Advanced Mathematical Methods WS 2020/21

5 Mathematical Statistics

Prof. Dr. Thomas Dimpfl

Department of Statistics, Econometrics and Empirical Economics

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Wirtschafts- und Sozialwissenschaftliche Fakultät

Outline: Mathematical Statistics

- 5.1 Measure spaces
- 5.2 Random Variables
- 5.3 pdf and cdf
- 5.4 Expectation, Variance and Moments

 A. Papoulis and A. U. Pillai. Probability, Random Variables and Stochastic Processes.
 Mc Graw Hill, fourth edition, 2002, Chapters 1-4

Online References

MIT Course on Probabilistic Systems Analysis and Applied Probability (by John Tsitsiklis)

- Discrete RVs I: Concept of random variables, probability mass function, expected value, variance https://www.youtube.com/watch?v=3MOahpLxj6A
- Continuous RVs: probability density function, cumulative distribution function, expected value, variance https://www.youtube.com/watch?v=mHfn_7ym6to

Notation: Ω

- fundamental measure (or probability, or sample) space
- \blacktriangleright consists of all points (singletons) ω possible as the outcome to an experiment

Definition: Event

An Event A is a subset of Ω . The empty event \emptyset and the whole space Ω are also events.

Definition: Topological space

A topological space (Ω, \mathcal{F}) is a space Ω together with a class \mathcal{F} of subsets of Ω . The members of the set \mathcal{F} are called open sets. \mathcal{F} has the property that unions of any number of the sets in \mathcal{F} (finite or infinite, countable or uncountable) remain in \mathcal{F} , and intersections of finite numbers of sets in \mathcal{F} also remain in \mathcal{F} . The closed sets are those whose complements are in \mathcal{F} .

Definition: Sigma-Algebra

 $\begin{array}{l} \mathcal{F} \text{ is a sigma algebra if} \\ (i) \ A_k \in \mathcal{F} \text{ for all } k \text{ implies } \cup_{k=1}^{\infty} A_k \in \mathcal{F}, \\ (ii) \ A \in \mathcal{F} \text{ implies } \bar{A} \in \mathcal{F}, \\ (iii) \ \emptyset \in \mathcal{F}. \end{array}$

Theorem: Properties of a Sigma-Algebra

If \mathcal{F} is a sigma algebra, then (iv) $\Omega \in \mathcal{F}$, (v) $A_k \in \mathcal{F}$ for all k implies $\bigcap_{k=1}^{\infty} A_k \in \mathcal{F}$.

Definition: Measurable space

A pair (Ω, \mathcal{F}) where the former is a set and the latter a sigma-algebra of subsets of Ω is called a measurable space.

Definition: Probability measure

A probability measure is a measure P in the measurable space (Ω, \mathcal{F}) which satisfies the following properties:

(i)
$$P(A) \ge 0$$
 for all A

- (ii) $P(\Omega) = 1$
- (iii) $P(\emptyset) = 0$

(iv)
$$P(\bar{A}) = 1 - P(A)$$

(v) monotonicity, subadditivity

Definition: Probability space

The triple $(\Omega, \mathcal{F}, \mathcal{P})$ is called a probability space.

Theorem: Conditional probability

For $B \in \mathcal{F}$ with P(B) > 0, $Q(A) = P(A | B) = P(A \cap B)/P(B)$ is a probability measure on the same space (Ω, \mathcal{F})

5.2 Random Variables

Definition: Measurable function

Let f be a function from a measurable space (Ω, \mathcal{F}) into the real numbers. The function f is measurable if for each Borel set $B \in \mathcal{B}$, the set $\{\omega; f(\omega) \in B\} \in \mathcal{F}$.

Definition: Random variable

A random variable X is a measurable function from a probability space $(\Omega, \mathcal{F}, \mathcal{P})$ into the real numbers \mathbb{R} .

4.3 Cumulative Distribution Functions

Probability distribution function: discrete case

$$f_X(x) = P(X = x)$$

requirements:

•
$$0 \leq P(X = x) \leq 1$$

$$\sum_{x} f_X(x) = 1$$

4.3 Cumulative Distribution Functions

(Probability) Density function: continuous case

it holds that P(X = x) = 0

requirements:

•
$$P(a \le X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x \ge 0$$

• $\int_{-\infty}^{\infty} f_X(x) \, \mathrm{d}x = 1$

4.3 Cumulative Distribution Functions

Definition: Cumulative distribution function

The cumulative distribution function (cdf) of a random variable X is defined to be the function $F_X(x) = P(X \le x)$, for $x \in \mathbb{R}$. to get the cdf:

discrete: $F_X(x) = \sum_{X \le x} f_X(x) = P(X \le x)$

continuous:

$$F_X(x) = \int\limits_{-\infty}^{x} f_X(t) \,\mathrm{d}t$$

4.3 Cumulative Distribution Functions Properties

(vi) $P(x_1 \le X \le x_2) = F_X(x_2) - F_X(x_1)$

5.4 Expectation, Variance and Moments

Expectations of a random variable

$$E[X] = \begin{cases} \sum_{x_i} x f_X(x_i) & \text{if } x \text{ is discrete} \\ \sum_{i=1}^{\infty} x f_X(x) dx & \text{if } x \text{ is continuous} \end{cases}$$

$$g(X) \text{ a measurable function of } x, \text{ then:}$$
$$E[g(X)] = \begin{cases} \sum_{x} g(x_i) f_X(x_i) & \text{if } x \text{ is discrete} \\ \infty \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & \text{if } x \text{ is continuous} \end{cases}$$

4.4 Expectation, Variance and Moments Calculation rules

- ► E[a] = a
- $\blacktriangleright E[bX] = b \cdot E[X]$
- linear transformation E[a + bX] = a + bE[X]
- $E[g_1(X) + g_2(X)] = E[g_1(X)] + E[g_2(X)]$

4.4 Expectation, Variance and Moments

Variance of a random variable

 $let g(X) = (X - E[X])^2$

$$Var[X] = \sigma^{2} = E[(X - E[X])^{2}]$$
$$= \begin{cases} \sum_{x} (x_{i} - E[X])^{2} f_{X}(x_{i}) & \text{if } x \text{ is discrete} \\ \\ \int_{-\infty}^{\infty} (x - E[X])^{2} f_{X}(x) dx & \text{if } x \text{ is continuous} \end{cases}$$

4.4 Expectation, Variance and Moments Calculation rules

- ► *Var*[*a*] = 0
- Var[X + a] = Var[X]
- $Var[bX] = b^2 Var[X]$

•
$$Var[a + bX] = b^2 Var[X]$$

important result:

$$Var[X] = E[X^2] - E[X]^2$$

4.4 Expectation, Variance and Moments Standardization

an important transformation: standardization of a random variable \boldsymbol{X}

let
$$g(X) = \frac{X - \mu}{\sigma} = Z$$

 $Z = \frac{X - \mu}{\sigma} = \frac{-\mu}{\sigma} + \frac{1}{\sigma}X$
 $\Rightarrow E[Z] = 0$
 $\Rightarrow Var[Z] = 1$

4.4 Expectation, Variance and Moments Chebychev Inequality

for any random variable X with finite expected value μ and finite variance $\sigma^2>0$ and a positive constant k

$$P(\mu - k\sigma \le X \le \mu + k\sigma) \ge 1 - rac{1}{k^2}$$

4.4 Expectation, Variance and Moments Skewness and Kurtosis

central moments of a random variable:

$$\mu_r = E[(X - \mu)^r]$$

as r grows, μ_r tends to explode

solution: normalization