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Abstract

Integrals of linearly constrained multivariate
Gaussian densities are a frequent problem
in machine learning and statistics, arising
in tasks like generalized linear models and
Bayesian optimization. Yet they are notori-
ously hard to compute, and to further com-
plicate matters, the numerical values of such
integrals may be very small. We present an
efficient black-box algorithm that exploits ge-
ometry for the estimation of integrals over
a small, truncated Gaussian volume, and
to simulate therefrom. Our algorithm uses
the Holmes-Diaconis-Ross (hdr) method com-
bined with an analytic version of elliptical slice
sampling (ess). Adapted to the linear setting,
ess allows for efficient, rejection-free sampling,
because intersections of ellipses and domain
boundaries have closed-form solutions. The
key idea of hdr is to decompose the integral
into easier-to-compute conditional probabil-
ities by using a sequence of nested domains.
Remarkably, it allows for direct computation
of the logarithm of the integral value and
thus enables the computation of extremely
small probability masses. We demonstrate
the effectiveness of our tailored combination
of hdr and ess on high-dimensional integrals
and on entropy search for Bayesian optimiza-
tion.

1 Introduction

Multivariate Gaussian densities are omnipresent in
statistics and machine learning. Yet, Gaussian proba-
bilities are hard to compute—they require solving an
integral over a constrained Gaussian volume—owing
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to the intractability of the multivariate version of the
Gaussian cumulative distribution function (cdf). The
probability mass that lies within a domain L ⊂ RD

restricted by M linear constraints can be written as

Z = P (x ∈ L) =
∫
RD

M∏
m=1

Θ (aᵀ
mx + bm) dN (x; 0,1),

(1)
with the Heaviside step function Θ(x) = 1 if x > 0 and
zero otherwise. We take the integration measure to be
a standard normal without loss of generality, because
any correlated multivariate Gaussian can be whitened
by linearly transforming the integration variable.

Gaussian models with linear domain constraints oc-
cur in a myriad of applications that span all disci-
plines of applied statistics and include biostatistics
(Thiébaut & Jacqmin-Gadda, 2004), medicine (Chen
& Chang, 2007), environmental sciences (Wani et al.,
2017), robotics and control (Fisac et al., 2018), ma-
chine learning (Su et al., 2016) and more. A common
occurrence of this integral is in spatial statistics, such
as Markov random fields (Bolin & Lindgren, 2015), the
statistical modeling of spatial extreme events called
max-stable processes (Huser & Davison, 2013; Genton
et al., 2011), or in modeling uncertainty regions for
latent Gaussian models. An example for the latter is
to find regions that are likely to exceed a given ref-
erence level, e.g., pollution levels in geostatistics and
environmental monitoring (Bolin & Lindgren, 2015),
or in climatology (French & Sain, 2013). Another area
where integrals like Eq. (1) are often encountered is
in reliability analysis (Au & Beck, 2001a; Melchers &
Beck, 2018; Andersen et al., 2018; Straub et al., 2020).
A key problem there is to estimate the probability of a
rare event to occur, e.g., a flood, or for a mechanical
system to enter a failure mode. In machine learning,
there are many Bayesian models in which linearly con-
strained multivariate normal distributions play a role,
such as Gaussian processes under linear constraints
(López-Lopera et al., 2017; López-Lopera et al., 2019;
Agrell, 2019; Da Veiga & Marrel, 2012), inference in
graphical models (Mulgrave & Ghosal, 2018), incom-
plete data classification (Liao et al., 2007), ordinal and
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probit regression (Lawrence et al., 2008; Ashford &
Sowden, 1970), multi-class Gaussian process classifi-
cation (Rasmussen & Williams, 2006), and Bayesian
optimization (Hennig & Schuler, 2012; Wang et al.,
2016), to name a few.

This practical relevance has fed a slow-burn research
effort in the integration of truncated Gaussians over
decades (Geweke, 1991; Genz, 1992; Joe, 1995; Vijver-
berg, 1997; Nomura, 2014). Gassmann et al. (2002) and
Genz & Bretz (2009) provide comparisons and attest
that the algorithm by Genz (1992) provides the best
accuracy across a wide range of test problems, which
has made it a default choice in the literature. Genz’s
method applies a sequence of transformations to trans-
form the integration region to the unit cube [0, 1]D and
then solves the integral numerically using quasi-random
integration points. Other methods focus on specialized
settings such as bivariate or trivariate Gaussian prob-
abilities (Genz, 2004; Hayter & Lin, 2013), others on
orthant probabilities (Miwa et al., 2003; Craig, 2008;
Nomura, 2016; Hayter & Lin, 2012). Yet, these meth-
ods are only feasible for at most a few tens of variables.
Only recent advances have targeted higher-dimensional
integrals: Azzimonti & Ginsbourger (2017) study high-
dimensional orthant probabilities and Genton et al.
(2018) consider the special case where the structure of
the covariance matrix allows for hierarchical decompo-
sition to reduce computational complexity. Phinikettos
& Gandy (2011) employ a combination of four variance
reduction techniques to solve such integrals with Monte
Carlo methods. Botev (2016) constructs an exponential
tilting of an importance sampling measure that builds
on the method by Genz (1992) and report effectiveness
for D . 100. A different approach has been suggested
by Cunningham et al. (2011): They use expectation
propagation to approximate the constrained normal
integrand of Eq. (1) by a moment-matched multivariate
normal density. This allows for fast integration, at the
detriment of guarantees. Indeed, the authors report
cases in which ep is far off the ground truth integral.

A closely related problem to integration is simulation
from of a linearly constrained Gaussian, yet these tasks
have rarely been considered concurrently, except for
Botev (2016) who proposes an accept-reject sampler
alongside the integration scheme. Earlier attempts
mostly employ Gibbs sampling (Geweke, 1991), though
other Monte Carlo techniques have been used (Cong
et al., 2017). Koch & Bopp (2019) recently introduced
an algorithm for exact simulation from truncated Gaus-
sians. Their method requires the Cholesky decomposi-
tion of the covariance matrix and iteratively samples
from univariate truncated Gaussians that satisfy the
box constraints.

In our work, we address both the sampling and the nor-

malization problem for linearly constrained domains in
a Gaussian space, making the following contributions:

• We present an adapted version of elliptical slice sam-
pling (ess) which we call lin-ess that allows for
rejection-free sampling from the linearly constrained
domain L. Its effectiveness is not compromised even
if the probability mass of L is very small (cf. Section
2.1).

• Based on the above lin-ess algorithm, we introduce
an efficient integrator for truncated Gaussians. It
relies on a sequence of nested domains to decompose
the integral into multiple, easier-to-solve, conditional
probabilities. The method is an adapted version
of the Holmes-Diaconis-Ross algorithm (Diaconis
& Holmes, 1995; Ross, 2012; Kroese et al., 2011)
(cf. Section 2.2).

• With increasing dimension D, the integral value
Z can take extremely small values. hdr with a
lin-ess sampler allows to compute such integrals
efficiently, and to even compute the logarithm of the
integral.

• With lin-ess, sampling is sufficiently efficient to also
compute derivatives of the probability with respect
to the parameters of the Gaussian using expectations.

2 Methods

We first introduce an adapted version of elliptical slice
sampling, lin-ess, which permits efficient sampling
from a linearly constrained Gaussian domain of arbi-
trarily small mass once an initial sample within the
domain is known. This routine is a special case of ellip-
tical slice sampling that leverages the analytic tractabil-
ity of intersections of ellipses and hyperplanes to speed
up the ess loop. lin-ess acts at the back-end of the
integration method, which is introduced in Section 2.2.

For further consideration, it is convenient to write the
linear constraints of Eq. (1) in vectorial form, Aᵀx + b,
where A ∈ RD×M , x ∈ RD, and b ∈ RM . The integra-
tion domain L ⊂ RD is given by the intersection of the
region where all the M constraints exceed zero. For
example, orthant probabilities of a correlated Gaus-
sian N (µ,Σ) can be written in the form of Eq. (1)
by using the transformation x = Lz + µ, where L is
the Cholesky decomposition of Σ. Typically, we ex-
pect M ≥ D, i.e., there are at least as many linear
constraints as dimensions. This is because if M < D,
there exists a transformation of x such that D −M
dimensions can be integrated out in closed form, and
anM -dimensional integral withM constraints remains.
However, there are situations in which integrating out
dimensions might be undesired. This is the case, e.g.,
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when samples from the untransformed integrand are
required.

2.1 Sampling from truncated Gaussians

Elliptical slice sampling (ess), introduced by Murray
et al. (2010), is a Markov chain Monte Carlo (mcmc) al-
gorithm that draws samples from a posterior when the
prior is a multivariate normal distribution N (µ,Σ).
Given an initial location x0 ∈ RD, an auxiliary vec-
tor ν ∼ N (µ,Σ) is drawn to construct an ellipse as
x(θ) = x0 cos θ+ ν sin θ, which is parameterized by the
angle θ ∈ [0, 2π]. In the general case, the algorithm
proceeds similar to regular slice sampling (Neal, 2003),
but on the angular domain. A likelihood threshold
is defined, and rejected proposals (samples in θ) are
used to adapt the bracket [θmin, θmax] to sample from,
until a proposal is accepted that serves as new x0 (see
Murray et al. (2010) for details). ess is designed for

x0

ν

Figure 1: Sampling from a constrained normal space
using ess. x0 is a previous sample from the domain L
and, with the auxiliary ν, defines the ellipse. From all
intersections of the ellipse and zero lines (or hyperplanes
in higher dimensions), the active intersections at the
domain boundary are identified ( ). These define the
slice from which a uniform sample is drawn (×).

generic likelihood functions. The special form of the
likelihood in Eq. 1 can be leveraged to significantly
simplify the ess algorithm:

1. The selector `(x) :=
∏M

m=1 Θ[aᵀ
mx + bm] can take

only the values 0 and 1. Hence there is no need for
a likelihood threshold, the domain to sample from
is always defined by `(x) = 1 for x(θ) on the ellipse.

2. The intersections between the ellipse and the linear
constraints have closed-form solutions. The angu-
lar domain(s) to sample from can be constructed
analytically, and lin-ess is thus rejection-free. The
typical bisection search of slice sampling becomes a
simple analytic expression.

With these simplifications of ess, each sample from
L requires exactly one auxiliary normal sample ν ∼

N (0,1) ∈ RD and a scalar uniform sample u ∼
Uniform[0, 1] to sample from the angular domain. Fig.
1 illustrates the process of drawing a sample from the
domain of interest (blue shaded area) using our version
of ess. Given the two base vectors x0 and ν, the ellipse
is parameterized by its angle θ ∈ [0, 2π]. The intersec-
tions between the ellipse and the domain boundaries
Aᵀx+b = 0 can be expressed in closed form in terms of
angles on the ellipse as solution to the set of equations
Aᵀ(x0 cos θ + ν sin θ) + b = 0. For the mth constraint,
this equation typically has either zero or two solutions,

θm,1/2 = ± arccos
(
−bm

r

)
+ arctan

(
aᵀ

mν

r + aᵀ
mx0

)
(2)

with r =
√

(aᵀ
mx0)2 + (aᵀ

mν)2. A single solution occurs
in case of a tangential intersection, which is unlikely.
Not all intersection angles lie on the domain boundary
and we need to identify those active intersections where
`(x(θ)) switches on or off. To identify potentially multi-
ple brackets, we sort the angles in increasing order and
check for each of them if adding/subtracting a small
∆θ causes a likelihood jump. If there is no jump, the
angle is discarded, otherwise the sign of the jump is
stored (whether from 0 to 1 or the reverse), in order to
know the direction of the relevant domain on the slice.
Pseudocode for lin-ess can be found in Algorithm 2
in the appendix.

The computational cost of drawing one sample on the
ellipse is dominated by theM inner products that need
to be computed for the intersections, hence the com-
plexity is ‰(MD). This is comparable with standard
ess for which drawing from a multivariate normal dis-
tribution is ‰(D2), but the suppressed constant can
be much smaller because there is no need to evaluate a
likelihood function in lin-ess. This version of ess is a
rejection-free sampling method to sample from a trun-
cated Gaussian of arbitrarily small mass—except that it
requires an initial point within the domain from where
to launch the Markov chain. Section 2.2.2 provides a
method to efficiently find such an initial sample, yet
its major value is to enable the Holmes-Diaconis-Ross
algorithm (hdr) for computing the mass of the domain
L, which is described in the next section.

2.2 Computing Gaussian probabilities

2.2.1 The Holmes-Diaconis-Ross algorithm

The Holmes-Diaconis-Ross algorithm (hdr) (Diaconis
& Holmes, 1995; Ross, 2012; Kroese et al., 2011) is
a specialized method for constructing an unbiased es-
timator for probabilities of the form P (x ∈ L) under
an arbitrary prior measure x ∼ p0(x) and a domain
L = {x s.t. f(x) ≥ 0} with a deterministic function
f : RD 7→ R. If this domain has very low proba-
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Algorithm 1 The Holmes-Diaconis-Ross algorithm
applied to linearly constrained Gaussians

1 procedure HDR(A,b, {γ1, . . . , γT }, N)
2 X ∼ N (0,1) � N samples
3 logZ = 0 � initialize log integral value
4 for t = 1 . . . T do
5 Lt = {x : minm(aᵀ

mxn + bm) + γt > 0}N
n=1

6 � find samples inside current nesting
7 logZ ← logZ + log(#(X ∈ Lt))− logN
8 choose x0 ∈ Lt

9 X← LinESS(A,b + γt, N, x0)
10 � draw new samples from constrained domain
11 end for
12 return logZ
13 end procedure

bility mass, P (L) is expensive to compute with di-
rect Monte Carlo because most samples are rejected.
hdr mitigates this by using a sequence of T nested
domains RD = L0 ⊃ L1 ⊃ L2 ⊃ ... ⊃ LT = L,
s.t. Lt =

⋂t
i=1 Li. The probability mass of the do-

main of interest can be decomposed into a product of
conditional probabilities,

Z = P (L) = P (L0)
T∏

t=1
P (Lt|Lt−1). (3)

If each of the conditional probabilities P (Lt+1|Lt)
is closer to 1/2, they all require quadratically fewer
samples, reducing the overall cost despite the lin-
ear increase in indidivual sampling problems. Not-
ing that P (L0) = 1 and introducing the shorthand
ρt = P (Lt|Lt−1), Eq. (3) can be written in logarithmic
form as logZ =

∑T
t=1 log ρt.

hdr does not deal with the construction of these
nested domains—a method to obtain them is dis-
cussed in Section 2.2.2. For now, they are assumed
to be given in terms of a decreasing sequence of pos-
itive scalar values {γ1, . . . , γT }, where γT = 0. Each
shifted domain Lt can then be defined through its
corresponding shift value γt. In the general setting,
this is Lt = {x s.t. f(x) + γt ≥ 0}; in our spe-
cific problem of linear constraints, x ∈ Lt if `t(x) =∏M

m=1 Θ(aᵀ
mx + bm + γt) = 1. Any positive shift γt

thus induces a domain Lt that contains all domains Lt′

with γt′ < γt, and that engulfs a larger volume than
Lt′ . The T th shift γT = 0 identifies L itself.

Given the shift sequence {γ1, . . . , γT }, the hdr algo-
rithm proceeds as follows: Initially, N samples are
drawn from L0, which is the integration measure, a stan-
dard normal in our case that corresponds to γ0 = ∞
and is ignored in the sequence. The conditional prob-
ability ρ1 = P (L1 | L0) is estimated as the fraction of

samples from L0 that also fall into L1. To estimate the
subsequent conditional probabilities ρt for t > 1 as the
fraction of samples from Lt−1 falling into Lt, standard
hdr uses an mcmc sampler to simulate from Lt−1. If
the sequence of nestings is chosen well and initial seeds
in the domain Lt−1 are known, these samplers achieve
a high acceptance rate. This procedure is repeated un-
til t = T . With the estimated conditional probabilities
ρ̂t, the estimator for the probability mass is then

log Ẑ =
T∑

t=1
log ρ̂t. (4)

In our adapted version of hdr, the lin-ess algorithm
(cf. Section 2.1) comes into play, which achieves a
100% acceptance rate for simulating from the nested
domains. In order to simulate rejection-free from Lt,
lin-ess requires an initial sample from the domain Lt,
which is obtained from the previous iteration of the
algorithm. Every location sampled requires evaluating
the linear constraints, hence the cost for each subset
in hdr is ‰(NMD). Pseudocode for this algorithm is
shown in Algorithm 1, where LinESS is a call to the
lin-ess sampler (cf. Section 2.1 and Algorithm 2 in the
appendix) that simulates from the linearly constrained
domain.

2.2.2 Obtaining nested domains

As the final missing ingredient, the hdr algorithm re-
quires a sequence of nested domains or level sets defined
by positive shifts γt, t = 1, . . . , T . In theory, the nested
domains should ideally have conditional probabilities
of ρt = 1/2 ∀t (then each nesting improves the precision
by one bit). Yet, in a more practical consideration, the
computational overhead for constructing the nested
domains should also be small. In practice, the shift
sequence is often chosen in an ad hoc way, hoping
that conditional probabilities are large enough to en-
able a decently accurate estimation via hdr (Kanjilal
& Manohar, 2015). This is not straightforward and
requires problem-specific knowledge.

We suggest to construct the nestings via subset sim-
ulation (Au & Beck, 2001a). Subset simulation is a
multilevel splitting method and very similar to hdr. It
only differs in that the conditional probabilities ρt are
fixed a priori to a value ρ, and then the shift values γt

are computed such that a fraction ρ of the N samples
drawn from Lt−1 falls into the subsequent domain Lt.
The construction of the nested domains is depicted in
Fig. 2. To find the shifts, N samples are drawn from
the integration measure initially (cf. Fig. 2, left). Then
the first (and largest) shift γ1 is determined such that
a fraction ρ of the samples fall into the domain L1.
This is achieved by computing for each sample by how
much the linear constraints would need to be shifted
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2

−2 0 2 −2 0 2

Figure 2: Finding the level sets in subset simulation for linear constraints. Left: Draw standard normal samples
and find the shift γ1 for which a fraction ρ of the samples lie inside the new domain; center: Use lin-ess to draw
samples from the subsequent domain defined by γ1 and find γ2 similarly; right: Proceed until the domain of
interest is reached. Details in text.

to encompass the sample. For the subsequent shifts, N
samples are simulated from the current domain Lt, and
the next shift γt is again set s.t. bNρc samples fall into
the next domain Lt+1 (Fig. 2, center). This requires an
initial sample from Lt to launch the lin-ess sampler,
which is obtained from the samples gathered in the
previous nesting Lt−1 that also lie in Lt, while all other
samples are discarded to reduce dependencies. This
nesting procedure is repeated until more than bNρc
samples fall into the domain of interest L (cf. Fig. 2,
right). We set ρ = 1/2 to maximize the entropy of the
binary distribution over whether samples fall in- or
outside the next nested domain, yet in reliability anal-
ysis a common choice is ρ = 0.1 (Au & Beck, 2001b),
which has the advantage of requiring less nestings (to
the detriment of more samples). Pseudocode can be
found in Algorithm 3 in the appendix.

In fact, subset simulation itself also permits the esti-
mation of the integral Z, without appealing to hdr:
Since the subsets are constructed such that the con-
ditional probabilities take a predefined value, the
estimator for the integral is Ẑss = ρT−1ρT where
ρT = P (LT |LT−1) ∈ [ρ, 1] is the conditional proba-
bility for the last domain. For ρ = 1/2 the number of
nestings is roughly the negative binary logarithm of
the integral estimator T ≈ − log2 Ẑss (cf. Fig. 3). The
main reason not to rely on subset simulation alone is
that its estimator Ẑss is biased, because the samples
are both used to construct the domains and to estimate
Z. We thus use hdr for the integral estimation and
subset simulation for the construction of the nested
domains.

2.2.3 Derivatives of Gaussian probabilities

Many applications (e.g. Bayesian optimization, see
below) additionally require derivatives of the Gaussian
probability w.r.t. to parameters λ of the integration

measure or the linear constraints. The absence of such
derivatives in classic quadrature sub-routines (such as
from Genz (1992)) has thus sometimes been mentioned
as an argument against them (e.g. Cunningham et al.,
2011)). Our method allows to efficiently compute such
derivatives, because it can produce samples. This lever-
ages the classic result that derivatives of exponential
families with respect to their parameters can be com-
puted from expectations of the sufficient statistics. To
do so, it is advantageous to rephrase Eq. (1) as the
integral over a correlated Gaussian with mean µ and
covariance matrix Σ with axis-aligned constraints (or
constraints that are independent of λ). The deriva-
tives w.r.t. a parameter λ can then be expressed as an
expected value,

dZ
dλ = E

[
d logN (x; µ,Σ)

dλ

]
, (5)

where the expectation is taken with respect to the
transformed integrand Eq. (1). Since lin-ess permits
us to simulate from the integrand of Eq. (1), derivatives
can be estimated via expectations. We demonstrate in
Section 3.2 that this is a lot more efficient than finite
differences, which requires Z to be estimated twice,
and at considerably higher accuracy.

3 Experiments

3.1 Synthetic experiments

As an initial integration problem we consider axis-
aligned constraints in a 500-dimensional space. Since
this task amounts to computing the mass of a shifted
orthant under a standard normal distribution, it allows
comparison to an exact analytic answer. The goal
of this setup is two-fold: 1) to demonstrate that our
method can compute small Gaussian probabilities to
high accuracy, and 2) to explore configurations for the



Manuscript under review

construction of nested domains using subset simulation.
The domain is defined by `(x) =

∏D
d=1 Θ(xd + 1). The

true mass of this domain is 3.07 · 10−38 = 2−124.6.
Estimating this integral naïvely by sampling from the
Gaussian would require of the order of 1038 samples
for one to fall into the domain of interest. With a
standard library like numpy.random.randn, this would
take about 1015 ages of the universe.

Subset simulation First, we compute the shift se-
quence {γ1, . . . , γT } using subset simulation for various
numbers of samples N per subset and a fixed condi-
tional probability of ρ = 1/2. Since the contributing
factor of each nesting is ρ = 1/2, the integral estimate
is roughly 2−T for our choice of ρ (cf. section 2.2.2).
The relation between the number of subsets T and the
estimated integral value Ẑss is visualized in Fig. 3. It
shows the sequences of shift values for increasing sam-
ple sizes and the resulting integral estimate log2 Ẑss.
The T th nesting has shift value γ = 0 and is the only
subset with a conditional probability that deviates from
the chosen value of ρ, yet T is a good indicator for the
value of the negative binary logarithm of the estimated
integral. Hence we use the same axis to display the
number of subsets and − log2 Ẑss. The plot highlights
the bias of subset simulation: For small sample sizes,
e.g. N = 2, 4, 8, the integral is severely underestimated.
This bias is caused by the dependency of the subset
construction method on the samples themselves: Since
we are using a mcmc method for simulating from the
current domain, samples are correlated and do not fall
into the true next subset with probability exactly ρ.
This is why we only accept every 10th sample to dimin-
ish this effect when constructing the subsets. For the
subsequent hdr simulation, we accepted every second
sample from the ess procedure.
We choose powers of 2 for the number of samples per
subset and observe that as of 16 samples per subset,
the subset sequence is good enough to be handed to
hdr for more accurate and unbiased estimation. This
low requirement of 16 samples per nesting also means
that subset simulation is a low-cost preparation for
hdr, and causes only minor computational overhead.

Holmes-Diaconis-Ross Fig. 4 shows the results
achieved by hdr for the nine subset sequences obtained
with 21 to 29 samples per subset and for different num-
bers of samples per nesting for hdr. The top left panel
of Fig. 4 shows the binary logarithm of the hdr integral
estimator. The bad performance for the subsets created
with 2, 4, or 8 samples per nesting indicates that a good
nesting sequence is essential for the effectiveness of hdr,
but also that such a sequence can be found using only
about 16 samples per subset (this is thus the number
used for all subsequent experiments). The bottom left

0 100 200 3000

1

2

# subsets; − log2 Ẑss

γ

2 4 8
16 32 64

128 256 512

0

2

4

6

8log2 Z

lo
g 2
N

Figure 3: Shift values γ against number of subsets T
for different sample size per nesting N (small dots).
The connected dots show − log2 Ẑss vs. N . The ground
truth is indicated by the vertical line. This plot em-
phasizes the connection between T and − log2 Z for
ρ = 1/2 (see text for details).

panel displays the relative error of the hdr estimator.
It is to bear in mind that the relative error is 9/11 if
the estimator is one order of magnitude off, indicating
that hdr achieves the right order of magnitude with a
relatively low sample demand. The right panel of Fig. 4
shows the values for the conditional probabilities found
by hdr, using 211 samples per subdomain. If subset
simulation were perfectly reliable, these should ideally
be ρ = 1/2. The plot confirms that, with N ≥ 16, all
conditional probabilities are far from 0 and 1, allowing
efficient estimation for hdr.

1000-d integrals We further consider three simi-
lar synthetic integrals over orthants of 1000-d corre-
lated Gaussians with a fixed mean and a randomly
drawn covariance matrix. Table 1 shows the mean and
std. dev. of the binary logarithm of the integral esti-
mator averaged over five runs of hdr using 28 samples
per nesting for integration, as well as the average cpu
time1.

Table 1: Integrals of Gaussian orthants in 1000-d

# 〈log2 Ẑ〉 std. dev. tcpu[103s]
1 −162.35 4.27 8.86
2 −160.54 2.09 7.40
3 −157.62 3.19 7.64

3.2 Bayesian optimization

Bayesian optimization is a sample-efficient approach to
global optimization of expensive-to-evaluate black-box
functions (see Shahriari et al. (2016) for a review). A
surrogate over the objective function f(x) serves to
build a utility function, which is used to determine

1On 6 cpus, the wall clock time was ∼20min per run.
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Figure 4: Left: hdr integral estimates for different subset sequences (same color coding as in Fig. 3) for 25 to 211
samples, top: compared to the binary logarithm of the ground truth (horizontal line), and bottom: the relative
error. Right: Conditional probabilities obtained by hdr for the same subset sequences, where ρ = 1/2 was chosen
for the construction of the subsets (vertical line).

the next query point. Information-based utilities are
directly concerned with the posterior distribution over
the minimizer, pmin(x | D), where D = {xn, f(xn)}N

n=1
summarizes previous evaluations of f . Entropy search
(Hennig & Schuler, 2012) seeks to evaluate the objective
function at the location that bears the most informa-
tion about the minimizer. The expression pmin(x | D) is
an infinite-dimensional integral itself, but for practical
purposes, it can be discretized considering the distribu-
tion over so-called representer points. The probability
of the ith representer point to be the minimum can be
written as

pmin(xi) =
∫
df N (f,µ,Σ)

∏
j 6=i

Θ(f(xj)− f(xi)), (6)

where µ and Σ are the posterior mean and covariance
of the Gaussian process over f , respectively. Clearly,
this is a linearly constrained Gaussian integral in the
form of Eq. (1) which has to be solved for all NR repre-
senter points. The original paper and implementation
uses expectation propagation (ep) to approximate this
integral.

Probability of minimum For our experiment, we
consider the one-dimensional Forrester function (For-
rester et al., 2007) with three initial evaluations. The
top plot in Fig. 5 shows the ground truth distribution
over the minimum obtained by Thompson sampling,
i.e., drawing samples from the discretized posterior
gp and recording their respective minimum, and the
approximation over this distribution obtained by ep.
It is apparent that ep fails to accurately represent pmin.
For hdr, we consider four locations (indicated by the
vertical lines) and show that while it takes longer to
compute, the estimate obtained by hdr converges to
the true solution (see bottom plot of Fig. 5). In the

experiment we use 200 representer points—which is an
unusually high number for a 1-d problem—to show that
our method can deal with integrals of that dimension.
Also note that we are reporting cpu time, which means
that due to automatic parallelization in Python the
wall clock time is considerably lower.

Derivatives Entropy search requires derivatives of
Eq. (6) to construct a first-order approximation of the
predictive information gain from evaluating at a new
location x?. Here we can use our algorithm’s ability to
estimate derivatives using expectations, as discussed in
Section 2.2.3. Initially we choose 5 representer points
to validate the approach of computing derivatives via
moments against finite differences. The latter requires
estimating pmin at very high accuracy and has thus
a high sample demand even in this low-dimensional
setting, for which we employ both rejection sampling
and hdr. We compute derivatives via moments from
rejection sampling and lin-ess and find that this takes
0.7% of the time required to get a similar accuracy in
finite differences. Unsurprisingly, rejection sampling
is faster in this case, with pmin(xi) ≈ 1/4. Hence, only
∼ 3/4 of the samples from the posterior over f need to
be discarded to obtain independent draws that have
their minimum at xi. lin-ess permits rejection-free
sampling at the same complexity as simulating from
a multivariate normal, yet with a few more internal
computations which are compensated only at higher
rejection rates typical for higher-dimensional problems.
Therefore, we also consider 20 representer points, which
corresponds to a 20-d linearly constrained space to sam-
ple from. In this setting, we consider a location of low
probability, with pmin = 1.6 · 10−4, which renders an
estimation via finite differences impossible and highly
disfavors rejection sampling even for computing the
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Figure 5: Top: Probability for x to be the minimum, es-
timated via Thompson sampling (blue), and ep (gray).
Vertical lines indicate locations at which we run hdr.
Bottom: Absolute relative error by ep and hdr against
cpu time at the locations indicated above. Each hdr se-
quence shown uses 26 to 213 samples per nesting. The
smaller the probability pmin (in legend), the longer
takes the hdr run, since there are more subsets to
traverse.

moments. lin-ess, however, enables us to estimate the
gradient of the normal distribution w.r.t. its mean and
covariance matrix with a relative standard deviation
on the 2-norm of the order of 10−2 using 5 ·105 samples
and an average cpu time of 325 s for a problem that
was previously unfeasible. A badly conditioned covari-
ance matrix in Eq. (5) deteriorates runtime (which is
already apparent in the considered case) since it re-
quires estimating moments at very high accuracy to
compensate for numerical errors.

3.3 Constrained samples

We emphasize that lin-ess allows to draw samples from
linearly constrained Gaussians without rejection. In
the Gaussian process setting, this permits to efficiently
draw samples that are subject to linear restrictions
(Agrell, 2019; López-Lopera et al., 2017; Da Veiga &
Marrel, 2012). In particular, the time required for sam-
pling is essentially independent of the probability mass
of the domain of interest. This probability mass only
affects the precomputation required to find an initial
sample in the domain for lin-ess (cf. Section 2.2.2).
Since this can be achieved with ∼16 samples per subset
(cf. Section 3.1), this initial runtime is typically negli-
gible compared to the actual sampling. Fig. 6 displays
the posterior distribution of a gp conditioned on the
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10
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Figure 6: The Forrester function (black), the posterior
gp given three evaluations (gray), and the posterior
distribution over f conditioned on the minimum being
located at where the vertical line indicates (orange),
each with the 2σ confidence interval shaded. The latter
has been obtained from drawing 105 samples using
lin-ess, 10 of which are shown (thin orange lines).

location of the minimum from the Bayesian optimiza-
tion context, estimated from lin-ess samples. This
distribution is required in predictive entropy search
(Hernández-Lobato et al., 2014)—a reformulation of the
original entropy search—which approximates this quan-
tity by imposing several related constraints (e.g., on the
derivatives at the minimizer xmin). The probability for
the given location to be the minimizer is . 10−6, which
renders direct sampling virtually impossible. The un-
altered ess algorithm fails on this problem due to the
domain selector—a binary likelihood.

4 Conclusions

We have introduced a black-box algorithm that com-
putes Gaussian probabilities (i.e. the integral over lin-
early constrained Gaussian densities) with high numer-
ical precision, even if the integration domain is of high
dimensionality and the probability to be computed is
very small. This was achieved by adapting two sepa-
rate pieces of existing prior art and carefully matching
them to the problem domain: We designed a special
version of elliptical slice sampling that takes explicit
advantage of the linearly-constrained Gaussian setting,
and used it as an internal step of the hdr algorithm.
We showed that, because this algorithm can not just
compute integrals but also produces samples from the
nestings alongside, it also allows efficient evaluation
of derivatives of the integral with respect to the pa-
rameters of the measure. One current limitation is
that, because our algorithm was designed to be unbi-
ased, it has comparably high computational cost (but
also superior numerical precision) over alternatives like
expectation propagation. This problem could be miti-
gated if one is willing to accept unbiasedness and thus
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reuse samples. Furthermore, both hdr and lin-ess are
highly parallelizable (as opposed to ep) and thus offer
margin for implementational improvement.
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Supplementary Material
Integrals over Gaussians under Linear Domain Constraints

A Algorithms

Algorithm 2 Elliptical slice sampling for a linearly constrained standard normal distribution
1 procedure LinESS(A,b, N, x0)
2 ensure all(aᵀ

mx0 + bm > 0 ∀m) � initial vector needs to be in domain
3 X = [ ] � initialize sample array
4 for n = 1,. . . , N do
5 ν ∼ N (0,1)
6 x(θ) = x0 cos θ + ν sin θ � construct ellipse
7 θ ← sort

(
{θj,1/2}M

j=1
)
s.t. aᵀ

j (x0 cos θj,1/2 + ν sin θj,1/2) = 0 � 2M intersections, Eq. (2)
8 θact ← {[θmin

l , θmax
l ]}L

l=1 s.t. `(x(θmin/max
l + dθ))− `(x(θmin/max

l − dθ)) = ±1 � Set brackets
9 u ∼ [0, 1] ·∑L

l (θmax
l − θmin

l )
10 θu ← transform u to angle in bracket
11 X[n]← x(θu) � update sample array
12 x0 ← x(θu) � set new initial vector
13 end for
14 return X
15 end procedure

Algorithm 3 Subset simulation for linear constraints
1 procedure SubsetSim(A,b, N, ρ = 1

2 )
2 X ∼ N (0,1) � N initial samples
3 γ, ρ̂ = FindShift(ρ, X, A,b) � find new shift value
4 logZ = log ρ̂ � record the integral
5 while γ > 0 do
6 X← LinESS(A,b + γ,N, x0) � draw new samples from new constrained domain
7 γ, ρ̂← FindShift(ρ, X, A,b) � find new shift value
8 logZ ← logZ + log ρ̂ � Update integral with new conditional probability
9 end while

10 return logZ, shift sequence
11 end procedure

12 function FindShift(ρ, X, A,b) � find shift s.t. a fraction ρ of X fall into the resulting domain.
13 γ ← sort(−minm(aᵀ

mxn + bm)N
n=1) � sort shifts in ascending order

14 γ ← (γ[bρNc] + γ[bρNc+ 1])/2 � Find shift s.t. ρN samples lie in the domain
15 ρ̂← (#X inside)/N � true fraction could deviate from ρ

16 return γ, ρ̂
17 end function


	1 Introduction
	2 Methods
	2.1 Sampling from truncated Gaussians
	2.2 Computing Gaussian probabilities
	2.2.1 The Holmes-Diaconis-Ross algorithm
	2.2.2 Obtaining nested domains
	2.2.3 Derivatives of Gaussian probabilities


	3 Experiments
	3.1 Synthetic experiments
	3.2 Bayesian optimization
	3.3 Constrained samples

	4 Conclusions
	A Algorithms

