
High-Dimensional Gaussian Process Inference with Derivatives

Filip de Roos 1 2 Alexandra Gessner 1 2 Philipp Hennig 1 2

Abstract
Although it is widely known that Gaussian pro-
cesses can be conditioned on observations of the
gradient, this functionality is of limited use due to
the prohibitive computational cost of O(N3D3)
in data points N and dimension D. The dilemma
of gradient observations is that a single one of
them comes at the same cost as D indepen-
dent function evaluations, so the latter are of-
ten preferred. Careful scrutiny reveals, however,
that derivative observations give rise to highly
structured kernel Gram matrices for very general
classes of kernels (inter alia, stationary kernels).
We show that in the low-data regime N < D, the
Gram matrix can be decomposed in a manner that
reduces the cost of inference toO(N2D+(N2)3)
(i.e., linear in the number of dimensions) and, in
special cases, toO(N2D+N3). This reduction in
complexity opens up new use-cases for inference
with gradients especially in the high-dimensional
regime, where the information-to-cost ratio of
gradient observations significantly increases. We
demonstrate this potential in a variety of tasks
relevant for machine learning, such as optimiza-
tion and Hamiltonian Monte Carlo with predictive
gradients.

1. Introduction
The closure of Gaussian processes (GPs) under linear op-
erations is well-established (Rasmussen & Williams, 2006,
Ch. 9.4). Given a Gaussian process f ∼ GP(µ, k), with
mean and covariance function µ and k, respectively, a linear
operator L acting on f induces another Gaussian process
Lf ∼ GP(Lµ,LkL′) for the operator L and its adjoint L′.
The linearity of GPs has found extensive use both for condi-
tioning on projected data, and to perform inference on linear
transformations of f . Differentiation is a linear operation

1Department of Computer Science, University of Tüebingen,
Tübingen, Germany 2Max Planck Institute for Intelligent Sys-
tems, Tübingen, Germany. Correspondence to: Filip de Roos
<filip.de.roos@tuebingen.mpg.de>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

which has caused considerable interest in GP modeling due
to the wide variety of applications in which derivative obser-
vations are available. However, each gradient observation
of∇f ∈ RD induces a block Gram matrix∇k∇′ ∈ RD×D.
As dimension D and number of observations N grow, infer-
ence with gradient information quickly becomes prohibitive
with the naı̈ve scaling of O(N3D3). In other words, one
gradient observation comes at the same computational cost
as D independent function evaluations and thus becomes in-
creasingly disadvantageous as dimensionality grows. This is
not surprising, as the gradient contains D elements and thus
bears information about every coordinate. The unfavorable
scaling has confined GP inference with derivatives to low-
dimensional settings in which the information gained from
gradients outweighs the computational overhead (cf. Sec. 3
for a review).

In this work we show that gradient Gram matrices possess
structure that enables inversion at cost linear in D. This
discovery unlocks the previously prohibitive use of gradient
evaluations in high dimensional spaces for nonparametric
models. Numerous machine learning algorithms that op-
erate on high-dimensional spaces are guided by gradient
information and bear the potential to benefit from an in-
ference mechanism that avoids discarding readily available
information. Examples for such applications that we con-
sider in this work comprise optimization, linear algebra, and
gradient-informed Markov chain Monte Carlo.

Contributions We analyze the structure of the Gram ma-
trix with derivative observations for stationary and dot prod-
uct kernels and report the following discoveries1:

• The Gram matrix can be decomposed to allow exact
inference in O(N2D + (N2)3) floating point opera-
tions, which is useful in the limit of few observations
(N < D).

• We introduce an efficient approximate inference
scheme to include gradient observations in GPs even
as the number of high-dimensional observations in-
creases. It relies on exact matrix-vector multiplica-
tion (MVM) and an iterative solver to approximately
invert the Gram matrix. This implicit MVM avoids

1Code repository: https://github.com/fidero/gp-derivative

https://github.com/fidero/gp-derivative

High-Dimensional Gaussian Process Inference with Derivatives

constructing the whole Gram matrix and thereby re-
duces the memory requirements from O((ND)2) to
O(N2 +ND).

• We demonstrate the applicability of the improved scal-
ing in the low-data regime on high-dimensional ap-
plications ranging from optimization to Hamiltonian
Monte Carlo.

• We explore a special case of inference with application
to probabilistic linear algebra for which the cost of
inference can be further reduced to O(N2D +N3).

2. Theory
Kernel matrices of Gaussian processes (GPs) built from gra-
dient observations are highly structured. In this section,
after reviewing GPs, we show that for standard kernels, the
kernel Gram matrix can be decomposed into a Kronecker
product with an additive low-rank correction, as exempli-
fied in Fig. 1. Exploiting this structure, exact GP inference
with gradients is feasible in O(N2D + (N2)3) operations
instead of O((DN)3) when inverting the kernel matrix ex-
actly. Furthermore, the same structure enables storage of
O(N2 +ND) values instead of O((ND)2).

2.1. Gaussian Processes

Definition 1. A Gaussian process f ∼ GP(µ, k) is a ran-
dom process with mean function µ : RD 7→ R and covari-
ance function k : RD×RD 7→ R such that f evaluated at a
finite set of inputs follow a multi-variate normal distribution
(Rasmussen & Williams, 2006, Ch. 2.2).

GPs are popular nonparametric models with numerous favor-
able properties, of which we highlight their closure under
linear operations. A linear operator acting on a GP results
again in a GP. Let L,M be linear operators acting on f .
Then the joint distribution of Lf andMf is:[

Lf
Mf

]
∼ GP

([
Lµ
Mµ

]
,

[
LkL′ LkM′
MkL′ MkM′

])
, (1)

where L′ and M′ act on the second argument of the co-
variance function k. The conditional Lf | Mf is obtained
with standard Gaussian algebra and requires the inversion
ofMkM′.
Examples of linear operators comprise projections, inte-
gration, and differentiation. We focus here on inference
on either f itself, its gradient g = ∇f , or its Hessian ma-
trix H = ∇∇>f conditioned on gradient observations,
i.e. L = {Id,∇,∇∇>} andM = ∇.

Notation We collect gradient observations ga ∈ RD at
locationsxa ∈ RD, a = 1, . . . , N which we vertically stack
into the data matrices X ∈ RD×N and G ∈ RD×N . The

object of interest is the Gram matrix ∇K∇′ ∈ RDN×DN
where K = k(X,X) and∇,∇′ act w.r.t. all elements of X .
We let subscripts a, b identify indices related to data points,
e.g., xa,xb. Superscript indices i, j refer to indices along
the input dimension. In further abuse of notation we will let
the operation X̃ = X − c denote the subtraction of c from
each column in X .

2.2. Exploiting Kernel Structure

The efficient inversion of ∇K∇′ relies on its somewhat
repetitive structure involving a Kronecker product (Fig. 1)
caused by application of the product and chain rule of dif-
ferentiation to the kernel. The Kronecker product A ⊗ B
produces a matrix with blocks aijB (cf. Van Loan (2000)
and Appendix A for properties of the Kronecker product).
Any kernel k(xa,xb) with inputs xa,xb ∈ RD, can be
equivalently written on terms of a scalar function r :
RD × RD 7→ R as k (r(xa,xb)) =: kab(r). Note the
general definition of r, which in particular is more general
than stationarity. Since k is also a scalar function of xa
and xb, r could be equal to k if there is no way to further
condense the relationship between xa and xb.
Definition 2. Write k(xa,xb) = kab(r) with r ∈ R. Define
k′ab = ∂k(xa,xb)

∂r , k′′ab = ∂2k(xa,xb)
∂r2 and ∂a

i = ∂
∂xa

i and

similarly for ∂b
j . The derivatives of k w.r.t. ∂xa

i and ∂xb
j

can be written as

∂a
ikab(r) = k′ab(r) ∂a

ir

∂b
jkab(r) = k′ab(r) ∂b

jr

∂a
i∂b

jk(r) = k′ab(r) · ∂a
i∂b

jr + k′′ab(r) · (∂a
ir)(∂b

jr)
(2)

This expression is still general but we can already see that
the derivatives of k w.r.t. r depend only on the indices a, b of
the data points and formN×N matrices that we callK ′ and
K ′′. Importantly, they do not depend on the dimensional
indices i, j. While the abundance of indices invites for
a tensor-like implementation, the prime gain comes from
writing Eq. (2) in matrix form. Doing so permits linear
algebra operations that are not applicable to tensors. We
specify the matrix form of the general expression of Eq. (2)
for two overarching classes of kernels: the dot product and
stationary class of kernels. For these kernels, r is defined as

r = (xa − c)>Λ(xb − c) (dot product kernels),

r = (xa − xb)>Λ(xa − xb) (stationary kernels),

with an arbitrary offset c and a symmetric positive definite
scaling matrix Λ.

Dot Product Kernels For dot product kernels the Gram
matrix of the gradients in Eq. (2) is

∂a
i∂b

jk(r) = k′ab(r)·Λij+k′′ab(r)·[Λ(xb−c)]i[Λ(xa−c)]j ,

High-Dimensional Gaussian Process Inference with Derivatives

K ′

B

= ⊗ +

U C U>∇K∇′

Λ

Figure 1. Gram matrix built from three 10-dimensional gradient observations using a stationary isotropic exponential quadratic kernel.
Explicit expression (left) and its decomposition into a Kronecker product B and low-rank correction UCUT that allows for efficient
inversion using Woodbury’s matrix lemma (cf. Sec. 2.3) if N < D (right). Positive values are colored red, negative blue and white
indicates 0.

which can be written as a low-rank update to a Kronecker
products as (see Appendix B.2 for the derivation)

K ′ ⊗ Λ + (I ⊗ Λ(X − c))C (I ⊗ (X − c)>Λ), (3)

where U = I ⊗Λ(X − c) is of size DN ×N2. The matrix
C ∈ RN2×N2

is a permutation of diag (vec(K ′′)), i.e. a
diagonal matrix that has the elements of K ′′ on its diagonal,
such that C vec(M) = vec(K ′′ �M>), for M ∈ RN×N .
Here, � denotes the Hadamard (element-wise) product.

Stationary kernels The gradient structure of Eq. (2) for
stationary kernels looks similar to the dot product case:

∂a
i∂b

jk(r) =

− k′ab(r) · Λij − k′′ab(r) · [Λ(xa − xb)]i[Λ(xa − xb)]j .
(4)

Similarly to the dot product kernel, this also takes the matrix
form

K ′ ⊗ Λ + U C U>, (5)

where the first term K ′ ⊗ Λ as well as C remain unaltered.
Compared to Eq. (3), however, the expression of U changes
and appears more intricate due to the interchange of sub-
scripts (see Appendix B.3 for more details). It can be written
as U = (I ⊗ ΛX)L with a sparse N2 ×N2 matrix L that
substracts Λxa from all columns of the ath block of the
block diagonal matrix I ⊗ ΛX . Figure 1 illustrates the
decomposition for the exponential quadratic a.k.a. radial
basis function (RBF) kernel. Explicit expressions for a few
common dot product and stationary kernels are found in
Appendix B.2.1 and B.3.1.

2.3. Implementation

The structure of the Gram matrix promotes two important
tricks that enable efficient inference with gradients. Com-
putational gains come into play when N < D, but for any

choice of N , the uncovered structure enables massive sav-
ings in storage and enables efficient approximate inversion
schemes.

Low-data Regime In the high-dimensional regime with
a small number of observations N < D the inverse of the
Gram matrix can be efficiently obtained from Woodbury’s
matrix inversion lemma (Woodbury, 1950)(

B + UCU>
)−1

=

B−1 −B−1U
(
C−1 + U>B−1U

)−1
U>B−1 (6)

(if the necessary inverses exist), combined with inversion
properties of the Kronecker product. If B is cheap to invert
and the dimensions of C are smaller than the ones of B,
then the above expression can drastically reduce the compu-
tational cost of inversion. In our caseB = K ′⊗Λ for which
the inverse B−1 = (K ′)−1 ⊗ Λ−1 requires the inverse of
the N ×N matrix K ′. The main bottleneck is the inversion
of the N2 × N2 matrix C−1 + U>B−1U which requires
O(N6) operations, which is still a benefit over the naı̈ve
scaling when N < D. The low-rank structure along with
properties of Kronecker products leads to a general solution
of the linear system [∇K∇′] vec(Z) = vec(G) of the form

Z = Λ−1G(K ′)−1 − X̃Q (7)

for dot product kernels with X̃ = X − c and gradient
observations G. Q is the unvectorized solution to

(C−1 + U>B−1U) vec(Q) = vec(X̃>G(K ′)−1). (8)

Stationary kernels give rise to a similar expression (cf. Ap-
pendix C.1).

General Improvements The cubic computational scaling
is frequently cited as the main limitation of GP inference,
but often the quadratic storage is the real bottleneck. For

High-Dimensional Gaussian Process Inference with Derivatives

gradient inference that is particularly true due to the required
O((ND)2) memory. A second observation that arises from
the decomposition is that the the Gram matrix ∇K∇′ is
fully defined by the much smaller matrices K ′, K ′′ (both
N×N), ΛX (D×N) and Λ (D×D, but commonly chosen
diagonal or even scalar). Thus, it is sufficient to keep only
those in memory instead of building the whole DN ×DN
matrix∇K∇′, which requires at most O(N2 +ND+D2)
of storage. Importantly, this benefit arises for D > 1 and for
any choice of N . It is further known how these components
act on a matrix of size D ×N . For dot product kernels, a
multiplication of the Gram matrix with vectorized matrix
V ∈ RD×N is obtained by

(∇K∇′) vec(V) = ΛV K ′ + ΛX̃(K ′′ � V >ΛX̃) (9)

A similar expression is obtained for stationary kernels, see
Appendix C.2. This multiplication expression can be used
with an iterative linear solver (Gibbs & MacKay, 1997;
Gardner et al., 2018a) to exactly solve a linear system in
DN iterations, in exact arithmetic. It can also be used to
obtain an approximate solution in fewer iterations. The mul-
tiplication routine is further amenable to preconditioning
which can drastically reduce the required number of iter-
ations (Eriksson et al., 2018) and ensure convergence, as
well as popular kernel sparsification techniques to lower the
computational cost.

3. Related Work
Exact derivative observations have been used to condition
GPs on linearizations of dynamic systems (Solak et al., 2003)
as a way to condense information in dense input regions.
This required the number of replaced observations to be
larger than the input dimension in order to benefit. Deriva-
tives have also been employed to speed up sampling algo-
rithms by querying a surrogate model for gradients (Ras-
mussen, 2003). In both previous cases the algorithms were
restricted to low-dimensional input but showed improve-
ments over baselines despite the computational burden. In
Sec. 4.3 we will revisit the idea of sampling in light of our
results.

Modern GP models that use gradients always had to rely on
various approximations to keep inference tractable. Solin
et al. (2018) linearly constrained a GP to explicitly model
curl-free magnetic fields (Jidling et al., 2017). This involved
using the differentiation operator and was made computa-
tionally feasible with a reduced rank eigenfunction expan-
sion (Solin & Särkkä, 2020). Angelis et al. (2020) extended
the quadrature Fourier feature expansion (QFF) (Mutny &
Krause, 2018) to derivative information. The authors used it
to construct a low-rank approximation for efficient inference
of ODEs with a high number of observations. Derivatives
have also been included in Bayesian optimization but mainly

in low-dimensional spaces (Osborne et al., 2009; Lizotte,
2008), or by relying on a single gradient observation in each
iteration (Wu et al., 2017).

A more task-agnostic approach was presented by Eriksson
et al. (2018). The authors derived the gradient Gram matrix
for the structured kernel interpolation (SKI) approximation
(Wilson & Nickisch, 2015), and its extension to products
SKIP (Gardner et al., 2018b). This was used in conjunction
with fast matrix-vector multiplication on GPUs (Gardner
et al., 2018a) and a subspace discovery algorithm to make
inference efficient. Tej et al. (2020) used a similar approach
but further incorporated Bayesian quadrature with gradient
inference to infer a noisy policy gradient for reinforcement
learning to speed up training.

An obvious application of gradients for inference is in opti-
mization and in some cases linear algebra. These are two
fields we will discuss further in Sec. 4. Probabilistic ver-
sions of linear algebra and quasi-Newton algorithms can be
constructed by modeling the Hessian with a matrix-variate
normal distribution and update the belief from gradient ob-
servations (Hennig, 2015; Wills & Schön, 2019; de Roos &
Hennig, 2019; Wenger & Hennig, 2020). In Sec. 4.2 we will
connect this to GP inference for a special kernel. Inference
in such models has cost O(N2D +N3).

Extending classic quasi-Newton algorithms to a nonparame-
teric Hessian estimate has been done by Hennig & Kiefel
(2013) and followed up by Hennig (2013). The authors mod-
eled the elements of the Hessian using a high-dimensional
GP with the RBF kernel and a special matrix-variate struc-
ture to allow cost-efficient inference. They also general-
ized the traditional secant equation to integrate the Hessian
along a path for observations, which was possible due to the
closed-form integral expression of the RBF kernel. Wills &
Schön (2017) expanded this line of work in two directions.
They used the same setup as Hennig & Kiefel (2013) but
explicitly encoded symmetry of the Hessian estimate. The
authors also considered modeling the joint distribution of
function, gradient and Hessian ([f, g, H]) for system iden-
tification in the presence of significant noise, and where
the computational requirement of inference was less crit-
ical. In Section 4.1 we present two similar optimization
strategies that utilize exact efficient gradient inference for
nonparametric optimization.

4. Applications
Section 2 showed how gradient inference for GPs can be
considerably accelerated when N < D. We outline three
applications that rely on gradients in high dimensions and
that can benefit from a gradient surrogate: optimization,
probabilistic linear algebra, and sampling.

High-Dimensional Gaussian Process Inference with Derivatives

4.1. Optimization

Unconstrained optimization of a scalar function f(x) :
RD → R consists of locating an input x∗ such that f(x∗)
attains an optimal value, here this will constitute a minimum.
This occurs at a point where ∇f(x∗) = 0. We focus on
Hessian inference from gradients in quasi-Newton methods
and then suggest a new method that allows inferring the
minimum from gradient evaluations. Pseudocode for an
optimization algorithm that uses the inference procedure is
available in Alg. 1.

4.1.1. HESSIAN INFERENCE

Quasi-Newton methods are a popular group of algorithms
that includes the widely known BFGS rule (Broyden, 1970;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). These algo-
rithms either estimate the Hessian H(x) = ∇∇>f(x) or
its inverse from gradients. A step direction at iteration t is
then determined as dt = −[H(xt)]

−1∇f(xt). Hennig &
Kiefel (2013) showed how popular quasi-Newton methods
can be interpreted as inference with a matrix-variate Gaus-
sian distribution conditioned on gradient information. Here
we extend this idea to the nonparametric setting by inferring
the Hessian from observed gradients. In terms of Eq. (1),
we consider the linear operator L as the second derivative,
i.e., the Hessian for multivariate functions. Once a solution
Zlb to (∇K∇>) vec(Z) = vec(G) has been obtained as
presented in Section 2.3, it is possible to infer the mean of
the Hessian at a point xa

[H̄(xa)]ij =
∑
bl

(∂ia∂
j
a∂

l
bk)Zlb. (10)

This requires the third derivative of the kernel matrix and an
additional partial derivative of Eq. (2) which results in

∂ia(∂ja∂
l
bk(r)) = k′′ab · Λjl(∂iar) + k′′ab · Λil(∂jar)

+ k′′ab(∂
i
a∂

j
ar)(∂

l
br)

+ k′′′ab(∂
i
ar)(∂

j
ar)(∂

l
br).

(11)

With these derivatives, the posterior mean of the Hessian in
Eq. (10) takes the form

H̄(xa) =
[
ΛX̃,ΛZ

] [M M̂

M̂ 0

] [
X̃>Λ
Z>Λ

]
+ Λ · Tr(M̆)

(12)
with M , M̂ and M̆ diagonal matrices of size N ×N con-
taining expressions of k′′ and k′′′, found in Appendix D
alongside a derivation. X̃ is either (xa −X) for stationary
kernels or (X−c) for the dot-product kernels. The posterior
mean of the Hessian is of diagonal + low-rank structure for a
diagonal Λ, which is common for quasi-Newton algorithms.
The matrix inversion lemma, Eq. (6), can then be applied
to efficiently determine the new step direction. On a high

level this means that once Z in Eq. (7) has been found, then
the cost of inferring the Hessian with a GP and inverting it
is similar to that of standard quasi-Newton algorithms.

4.1.2. INFERRING THE OPTIMUM

The standard operation of Gaussian process regression is to
learn a mapping f(x) : RD → R. With the gradient infer-
ence it is now possible to learn a nonparametric mapping
g(x) : RD → RD, but this mapping can also be reversed to
learn an input that corresponds to a gradient. In this way it is
possible to learn x(g) and we can evaluate where the model
believes x(g = 0), i.e, the optimum x∗, lies to construct a
new step direction. The posterior mean of x∗ conditioned
on the evaluation points X at previous gradients G is

x̄∗ = xt + [∇K(0, G)∇](∇K(G,G)∇)−1(X − xt)
= xt + ΛZK ′b∗ + ΛG̃(K ′′b∗ � (Z>Λg̃∗)).

(13)

Here we included a prior mean in the inference which cor-
responds to the location of the current iteration xt and
all the inference has been flipped, i.e., gradients are in-
puts to the kernel and previous points of evaluation are
observations. This leads to a new step direction deter-
mined by dt+1 = x̄∗ − xt. For dot product kernels
G̃ ∈ RD×N = G − c and g̃∗ = −c. For stationary ker-
nels G̃ = (g∗ − G) = −G and Z>Λg̃∗ is replaced by∑
l Z

l
b · (ΛG)lb, derivations in Appendix E.1.

4.2. Probabilistic Linear Algebra

Assume the function we want to optimize is

f(x) =
1

2
(x− x∗)>A(x− x∗), (14)

with A ∈ RD×D a symmetric and positive definite matrix.
Finding the minimum is equivalent to solving the linear
system Ax = b, because the gradient∇f(x) = A(x−x∗)
is zero when Ax = Ax∗ := b. To model this function we
use the second order polynomial kernel

k(xa,xb) =
1

2

[
(xa − c)>Λ(xb − c)

]2
,

and we include a prior mean of the gradient gc = ∇f(c) =
A(c−x∗). For this setup the overall computational cost de-
creases fromO(N2D+ (N2)3) toO(N2D+N3) because
Eq. (8) has the analytical solution

Q =
1

2
(X̃>ΛX̃)−1(X̃>AX̃),

which only requires the inverse of an N ×N matrix instead
of an N2 ×N2. The appearance of (X̃>AX̃) stems from

X̃>(G− gc) = X̃>(A(X − x∗)−A(c− x∗)) =

= X̃>(A(X − c)) = X̃>AX̃.

High-Dimensional Gaussian Process Inference with Derivatives

Algorithm 1 GP-[H/X] Optimization
Input: data x0, f(·),gradient g(·), kernel k,size m
d0 = −g(x0)
repeat
α = LineSearch(dt, f(·), g(·))
xt += αdt
gt = g(xt)
Ht = inferH(xt | X,G) {Eq. (12)}
dt = -H−1

t gt {quasi-Newton step}
updateData(k, xt, gt) {Keep last m observations}
dt = inferMin(0 | X − xt, G) {Eq. (13)}
if d>t gt > 0 then
dt = −dt {Ensure descent}

end if
until converged

It is now possible to apply the Hessian and optimum infer-
ence from Sec. 4.1 specifically to linear algebra at reduced
cost. If the Hessian inference (cf. Sec. 4.1.1) is used in this
setting, then it leads to a matrix-based probabilistic linear
solver (Bartels et al., 2019; Hennig, 2015). If instead the
reversed inference on the optimum is used (cf. Sec. 4.1.2), it
will lead to an algorithm reminiscent of the solution-based
probabilistic linear solvers (Bartels et al., 2019; Cockayne
et al., 2019). A full comparison is beyond the scope of this
paper and is left for future work.

4.3. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987), is a
Markov chain Monte Carlo algorithm that overcomes ran-
dom walk behavior by introducing gradient information into
the sampling procedure (Neal et al., 2011; Betancourt, 2017).
The key idea is to augment the state space by a momentum
variable p and simulate the dynamics of a fictitious particle
of mass m using Hamiltonian mechanics from physics in or-
der to propose new states. The potential energy E of states
x relates to the target density P as P (x) ∝ exp(−E(x)).
The Hamiltonian represents the overall energy of the system,
i.e., potential and kinetic contributions

H(x,p) = E(x) +
p>p

2m
, (15)

and is a conserved quantity. The joint density of x and p is
P (x,p) ∝ e−H(x,p). Hamiltonian dynamics are solutions
to the Hamiltonian equations of motion

dx

dt
= ∇pH =

p

m
and

dp

dt
= ∇xH = −∇xE. (16)

New states are proposed by numerically simulating trajec-
tories for T steps and stepsize ε using a leapfrog integrator
which alternates updates on p and x. The theoretical ac-
ceptance rate is 1 due to energy conservation; in practice,

the discrete solver alters the energy and the new state is
accepted or rejected according to a standard Metropolis ac-
ceptance criterion. In this iterative procedure, the gradient
of the potential energy ∇xE (but not E itself) has to be
evaluated repeatedly.
HMC is therefore inappropriate to simulate from probabilis-
tic models in which the likelihood is costly to evaluate.
This setting arises, e.g., when evaluations of the likelihood
rely on simulations, or for large datasets y1:M such that
E(x)= −

∑M
i=1 log p(yi | x)−log p(x). For the latter case,

subsampling has been proposed. It gives rise to stochastic
gradients, but still produces valid states (Welling & Teh,
2011; Chen et al., 2014). Betancourt (2015) advises against
the use of subsampling in HMC because the discrepancy
between the true and subsampled gradient grows with di-
mension. Wrong gradients may yield trajectories that differ
significantly from trajectories of constant energy and yield
very low acceptance rates and thus, poor performance.

An alternative is to construct a surrogate over the gradient of
the potential energy. Rasmussen (2003) used GPs to jointly
model the potential energy and its gradients. More recently,
Li et al. (2019) obtained better performance with a shal-
low neural network that is trained on gradient observations
during early phases of the sampling procedure. With novel
gradient inference routines we revisit the idea to replace
∇xE by a GP gradient model that is trained on spatially
diverse evaluations of the gradient during early phases of
the sampling.

5. Experiments
In the preceding section we outlined three applications
where nonparametric models could benefit from efficient
gradient inference in high dimensions. These ideas have
been explored in previous work with the focus of improving
traditional baselines, but always with various tricks to cir-
cumvent the expensive gradient inference. Since the purpose
of this paper is to enable gradient inference and not develop
new competing algorithms, the presented experiments are
meant as a proof-of-concept to assess the feasibility of high-
dimensional gradient inference for these algorithms. To this
end, the algorithms only used available gradient information
in concordance with the baseline. Details and parameters
for reproducibility of all experiments are in Appendix F.

5.1. Linear Algebra

Consider the linear algebra, i.e., quadratic optimization,
problem in Eq. (14). Quadratic problems are ubiquitous
in machine learning and engineering applications, since
they form a cornerstone of nonlinear optimization methods.
In our setting, they are particularly interesting due to the
computational benefits highlighted in section 4.2. There
has already been plenty of work studying the performance

High-Dimensional Gaussian Process Inference with Derivatives

0 5 10 15 20 25

Iteration

10−5

10−3

10−1

101

103

f
(x

)
−
f

(x
∗)

CG

GP-H

GP-X

Figure 2. Optimization of a 100-dimensional quadratic function,
Eq. (14), using Alg. 1 with a quadratic kernel as outlined in Sec. 4.2.
The new solution-based inference shows performance similar to
CG. The presented Hessian-based algorithm uses a fixed c = 0
which compromises the performance.

of probabilistic linear algebra routines (Wenger & Hennig,
2020; Bartels et al., 2019; Cockayne et al., 2019), of which
the proposed Hessian inference for linear algebra is already
known (Hennig, 2015). We include a synthetic example of
the kind Eq. (14) to test the new reversed inference on the so-
lution in Eq. (13). Figure 2 compares the convergence of the
gold-standard method of conjugate gradients (CG) (Hestenes
et al., 1952) with Alg. 1 using the efficient inference of sec-
tion 4.2. The matrix A was generated to have spectrum with
approximately the 30 largest eigenvalues in [1, 100] and the
rest distributed around 0.5. The GP-algorithm retained all
the observations to operate similarly to other probabilistic
linear algebra routines. In particular, the probabilistic meth-
ods also the optimal step length αi = −d>i gi/d

>
i Adi that

is used by CG.

5.2. Nonlinear Optimization

The prospect of utilizing a nonparametric model for opti-
mization is more interesting to evaluate in the nonlinear
setting. In Fig. 3 the convergence of both versions of Alg. 1
is compared to scipy’s BFGS implementation. The non-
parametric models use an isotropic RBF kernel with the
last 2 observations for inference. All algorithms share the
same line search routine. The function to be minimized is a
relaxed version of a 100-dimensional Rosenbrock function
(Rosenbrock, 1960)

f(x) =

D−1∑
i=1

x2
i + 2 · (xi+1 − x2

i)
2. (17)

A hyperplane of the function can be seen on the left in Fig. 6
for the first two dimensions with every other dimension
evaluated at 0.

0 5 10 15 20 25 30

Iteration

10−6

10−4

10−2

100

102

f
(x

)
−
f

(x
∗)

BFGS

GP-H

GP-X

Figure 3. Comparison of Alg. 1 with an isotropic RBF kernel
against scipy’s implementation of BFGS on a 100-dimensional
version of Eq. (17). All algorithms shared the same line search
routine and show similar performance.

5.3. Gradient Surrogate Hamiltonian Monte Carlo

For HMC, we take a similar approach to the one taken by
Rasmussen (2003) and build a global surrogate model on
the gradient of the potential energy E(x) = − logP (x).
Our model differs in that we predict the gradient ∇E only
from previous gradient observations, not including function
evaluations as does Rasmussen (2003).

We construct a synthetic 100 dimensional target density that
is banana-shaped in two dimensions and Gaussian in all the
other dimensions. Fig. 4 shows the conditional density in the
two non-Gaussian dimensions, together with projected sam-
ples that were collected using standard HMC and HMC using
a GP gradient surrogate, which we denote as GPG-HMC. For
training of GPG-HMC, we assign a budget N = b

√
Dc and

run HMC until N/2 points are found that are more than a
kernel lengthscale apart. Then we switch into the surrogate
mode in which the true∇E is queried only if a new location
sufficiently far from the previous ones is found to condition
the GP on until the budget is reached.

In Fig. 4, the isotropic square exponential kernel is aligned
with the intrinsic dimensions of the problem. Therefore,
we also consider 10 arbitrary rotations of the same problem
by applying a random orthonormal matrix on the input and
repeat each configuration for 10 different initializations. We
find that over 2000 samples, HMC has an acceptance rate of
0.46± 0.02 and GPG-HMC achieves 0.50± 0.02 using the
gradient surrogate. GPG-HMC was conditioned on N = 10
gradient observations collected during the first 650 ± 82
iterations of HMC. The higher acceptance rate is related
to the mismatch between the estimated and true gradient
that tends to cause a skewed distribution of ∆H towards
positive values. The acceptance criterion still queries the
true potential energy E, thus GPG-HMC produces valid sam-

High-Dimensional Gaussian Process Inference with Derivatives

hmc gpg-hmc

Figure 4. 2000 samples drawn with HMC (left) and GPG-HMC on a
100 dimensional problem. Displayed is a projection onto 2 dimen-
sions, all other dimensions are Gaussian. Acceptance rates are 0.51
(HMC) and 0.39 (GPG-HMC). GPG-HMC uses 372 iterations with
HMC with acceptance rate 0.57 of which it selects 10 points for
training, displayed as . Elliptical contours indicate the posterior
on the target inferred from the 10 gradient evaluations.

ples of e−E . As E gets increasingly expensive to evaluate,
GPG-HMC thus offers a lightweight surrogate that drastically
reduces the number of calls to the true gradient.

5.4. Runtime Comparison

To better understand the computational saving from the pre-
sented decomposition we compare to the CPU runtime of
building and solving ∇K∇′Z = ∇f(X) with the tradi-
tional Cholesky decomposition. The results are presented in
Fig. 5 in terms of the ratio of observations to dimension for
different dimensions. For the larger dimensions a maximum
size of the Gram matrix was 50 000 at which point the hard-
ware ran out of memory for the Cholesky decomposition.
The Woodbury decomposition can fit more observations
than the full Cholesky for a limited memory budget in the
high-dimensional limit. To generate the data we used the
same setup as in Sec. 5.2 for different dimensions and ran-
dom data in [−2, 2]D. To alleviate numerical problems an
identity matrix was added to the Gram matrix so all eigen-
values are larger than 1. Each data point in Fig. 5 is the
average of three repetitions of a problem. In low D and
at very small N/D our naı̈ve python implementation suf-
fers from overhead of pythonic operations compared to the
vectorized implementation of the Cholesky decomposition
in scipy. For larger dimensions with a small number of
observations the computational cost can reduce by several
orders of magnitude.

Another aspect of the decomposition is the MVM presented
in Section 2.3 which can reduce computations and memory
requirements. A qualitative evaluation is available in Fig. 6.
The right plot shows a hyperplane with function values in-
ferred from gradient observations evaluated at N = 1000

0.0 0.2 0.4 0.6 0.8 1.0

N/D

10−3

10−2

10−1

100

101

W
o
o
d
b
u
ry

/
C

h
o
le

sk
y

D=25

D=100

D=250

D=500

D=1000

Figure 5. Relative CPU runtime comparison of the proposed
Woodbury and traditional Cholesky decomposition to solve
∇K(X,X)∇′ vec(Z) = vec(∇f(X)). For different dimen-
sions (D) a range of observations (N) is presented for an isotropic
RBF kernel.

−2 −1 0 1 2
−2

−1

0

1

2
Ground Truth

−2 −1 0 1 2
−2

−1

0

1

2
RBF

Figure 6. The first two dimensions of Eq. (17) along with the in-
ferred curvature from 1000 randomly distributed samples. The
inferred function has identified the minimum and a slight elonga-
tion of the function but not the minute details of the shape.

uniformly randomly distributed evaluations in the hypercube
xin ∈ [−2, 2]100. Constructing the Gram matrix for these
observations would require (1000·100)2 floating point num-
bers, which for double precision would amount to > 74 GB
of memory.

The multiplication in Eq. (9) was used in conjunction with
an iterative linear solver to approximately solve the linear
system. This approach required storage of 3ND + 3N2

numbers (CG requirements and intermediate matrices in-
cluded) amounting to a total of only 25 MB of RAM. The
solver ran for 520 iterations until a relative tolerance of 10−6

was reached, which took 4.9 seconds on a 2.2GHz 8-core
processor. Extrapolating this time to 100 · 1000 iterations
(the time to theoretically solve the linear system exactly)
would yield approximately 16 minutes. Such iterative meth-
ods are sensitive to roundoff errors and are not guaranteed
to converge for such large matrices without preconditioning.
We did not employ preconditioning as our focus was on

High-Dimensional Gaussian Process Inference with Derivatives

the computational feasibility rather than the best possible
model. It will also require research into efficient utilization
of the MVM structure for preconditioning and is therefore
left for future work. The required number of iterations to
reach convergence vary with the lengthscale of the kernel
and chosen tolerance. For this experiment a lengthscale of
`2 = 10 · D was used with the isotropic RBF kernel, i.e.,
the inverse lengthscale matrix Λ = 10−3 · I .

6. Discussion and Future Work
We have presented how structure inherent in the kernel
Gram matrix can be exploited to lower the cost of GP infer-
ence with gradients from cubic to linear in the dimension.
This technical observation principally opens up entirely new
perspectives for high-dimensional applications in which gra-
dient inference has previously been dismissed as prohibitive.
We demonstrate on a conceptual level the great potential
of this reformulation on various algorithms. The major
intention behind the paper, however, is to spark research
to overhaul algorithms that operate on high-dimensional
spaces and leverage gradient information.

The speed-up in terms of dimensionality does not come with-
out limitations. Our proposed decomposition compromises
the number of permissible gradient evaluations compared
to the naı̈ve approach to gradient inference. Hence, our
method is applicable only in the low-data regime in which
N < D. This property is unproblematic in applications that
benefit from a local gradient model, e.g., in optimization.
Nevertheless, we also found a remedy for the computational
burden when N > D using iterative schemes. Furthermore,
the structure we uncovered allows storing the quantities that
are necessary to multiply the Gram matrix with an arbitrary
vector. We thus showed that global models of the gradient
are possible when a low-confidence gradient belief is suffi-
cient. This is of particular interest for GP implementations
that leverage the massive parallelization available on GPUs
where available memory often becomes the bottleneck.

The most efficient numerical algorithms use knowledge
about their input to speed up the execution. Explicit struc-
tural knowledge is usually reflected in hard-coded algo-
rithms, e.g., linear solvers for matrices with specific proper-
ties that are known a priori. Structure can also be included
in probabilistic numerical methods where the chosen model
encodes known symmetries and constraints. At the same
time, these methods are robust towards numeric uncertainty
or noise, which can be included in the probabilistic model.
Since Gaussian processes form a cornerstone of probabilis-
tic numerical methods (Hennig et al., 2015), our framework
allows the incorporation of additional functional constraints
into numerical algorithms for high-dimensional data. Ac-
tions taken by such algorithms are then better suited to the
problem at hand. The cheap inclusion of GP gradient infor-

mation in numerical routines might therefore enable new
perspectives for algorithms with an underlying probabilistic
model.

Acknowledgements
The authors gratefully acknowledge financial support by
the European Research Council through ERC StG Action
757275 / PANAMA; the DFG Cluster of Excellence “Ma-
chine Learning - New Perspectives for Science”, EXC
2064/1, project number 390727645; the German Federal
Ministry of Education and Research (BMBF) through the
Tübingen AI Center (FKZ: 01IS18039A); and funds from
the Ministry of Science, Research and Arts of the State of
Baden-Württemberg. F. de Roos and A. Gessner are grate-
ful to the International Max Planck Research School for
Intelligent Systems (IMPRS-IS) for support.

References
Angelis, E., Wenk, P., Schölkopf, B., Bauer, S., and Krause,

A. Sleipnir: Deterministic and provably accurate feature
expansion for Gaussian process regression with deriva-
tives. arXiv preprint, 2020.

Bartels, S., Cockayne, J., Ipsen, I., and Hennig, P. Prob-
abilistic linear solvers: A unifying view. Statistics and
Computing, 29, 2019.

Betancourt, M. The fundamental incompatibility of scalable
Hamiltonian Monte Carlo and naive data subsampling.
In Proceedings of the 32nd International Conference on
Machine Learning. PMLR, 2015.

Betancourt, M. A conceptual introduction to Hamiltonian
Monte Carlo. arXiv preprint, 2017.

Broyden, C. G. The convergence of a class of double-rank
minimization algorithms 1. general considerations. IMA
Journal of Applied Mathematics, 6, 1970.

Chen, T., Fox, E., and Guestrin, C. Stochastic gradient
Hamiltonian Monte Carlo. In Proceedings of the 31st In-
ternational Conference on Machine Learning, volume 32
of Proceedings of Machine Learning Research. PMLR,
2014.

Cockayne, J., Oates, C. J., Ipsen, I. C., Girolami, M., et al. A
Bayesian conjugate gradient method. Bayesian Analysis,
14, 2019.

de Roos, F. and Hennig, P. Active probabilistic inference
on matrices for pre-conditioning in stochastic optimiza-
tion. In The 22nd International Conference on Artificial
Intelligence and Statistics, volume 89 of Proceedings of
Machine Learning Research. PMLR, 2019.

High-Dimensional Gaussian Process Inference with Derivatives

Duane, S., Kennedy, A., Pendleton, B. J., and Roweth, D.
Hybrid Monte Carlo. Physics Letters B, 195, 1987.

Eriksson, D., Dong, K., Lee, E., Bindel, D., and Wilson,
A. G. Scaling Gaussian process regression with deriva-
tives. In Advances in Neural Information Processing
Systems, volume 31, 2018.

Fletcher, R. A new approach to variable metric algorithms.
The computer journal, 13, 1970.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and
Wilson, A. G. Gpytorch: Blackbox matrix-matrix Gaus-
sian process inference with gpu acceleration. In Advances
in Neural Information Processing Systems, volume 31,
2018a.

Gardner, J., Pleiss, G., Wu, R., Weinberger, K., and Wilson,
A. Product kernel interpolation for scalable Gaussian
processes. In International Conference on Artificial In-
telligence and Statistics, volume 84 of Proceedings of
Machine Learning Research, 2018b.

Gibbs, M. and MacKay, D. Efficient implementation of
Gaussian processes, 1997.

Goldfarb, D. A family of variable-metric methods derived
by variational means. Mathematics of computation, 24,
1970.

Hennig, P. Fast probabilistic optimization from noisy gradi-
ents. In Proceedings of the 30th International Conference
on Machine Learning, volume 28 of Proceedings of Ma-
chine Learning Research. PMLR, 2013.

Hennig, P. Probabilistic interpretation of linear solvers.
SIAM Journal on Optimization, 25, 2015.

Hennig, P. and Kiefel, M. Quasi-Newton method: A new
direction. Journal of Machine Learning Research, 14,
2013.

Hennig, P., Osborne, M. A., and Girolami, M. Probabilistic
numerics and uncertainty in computations. Proceedings
of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences, 471(2179):20150142, 2015.

Hestenes, M. R., Stiefel, E., et al. Methods of conjugate
gradients for solving linear systems. volume 49, 1952.

Jidling, C., Wahlström, N., Wills, A., and Schön, T. B.
Linearly constrained Gaussian processes. Advances in
Neural Information Processing Systems, 30, 2017.

Li, L., Holbrook, A., Shahbaba, B., and Baldi, P. Neural net-
work gradient Hamiltonian Monte Carlo. Computational
statistics, 34, 2019.

Lizotte, D. J. Practical Bayesian optimization. PhD thesis,
University of Alberta, 2008.

Mutny, M. and Krause, A. Efficient high dimensional
Bayesian optimization with additivity and quadrature
Fourier features. Advances in Neural Information Pro-
cessing Systems, 31, 2018.

Neal, R. M. et al. MCMC using Hamiltonian dynamics.
Handbook of Markov Chain Monte Carlo, 2011.

Osborne, M. A., Garnett, R., and Roberts, S. J. Gaussian
processes for global optimization. In International confer-
ence on learning and intelligent optimization, volume 3,
2009.

Rasmussen, C. and Williams, C. Gaussian Processes for
Machine Learning. MIT Press, 2006.

Rasmussen, C. E. Gaussian processes to speed up hybrid
Monte Carlo for expensive Bayesian integrals. In Seventh
Valencia international meeting, volume 7 of Bayesian
Statistics, 2003.

Rosenbrock, H. H. An automatic method for finding the
greatest or least value of a function. The Computer Jour-
nal, 3, 1960.

Shanno, D. F. Conditioning of quasi-Newton methods for
function minimization. Mathematics of computation, 24,
1970.

Solak, E., Murray-Smith, R., Leithead, W., Leith, D., and
Rasmussen, C. Derivative observations in Gaussian pro-
cess models of dynamic systems. In Advances in Neural
Information Processing Systems, volume 15, 2003.

Solin, A. and Särkkä, S. Hilbert space methods for reduced-
rank Gaussian process regression. Statistics and Comput-
ing, 30, 2020.

Solin, A., Kok, M., Wahlström, N., Schön, T. B., and
Särkkä, S. Modeling and interpolation of the ambient
magnetic field by Gaussian processes. IEEE Transactions
on robotics, 34, 2018.

Tej, A. R., Azizzadenesheli, K., Ghavamzadeh, M., Anand-
kumar, A., and Yue, Y. Deep Bayesian quadrature policy
optimization. arXiv preprint, 2020.

Van Loan, C. F. The ubiquitous Kronecker product. Journal
of computational and applied mathematics, 123, 2000.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient Langevin dynamics. In Proceedings of the 28th
International Conference on Machine Learning, 2011.

Wenger, J. and Hennig, P. Probabilistic linear solvers for
machine learning. In Advances in Neural Information
Processing Systems, 2020.

High-Dimensional Gaussian Process Inference with Derivatives

Wills, A. and Schön, T. Stochastic quasi-Newton with line-
search regularization. arXiv preprint, 2019.

Wills, A. G. and Schön, T. B. On the construction of proba-
bilistic Newton-type algorithms. In Conference on Deci-
sion and Control, volume 56. IEEE, 2017.

Wilson, A. and Nickisch, H. Kernel interpolation for scal-
able structured Gaussian processes (KISS-GP). In Pro-
ceedings of the 32nd International Conference on Ma-
chine Learning, 2015.

Wilson, A. G. and Adams, R. P. Gaussian process kernels
for pattern discovery and extrapolation.

Woodbury, M. A. Inverting modified matrices. Statistical
Research Group, 1950.

Wu, J., Poloczek, M., Wilson, A. G., and Frazier, P.
Bayesian optimization with gradients. In Advances in
Neural Information Processing Systems, 2017.

Supplementary Material
High-Dimensional Gaussian Process Inference with Derivatives

A. Linear Algebra
Kronecker products play an important role in the derivations so here list a few properties that will be useful, see (Van Loan,
2000) for more. The Kronecker product for a matrix A ∈ RM×N and B ∈ RP×Q is a block matrix (A⊗B) ∈ RMP×NQ

with block [i, j] = Aij · B. We will also require the “perfect shuffle” matrix S and the column-stacking operation of a
matrix vec(·) (Van Loan, 2000).

Properties For matrices of appropriate sizes (these will be valid for the derivations).

• (A⊗B)−1 = (A−1 ⊗B−1)

• (A⊗B)(C ⊗D) = (AC ⊗BD)

• SNQ vec(X) = vec(X>) for X ∈ RQ×N

• (A⊗B) vec(X) = vec(BXA>) for A ∈ RM×N , B ∈ RP×Q and X ∈ RQ×N .

The final property is particularly prevalent the in derivations so we introduce the shorthand

(A⊗B) vec(X)→ BXA>

to denote the ”unvectorized” result. If the vectorization operation is applied to the result then the flattened correct result is
obtained.

Notation The derivations contain several several matrices that we here list to give an overview. The input dimension is D
and there are N observations.

• X ∈ RD×N : All evaluation points stacked into a matrix.

• ∇K∇′ ∈ RDN×DN : Kernel gram matrix for the derivatives with decompositions∇K∇′ = B + UCU>.

• G ∈ RD×N : All gradients stacked into a matrix. vec(G) r.h.s. of ∇K∇′ vec(Z) = vec(G).

• Z ∈ RD×N : the solution to∇K∇′ vec(Z) = vec(G), (Riesz representers).

• B ∈ RDN×DN : Kronecker product of K ′ ⊗ Λ

• C ∈ RN2×N2

: Symmetric matrix defined as C = diag(vec(K ′′))SNN = SNN diag(vec(K ′′)).

– C vec(M)→ K ′′ �M>.
– C−1 vec(M)→M> �K ′′.
– � and � correspond to the elementwise multiplication and division respectively.

• U ∈ RND×N2

: Tall and thin Kronecker product used in∇K∇′ = B + UCU>.

– For dot product kernels U = (I ⊗ Λ(X − c)).
– For stationary kernels U = (I ⊗ ΛX)L.

• L ∈ RN2×N2

: Sparse operator required for U in stationary kernels

High-Dimensional Gaussian Process Inference with Derivatives

– [L> vec(M)]ab →Maa −Mab

– [L vec(M)]ab → diag(
∑
a
Mab)−Mab

• Q ∈ RN×N : Solution to (C−1 + U>B−1U) vec(Q) = U>B−1 vec(G)

B. Kernel derivatives
Conditioning a GP on gradient observations requires the derivative of the kernel w.r.t. its arguments. Here we derive these
terms for kernels with inner products and stationary kernels. We use the notation ∂bj as shorthand for ∂/∂xbj and use k′ to
refer to the derivative w.r.t. the scalar argument r. The notation mirrors that of Sec. 2.

B.1. General kernels

If we write a general kernel k(xa,xb) = k(r(xa,xb)) then the general form of each component for gradient inference will
take the following form.

k(xa,xb) = k(r(xa,xb))

∂b
jk(r) = k′(r)∂b

jr

∂a
ik(r) = k′(r)∂a

ir

∂a
i∂b

jk(r) = k′ab(r) · ∂a
i∂b

jr + k′′ab(r) · (∂a
ir)(∂b

jr)

(18)

We thus use the convention of ordering the entries in the Gram matrix ∇K∇′ first according to the N data points x1:N , and
then according to dimension, i.e.,

∇K∇′ =

∇k(x1,x1)∇′ . . . ∇k(x1,xN)∇′
...

. . .
...

∇k(xN ,x1)∇′ . . . ∇k(xN ,xN)∇′

 , (19)

where each block has the size D ×D. We highlight this ordering as it deviates from the conventional way found in the
literature. Each element of the a, bth block take the form ∂a

i∂b
jk(r) specified in Eq. (18), where no assumption on the

structure of the kernel has been done at this point. The first term decomposes into a Kronecker product for the kernels we
consider, because indices a, b and i, j separate. This term can thus be efficiently inverted. The second term is what usually
makes closed-form gradient inference intractable which will be further explored below for dot product kernels and stationary
kernels.

B.2. Dot Product Kernels

For dot product kernels we define the function r as

r(xa,xb) = (xa − c)>Λ(xb − c). (20)

See Sec. B.2.1 for examples of dot product kernels.

The relevant terms of Eq. (18) are:

∂a
ir(xa,xb) = [Λ(xb − c)]i

∂b
jr(xa,xb) = [Λ(xa − c)]j

∂a
i∂jbr(xa,xb) = Λij

From this we see the Gram matrix of Eq. (18) will look like:

∂a
i∂b

jk(r) = k′ab(r) · Λij + k′′ab(r) · [Λ(xb − c)]i[(xa − c)>Λ]j

= [K ⊗ Λ]ijab + [(I ⊗ ΛX̃) (SNN diag(vec(K ′′)))︸ ︷︷ ︸
C

(I ⊗ X̃Λ)>]ijab
(21)

High-Dimensional Gaussian Process Inference with Derivatives

The first term is of Kronecker structure which is easy to invert using properties of Kronecker products. The second consists
of rank-1 corrections block-wise multiplied with the scalar value k′′ab. The input indices are flipped for the term i.e., b
appears as a row index and a as column. This shuffling is what makes the structure of the gradient Gram matrix difficult, but
it can be resolved with the Kronecker transposed product. To derive the structure of the second term we start by defining the
matrix X̃ ∈ RD×N , X̃ = X − c. We can then form the following outer product to get the structure:

[Λ(xb − c)]i
[
(xa − c)>Λ>

]j
= [ΛX̃b]

i[(ΛX̃b)
>]j

=

N∑
m,n

[ΛX̃n]i[ΛX̃m]jδamδbn

=

N∑
n,n′

N∑
m,m′

[ΛX̃n]i[ΛX̃m]jδam′δbn′δmm′δnn′

=

N∑
n,n′

N∑
m,m′

(
δam′ · [ΛX̃n]i

)
(δmm′δnn′)︸ ︷︷ ︸

SNN

(
δbn′ · [ΛX̃m]j

)

=

N∑
n,n′

N∑
m,m′

[I ⊗ ΛX̃]ia,m′n [SNN]m′n,n′m [I ⊗ (ΛX̃)>]jn′m,b

=
[
(I ⊗ ΛX̃)SNN (I ⊗ X̃Λ)>

]ij
ab

To get the right scalar value for each block outer product one has to write the term like below.

(I ⊗ ΛX̃)︸ ︷︷ ︸
U

(SNN diag(vec(K ′′)))︸ ︷︷ ︸
C

(I ⊗ ΛX̃)>︸ ︷︷ ︸
U>

(22)

with Cm′n,n′m = K ′′mnδmm′δnn′ a symmetric N2 ×N2 matrix.

B.2.1. EXAMPLES FOR INNER PRODUCT KERNELS

Kernel k(r) k′(r) k′′(r)

Polynomial(p) rp

p(p−1)
rp−1

(p−1) rp−2

Polynomial(2) r2

2 r 1

Exponential/Taylor exp (r) exp (r) exp (r)

Table 1. Examples for inner product kernels where r = (xa − c)>Λ(xb − c).

B.3. Stationary kernels

For a stationary kernel we define
r(xa,xb) = (xa − xb)>Λ(xa − xb).

Note here the discrepancy to conventional notation and do not think of r as a radius or Mahalonobis distance here (but rather
its square). Then we have the following identities:

∂a
ir(xa,xb) = 2 · [Λ(xa − xb)]i

∂b
jr(xa,xb) = −2 · [Λ(xa − xb)]j

∂a
i∂b

jr(xa,xb) = −4 · Λij .

High-Dimensional Gaussian Process Inference with Derivatives

The Gram matrix will have the general structure:

∂a
i∂b

jk(r) = −2k′ab(r) · Λjl − 4k′′ab(r) · [Λ(xa − xb)]i[(xa − xb)>Λ]j . (23)

Usually the factors 2 and 4 disappear due to scalar values of k′(r) and k′′(r), see Sec. B.3.1.

Writing the second term in matrix form is a bit more intricate than Eq. (22), but taking the same approach we get

[Λ(xa − xb)]i[(xa − xb)>Λ]j = [Λxa]i[x>a Λ]j − [Λxb]
i[x>a Λ]j − [Λxa]i[x>b Λ]j + [Λxb]

i[x>b Λ]j

=
∑
mn

δamδbn
(
[Λxm]i[x>mΛ]j − [Λxn]i[x>mΛ]j − [Λxm]i[x>nΛ]j + [Λxn]i[x>nΛ]j

)
=
∑
mn

(
δam

(
[Λxm]i − [x>nΛ]i

)) (
δbn
(
[x>mΛ]j − [x>nΛ]j

))
=
∑
mnpp′

(
δam

(
δpm[Λxp]

i − δpn[x>p Λ]i
)) (

δbn
(
δp′m[x>p′Λ]j − δp′n[x>p′Λ]j

))
=

∑
mnoo′pp′

(
[Λxp]

iδaoδmo(δpm − δpn)
) (

[x>nΛ]jδbo′δno′(δp′m − δp′n)
)

=
∑
mn

∑
op

δao[Λxp]
i︸ ︷︷ ︸

Uai,op

δom(δpm − δpn)︸ ︷︷ ︸
Lop,mn

∑
o′p′

δo′n(δp′m − δp′n)︸ ︷︷ ︸
Lmn,o′p′

δo′b[x
>
nΛ]j︸ ︷︷ ︸

Uo′p′,bj

(24)

For dot product kernels we used U = (I ⊗ Λ(X − c)), for stationary kernels we instead use U = (I ⊗ ΛX)L. The second
term of the Gram matrix is formed by UCU> in the same way as Eq. (22). U is however no longer a Kronecker product
which makes the algorithmic details more involved. It is therefore more convenient to use the UL representation where L is
a sparse linear operator. U> vec(g) = L> vec(X>Λg)mn = vec(X>Λgmn −X>Λgmm)

B.3.1. EXAMPLES FOR STATIONARY KERNELS

Kernel k(r) k′(r) k′′(r)

Squared exponential e−r/2 − 1
2k(r) 1

4k(r)

Matérn ν = 1/2 e−
√
r −k(r)

2
√
r

1
4r3/2

(
√
r + 1) k(r)

Matérn ν = 3/2 (1 +
√

3r) e−
√

3r
√

3
2
√
r

(
e−
√

3r −k(r)
) √

3
2
√
r

(
k(r)
2r − k

′(r)− e−
√

3r 1+
√

3r
2r

)
Matérn ν = 5/2

(
1 +
√

5r + 5r
3

)
e−
√

5r
(√

5
2
√
r

+ 5
3

)
e−
√

5r −
√

5
2
√
r
k(r)

√
5

2
√
r

(
k(r)
2r − k

′(r)− e−
√

5r
(

1+
√

5r
2r + 5

3

))
Rational quadratic

(
1 + r

2α

)−α − 1
2

(
1 + r

2α

)−α−1 α+1
4α

(
1 + r

2α

)−α−2

Table 2. Examples for stationary kernels where r = (xa − xb)
>Λ(xa − xb).

Table 2 contains the kernels we considered. For reasons of space, we derive the general expressions for the Matérn family
with half integer smoothness parameter ν = p+ 1

2 for p ∈ N here, which reads

kp+1/2(r) = exp
(
−
√

2νr
) Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8νr
)p−i

,

and has the monstrous derivatives

k′p+1/2(r) = −
√

ν

2r
kp+1/2 + exp

(
−
√

2νr
) Γ(p+ 1)

Γ(2p+ 1)

p−1∑
i=0

(p+ i)!

i!(p− i− 1)!

(√
8νr
)p−i−1

√
2ν

r

k′′p+1/2(r) =

(√
ν

8r3
+

ν

2r

)
kp+1/2 −

(√
ν

2r3
+

2ν

r

)
exp

(
−
√

2νr
) Γ(p+ 1)

Γ(2p+ 1)

p−1∑
i=0

(p+ i)!

i!(p− i− 1)!

(√
8νr
)p−i−1

+

√
2ν

r
exp

(
−
√

2νr
) Γ(p+ 1)

Γ(2p+ 1)

p−2∑
i=0

(p+ i)!

i!(p− i− 2)!

(√
8νr
)p−i−2

.

High-Dimensional Gaussian Process Inference with Derivatives

The general form of the Matérn kernels also falls into the category of stationary kernels, as do the spectral mixture kernels
(Wilson & Adams).

C. Decomposition Benefits
In Appendix B we showed that ∇K∇′ can be written as B + UCU>, see Appendix A for summary. In Sec. 2.3 we
discussed some benefits of the decomposition that we here explain more in detail.

C.1. Woodbury vector for N < D

The decomposition is particularly interesting when the number of observations N is small. In this setting we can employ the
matrix inversion lemma, Eq. (6) restated here for convenience

(B + UCU>)−1 = B−1 −B−1U
(
C−1 + U>B−1U

)−1
U>B−1.

If the size of C is smaller than B and B−1 is “cheap”, then the r.h.s. above is computationally beneficial. The involved
matrices are all comparatively large, but by using the important properties of Kronecker products (Appendix A) it is possible
to significantly lower the requirements. Here we outline the required operations for a dot product kernel with X̃ = X − c.
The operations for stationary kernels are similar but require the additional application of L for each operation involving U .

1. T = U>B−1 vec(G)→ X̃>G(K ′)−1.

• T ∈ RN×N

2. Solve:
(
C−1 + U>B−1U

)
vec(Q) = vec(T):

(
C−1 + (K ′)−1 ⊗ (X̃>ΛX̃)

)
vec(Q) = vec(T).

• Q ∈ RN×N

3. vec(Z) = B−1 vec(G)−B−1U vec(Q): Z = Λ−1G(K ′)−1 −XQ(K ′)−1.

• Z ∈ RD×N

Special case Step 2 in the above procedure is the source of the O((N2)3) scaling in computations. For the situation
outlined in Sec. 4.2 it is possible to solve the linear system analytically. A multiplication with the linear system in step 2 for
the second order polynomial kernel is performed as

(C−1 + (X̃ΛX̃)−1 ⊗ (X̃>ΛX̃)) vec(V)→ V > + (X̃>ΛX̃)V (X̃ΛX̃)−1. (25)

For the outlined situation in Sec. 4.2 the r.h.s. T = (X̃>AX̃)(X̃>ΛX̃)−1.

The solution to the linear system is

Q =
1

2
(X̃>ΛX̃)−1(X̃>AX̃).

This is easily verified by inserting the value for Q in Eq. (25)

Q> + (X̃>ΛX̃)Q(X̃>ΛX̃)−1 =
1

2
(X̃>AX̃)(X̃>ΛX̃)−1 + (X̃>ΛX̃)[

1

2
(X̃>ΛX̃)−1(X̃>AX̃)](X̃>ΛX̃)−1

=
1

2
(X̃>AX̃)(X̃>ΛX̃)−1 +

1

2
(X̃>AX̃)(X̃>ΛX̃)−1

= (X̃>AX̃)(X̃>ΛX̃)−1 = T

C.2. Benefits for general N

The derived Kronecker structure of the Gram matrix∇K∇′ in Eq. (2) highlights an important speedup of multiplication.
Multiplying a vectorized matrix V of same shape as G with the Gram matrix is obtained by the following computations

∇K∇′ vec(V) = ΛV K ′ + ΛX(K ′′ � V >ΛX),

A full algorithm for multiplication with the Gram matrix is available in Alg. 2, with modification for stationary kernels
written in red. The advantage of defining such a routine is that the Gram matrix never needs to be built, which reduces the
memory requirement from O((DN)2) to O(DN +N2).

High-Dimensional Gaussian Process Inference with Derivatives

Algorithm 2∇K∇′-MVM
Require: x0

Input: (V ∈ RD×N , K ′ ∈ RN×N , K ′′ ∈ RN×N , X̃ ∈ RD×N)
M = X̃>ΛV
m = diag(M) {Multiplication with L>}
M = M −m>
M = K ′′ �M>
m =

∑
aMab {Multiplication with L}

M =m> −M
Return: ΛV K ′ + ΛX̃M

D. Gradient and Hessian inference
Once Z ∈ RD×N has been obtained from solving∇K∇′ vec(Z) = vec(G) it is possible to infer the gradient and Hessian
at a new point xa. Note that a is now an index with a single value and b takes N values, so Kab = kab is a row vector.
Inferring the gradient and Hessian at a point xa requires the following contractions

ḡ(xa)i =
∑
bl

[∂ia∂
l
bk(r)]ilabZ

l
b, (26)

and
H̄(xa)ij =

∑
bl

[∂ia∂
j
a∂

l
bk(r)]ijlaabZ

j
b . (27)

D.1. Dot product kernels

Gradient For dot product kernels the gradient at a point xa is readily available from Eq. (26) and Eq. (20) as

g(xa) = ΛZ(k′ab)
> + Λ(X − c)((k′′ab)> � Z>(xa − c)).

A prior mean for the gradient was omitted.

Hessian The posterior mean of the Hessian in Eq. (27) first requires the third derivative of the kernel. Differentiating
Eq. (20) again yields

∂a
i∂a

i∂b
lk(r) = k′′ab · Λjl · [Λ(xb − c)]i + k′′ab · Λil · [Λ(xb − c)]j + δabk

′′
ab · Λij · [Λ(xa − c)]l

+ k′′′ab[Λ(xb − c)]j [Λ(xa − c)]l[Λ(xb − c)]i

To perform the contraction in Eq. (27) we first introduce X̃ = X − c and perform the contraction over l which results in

H̄(xa)ij =
∑
b

k′′ab · [ΛZ]jb · [ΛX̃]ib + k′′ab · [ΛZ]ib · [ΛX̃]jb + δab · Λij · k′′ab · [Λ(xa − c)>ΛZ]ab

+ k′′′ab · [ΛX̃]ib · [ΛX̃]jb · [(xa − c)
>ΛZ]ab.

The final contraction of b can easily be interpreted as standard matrix multiplication to arrive at the form

H̄(xa) =
[
ΛX̃,ΛZ

] [M M̂

M̂ 0

] [
X̃>Λ
Z>Λ

]
+ Λ · Tr(M̆).

All these M -matrices are diagonal matrices with N elements

Mbb = k′′′ab � [(xa − c)>ΛZ]ab,

M̂bb = k′′ab

M̆bb = δab · k′′ab(xa − c)>ΛZ.

The last expression including Tr(M̆) can be simplified to k′′aa(xa − c)>ΛZ if xa ∈ X .

High-Dimensional Gaussian Process Inference with Derivatives

D.2. Stationary kernels

Gradient inference for stationary kernels looks similar to the dot product kernels but has some important differences. For
the following derivations we introduce k̃′ = 2k′, k̃′′ = 4k′′, k̃′′′ = 8k′′ and X̃ = (xa −X). The posterior mean gradient at
a point xa for a stationary kernel is

g(xa) = −ΛZk̃
′
ba − ΛX̃(k̃

′′
ba �mb),

mb = (
∑
l

Zlb � [ΛX̃]lb)
(28)

Hessian The third derivative of stationary kernels required for the Hessian inference is

∂a
i∂a

i∂b
lk(r) = −k̃′′ab · Λjl · [Λ(xa − xb)]i − k̃′′ab · Λil · [Λ(xa − xb)]j + k̃′′ab · Λij · [Λ(xa − xb)]l

− k̃′′′ab[Λ(xa − xb)]j [Λ(xa − xb)]l[Λ(xa − xb)]i,

withmb the same vector as in Eq. (28). The posterior mean is obtained in the same way as for the dot product, by Eq. (27)

H̄(xa)ij =
∑
b

−k̃′′ab · [ΛZ]jb · [ΛX̃]ib − k̃′′ab · [ΛZ]ib · [ΛX̃]jb + Λij · k̃′′ab �mb

− (k̃′′′ab �mb) · [ΛX̃]ib · [ΛX̃]jb.

The posterior mean can be written in standard matrix notation as

H̄(xa) =
[
ΛX̃,ΛZ

] [M M̂

M̂ 0

] [
X̃>Λ
Z>Λ

]
+ Λ · Tr(M̆).

The diagonal matrices are this time given by

Mbb = k̃
′′′
ab �mb,

M̂ = −k̃
′′
ab,

M̆bb = k̃
′′
ab �mb.

E. Further details about applications
E.1. Infering the optimizer

A GP with gradient observations learns a mapping x → ∇f(x). With efficient gradient inference we can also flip the
inference and learn a mapping ∇f(x) → x(∇f) and query what x(∇f(x) = 0) for a new update. This is achieved by
performing gradient inference but interchanging the input and output. The posterior mean for which x∇f(x) = 0 occurs is

x̄∗ = xm + [∇K∇′(0, G)] [∇K∇′(G,G)]
−1

vec(X − xm).

E.2. Stationary linear solvers

For the special case of stationary linear solvers in linear algebra we have f(x) = 1
2 (x− x∗)>A(x− x∗) and ∇f(x) =

g(x) = A(x− x∗) and we are interested in inferring x∗.

For the polynomial(2) kernel if we use c = gm and prior mean µ = xm inference is fast. First define X̃ = X − xm and
G̃ = g − gm. Because G̃>X̃ = X̃>G̃ we get the Z that solves∇K∇′ vec(Z) = vec(X̃):

Z = Λ−1X̃(G̃>ΛG̃)−1 − 1

2
G̃(G̃>ΛG̃)−1G̃>X̃(G̃>ΛG̃)−1 (29)

High-Dimensional Gaussian Process Inference with Derivatives

Inferring at which the point x̂a a gradient ga occurs is done by the following computation:

x̂a = xm + ΛZ(G̃>Λ(g̃a − g̃m)) + ΛX̃[Z>Λ(g̃a − g̃m))]

= xm + X̃(G̃>ΛG̃)−1(G̃>Λ(g̃a − g̃m))− 1

2
ΛG̃(G̃>ΛG̃)−1G̃>X̃(G̃>ΛG̃)−1(G̃>Λ(g̃a − g̃m))

+ ΛG̃[(G̃>ΛG̃)−1X̃>(g̃a − g̃m)− 1

2
(G̃>ΛG̃)−1G̃>X̃(G̃>ΛG̃)−1G̃>Λ(g̃a − g̃m)]

= xm + X̃(G̃>ΛG̃)−1G̃>Λ(g̃a − g̃m)

+ ΛG̃[(G̃>ΛG̃)−1
(
X̃>(g̃a − g̃m)− G̃>X̃(G̃>ΛG̃)−1G̃>Λ(g̃a − g̃m)

)
]

F. Details about experiments
F.1. linear algebra

For the linear algebra task we generated the matrix A Eq. (14) in a manner beneficial for CG. The eigenvalues of A were
generated according to

λi = λmin +
λmax − λmin

N − 1
· ρN−i · (N − i),

with λmin = 0.5, λmax = 100 yielding a condition number of κ(A) = 200 and ρ = 0.6 so approximately the 15 largest
eigenvalues are larger than 1. In this setting CG is expected to converge in slightly more than 15 iterations. A relative
tolerance in gradient norm of 10−5 was used as termination criterion due to numerical instabilities. The starting and solution
points were sampled according to x0 ∼ N (0, 52 · I) and x∗ ∼ N (−2 · 1, I). The Hessian-based optimization used a fixed
c = 0 and gc = A(c− x∗) = −Ax∗ = −b in the linear system interpretation Ax = b. There a plenty of possibilities for
how the algorithm can be implemented and this particular version was sensitive to the relative position of c and x∗.

F.2. Nonlinear Optimization

We chose the test function (restated here for convenience)

f(x) =

D−1∑
i=1

x2
i + 2 · (xi+1 − x2

i)
2

for the more challenging nonlinear experiments. It is a relaxed version of the famous Rosenbrock function, which was used
to better control the magnitude of the gradients for the high-dimensional problem. This was important because the RBF
kernels used for the optimization used a fixed Λ, which could lead to numerical issues if the magnitude of the steps and
gradients drastically changed between iterations. The lengthscale of the isotropic kernels in the algorithms were Λ = 9 · I
for GP-H and Λ = 0.05 · I . There are too many options of extending the algorithm to go over in this manuscript, which is
why the algorithm should be seen more as a proof-of-concept than radical new algorithm.

F.3. Hamiltonian Monte Carlo

We used the following unnormalized density as a target for the HMC experiment

f(x) = exp

(
−1

2

(
x2

1 + (a0x
2
1 + a1x2 + a2)2 +

D∑
i=3

aix
2
i

))
(30)

and set the parameter vector to a = [2,−2, 2, . . . , 2]>. The distribution is thus Gaussian with variance 1
2 in all components

other than x1 and x2. Since we use an isotropic RBF kernel to model the potential energy (i.e., the negative logarithm of the
above function), we randomly rotate the above function by applying sampled orthonormal matrices to the input vector.

Fig. 4 uses Eq. (30) directly, and thus the kernel is aligned with the problem. We choose a (squared) lengthscale of 0.4D
where D = 100 from visual inspection of the typical scale of the “banana”. HMC uses a step-size ε = 4 · 10−3/d 4

√
De and

number of leapfrog steps T = 32 · d 4
√
De, with the term d 4

√
De being motivated by the analysis of how these parameters

should change with increasing dimension (Neal et al., 2011). For all experiments we draw a standard normal vector as a

High-Dimensional Gaussian Process Inference with Derivatives

starting point and simulate D times with plain HMC for burn-in, before retaining samples in the case of HMC, or starting the
training procedure for GPG-HMC. The training is performed as described in Sec. 5.3.

The rotated version of the above function used slightly different parameters for the RBF kernel, a squared lengthscale of
0.25D to stay on the conservative side about the target function. Also we halved the stepsize of the leapfrog integrator while
leaving the number of steps taken unchanged. Otherwise, the acceptance rate also dropped significantly for both methods.
All experiments used a mass parameter of m = 1.

Algorithm 3 summarizes the GPG-HMC method without the training procedure which leaves a lot of space for engineering.
In fact, this is identical to standard HMC, except for the fact that instead of the true gradient ∇E the GP surrogate ∇̂E is
used.

Algorithm 3 GPG-HMC

input x0, E(·), ∇̂E(·), N , T , ε, m
output X
x = x0;X = []
for n = 1:N do
p ∼ N (0,mI)

H ← U(x) + p>p
2m

xnew,p← LEAPFROG(x,p, ∇̂E(·), T, ε)
∆H ← E(x) + p>p

2m −H
if r ∼ UNIFORM[0, 1] < min(1, e−∆H) then
x← xnew

end if
X ← [X,x]

end for

