Advanced Mathematical Methods

WS 2020/21

1 Linear Algebra

Prof. Dr. Thomas Dimpfl

Department of Statistics, Econometrics and Empirical
Economics

Outline: Linear Algebra

1.8 Eigenvalues and eigenvectors
1.9 Quadratic forms and sign definitness

Readings

- Knut Sydsaeter, Peter Hammond, Atle Seierstad, and Arne Strøm. Further Mathematics for Economic Analysis. Prentice Hall, 2008 Chapter 1

Online Resources

MIT course on Linear Algebra (by Gilbert Strang)

- Lecture 21: Eigenvalues and Eigenvectors https://www.youtube.com/watch?v=IXNXrLcoerU
- Lecture 22: Powers of a square matrix and Diagonalization https://www.youtube.com/watch?v=13r9QY6cmjc
- Lecture 26: Symmetric matrices and positive definiteness https://www.youtube.com/watch?v=umt6BB1nJ4w
- Lecture 27: Positive definite matrices and minima - Quadratic forms https://www.youtube.com/watch?v=vF7eyJ2g3kU

1.8 Eigenvalues and eigenvectors

assume a scalar λ exists such that

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}
$$

λ : eigenvalue
x : eigenvector
find λ via the homogenous linear equation system

$$
(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=\mathbf{0}
$$

1.8 Eigenvalues and eigenvectors

The properties of a quadratic homogenous linear equation system imply that:

- in any case a solution does exist;
- if $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) \neq 0$, then $\overline{\boldsymbol{x}}=\mathbf{0}$ is the trivial solution;
- only if $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$ there is a non-trivial solution.

1.8 Eigenvalues and eigenvectors

Determination of the eigenvalues via characteristic equation:

$$
|\boldsymbol{A}-\lambda \boldsymbol{I}|=0 \Longleftrightarrow(-1)^{n} \lambda^{n}+\alpha_{n-1} \lambda^{n-1}+\ldots+\alpha_{1} \lambda+\alpha_{0}=0
$$

for every (real or complex) eigenvalue λ_{i} of the $(n \times n)$-Matrix \boldsymbol{A} we can calculate the respective eigenvector $\boldsymbol{x}_{i} \neq \mathbf{0}$ solving the homogenous linear equation system

$$
\begin{equation*}
\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right) \boldsymbol{x}_{i}=\mathbf{0} \tag{1}
\end{equation*}
$$

The properties of homogenous linear equation systems imply that the solution of eq. (1) is not unambiguous, i.e. for the eigenvalue λ_{i} we can find infinitely many eigenvectors \boldsymbol{x}_{i}

1.8 Eigenvalues and eigenvectors

\boldsymbol{A} und \boldsymbol{B} (quadratic matrices of order n) are similar if a regular $(n \times n)$ - matrix C exists, such that

$$
B=C^{-1} A C .
$$

Special case: symmetric matrices
For a symmetric $(n \times n)$-matrix \boldsymbol{A} it holds that the normalized eigenvectors \tilde{x}_{j} with $j=1, \ldots, n$ have the property
(1) $\tilde{x}_{j}^{\prime} \tilde{x}_{j}=1$ for all j and
(2) $\tilde{x}_{i}^{\prime} \tilde{x}_{j}=0$ for all $i \neq j$.

1.8 Eigenvalues and eigenvectors

Principle axis theorem
collecting the normalized eigenvectors $\tilde{x}_{j}(j=1, \ldots, n)$ in a new matrix $\boldsymbol{T}=\left[\tilde{x}_{1} \cdots \tilde{x}_{n}\right]$ with the property $\boldsymbol{T}^{-1}=\boldsymbol{T}^{\prime}$ yields the diagonalization of \boldsymbol{A} as follows:

$$
\boldsymbol{D}=\boldsymbol{T}^{\prime} \boldsymbol{A} \boldsymbol{T}=\boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & \vdots \\
\vdots & & \ddots & 0 \\
0 & \ldots & 0 & \lambda_{n}
\end{array}\right]
$$

1.8 Eigenvalues and eigenvectors

Properties of eigenvalues

1) The product of the eigenvalues of a $(n \times n)$-matrix yields its determinant: $|\boldsymbol{A}|=\prod_{i=1}^{n} \lambda_{i}$.
2) From 1.) it follows that a singular matrix must have at least one eigenvalue $\lambda_{i}=0$.
3) The matrices \boldsymbol{A} and \boldsymbol{A}^{\prime} have the same eigenvalues.
4) For a non-singular matrix \boldsymbol{A} with eigenvalues λ we have: $\left|\boldsymbol{A}^{-1}-\frac{1}{\lambda} \boldsymbol{I}\right|=0$.
5) Symmetric matrices have only real eigenvalues.
6) The rank of a symmetric matrix \boldsymbol{A} is equal to the number of eigenvalues different from zero.

1.9 Quadratic forms and sign definitness

Definitions

- Degree of a polynomial
- Form of nth degree
- special case: quadratic form

$$
Q\left(x_{1}, x_{2}\right)=a_{11} x_{1}^{2}+2 a_{12} x_{1} x_{2}+a_{22} x_{2}^{2}
$$

1.9 Quadratic forms and sign definitness

A quadratic form $Q\left(x_{1}, x_{2}\right)$ for two variables x_{1} and x_{2} is defined as

$$
Q\left(x_{1}, x_{2}\right)=\underset{(1 \times 2)(2 \times 2)(2 \times 1)}{\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}}=\sum_{i=1}^{2} \sum_{j=1}^{2} a_{i j} x_{i} x_{j}
$$

where $a_{i j}=a_{j i}$ and, thus,
with the symmetric coefficient matrix $\mathbf{A}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{12} & a_{22}\end{array}\right]$

1.9 Quadratic forms and sign definitness

Graph of the positive definite form $Q\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$

Graph of the negative definite form $Q\left(x_{1}, x_{2}\right)=-x_{1}^{2}-x_{2}^{2}$

Graph of the indelinite form $Q\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$

Graph of the positive semidelinite form $Q\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right)^{2}$

Graph of the negative semidefinite form $Q\left(x_{1}, x_{2}\right)=-\left(x_{1}+x_{2}\right)^{2}$

1.9 Quadratic forms and sign definitness

The quadratic form associated with the matrix \mathbf{A} (and thus the matrix \mathbf{A} itself) is said to be
positive definite, if $Q=x^{\prime} A x>0 \quad$ for all $x \neq 0$ positive semi-definite, if $Q=x^{\prime} A x \geq 0$ for all x negative definite, negative semi-definite, if $Q=x^{\prime} A x \leq 0 \quad$ for all x

Otherwise the quadratic form is indefinite.
Note: For any quadratic matrix \mathbf{A} it holds that $\mathbf{x}^{\prime} \mathbf{A x}=\mathbf{x}^{\prime} \mathbf{B x}$ with $\mathbf{B}=0,5 \cdot\left(\mathbf{A}+\mathbf{A}^{\prime}\right)$ symmetric.

1.9 Quadratic forms and sign definitness

The quadratic form $Q(x)$ is

- positive (negative) definite, if all eigenvalues of the matrix \mathbf{A} are positive (negative): $\lambda_{j}>0\left(\lambda_{j}<0\right) \forall j=1,2, \ldots, n$;
- positive (negative) semi-definite, if all eigenvalues of the matrix \mathbf{A} are non-negative (non-positive): $\lambda_{j} \geq 0$ $\left(\lambda_{j} \leq 0\right) \forall j=1,2, \ldots, n$ and at least one eigenvalue is equal to zero;
- indefinite, if two eigenvalues have different signs.

1.9 Quadratic forms and sign definitness

Properties of positive definite and positive semi-definite matrices

1) Diagonal elements of a positive definite matrix are strictly positive. Diagonal elements of a positive semi-definite matrix are nonnegative.
2) If \mathbf{A} is positive definite, then \mathbf{A}^{-1} exists and is positive definite.
3) If \mathbf{X} is $n \times k$, then $\mathbf{X}^{\prime} \mathbf{X}$ and $\mathbf{X X}^{\prime}$ are positive semi-definite.
4) If \mathbf{X} is $n \times k$ and $\operatorname{rk}(\mathbf{X})=\mathbf{k}$, then $\mathbf{X}^{\prime} \mathbf{X}$ is positive definite (and therefore non-singular).
