Advanced Mathematical Methods WS 2020/21

1 Linear Algebra

Prof. Dr. Thomas Dimpfl

Department of Statistics, Econometrics and Empirical Economics

Wirtschafts- und Sozialwissenschaftliche Fakultät

Outline: Linear Algebra

- 1.8 Eigenvalues and eigenvectors
- 1.9 Quadratic forms and sign definitness

Readings

 Knut Sydsaeter, Peter Hammond, Atle Seierstad, and Arne Strøm. Further Mathematics for Economic Analysis.
 Prentice Hall, 2008 Chapter 1

Online Resources

MIT course on Linear Algebra (by Gilbert Strang)

- ► Lecture 21: Eigenvalues and Eigenvectors https://www.youtube.com/watch?v=IXNXrLcoerU
- ► Lecture 22: Powers of a square matrix and Diagonalization https://www.youtube.com/watch?v=13r9QY6cmjc
- ► Lecture 26: Symmetric matrices and positive definiteness https://www.youtube.com/watch?v=umt6BB1nJ4w
- ► Lecture 27: Positive definite matrices and minima Quadratic forms

 https://www.youtube.com/watch?v=vE7ov12g3kU
 - https://www.youtube.com/watch?v=vF7eyJ2g3kU

assume a scalar λ exists such that

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

 λ : eigenvalue

x: eigenvector

find λ via the homogenous linear equation system

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$$

The properties of a quadratic homogenous linear equation system imply that:

- in any case a solution does exist;
- if $det(\mathbf{A} \lambda \mathbf{I}) \neq 0$, then $\bar{\mathbf{x}} = \mathbf{0}$ is the trivial solution;
- only if $det(\mathbf{A} \lambda \mathbf{I}) = 0$ there is a non-trivial solution.

Determination of the eigenvalues via *characteristic equation*:

$$|\mathbf{A} - \lambda \mathbf{I}| = 0 \iff (-1)^n \lambda^n + \alpha_{n-1} \lambda^{n-1} + \dots + \alpha_1 \lambda + \alpha_0 = 0$$

for every (real or complex) eigenvalue λ_i of the $(n \times n)$ -Matrix **A** we can calculate the respective eigenvector $\mathbf{x}_i \neq \mathbf{0}$ solving the homogenous linear equation system

$$(\mathbf{A} - \lambda_i \mathbf{I}) \mathbf{x}_i = \mathbf{0}. \tag{1}$$

The properties of homogenous linear equation systems imply that the solution of eq. (1) is not unambiguous, i.e. for the eigenvalue λ_i we can find infinitely many eigenvectors \mathbf{x}_i

A und **B** (quadratic matrices of order n) are similar if a regular $(n \times n)$ - matrix **C** exists, such that

$$B = C^{-1}AC.$$

Special case: symmetric matrices

For a symmetric $(n \times n)$ -matrix \boldsymbol{A} it holds that the normalized eigenvectors $\tilde{\boldsymbol{x}}_j$ with $j=1,\ldots,n$ have the property

- (1) $\tilde{\mathbf{x}}_i'\tilde{\mathbf{x}}_j = 1$ for all j and
- (2) $\tilde{\mathbf{x}}_i'\tilde{\mathbf{x}}_j = 0$ for all $i \neq j$.

Principle axis theorem

collecting the normalized eigenvectors $\tilde{\mathbf{x}}_j$ $(j=1,\ldots,n)$ in a new matrix $\mathbf{T}=[\tilde{\mathbf{x}}_1\cdots\tilde{\mathbf{x}}_n]$ with the property $\mathbf{T}^{-1}=\mathbf{T}'$ yields the diagonalization of \mathbf{A} as follows:

$$D = T'AT = T^{-1}AT = \begin{vmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{vmatrix}$$

Properties of eigenvalues

- 1) The product of the eigenvalues of a $(n \times n)$ -matrix yields its determinant: $|\mathbf{A}| = \prod_{i=1}^{n} \lambda_i$.
- 2) From 1.) it follows that a singular matrix must have at least one eigenvalue $\lambda_i = 0$.
- 3) The matrices \mathbf{A} and \mathbf{A}' have the same eigenvalues.
- 4) For a non-singular matrix \boldsymbol{A} with eigenvalues λ we have: $|\boldsymbol{A}^{-1} \frac{1}{\lambda}\boldsymbol{I}| = 0$.
- 5) Symmetric matrices have only real eigenvalues.
- 6) The rank of a symmetric matrix **A** is equal to the number of eigenvalues different from zero.

Definitions

- ► Degree of a polynomial
- ► Form of *n*th degree
- special case: quadratic form

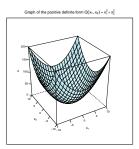
$$Q(x_1, x_2) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$

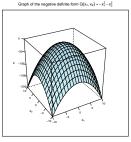
A quadratic form $Q(x_1, x_2)$ for two variables x_1 and x_2 is defined as

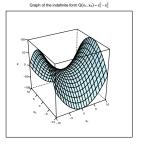
$$Q(x_1, x_2) = \mathbf{x}' \mathbf{A} \mathbf{x} = \sum_{i=1}^{2} \sum_{j=1}^{2} a_{ij} x_i x_j$$

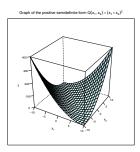
where $a_{ij} = a_{ji}$ and, thus,

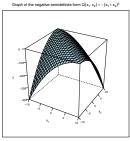
with the symmetric coefficient matrix
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix}$$











The quadratic form associated with the matrix ${\bf A}$ (and thus the matrix ${\bf A}$ itself) is said to be

```
\begin{array}{lll} \mbox{positive definite,} & \mbox{if } Q=x'\mbox{A}x>0 & \mbox{for all } x\neq 0 \\ \mbox{positive semi-definite,} & \mbox{if } Q=x'\mbox{A}x\geq 0 & \mbox{for all } x \\ \mbox{negative definite,} & \mbox{if } Q=x'\mbox{A}x<0 & \mbox{for all } x\neq 0 \\ \mbox{negative semi-definite,} & \mbox{if } Q=x'\mbox{A}x\leq 0 & \mbox{for all } x \end{array}
```

Otherwise the quadratic form is **indefinite**.

Note: For any quadratic matrix $\bf A$ it holds that $\bf x' \bf A \bf x = \bf x' \bf B \bf x$ with $\bf B = 0, 5 \cdot (\bf A + \bf A')$ symmetric.

The quadratic form Q(x) is

- ▶ positive (negative) definite, if all eigenvalues of the matrix **A** are positive (negative): $\lambda_j > 0$ ($\lambda_j < 0$) $\forall j = 1, 2, ..., n$;
- ▶ positive (negative) semi-definite, if **all** eigenvalues of the matrix **A** are non-negative (non-positive): $\lambda_j \geq 0$ $(\lambda_j \leq 0) \ \forall j=1,2,\ldots,n$ and **at least one** eigenvalue is equal to zero;
- ▶ indefinite, if two eigenvalues have different signs.

Properties of positive definite and positive semi-definite matrices

- Diagonal elements of a positive definite matrix are strictly positive. Diagonal elements of a positive semi-definite matrix are nonnegative.
- 2) If **A** is positive definite, then A^{-1} exists and is positive definite.
- 3) If **X** is $n \times k$, then **X'X** and **XX'** are positive semi-definite.
- 4) If **X** is $n \times k$ and $rk(\mathbf{X}) = \mathbf{k}$, then **X'X** is positive definite (and therefore non-singular).