Advanced Mathematical Methods WS 2020/21

2 Multivariate Calculus

Prof. Dr. Thomas Dimpfl

Department of Statistics, Econometrics and Empirical Economics

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Wirtschafts- und Sozialwissenschaftliche Fakultät

Outline: Multivariate Calculus

- 2.1 Real valued and vector-valued functions
- 2.2 Derivatives
- 2.3 Differentiation of linear and quadratic forms
- 2.4 Taylor series approximations

Readings

- Miroslav Lovric. Vector Calculus. Wiley, 2007, Chapter 2
- J. E. Marsden and A. J. Tromba. Vector Calculus.
 W H Freeman and Company, fifth edition, 2003, Chapters 2-3

Online References

MIT course on Multivariable Calculus (Herbert Gross)

- Lecture 3: Directional Derivatives
- MIT course on Multivariable Calculus (Denis Auroux)
 - Session 34: The Chain Rule with More Variables
 - Session 38: Directional Derivatives

2.1 Real valued and vector-valued functions

A function whose domain is a subset U of \mathbb{R}^m , $m \ge 1$ and whose range is contained in \mathbb{R}^n is called a **real-valued function (scalar function) of m variables** if n = 1 and a **vector-valued function** (vector function) of m variables if n > 1Notation:

- $f: U \subseteq \mathbb{R}^m \to \mathbb{R}$ describes a scalar function
- $F: U \subseteq \mathbb{R}^m \to \mathbb{R}^n$ describes a vector function
- a scalar function assigns a unique *real number* $f(x) = f(x_1, x_2 \cdots x_m)$ to each element $x = (x_1, x_2 \cdots x_m)$ in its domain U
- ▶ a vector function assigns a unique vector $F(x) = F(x_1, x_2 \cdots x_m) \in \mathbb{R}^n$ to each $x = (x_1, x_2 \cdots x_m) \in U$

2.1 Real valued and vector-valued functions

We write:

$$F(x_1, x_2 \cdots x_m) = (F_1(x_1, x_2 \cdots, x_m), \cdots, F_n(x_1, x_2 \cdots, x_m))$$

or = (F_1(x), \dots, F_n(x))

► F₁ ··· F_n are the component functions of F (and real-valued functions of x₁ ··· x_m)

2.1 Real valued and vector-valued functions

Examples:

Distance function:

 $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ measures the distance from the point (x, y, z) to the origin. \rightarrow real-valued function of three variables defined on $U = \mathbb{R}^3$

Projection function:

F(x, y, z) = (x, y) is a vector-valued function of three variables that assigns to every vector $(x, y, z) \in \mathbb{R}^3$ its projection (x, y) onto the *xy*-plane in

Open sets in \mathbb{R}^m : A set $U \subseteq \mathbb{R}^m$ is **open** in \mathbb{R}^m if and only if all of its points are interior points

Partial Derivative:

Let $f: U \subseteq \mathbb{R}^m \to \mathbb{R}$ be a real valued function of m variables $x_1, x_2 \cdots, x_m$ defined on an open set U in \mathbb{R}^m

Partial derivative (real-valued function)

$$\frac{\partial f}{\partial x_i}(x_1, x_2 \cdots, x_m) = \lim_{h \to 0} \frac{f(x_1, \cdots, x_i + h, \cdots, x_m) - f(x_1, \cdots, x_i, \cdots, x_m)}{h},$$

if the limit exists.

Derivative of a function of several variables: $F: U \subseteq \mathbb{R}^m \to \mathbb{R}^n$

$$DF(x) = \begin{pmatrix} \frac{\partial F_1}{\partial x_1}(x) & \frac{\partial F_1}{\partial x_2}(x) & \dots & \frac{\partial F_1}{\partial x_m}(x) \\ \frac{\partial F_2}{\partial x_1}(x) & \frac{\partial F_2}{\partial x_2}(x) & \dots & \frac{\partial F_2}{\partial x_m}(x) \\ \vdots & \vdots & & \vdots \\ \frac{\partial F_n}{\partial x_1}(x) & \frac{\partial F_n}{\partial x_2}(x) & \dots & \frac{\partial F_n}{\partial x_m}(x) \end{pmatrix}$$

Provided that all partial derivatives exist at x

The i - th column is the matrix

which consists of partial derivatives of the component functions F_1, \dots, F_n with respect to the same variable x_i , evaluated at x

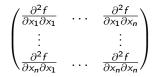
Gradient:

Consider the special case $f : U \subset \mathbb{R}^n \to \mathbb{R}$ Here $Df(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n} \end{bmatrix}$ is a $1 \times n$ matrix

We can form the corresponding vector $(\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n})$, called the **gradient** of f and denoted by ∇f .

Higher order derivatives:

Suppose that $f: U \subset \mathbb{R}^n \to \mathbb{R}$ has second order continuous derivatives $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)(x_0)$, for $i, j = 1, \cdots, n$, at a point $x_0 \in U$. The Hessian of f is given as



2.3 Differentiation of linear and quadratic forms

For a given $n \times 1$ vector \mathbf{a} and any $n \times 1$ vector \mathbf{x} , consider the real-valued linear function $f(\mathbf{x}) = \mathbf{a}'\mathbf{x}$. The derivative of f with respect to \mathbf{x} is

$$\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} = \boldsymbol{a}'.$$

For a quadratic form Q(x) = x'Ax the derivative of Q with respect to x is

$$\frac{\partial Q(\boldsymbol{x})}{\partial \boldsymbol{x}} = 2\boldsymbol{x}'\boldsymbol{A}.$$

2.4 Taylor series approximations Single-variable case

Suppose that at least k + 1 derivatives of a function f(x) exist and are continuous in a neighborhood of x_0 . Taylor's theorem asserts that

$$f(x_0 + h) = \sum_{i=0}^{k} \frac{f^{(k)}(x_0)}{i!} h^i + R_k(x_0, h)$$

where

$$R_k(x_0,h) = \int_{x_0}^{x_0+h} \frac{(x_0+h-\tau)^k}{k!} f^{(k+1)}(\tau) d\tau.$$

2.4 Taylor series approximations Multi-variable case

Theorem: First-order Taylor formula Let $f : U \subset \mathbb{R}^n \to \mathbb{R}$ be differentiable at $x_0 \in U$. Then

$$f(\mathbf{x}_0 + \mathbf{h}) = f(\mathbf{x}_0) + \sum_{i=1}^n h_i \frac{\partial f}{\partial x_i}(\mathbf{x}_0) + R_1(\mathbf{x}_0, \mathbf{h})$$

where $R_1(\mathbf{x}_0, \mathbf{h})/d(\mathbf{h}) \to 0$ as $\mathbf{h} \to \mathbf{0}$ in \mathbb{R}^n .

2.4 Taylor series approximations

Multi-variable case

Theorem: Second-order Taylor formula

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ have continuous partial derivatives of third order. Then

$$f(\mathbf{x}_0 + \mathbf{h}) = f(\mathbf{x}_0) + \sum_{i=1}^n h_i \frac{\partial f}{\partial x_i}(\mathbf{x}_0) \\ + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}_0) + R_2(\mathbf{x}_0, \mathbf{h}),$$

where $R_2(\mathbf{x}_0, \mathbf{h})/d(\mathbf{h})^2 \rightarrow 0$ as $\mathbf{h} \rightarrow \mathbf{0}$.