Advanced Mathematical Methods

WS 2020/21

4 Difference Equations

Prof. Dr. Thomas Dimpfl

Department of Statistics, Econometrics and Empirical
Economics

Outline: Difference Equations

4.1 First-Order Difference Equations
4.2 Solving a Difference Equation by Recursive Substitution
4.3 Dynamic Multipliers
$4.4 p$ - th-Order Difference Equations

Readings

- J. D. Hamilton. Time Series Analysis. Princeton University Press, 1994, Chapter 1
- Knut Sydsaeter, Peter Hammond, Atle Seierstad, and Arne Strøm. Further Mathematics for Economic Analysis.
Prentice Hall, 2008, Chapter 11

Online References

What is a Difference Equation? (Jonathan Mitchell) https://www.youtube.com/watch?v=bfMjdvQoUYA Introduction to Linear Difference Equations (Thomas Dimpfl) https://youtu.be/Ir2QJOrsUdM

4.1 First-Order Difference Equations

Linear first-order difference equation:

$$
\begin{equation*}
y_{t}=\phi y_{t-1}+w_{t} \tag{1}
\end{equation*}
$$

- y_{t} is value at date t
- linear equation that relates y_{t} to y_{t-1}
- first-order since only first lag is included
- w_{t} : a variable coefficient

4.1 First-Order Difference Equations

homogeneous first order difference equation:

$$
\Delta y_{t}+a y_{t-1}=0
$$

- with solution $y_{t}=(1-a)^{t} C^{*}$
inhomogeneous first order difference equation:

$$
\Delta y_{t}+a y_{t-1}=b
$$

- with solution $y_{t}=C^{*}(1-a)^{t}+\frac{b}{a}$

4.1 First-Order Difference Equations

Phase diagram

4.2 Dynamic First Order Difference Equation

$$
y_{t}=\phi y_{t-1}+w_{t}
$$

- inhomogenous case with $b=w_{t}$ but: ω_{t} is dynamic
- Question: What are the effects on y_{t} of changes in w_{t} ?

The dynamics described by the equation above govern the behaviour of y for all dates t

Date	Equation
0	$y_{0}=\phi y_{-1}+w_{0}$
1	$y_{1}=\phi y_{0}+w_{1}$
2	$y_{1}=\phi y_{1}+w_{2}$
\vdots	\vdots
t	$y_{t}=\phi y_{t-1}+w_{t}$

4.2 Dynamic First Order Difference Equation

The following procedure is known as solving the difference equation above by recursive substitution:

$$
y_{t}=\phi^{t+1} y_{-1}+\phi^{t} w_{0}+\phi^{t-1} w_{1}+\phi^{t-2} w_{2}+\cdots+\phi w_{t-1}+w_{t}
$$

4.3 Dynamic Multipliers

If w_{0} were to change with y_{-1} and $w_{1}, w_{2}, \ldots, w_{t}$ taken as unaffected, the effect on y_{t} would be given by

$$
\frac{\partial y_{t}}{\partial w_{0}}=\phi^{t}
$$

The effect of w_{t} on y_{t+j} is given by

$$
\frac{\partial y_{t+j}}{\partial w_{t}}=\phi^{j}
$$

4.3 Dynamic Multipliers

Dynamic Multiplier for the first-order difference equation for different values of ϕ (plot of $\frac{\partial y_{t+j}}{\partial w_{t}}=\phi^{j}$ as a function of the lag j)
$\phi=0.8$

$$
\phi=-0.8
$$

4.3 Dynamic Multipliers

Dynamic Multiplier for the first-order difference equation for different values of ϕ (plot of $\frac{\partial y_{t+j}}{\partial w_{t}}=\phi^{j}$ as a function of the lag j)
$\phi=1.1$

$$
\phi=-1.1
$$

4.3 Dynamic Multipliers

Consider a permanent change in w, i.e. all w_{t+j} increase by one unit. Then the effect on y_{t+j} of a permanent change in w beginning in period t is given by
$\frac{\partial y_{t+j}}{\partial w_{t}}+\frac{\partial y_{t+j}}{\partial w_{t+1}}+\frac{\partial y_{t+j}}{\partial w_{t+2}}+\cdots+\frac{\partial y_{t+j}}{\partial w_{t+j}}=\phi^{j}+\phi^{j-1}+\phi^{j-2}+\phi+1$
When $|\phi|<1$, the limit of this expression as j goes to infinity is sometimes described the long-run effect of w on y

$$
\begin{aligned}
& \lim _{j \rightarrow \infty}\left(\frac{\partial y_{t+j}}{\partial w_{t}}+\frac{\partial y_{t+j}}{\partial w_{t+1}}+\frac{\partial y_{t+j}}{\partial w_{t+2}}+\cdots+\frac{\partial y_{t+j}}{\partial w_{t+j}}\right) \\
& =1+\phi+\phi^{2}+\ldots \\
& =\frac{1}{(1-\phi)}
\end{aligned}
$$

4.4 pth-Order Difference Equations

Generalize the dynamic system (1) by allowing the value of y at date t to depend on p of its own lags

Linear p th order difference equation:

$$
y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\cdots+\phi_{p} y_{t-p}+w_{t}
$$

Rewrite as first-order vector difference equation: collect y_{t} and its lags in a $(p \times 1)$ vector

$$
\boldsymbol{\xi}_{\boldsymbol{t}}=\left(\begin{array}{c}
y_{t} \\
y_{t-1} \\
y_{t-2} \\
\vdots \\
y_{t-p+1}
\end{array}\right)
$$

4.4 pth-Order Difference Equations

Define the $(p \times p)$ matrix F

$$
\boldsymbol{F}=\left(\begin{array}{cccccc}
\phi_{t} & \phi_{2} & \phi_{3} & \ldots & \phi_{p-1} & \phi_{p} \\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

and obtain the following first-order vector difference equation

$$
\xi_{t}=F \xi_{t-1}+v_{t}
$$

with $\boldsymbol{v}_{\boldsymbol{t}}=\left(w_{t}, 0,0, \ldots, 0\right)$

4.4 pth-Order Difference Equations

recursive substitution of the first-order vector difference equation yields

$$
\xi_{\boldsymbol{t}}=F^{t+1} \xi_{-1}+F^{t} v_{0}+F^{t-1} v_{\mathbf{1}}+F^{t-2} v_{\mathbf{2}}+\cdots+\boldsymbol{F}_{v_{t-1}}+v_{\boldsymbol{t}}
$$

$$
\left(\begin{array}{c}
y_{t} \\
y_{t-1} \\
y_{t-2} \\
\vdots \\
y_{t-p+1}
\end{array}\right)=F^{t+1}\left(\begin{array}{c}
y_{-1} \\
y_{-2} \\
y_{-3} \\
\vdots \\
y_{-p}
\end{array}\right)+\boldsymbol{F}^{t}\left(\begin{array}{c}
w_{0} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)+\boldsymbol{F}^{t-1}\left(\begin{array}{c}
w_{1} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)+\ldots
$$

$$
+\boldsymbol{F}^{\mathbf{1}}\left(\begin{array}{c}
w_{t-1} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)+\left(\begin{array}{c}
w_{t} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

4.4 pth-Order Difference Equations

Let $f_{11}^{(t)}$ denote the $(1,1)$ element of $\boldsymbol{F}^{\boldsymbol{t}}, f_{12}^{(t)}$ the $(1,2)$ element of F^{t}, and so on.
Thus, for a p th-order difference equation, the dynamic multiplier is given by

$$
\frac{\partial y_{t+j}}{\partial w_{t}}=f_{11}^{(j)}
$$

4.4 pth-Order Difference Equations

This is the $(1,1)$ element of \boldsymbol{F}^{j} which can easily be obtained in terms of the eigenvalues of the matrix F via

$$
\left|F-\lambda I_{p}\right|=0
$$

The eigenvalues of the matrix \boldsymbol{F} are the values of $\boldsymbol{\lambda}$ that satisfy

$$
\lambda^{p}-\phi_{1} \lambda^{p-1}-\phi_{2} \lambda^{p-2}-\cdots-\phi_{p-1} \lambda-\phi_{p}=0
$$

