factorization exactly (Theorem S3).

Conjugate Gradients CG [38] with preconditioning for GP inference has become increasingly
popular [24–29, 39, 40]. Algorithm 1 recovers preconditioned CG exactly, if we choose either
preconditioned conjugate gradients or residuals as actions (see Theorem S5 and Corollary S2). In
fact, Algorithm 1 can even construct its own diagonal-plus-low-rank preconditioner by first running
a few iterations with an arbitrary policy and then using the byproducts of these iterations for the
preconditioner. For example, if we run IterGP-Chol initially, we can construct an incomplete Cholesky
preconditioner for subsequent CG iterations.

Inducing Point Methods Inducing point methods, such as variants of the Nyström approximation
[16], i.e. subset of regressors (SoR) [15, 41] and deterministic training conditional (DTC) [18, 42],
as well as SVGP [22] share a posterior mean, which by Theorem S6 takes the form

µSVGP(·) = q(·,X)KXZ(KZX(q(X,X) + σ2I)KXZ)−1KZX(y − µ) (7)

whereZ ∈ Rn×i is a set of inducing points and q(·, ·) = k(·,Z)K−1ZZk(Z, ·). These approximations
also have very closely related posterior covariance functions [20, 43]. If we choose actions si =
k(X, zi), by Proposition S3, Algorithm 1 returns a posterior mean given by

µi(·) = k(·,X)KXZ(KZX(k(X,X) + σ2I)KXZ

Gram matrix Sᵀ
i K̂Σ0K̂Si

)−1KZX(y − µ). (8)

Choosing such actions, given by kernel functions k(·, zi) centered at inducing points zi, reduces
computational uncertainty in regions close to inducing points (see IterGP-PI in Figure 2), where
closeness is determined by the kernel. Comparing SVGP’s and IterGP-PI’s posterior mean provides a
probabilistic numerical perspective on why even for small KL-divergence between the approximating
distribution of SVGP and the true posterior, the mean estimate can be far from the true mean [31,
Prop. 3.1]. As outlined in Section 2, eq. (8) is a Bayesian update on the initially unknown representer
weights v∗ = K̂−1(y − µ). The Gram matrix in eq. (8) describes how surprising the computational
observationsKZX(y−µ) = Sᵀ

i (y−µ) = Sᵀ
i K̂v∗ of the representer weights should be, given the

prior uncertainty Σ0 about them. SVGP uses a similar form for the posterior mean (c.f. (7) and (8)),
but the Gram matrix is “smaller” since q(X,X) � k(X,X). This can be interpreted as inducing
point methods being overconfident in their update of the representer weight estimates to achieve linear
time complexity. As the inducing points approach the data points the two posterior mean functions
µSVGP and µi become closer and are equivalent if the inducing points equal the training data.

2.2 The Cost of Computational Uncertainty

Quantifying combined uncertainty has greater cost than linear time GP approximations such as
inducing point methods, due to its use of matrix-vector multiplication as the computational operation
to condition on the data. Algorithm 1 in its most general form performs three matrix-vector products
per iteration resulting in a quadratic time complexity O(n2i) overall for i iterations. In this sense,

5



Algorithm 1 represents a middle ground between the mathematical posterior—which incurs a cubic
time complexity—and O(ni2) approximations—which can only estimate their computational error
through potentially loose theoretical bounds which may [e.g. 21, 22, 44] or may not be computable
in less than O(n3) [4, 37]. At any point during a run of Algorithm 1, computing the predictive mean
on n� new data points has cost O(n�n), while the marginal predictive (co-)variance can be evaluated
in O(n�ni) since Ci is of rank i. Additionally, using Matheron’s rule [45–47], sampling from the
approximate posterior at n� evaluation points also only requires O(n�ni) computation (assuming
we can sample from the prior—see Section S3.3). The objects required to make predictions and
draw samples are the vector vi and low rank matrix Ci which both require O(ni) memory. Finally,
the memory cost of Algorithm 1 is only linear in n, since matrix multiplication v 7→ K̂v can be
computed without explicitly forming K̂ [48].

2.3 Related Work

GP inference based on matrix-vector multiplies, particularly CG [38], has become popular recently
[5, 24–29, 39]. Advances in specialized hardware has boosted their scalability without excessive
memory footprint [27, 48]. Such iterative methods typically rely on preconditioning, which has
been shown to significantly improve their performance [25, 26, 29]. Our method generalizes CG
in this setting and thus retains the same benefits. At its core Algorithm 1 employs a (Bayesian)
probabilistic numerical method [32–35], more specifically a probabilistic linear solver (PLS) [49–54]
applied to the linear system K̂v∗ = y. The fact that a PLS using CG actions can recover CG in its
posterior mean was observed previously [49, 51, 53]. Here, we extend this result to residual actions
and preconditioning. Further, we also demonstrate the connection to the Cholesky and singular
value decompositions. For randomized actions, the PLS as part of Algorithm 1 also recovers the
randomized Kaczmarz method in its posterior mean [55–58]. Employing a PLS for GP approximation
by updating beliefs over the kernel and precision matrix was suggested previously [53, 59]. Our
work differs in that it updates a belief over the representer weights, as opposed to the kernel function
or matrix, considers more general projections than just conjugate residuals, and, most importantly,
provides a theoretically motivated combined posterior which can be computed exactly.

3 Theoretical Analysis

The main goals of our theoretical analysis will be to prove

(a) convergence of IterGP’s posterior mean in norm (Theorem 1) and pointwise (Corollary 1)

and to provide rigorous justification for the combined and computational uncertainty. Importantly, the

(b) combined uncertainty is a tight worst-case bound on the relative distance to all potential
latent functions consistent with our (computational) observations (Theorem 2).

We will demonstrate a similar interpretation of the computational uncertainty as a bound on the
relative error to the mathematical posterior mean (see eqs. (14) and (16)).

3.1 Estimation of Representer Weights

At the heart of Algorithm 1 is a probabilistic linear solver [49–51, 53] iteratively updating a
belief about the representer weights. It constructs an expanding subspace span{s1, . . . , si} =
span{d1, . . . ,di} spanned by the actions in which the inverse K̂−1 is perfectly identified. Each step
di expanding this explored subspace is K̂-orthogonal to the previous ones.
Proposition 1 (Conjugate Direction Method)
Let the actions si of Algorithm 1 be linearly independent. Then Algorithm 1 is a conjugate direction
method, i.e. it holds that dᵀi K̂dj = 0 for all i 6= j.

Proof. Without loss of generality assume i > j. Then the result follows directly from Lemma S1.

Geometrically, Algorithm 1 iteratively projects the representer weights onto the expanding subspace
span{Si} with respect to 〈·, ·〉K̂ . We can use this intuition to understand the convergence of the
representer weights estimate. The relative error ρ(i) at iteration i is given by how small the “angle”
between this subspace and the representer weights vector is.

6



Proposition 2 (Relative Error Bound for the Representer Weights)
For any choice of actions a relative error bound ρ(i), s.t. ‖v∗ − vi‖K̂ ≤ ρ(i)‖v∗‖K̂ is given by

ρ(i) = (v̄ᵀ∗ (I −CiK̂)

projection onto span{Si}⊥K̂

v̄∗)
1
2 ≤ λmax(I −CiK̂) ≤ 1 (9)

where v̄∗ = v∗/‖v∗‖K̂ . If the actions {si}ni=1 are linearly independent, then ρ(i) ≤ δn=i.

Proof. See Section S2.2.

Proposition 2 guarantees convergence in at most n iterations, if the actions are chosen to be linearly
independent, since CiK̂ is a K̂-orthogonal projection onto span{Si} (see Lemma S1). Therefore,
if our finite computational budget is large enough, we eventually recover the mathematical posterior.
This is reflected by the contraction of the posterior over the representer weights (see Proposition S4).
The bound in Proposition 2 is tight without further assumptions on the actions, since there exists
an adverserial sequence of actions such that the first (n− 1) are in span{v∗}⊥K̂ . Then the inverse
is perfectly identified in that subspace, but vi = Ciy = CiK̂v∗ = 0. In practice, one can derive
tighter convergence bounds for specific sequences of actions. For example, for randomized actions
the bound depends on their distribution [56, 57]. If residuals ri are chosen as actions, we obtain

ρ(i) = 2
(√

κ−1√
κ+1

)i
or ρ(i) =

(
λn−i−λ1

λn−i+λ1

)
(10)

since then Algorithm 1’s estimate of the representer weights equals that of CG (Corollary S2). Here
κ is the condition number and λj the eigenvalues of either (i) the kernel matrix K̂ if si = ri, or (ii)
the preconditioned kernel matrix P̂−

1
2 K̂P̂−

ᵀ
2 if si = P̂−1ri.

3.2 Convergence in RKHS Norm of the Posterior Mean

Having established convergence of the representer weights estimate, we can use this result to prove
convergence in norm of IterGP’s posterior mean to the mathematical posterior at the same rate.
Theorem 1 (Convergence in RKHS Norm of the Posterior Mean Approximation)
Let Hk be the RKHS associated with kernel k(·, ·), σ2 > 0 and let µ∗ − µ ∈ Hk be the unique
solution to the regularized empirical risk minimization problem

arg minf∈Hk
1
n

(∑n
j=1(f(xj)− yj + µ(xj))

2 + σ2‖f‖2Hk
)

(11)

which is equivalent to the mathematical posterior mean up to shift by the prior µ [e.g. 1, Sec. 6.2].
Then for i ∈ {0, . . . , n} the posterior mean µi(·) computed by Algorithm 1 satisfies

‖µ∗ − µi‖Hk ≤ ρ(i)c(σ2)‖µ∗ − µ0‖Hk (12)

where µ0 = µ is the prior mean and the constant c(σ2) =
√

1 + σ2

λmin(K) → 1 as σ2 → 0.

Proof. See Section S2.3.

Theorem 1 gives a bound on the RKHS-norm error between the posterior mean µi of IterGP and
the mathematical posterior mean µ∗. If for the given prior kernel a bound on the RKHS-norm
error ‖h− µ∗‖Hk between the latent function h and the mathematical posterior mean µ∗ is known,
Theorem 1 can be directly used to bound the RKHS-norm error between IterGP’s posterior mean and
the latent function h via the triangle inequality: ‖h− µi‖Hk ≤ ‖h− µ∗‖Hk

→0 as n→∞

+ ‖µ∗ − µi‖Hk
→0 as i→n

.

3.3 Combined and Computational Uncertainty as Worst Case Errors

While Theorem 1 shows convergence in norm for IterGP’s posterior mean, the convergence rate ρ(i)
may contain expressions which cannot be evaluated at runtime with the limited computation at our
disposal. For example, for residual actions evaluating eq. (10) requires computation of the kernel
matrix spectrum. However, the combined uncertainty of IterGP is a tight bound on the pointwise
relative error to all possible latent functions which would have resulted in the same computations.
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Figure 3: Computational and combined uncertainty of IterGP as worst-case bounds.2

Theorem 2 (Combined and Computational Uncertainty as Worst Case Errors)
Let σ2 ≥ 0 and let ki(·, ·) = k∗(·, ·) + kcomp

i (·, ·) be the combined uncertainty computed by Algo-
rithm 1. Then, for any x ∈ X (assuming x /∈X if σ2 > 0) we have

sup
g∈Hkσ :‖g‖Hkσ≤1

error of approximate posterior mean

g(x)− µg∗(x)

error of math. post. mean

+ µg∗(x)− µgi (x)

computational error

=
√
ki(x,x) + σ2, and (13)

sup
g∈Hkσ :‖g‖Hkσ≤1

µg∗(x)− µgi (x)

computational error

=
√
kcomp
i (x,x) (14)

where µg∗(·) = k(·,X)K̂−1g(X) is the mathematical and µgi (·) = k(·,X)Cig(X) IterGP’s
posterior mean for the latent function g ∈ Hkσ . If σ2 = 0, then the above also holds for x ∈X .

Proof. See Section S2.4.

Theorem 2 rigorously explains why the combined (mathematical + computational) uncertainty ki is
the correct object characterizing our belief about the latent function h, given that we are in the limited
compute regime. In the same way that the mathematical uncertainty is a tight bound on the distance
to all functions g which could have produced the data (see [36, Prop. 3.8]), the combined uncertainty
is a tight bound on all functions g which would have produced the same computations.

3.4 Pointwise Convergence of the Posterior Mean

In particular, as Corollary 1 shows and Figure 3 illustrates, the computational uncertainty ( ) is a
pointwise bound on the relative distance to the mathematical posterior mean (16) and the combined
uncertainty ( + ) is a pointwise bound on the relative distance to the true latent function (15).
Corollary 1 (Pointwise Convergence of the Posterior Mean)
Assume the conditions of Theorem 2 hold and assume the latent function h ∈ Hkσ . Let µ∗ be the
corresponding mathematical posterior mean and µi the posterior mean computed by Algorithm 1.
Then it holds that

|h(x)− µi(x)|
‖h‖Hkσ

≤
√
ki(x,x) + σ2, and (15)

|µ∗(x)− µi(x)|
‖h‖Hkσ

≤
√
kcomp
i (x,x). (16)

Proof. This follows immediately from Theorem 2 by recognizing that h/‖h‖Hkσ has unit norm.

2The combined (co-)variance decomposes into mathematical and computational covariances, as opposed to
the combined standard deviation since

√
+ 6=

√
+
√

. The bottom panel thus illustrates the variance
decomposition. However, to better illustrate Theorem 2, in the upper panel we plot the combined standard
deviation

√
+ and computational standard deviation

√
within it, in line with standard GP plotting practice.
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It is worth noting that Theorem 2 and Corollary 1 generally do not hold for other GP approximations.
They explicitly rely on CiK̂ being the K̂-orthogonal projection onto the space spanned by the
actions (see Lemma S1). Since orthogonal projections are unique, if another GP approximation is
such a projection and therefore satisfies Theorem 2, it is in fact an instance of IterGP.

4 Experiments

To demonstrate the effects of quantifying computational uncertainty we perform GP regression
on synthetic and benchmark datasets for the two most common GP approximations in the large-
scale setting, SVGP [22] and CGGP [26], and their direct analogs from our class of methods. An
implementation of Algorithm 1, based on KeOps [48] and ProbNum [60], is available at:

https://github.com/JonathanWenger/itergp

Experimental Setup We consider a synthetic dataset of iid uniformly sampled inputs xj ∈ [−1, 1]d

with y(x) = sin(πxᵀ1) + ε, where ε ∼ N (0, σ2), as well as a range of UCI datasets [61] with
training set sizes n = 5, 287 to 57, 247, dimensions d = 9 to 26 and standardized features. All
experiments were run on an NVIDIA GeForce RTX 2080 Ti graphics card. We perform GP regression
using a zero mean prior and a Matérn( 12 ) kernel (for other kernels see Section S4). All experiments
were run 10 times with randomly sampled training and test splits of 90/10 and we report average
metrics with 95% confidence intervals.

IterGP reduces the necessary computations for CG-based GP inference. We compare IterGP
to the CG-based GP inference used in the GPyTorch library [26]. For all datasets, we select
hyperparameters using the training procedure of Wenger et al. [29]. As we show in Theorem S5, the
posterior mean of IterGP with (conjugate) residual actions is exactly equivalent to performing CG to
compute the representer weights. Therefore, both methods produce the exact same posterior mean
estimate and thus achieve the same RMSE as a function of CG iterations (Figure 4, bottom). The
primary difference between the two methods is in the posterior variance. The combined variance
estimate of IterGP is essentially “free” in the sense that it reuses terms from the posterior mean
calculation. In contrast, computing the posterior variance with CG requires n� additional linear
solves (K̂−1x�1, . . . , K̂−1x�n�). GPyTorch relies on the Lanczos Variance Estimate technique
[62] which essentially warm-starts each of these solves by reusing quantities from the linear solve
K̂−1k(X,x�1). While this approach produces reliable variance estimates that converge to the true
posterior variance, it requires additional computation: at least one set of additional CG iterations to
compute K̂−1k(X,x�1). In Figure 4(a) (top), we see that IterGP and GPyTorch’s CGGP achieve
nearly identical NLL, suggesting that both methods produce variances that yield similar generalization.
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Figure 4: Generalization of CGGP and its closest IterGP analog. (a) GP regression using a Matérn( 12 )
kernel on UCI datasets. The plot shows the average generalization error in terms of NLL and RMSE
for an increasing number of solver iterations. The posterior mean of IterGP-CG and CGGP is
identical, which explains the identical RMSE. However, CGGP performs additional computation for
the posterior covariance as (b) illustrates, which is not needed since IterGP-CG has identical NLL.
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The key difference between the methods is that 1) unlike CGGP, IterGP’s variances exactly capture
both mathematical and computational uncertainty, and 2) IterGP’s variances require no additional
solves, resulting in half as much computation as GPyTorch’s CGGP implementation (see Figure 4(b)).

Quantifying computational uncertainty improves generalization of inducing point methods.
To understand the benefits of quantifying computational uncertainty, we compare the linear-time
SVGP method (which does not quantify computational uncertainty) with the closest (quadratic-time)
inducing point analog from our proposed IterGP framework (see Section 2.1). While the IterGP
method is inherently more expensive than SVGP, our goal is simply to demonstrate that inducing
points can yield far more accuracy if one has the budget to account for computational uncertainty. To
that end, we compare SVGP against IterGP using the same set of randomly-placed inducing points.
We identify a set of kernel hyperparameters by optimizing the ELBO of SVGP on the training data,
using these for both SVGP and IterGP. As Figure 5 shows, we find that across all datasets that IterGP
offers better RMSE and NLL than SVGP, despite the fact that the hyperparameters are chosen to
favor SVGP. This suggests that the extra computation needed to quantify computational uncertainty
can more “effectively” utilize a set of inducing points for predictive models.
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Figure 5: Generalization of SVGP and its closest IterGP analog. GP regression using a Matérn(12 )
kernel on UCI datasets. The plot shows the average generalization error in terms of NLL and RMSE
for an increasing number of identical inducing points. After a small number of inducing points
relative to the size of the training data, IterGP has significantly lower generalization error than SVGP.

5 Conclusion

Scalable GP approximations inevitably introduce error, leading to a worse model for the latent
function in question. This work demonstrates that it is possible to account for both uncertainty arising
from limited data and uncertainty arising from limited computation exactly – which as we show
improves model performance. IterGP methods return this combined uncertainty which crucially
represents a dataset-specific, pointwise worst-case bound on the error to the true latent function. At
its core, IterGP performs repeated matrix-vector multiplication resulting in quadratic complexity.
Since modern computing architectures (i.e. GPUs) have been specifically designed for this operation
at scale, iterative approaches for GP approximation are becoming competitive with theoretically
cheaper approximations, like inducing point methods [26, 27]. Finally, in addition to the general
utility of IterGP, we expect this class of methods to be particularly useful in applications where
accurate uncertainty quantification is important or, due to its inherently online nature, where data is
acquired sequentially such as in active learning and Bayesian optimization.
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S1 Connections to Other GP Approximations

S1.1 Pivoted Cholesky Decomposition

Theorem S3 (Pivoted Cholesky Decomposition)
Let (ji)

n
i=1 be a set of indices defining the pivot elements of the pivoted Cholesky decomposition and

P ∈ Rn×n the corresponding permutation matrix. Assume the actions of Algorithm 1 are given by
the standard unit vectors si = Pei = eji , i.e.

(si)j = (eji)j =

{
1 if j = ji
0 otherwise

. (S17)

Then Algorithm 1 recovers the pivoted Cholesky decomposition, i.e. it holds for all i ∈ {0, . . . , n}
that

P ᵀQiP = LiL
ᵀ
i , (S18)

where Li ∈ Rn×i is the (partial) Cholesky factor of P ᵀK̂P as computed by Algorithm S2.
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i = 1 ≈

i = 2 ≈

i = 3 ≈

P ᵀK̂P Li Lᵀ
i

Algorithm S2: (Pivoted) Cholesky Decomposition

Input: kernel matrix K̂, permutation matrix P
Output: lower triangular Li, s.t. LiL

ᵀ
i ≈ P ᵀK̂P

1 procedure CHOLESKY(K̂,P )
2 A← P ᵀK̂P
3 for i ∈ {1, . . . , n} do
4 li ← A:i/

√
Aii

5 A← A− lilᵀi = P ᵀK̂P −LiLᵀ
i

6 Li = (Li−1 li)

7 return Li

Figure S1: Cholesky decomposition. Every column added to the lower triangular Cholesky factor
L defines the ith “right angle ruler”-pattern in P ᵀK̂P . The bottom right matrix in gray given by
P ᵀK̂P −LiLᵀ

i = P ᵀK̂P −
∑i
j=1 ljl

ᵀ
j changes every iteration.

Proof. We proceed by induction. Assume (S18) holds after i iterations of Algorithm 1. For the base
case i = 0, it holds by assumption that P ᵀQ0P = P ᵀK̂C0K̂P = 0. Now for the induction step
i→ i+ 1, we have

1

ηi+1
K̂did

ᵀ
i K̂ =

1

ηi+1
K̂ΣiK̂si+1s

ᵀ
i+1K̂ΣiK̂

=
1

ηi+1
K̂(Σ0 −Ci)K̂si+1s

ᵀ
i+1K̂(Σ0 −Ci)K̂

=
1

ηi+1
(K̂ −Qi)si+1s

ᵀ
i+1(K̂ −Qi)

IH
=

1

ηi+1
(K̂ − PLiLᵀ

i P
ᵀ)si+1s

ᵀ
i+1(K̂ − PLiLᵀ

i P
ᵀ)

=
(K̂ − PLiLᵀ

i P
ᵀ)Pei+1√

eᵀi+1P
ᵀ(K̂ − PLiLᵀ

i P
ᵀ)Pei+1

eᵀi+1P
ᵀ(K̂ − PLiLᵀ

i P
ᵀ)√

eᵀi+1P
ᵀ(K̂ − PLiLᵀ

i P
ᵀ)Pei+1

=
P (P ᵀK̂P −LiLᵀ

i )ei+1√
eᵀi+1(P ᵀK̂P −LiLᵀ

i )ei+1

eᵀi+1(P ᵀK̂P −LiLᵀ
i )P ᵀ√

eᵀi+1(P ᵀK̂P −LiLᵀ
i )ei+1

= Pli+1l
ᵀ
i+1P

ᵀ.

where li+1 is given by Algorithm S2. Combining this with one more use of the induction hypothesis
we obtain

P ᵀQi+1P = P ᵀQiP +
1

ηi+1
P ᵀK̂di+1d

ᵀ
i+1K̂P

= LiL
ᵀ
i + li+1l

ᵀ
i+1 = (Li li+1)

(
Lᵀ
i

lᵀi+1

)
= Li+1L

ᵀ
i+1

This proves the claim.

S1.2 Singular / Eigenvalue Decomposition

Theorem S4 (Singular / Eigenvalue Decomposition)
Let the actions si = ui of Algorithm 1 be given by the eigenvectors ui of K̂ in arbitrary order. Then
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for i ∈ {1, . . . , n} it holds that

Ci = UiΛ
−1
i U

ᵀ
i = SVDi(K̂

−1)

Qi = UiΛiU
ᵀ
i = SVDi(K̂),

where U = (u1, . . . ,ui) ∈ Rn×i and Λ = diag(λ1, . . . , λi) ∈ Ri×i is the diagonal matrix of
eigenvalues of K̂ with the order given by the order of the actions.

Proof. It holds by assumption and eq. (S37), that

Ci = Si(S
ᵀ
i K̂Si)

−1Sᵀ
i = Ui(U

ᵀ
i K̂Ui)

−1Uᵀ
i = UiΛ

−1
i U

ᵀ
i ,

as well as

Qi = K̂CiK̂ = K̂UiΛ
−1
i U

ᵀ
i K̂ = UiΛiΛ

−1
i ΛiU

ᵀ
i = UiΛiU

ᵀ
i

This proves the claim.

S1.3 Conjugate Gradient Method

Algorithm S3: Preconditioned Conjugate Gradient Method [38]

Input: kernel matrix K̂, labels y, prior mean µ, preconditioner P̂
Output: representer weights vi ≈ K̂−1(y − µ)

1 procedure CG(K̂,y − µ, P̂ )
2 v0 ← 0
3 s0 ← 0
4 while ‖ri‖2 > max(δrtol‖y‖2, δatol) and i < imax do
5 ri−1 ← (y − µ)− K̂vi−1
6 si ← P̂−1ri−1 − (P̂−1ri−1)

ᵀK̂si−1

sᵀ
i−1K̂si−1

si−1

7 vi ← vi−1 + (P̂−1ri−1)
ᵀri−1

sᵀ
i K̂si

si

8 return v

Theorem S5 (Preconditioned Conjugate Gradient Method)
Let P̂ ∈ Rn×n be a symmetric positive definite preconditioner. Assume the actions of Algorithm 1
are given by

sCG
1 = P̂−1r0

sCG
i = P̂−1ri−1 −

(P̂−1ri−1)ᵀK̂si−1
sᵀi−1K̂si−1

si−1
(S19)

the preconditioned conjugate gradient method. Then Algorithm 1 recovers preconditioned CG
initialized at vCG

0 = 0, i.e. it holds for i ∈ {1, . . . , n} that

si = di = sCG
i (S20)

vi = vCG
i (S21)

ri−1 = rCG
i−1. (S22)

Proof. First note that by assumption si = sCG
i for all i. We prove the remaining claims by induction.

For the base case we have by assumption d0 = Σ0K̂s0 = s0 = sCG
0 and v0 = 0 = vCG

0 . Now for
the induction step i→ i+ 1 assume the hypotheses (S20), (S21) and (S22) hold ∀j ≤ i. Using the
properties of CG it holds for j′ < i that

sᵀi K̂sj′ = 0 (S23)

(P̂−1ri)
ᵀsj′ = 0 (S24)

(P̂−1ri)
ᵀrj′ = 0 (S25)

〈s1, . . . , si〉 = 〈r0, P̂−1K̂r0, . . . , (P̂−1K̂)i−1r0〉 = 〈P̂−1r0, . . . , P̂−1ri−1〉 (S26)
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We now first show K̂-conjugacy of the actions in iteration i+ 1. We have for j ≤ i that

sᵀi+1K̂sj =
(
P̂−1ri −

(P̂−1ri)
ᵀK̂si

sᵀi K̂si
si
)ᵀ
K̂sj

= (P̂−1ri)
ᵀK̂sj −

(P̂−1ri)
ᵀK̂si

sᵀi K̂si
sᵀi K̂sj

Now if j = i, clearly sᵀi+1K̂sj = sᵀi+1K̂si = 0. If j < i, we have using (S26), that

P̂−1K̂sj ∈ 〈P̂−1K̂r0, . . . , (P̂−1K̂)jr0〉 ⊂ 〈P̂−1r0, . . . , P̂−1rj〉. (S27)

Therefore we obtain for j < i, that

sᵀi+1K̂sj
(S23)
= rᵀi P̂

−1K̂sj
(S27)
= rᵀi

( j∑
`=1

γ`P̂
−1r`

)
(S25)
= 0. (S28)

Thus in combination we have

∀j ∈ {1, . . . , i} : sᵀi+1K̂sj = 0. (S29)

Now for the search direction we have

di+1 = ΣiK̂si+1 =

(
Σ0 −

i∑
j=1

djd
ᵀ
j

ηj

)
K̂si+1

= si+1 −
i∑

j=1

dᵀj K̂si+1

ηj
dj

(S20)
= si+1 −

i∑
j=1

sᵀj K̂si+1

ηj
dj

(S29)
= si+1.

(S30)

Further, we have for the solution estimate, that vi+1 = vi + di+1
αi+1

ηi+1
. It holds that

αi+1 = sᵀi+1ri =
(
P̂−1ri −

(P̂−1ri)
ᵀK̂si

sᵀi K̂si
si
)ᵀ
ri

= (P̂−1ri)
ᵀri −

i∑
j=

cj(P̂
−1rj−1)ᵀri

(S25)
= (P̂−1ri)

ᵀri

as well as

ηi+1 = sᵀi+1K̂ΣiK̂si+1 = dᵀi+1K̂si+1
(S30)
= sᵀi+1K̂si+1

Combining the above and recalling Algorithm S3, we obtain

vi+1 = vi + di+1
αi+1

ηi+1
= vi + di+1

(P̂−1ri)
ᵀri

sᵀi+1K̂si+1
= vCG

i+1.

Finally, the residual is computed identically in Algorithm 1 as in Algorithm S3, giving

ri = (y − µ)− K̂vi = (y − µ)− K̂vCG
i = rCG

i .

This proves the claims.

Corollary S2 (Preconditioned Gradient Actions as CG Actions)
Choosing actions

si = P̂−1ri−1 (S31)
in Theorem S5 instead also reproduces the preconditioned conjugate gradient method, i.e. it holds
for i ∈ {1, . . . , n} that

di = sCG
i (S32)

vi = vCG
i (S33)

ri−1 = rCG
i−1. (S34)
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Proof. It suffices to show that di = sCG
i . The rest of the argument is then identical to the proof of

Theorem S5. We prove the claim by induction. For the base case by assumption s1 = P̂−1r0 = sCG
1 .

Now for the induction step i→ i+ 1, assume that dj = sj for all j ≤ i, then

di+1 = ΣiK̂P̂
−1ri

= (I −CiK̂)P̂−1ri

= P̂−1ri −Di(D
ᵀ
i K̂Di)

−1Dᵀ
i K̂P̂

−1ri By eq. (S37).
IH
= P̂−1ri − SCG

i ((SCG
i )ᵀK̂SCG

i )−1(SCG
i )ᵀK̂P̂−1ri

Now by the same argument as in eq. (S28) in the proof of Theorem S5 we have for all j < i that
rᵀi P̂

−1K̂sCG
j = 0. Therefore

= P̂−1ri − sCG
i ((sCG

i )ᵀK̂sCG
i )−1(sCG

i )ᵀK̂P̂−1ri

= sCG
i+1 By eq. (S19).

This proves the claim.

Corollary S3 (Deflated Conjugate Gradient Method)
Let the first 0 < ` < n actions (si)

`
i=1 of Algorithm 1 be linearly independent and the remaining

ones be given by si = P̂−1ri, where P̂ ≈ K̂ is a preconditioner. Then Algorithm 1 is equivalent to
the preconditioned deflated CG algorithm [63, Alg. 3.6] with deflation subspace span{S`}.

Proof. By the form of preconditioned deflated CG given in Algorithm 3.6 of Saad et al. [63] and
Corollary S2, it suffices to show that the residual r` satisfies Sᵀ

` r` = 0 and that for all i > `, it holds
that

sdefCG
i = di = (I −Ci−1K̂)si.

Now it holds by Lemma S2 and eq. (S37), that

Sᵀ
` r` = Sᵀ

` (I − K̂C`)(y − µ) = Sᵀ
` (I − K̂S`(Sᵀ

` K̂S`)
−1Sᵀ

` )

=0

(y − µ) = 0.

This proves the first claim. Now, by Saad et al. [63, Alg. 3.6], the search directions (sdefCG
i )ni=`+1 of

preconditioned deflated CG are given by

sdefCG
i = sCG

i − S`(Sᵀ
` K̂S`)

−1Sᵀ
` K̂P̂

−1ri

= (I −C`+1:(i−1)K̂)si − S`(Sᵀ
` K̂S`)

−1Sᵀ
` K̂P̂

−1ri Corollary S2

= (I −C`+1:(i−1)K̂)si −C`K̂si
= (I − (C`+1:(i−1) −C`)K̂)si

= (I −Ci−1K̂)si
= di

This proves the claim.

Remark S1 (Preconditioning and Algorithm 1)
Iterative methods typically have convergence rates depending on the condition number of the system
matrix. One successful strategy in practice to accelerate convergence is to use a preconditioner
P̂ ≈ K̂ [64]. A preconditioner needs to be cheap to compute and allow efficient matrix-vector
multiplication v 7→ P̂−1v. Now, Algorithm 1 implicitly constructs and applies a deflation-based
preconditioner, which are defined via a deflation subspace to be projected out [65]. In Algorithm 1 this
is precisely the already explored space span{Si} = span{Di} spanned by the actions. Therefore, if
we run a mixed strategy, meaning first choosing actions that define a certain subspace and then choose
residual actions, we recover the deflated conjugate gradient method [63] (see Corollary S3 for a proof).
Alternatively, one can also use byproducts of the iteration of Algorithm 1 to construct a diagonal-plus-
low-rank preconditioner of the form P̂ = σ2I +UUᵀ ≈ K̂ where U = KDi diag(η1, . . . , ηi) ∈
Rn×i. Therefore, again if running a mixed strategy, one can first construct a preconditioner and then
accelerate the convergence of subsequent CG iterations. In this sense one can double-dip in terms of
preconditioning (conjugate) gradient iterations by combining these two techniques at essentially no
overhead.
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v∗ + span{Di}⊥K̂

=span{Si}⊥K̂

vi−1 + span{di}

vi

v∗

vi−1

Figure S2: Geometric perspective on the probabilistic linear solver learning representer weights v∗.

S1.4 Inducing Point Methods

Theorem S6 (Approximate Posterior Mean of Nyström, SoR, DTC and SVGP)
Let Z ∈ Rn×m be a set of distinct inducing inputs such that rank(KXZ) = m ≤ n. Then
the posterior mean of the Nyström variants subset of regressors (SoR) and deterministic training
conditional (DTC) is identical to the one of SVGP and given by

µ(·) = k(·,Z)(KZXKXZ + σ2KZZ)−1KZX(y − µ)

= q(·,X)KXZ(KZX(q(X,X) + σ2I)KXZ)−1KZX(y − µ)
(S35)

Proof. First, note that by eqns. (16b) and (20b) of Quiñonero-Candela and Rasmussen [20] the
posterior mean of SoR and DTC is identical and given by

µ(·) = k(·,Z)(KZXKXZ + σ2KZZ)−1KZX(y − µ)

Now, by Theorem 5 of Wild et al. [43] the posterior mean of SVGP for a fixed set of inducing
points is equivalent to the Nyström approximation, which takes the form above. Recognizing that
KZXKXZ ∈ Rm×m is invertible, it holds that

µ(·) = k(·,Z)(KZXKXZ + σ2KZZ)−1KZX(y − µ)

= k(·,Z)(KZZ(K−1ZZKZXKXZ + σ2I))−1KZX(y − µ)

= k(·,Z)K−1ZZ((KZXKXZ)−1(KZXKXZK
−1
ZZKZXKXZ + σ2KZXKXZ))−1KZX(y − µ)

= k(·,Z)K−1ZZKZXKXZ(KZX(KXZK
−1
ZZKZX + σ2I)KXZ)−1KZX(y − µ)

= q(·,X)KXZ(KZX(q(X,X) + σ2I)KXZ)−1KZX(y − µ)

This proves the claim.

S2 Theoretical Results and Proofs

S2.1 Properties of Algorithm 1

Lemma S1 (Geometric Properties of Algorithm 1)
Let i ∈ {1, . . . , n}, and assume Σ0 is chosen such that Σ0K̂sj = sj for all j ≤ i (e.g. Σ0 = K̂−1).
Then it holds for the quantities computed by Algorithm 1 that

span{Si} = span{Di} (S36)

Ci = Di(D
ᵀ
i K̂Di)

−1Dᵀ
i = Si(S

ᵀ
i K̂Si)

−1Sᵀ
i (S37)

CiK̂ is the K̂-orthogonal projection onto span{Di} (S38)

ΣiK̂ is the K̂-orthogonal projection onto span{Di}⊥K̂ (S39)

dᵀi K̂dj = 0 for all j < i (S40)

where Si = (s1 · · · si) ∈ Rn×i andDi = (d1 · · ·di) ∈ Rn×i.

Proof. We prove the claims by induction. We begin with the base case i = 1.
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By assumption it holds that S1 = s1 = Σ0K̂s1 = d1 = D1. Now by Algorithm 1, we have
C1 = 1

η1
d1d

ᵀ
1 , which with the above proves (S37). By the batched form (S37) of Ci, the statements

(S38) and (S39) follow immediately. Finally, K̂-orthogonality for a single search direction holds
trivially.

Now for the induction step i→ i+ 1. Assume that eqs. (S36) to (S40) hold for iteration i. Then we
have that

di+1 = ΣiK̂si+1 = si+1 −CiK̂si+1
(S37)
= si+1 − Si(Sᵀ

i K̂Si)
−1Sᵀ

i K̂si+1 ∈ span{Si+1}
By the induction hypothesis the above also implies span{Si+1} = span{Di+1}. This proves
eq. (S36). Next, we have by the induction hypotheses (S37) and (S40) that

Ci+1 = Ci +
1

η
di+1d

ᵀ
i+1

= Di(D
ᵀ
i K̂Di)

−1Dᵀ
i +

1

ηi+1
di+1d

ᵀ
i+1

=

i+1∑
k=1

1

ηk
dkd

ᵀ
k

= Di+1(Dᵀ
i+1K̂Di+1)−1Dᵀ

i+1

This proves the first equality of eq. (S37). For the second, first recognize that an orthogonal
projection onto a linear subspace span{A} with respect to the B-inner product is given by PA =
A(AᵀBA)−1AᵀB. The projection onto itsB-orthogonal subspace is given by PA⊥B = I − PA.
Therefore eqs. (S38) and (S39) follow directly from the above argument. Now since projection onto a
subspace is unique and independent of the choice of basis, we have by span{Di+1} = span{Si+1}
that

CiK̂ = PDi+1 = PSi+1 = Si(S
ᵀ
i K̂Si)

−1Sᵀ
i K̂

Now since K̂ is non-singular, the second equality of eq. (S37) follows. Finally, we will prove
K̂-orthogonality of the search directions. Let j < i+ 1, then it holds that

dᵀi+1K̂dj = ( ΣiK̂si+1

∈span{Si}⊥K̂

)ᵀK̂ dj

∈span{Si}

= 0

by eqs. (S36) and (S39). This completes the proof.

Corollary S4
Let i ∈ {1, . . . , n}. It holds for CiK̂, the K̂-orthogonal projection onto Si, that

(CiK̂)2 = CiK̂ (S41)
CiK̂Ci = Ci (S42)

Further forHi = ΣiK̂ = I −CiK̂ the K̂-orthogonal projection onto S⊥K̂
i , we have

H2
i = Hi (S43)

Hᵀ
i K̂Hi = Hᵀ

i K̂ = K̂Hi (S44)

Proof. By Lemma S1, it holds that Ci = Si(S
ᵀ
i K̂Si)

−1Sᵀ
i . Therefore

CiK̂Ci = Si(S
ᵀ
i K̂Si)

−1Sᵀ
i K̂Si(S

ᵀ
i K̂Si)

−1Sᵀ
i = Ci.

This proves (S42) and (S41). DefineHi = I −CiK̂, then

HiHi = (I −CiK̂)(I −CiK̂) = I − 2CiK̂ + (CiK̂)2 = I −CiK̂ = Hi

as well as

Hᵀ
i K̂Hi = (I −CiK̂)ᵀK̂(I −CiK̂) = (K̂ − K̂CiK̂)(I −CiK̂)

= K̂ − 2K̂CiK̂ + K̂(CiK̂)2

= K̂ − K̂CiK̂ = Hᵀ
i K̂ = K̂Hi.
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Lemma S2
Let Σ0 = K̂−1, then it holds that

Ci(y − µ) = vi, (S45)
Σi(y − µ) = v∗ − vi. (S46)

Proof. We prove the statement by induction. By assumption C0(y − µ) = v0. Now assume (S45)
holds. Then for i→ i+ 1, we have

Ci+1(y − µ) = (Ci +
1

ηi+1
di+1d

ᵀ
i+1)(y − µ)

IH
= vi +

dᵀi+1(y − µ)

ηi+1
di+1

Now by the update to the representer weights in Algorithm 1 it suffices to show that αi+1 =
dᵀi+1(y − µ). We have

dᵀi+1(y − µ) = (ΣiK̂si+1)ᵀ(y − µ) = sᵀi+1K̂Σi(y − µ)

= sᵀi+1K̂(K̂−1 −Ci)(y − µ)
IH
= sᵀi+1((y − µ)− K̂vi) = sᵀi+1ri = αi.

Lemma S3
Let Σ0 = K̂−1, C0 = 0 and consequently v0 = 0, then it holds for the residual at iteration
i ∈ {1, . . . , n} that

ri−1 = K̂(v∗ − vi−1) (S47)
= K̂Σi−1K̂v∗ (S48)
= (K̂ −Qi−1)v∗. (S49)

Proof. It holds by definition, that

ri−1 = (y − µ)− K̂vi−1 = K̂v∗ − K̂vi−1 = K̂(v∗ − vi−1).

Further we have by eq. (S46), that

= K̂Σi−1(y − µ) = K̂Σi−1K̂v∗,

and finally, by the definition of the kernel matrix approximation in Algorithm 1, we obtain

= K̂(K̂−1 −Ci−1)K̂v∗ = (K̂ −Qi−1)v∗.

Proposition S3 (Batch of Observations)
Let Σ0 such that Σ0K̂sj = sj for all j ∈ {1, . . . , i}. Then after i iterations the posterior over the
representer weights in (4) is equivalent to the one computed for a batch of observations, i.e.

vi = Σ0K̂Si(S
ᵀ
i K̂Σ0K̂Si)

−1Sᵀ
i (y − µ)

Σi = Σ0 −Σ0K̂Si(S
ᵀ
i K̂Σ0K̂Si)

−1Sᵀ
i K̂Σ0

Proof. This can be seen as a direct consequence of recursively applying Bayes’ theorem

p(v∗ | {αi}mi=1, {si}mi=1) =
p(αm | sm,v∗)p(v∗ | {αi}m−1i=1 , {si}

m−1
i=1 )∫

p(αm | sm,v∗)p(v∗ | {αi}m−1i=1 , {si}
m−1
i=1 )dv∗

.

However, here we also give a geometric proof based on the projection property of the precision matrix
approximation Ci. By using eq. (S37) and the assumption on Σ0 we have that

Ci = Si(S
ᵀ
i K̂Si)

−1Sᵀ
i = Σ0K̂Si(S

ᵀ
i K̂Σ0K̂Si)

−1Sᵀ
i

= Σ0K̂Si(S
ᵀ
i K̂Σ0K̂Si)

−1Sᵀ
i K̂Σ0

This proves that

Σi = Σ0 −Ci = Σ0 −Σ0K̂Si(S
ᵀ
i K̂Σ0K̂Si)

−1Sᵀ
i K̂Σ0

Now by eq. (S45) it holds that Ci(y − µ) = vi. This proves the claim.
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Proposition S4 (Posterior Contraction)
Let Si ∈ Rn×i be the actions chosen by Algorithm 1, then its posterior contracts as

tr
(
ΣiΣ

−1
0

)
= tr(ΣiK̂) = n− rank(Si).

Proof. Since Σ0 = K̂−1, we have by eq. (S37), that

tr
(
ΣiΣ

−1
0

)
= tr((Σ0 −Ci)K̂)

= tr
(
In − Si(Sᵀ

i K̂Si)
†Sᵀ

i K̂
)

= tr(In)− tr(Sᵀ
i K̂Si(S

ᵀ
i K̂Si)

†

∈Ri×i

)

= n− rank(Si)

Now, if the actions Si are chosen linearly independent, then rank(Si) = i.

Theorem S7 (Online GP Approximation with Algorithm 1)
Let n ≤ n′ ∈ N and consider training data sets X ∈ Rn×d,y ∈ Rn and X ′ ∈ Rn′×d,y′ ∈
Rn′ . Consider two sequences of actions (si)

n
i=1 ∈ Rn and (s̃i)

n+n′

i=1 ∈ Rn+n′ such that for all
i ∈ {1, . . . , n}, it holds that

s̃i =

(
si
0

)
(S50)

Then the posterior returned by Algorithm 1 for the dataset (X,y) using actions si is identical to
the posterior returned by Algorithm 1 for the extended dataset using actions s̃i, i.e. it holds for any
i ∈ {1, . . . , n}, that

ITERGP(µ, k,X,y, (si)i) = (µi, ki) = (µ̃i, k̃i) = ITERGP
(
µ, k,

(
X
X ′

)
,

(
y
y′

)
, (s̃i)i

)
.

Proof. Define X̃ =

(
X
X ′

)
and ỹ =

(
y
y′

)
. We begin by showing that the search directions of both

methods satisfy

d′i =

(
di
0

)
. (S51)

We proceed by induction. For i = 0 it holds by definition of Algorithm 1 and eq. (S50) that

d̃0 = s̃0 =

(
s0
0

)
=

(
d0
0

)
. (S52)

Now for the induction step i→ i+ 1, assume that (S51) holds for j ∈ {1, . . . , i}. Then, we have

d̃i+1 = Σ̃i−1(k(X̃, X̃) + σ2In+n′)s̃i+1

= (In+n′ − C̃i(k(X̃, X̃) + σ2In+n′))s̃i+1

= s̃i+1 −
i∑

j=1

1

η̃j
d̃j(d̃j)

ᵀ(k(X̃, X̃) + σ2In+n′)s̃i+1

IH
=

(
si+1

0

)
−

i∑
j=1

1

η̃j

(
dj
0

)(
dᵀj 0

)(k(X,X) + In k(X,X ′)
k(X ′,X) k(X ′,X ′) + In′

)(
si+1

0

)

=

(
si+1 −

∑i
j=1

1
ηj
dj(dj)

ᵀK̂si+1

0

)
=

(
di+1

0

)
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where we used that η̃j = s̃ᵀj (k(X̃, X̃) + σ2In+n′)d̃j = sᵀj K̂dj = ηj . This proves eq. (S51). Now
recognize that

α̃j = s̃ᵀj r̃j = s̃ᵀj (ỹ − µ̃− K̃C̃i(ỹ − µ̃))

= s̃ᵀj (ỹ − µ̃− (K̃ + σ2I)

j∑
`=1

1

η̃`
d̃`d̃

ᵀ
` (ỹ − µ̃))

= sᵀj (y − µ)−
j∑
`=1

1

η`
sᵀj K̂d`d

ᵀ
` (y − µ)

= sᵀj (y − µ− K̂Cj(y − µ))

= sᵀj rj

= αj

Therefore, we finally have that

µ̃i(·) = µ(·) + k(·, X̃)ṽi = µ(·) + k(·, X̃)

i∑
j=1

α̃j
η̃j
d̃j

= µ(·) + k(·,X)vi

as well as

k̃i(·, ·) = k(·, ·)− k(·, X̃)C̃ik(X̃, ·) = k(·, ·)− k(·, X̃)

i∑
j=1

1

η̃j
d̃j(d̃j)

ᵀk(X̃, ·)

= k(·, ·)− k(·,X)

i∑
j=1

1

ηj
dj(dj)

ᵀk(X, ·) = k(·, ·)− k(·,X)Cik(X, ·) = ki(·, ·).

Remark S2 (Streaming Gaussian Processes)
Theorem S7 shows that any variant of IterGP can be used in the online setting where data arrives
sequentially while the algorithm is running. Now, if we assume data points arrive one at a time, we
choose unit vector actions (IterGP-Chol) and perform one iteration of Algorithm 1 after each data
point, then Algorithm 1 simply computes the mathematical GP posterior.

S2.2 Approximation of Representer Weights

Proposition 2 (Relative Error Bound for the Representer Weights)
For any choice of actions a relative error bound ρ(i), s.t. ‖v∗ − vi‖K̂ ≤ ρ(i)‖v∗‖K̂ is given by

ρ(i) = (v̄ᵀ∗ (I −CiK̂)

projection onto span{Si}⊥K̂

v̄∗)
1
2 ≤ λmax(I −CiK̂) ≤ 1 (9)

where v̄∗ = v∗/‖v∗‖K̂ . If the actions {si}ni=1 are linearly independent, then ρ(i) ≤ δn=i.

Proof. DefineHi = ΣiK̂ = I −CiK̂. We have by Lemma S2, that

‖v∗ − vi‖2K̂ = ‖Hiv∗‖2K̂ = (Hiv∗)
ᵀK̂Hiv∗

(S44)
= v∗

ᵀHiv∗ = v̄ᵀ∗Hiv̄∗‖v∗‖2K̂
This proves the first equality of Proposition 2. Further it holds that

‖Hiv∗‖K̂ = ‖K̂ 1
2Hiv∗‖2 = ‖(I − K̂ 1

2CiK̂
1
2 )K̂

1
2v∗‖2 ≤ ‖I − K̂

1
2CiK̂

1
2 ‖2‖v∗‖K̂

= λmax(I − K̂ 1
2CiK̂

1
2 )‖v∗‖K̂ .

Now by Weyl’s inequality and the fact that K̂
1
2CiK̂

1
2 is positive semi-definite, it holds that

λmax(Hi) = λmax(I − K̂ 1
2CiK̂

1
2 ) ≤ λmax(I)− λmin(K̂

1
2CiK̂

1
2 ) ≤ 1.
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Now, recall that similar matricesA andB = P−1AP have the same eigenvalues. Therefore

I − K̂ 1
2CiK̂

1
2 = K̂

1
2 (I −CiK̂)K̂−

1
2

and I − CiK̂ have the same eigenvalues. Finally, since by eq. (S39) Hi is a projection onto
span{Si}⊥K̂ , it has full rank at iteration n if the actions are linearly independent and therefore
λmax(Hn) = 1. This proves the claim.

S2.3 Convergence Analysis of the Posterior Mean Approximation

Theorem 1 (Convergence in RKHS Norm of the Posterior Mean Approximation)
Let Hk be the RKHS associated with kernel k(·, ·), σ2 > 0 and let µ∗ − µ ∈ Hk be the unique
solution to the regularized empirical risk minimization problem

arg minf∈Hk
1
n

(∑n
j=1(f(xj)− yj + µ(xj))

2 + σ2‖f‖2Hk
)

(11)

which is equivalent to the mathematical posterior mean up to shift by the prior µ [e.g. 1, Sec. 6.2].
Then for i ∈ {0, . . . , n} the posterior mean µi(·) computed by Algorithm 1 satisfies

‖µ∗ − µi‖Hk ≤ ρ(i)c(σ2)‖µ∗ − µ0‖Hk (12)

where µ0 = µ is the prior mean and the constant c(σ2) =
√

1 + σ2

λmin(K) → 1 as σ2 → 0.

Proof. Let ρ(i) such that ‖v∗ − vi‖K̂ ≤ ρ(i)‖v∗ − v0‖K̂ , where v0 = 0. Then, we have for
i ∈ {0, . . . , n}, that

‖v∗ − vi‖2K ≤ ‖v∗ − vi‖
2
K̂ ≤ ρ(i)2‖v∗ − v0‖2K̂

= ρ(i)2
(
‖v∗ − v0‖2K + σ2 1

λmin(K)
λmin(K)‖v∗ − v0‖22

≤‖v∗−v0‖2K

)
≤ ρ(i)2

(
1 +

σ2

λmin(K)

)
‖v∗ − v0‖2K

Now by assumption µi(·) = µ(·) +
∑n
j=1(vi)jk(·,xj) = µ(·) + k(·,X)Ciy. By the reproducing

property we obtain for ∆ = v∗ − vi that

‖v∗ − vi‖2K = ∆ᵀK∆

=

n∑
`=1

n∑
j=1

∆`∆jk(x`,xj)

=

n∑
`=1

n∑
j=1

∆`∆j〈k(·,x`), k(·,xj)〉Hk k is the reproducing kernel ofHk

= 〈
n∑
`=1

∆`k(·,x`),
n∑
j=1

∆jk(·,xj)〉Hk

=

∥∥∥∥∥
n∑
`=1

∆`k(·,x`)

∥∥∥∥∥
2

Hk

=

∥∥∥∥∥
n∑
`=1

(v∗)`k(·,x`)−
n∑
`=1

(vi)`k(·,x`)

∥∥∥∥∥
2

Hk

= ‖µ∗ − µi‖2Hk See Theorem 3.4 in Kanagawa et al. [36]

Combining the above and setting c(σ2) = 1 + σ2

λmin(K) we obtain

‖µ∗ − µi‖Hk = ‖v∗ − vi‖K ≤ ρ(i)c(σ2)‖v∗ − v0‖K = ρ(i)c(σ2)‖µ∗ − µ0‖Hk .
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S2.4 Combined Uncertainty as Worst Case Error

Theorem 2 (Combined and Computational Uncertainty as Worst Case Errors)
Let σ2 ≥ 0 and let ki(·, ·) = k∗(·, ·) + kcomp

i (·, ·) be the combined uncertainty computed by Algo-
rithm 1. Then, for any x ∈ X (assuming x /∈X if σ2 > 0) we have

sup
g∈Hkσ :‖g‖Hkσ≤1

error of approximate posterior mean

g(x)− µg∗(x)

error of math. post. mean

+ µg∗(x)− µgi (x)

computational error

=
√
ki(x,x) + σ2, and (13)

sup
g∈Hkσ :‖g‖Hkσ≤1

µg∗(x)− µgi (x)

computational error

=
√
kcomp
i (x,x) (14)

where µg∗(·) = k(·,X)K̂−1g(X) is the mathematical and µgi (·) = k(·,X)Cig(X) IterGP’s
posterior mean for the latent function g ∈ Hkσ . If σ2 = 0, then the above also holds for x ∈X .

Proof. Let x0 = x, c0 = 1 and cj = −(Cik
σ(X,x))j for j = 1, . . . n, where kσ(·, ·) := k(·, ·) +

σ2δ(·, ·). Then by Lemma 3.9 of Kanagawa et al. [36], it holds that(
sup

g∈Hkσ :‖g‖Hkσ≤1
(g(x)− µgi (x))

)2

=

(
sup

g∈Hkσ :‖g‖Hkσ≤1

n∑
j=0

cjg(xj)

)2

=

∥∥∥∥∥∥kσ(·,x0)−
n∑
j=1

k(x,xj)Cik
σ(·,xj)

∥∥∥∥∥∥
2

Hkσ

= ‖kσ(·,x)− k(x,X)Cik
σ(X, ·)‖2Hkσ

= 〈kσ(·,x), kσ(·,x)〉Hkσ − 2〈kσ(·,x), k(x,X)Cik
σ(X, ·)〉Hkσ

+ 〈k(x,X)Cik
σ(X, ·), k(x,X)Cik

σ(X, ·)〉Hkσ
Now by the reproducing property, it follows that

= kσ(x,x)− 2kσ(x,X)Cik
σ(X,x) + kσ(x,X)Cik

σ(X,X)Cik
σ(X,x)

If σ2 > 0 and x 6= xj or if σ2 = 0, it holds that kσ(x,X) = k(x,X). Further by definition
kσ(X,X) = K̂ and finally by (S42), it holds that CiK̂Ci = Ci. Therefore we have

= k(x,x) + σ2 − 2k(x,X)Cik(X,x) + k(x,X)CiK̂Cik(X,x)

= k(x,x)− k(x,X)Cik(X,x) + σ2

= ki(x,x) + σ2

We prove eq. (14) by an analogous argument. Choose cj := ((K̂−1 −Ci)kσ(X,x))j . We have(
sup

g∈Hkσ :‖g‖Hkσ≤1
(µg∗(x)− µgi (x))

)2

=

(
sup

g∈Hkσ :‖g‖Hkσ≤1

n∑
j=0

cjg(xj)

)2

=

∥∥∥∥∥∥
n∑
j=1

k(x,xj)(K̂
−1 −Ci)kσ(·,xj)

∥∥∥∥∥∥
2

Hkσ

=
∥∥k(x,X)(K̂−1 −Ci)kσ(X, ·)

∥∥2
Hkσ

= kσ(x,X)K̂−1K̂K̂−1kσ(X,x)− 2kσ(x,X)K̂−1K̂Cik
σ(X,x) + kσ(x,X)CiK̂Cik

σ(X,x)

Again, we use that kσ(x,X) = k(x,X) by assumption and (S42). Therefore

= k(x,X)(K̂−1 −Ci)k(X,x)

= kcomp
i (x,x)

This concludes the proof.

27



Y

i = 1

IterGP-Cholesky

i = 3 i = 5

V
ar

ia
nc

e
Y

i = 1

IterGP-PBR

i = 3 i = 5

V
ar

ia
nc

e
Y

i = 1

IterGP-CG

i = 3 i = 5

V
ar

ia
nc

e
Y

i = 1

IterGP-PI

i = 3 i = 5

V
ar

ia
nc

e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty

Combined Uncertainty
Inducing Points

Figure S3: Illustration of IterGP analogs of commonly used GP approximations.

S3 Implementation of Algorithm 1

S3.1 Policy Choice

As illustrated in Figure 2, the choice of policy of Algorithm 1 determines where computation in
input space is targeted and therefore where the combined posterior contracts first. However, the
policy also determines whether the error in the posterior mean or (co-)variance are predominantly
reduced first, as Figure S3 shows (cf. IterGP-Chol and IterGP-PBR). Therefore the policy choice
is application-dependent. If I am primarily interested in the predictive mean, I may select residual
actions (IterGP-CG). If downstream I am making use of the predictive uncertainty, I may want to
contract uncertainty globally as quickly as possible at the expense of predictive accuracy (IterGP-PI).
Such a choice is not unique to IterGP, but necessary whenever we select a GP approximation. What
IterGP adds is computation-aware, meaningful uncertainty quantification in the sense of Corollary 1
no matter the choice of policy.
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S3.2 Stopping Criterion

In our implementation of Algorithm 1 we use the following two stopping criteria. Our computational
budget can be directly controlled by specifying a maximum number of iterations, since each iteration
of IterGP needs the same number of matrix-vector multiplies. Alternatively, we terminate if the
absolute or relative norm of the residual are sufficiently small, i.e. if

‖ri‖2 < δabstol or ‖ri‖2 < δreltol‖y‖2. (S53)

Of course other choices are possible. From a probabilistic numerics standpoint one may want to
terminate once the combined marginal uncertainty at the training data is sufficiently small relative to
the observation noise.

S3.3 Efficient Sampling from the Combined Posterior

Sampling from an exact GP posterior has cubic cost O(n3�) in the number of evaluation points n�,
which is prohibitive for many useful downstream applications such as numerical integration over the
posterior using Monte-Carlo methods. Wilson et al. [46, 47] recently showed how to make use of
Matheron’s rule [45, 66, 67] to efficiently sample from a GP posterior by sampling from the prior
and then performing a pathwise update. We can directly make use of this strategy since Algorithm 1
computes a low-rank approximation to the precision matrix. Assume we are given a draw f ′prior ∈ Hθk
from the prior3 such that y′ ∼ N (f ′prior(X), σ2I) constitutes a draw from the prior predictive. Then

f ′(·) = f ′prior(·) + k(·,X)Ci(y − y′) (S54)

is a draw from the combined posterior by Matheron’s rule, which we can evaluate in O(n�ni) for n�
evaluation points, since Ci has rank i.

S4 Additional Experimental Results
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Figure S4: Generalization of CGGP and its closest IterGP analog. GP regression using an RBF
and Matérn(32 ) kernel on UCI datasets. The plot shows the average generalization error in terms of
NLL and RMSE for an increasing number of solver iterations. The posterior mean of IterGP-CG and
CGGP is identical, which explains the identical RMSE.

3In infinite dimensional reproducing kernel Hilbert spaces samples f ∼ GP(µ, k) from a Gaussian process
almost surely do not lie in the RKHS Hk [Cor. 4.10, 36]. However, there exists f ′ ∈ Hθk in a larger RKHS
Hθk ⊃ Hk such that f ′(x) = f(x) with probability 1 [Thm. 4.12, 36].
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Figure S5: Generalization of SVGP and its closest IterGP analog. GP regression using an RBF and
Matérn( 32 ) kernel on UCI datasets. The plot shows the average generalization error in terms of NLL
and RMSE for an increasing number of identical inducing points. After a small number of inducing
points relative to the size of the training data, IterGP has significantly lower generalization error than
SVGP. For the “KEGGundir” dataset after ≈ 128 iterations we observe numerical instability in some
runs when computing the combined posterior of IterGP using a Matérn( 32 ) kernel.
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