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Readings

I A. Papoulis and A. U. Pillai. Probability, Random Variables
and Stochastic Processes.
Mc Graw Hill, fourth edition, 2002, Chapters 1-4



Online References

MIT Course on Probabilistic Systems Analysis and Applied
Probability (by John Tsitsiklis)

I Discrete RVs I: Concept of random variables, probability mass
function, expected value, variance
https://www.youtube.com/watch?v=3MOahpLxj6A

I Continuous RVs: probability density function, cumulative
distribution function, expected value, variance
https://www.youtube.com/watch?v=mHfn_7ym6to

https://www.youtube.com/watch?v=3MOahpLxj6A
https://www.youtube.com/watch?v=mHfn_7ym6to


5.1 Measure spaces

Notation: Ω

I fundamental measure (or probability, or sample) space
I consists of all points (singletons) ω possible as the outcome to

an experiment

Definition: Event
An Event A is a subset of Ω. The empty event ∅ and the whole
space Ω are also events.



5.1 Measure spaces

Definition: Topological space

A topological space (Ω,F) is a space Ω together with a class F of
subsets of Ω. The members of the set F are called open sets. F
has the property that unions of any number of the sets in F (finite
or infinite, countable or uncountable) remain in F , and
intersections of finite numbers of sets in F also remain in F . The
closed sets are those whose complements are in F .



5.1 Measure spaces

Definition: Sigma-Algebra

F is a sigma algebra if
(i) Ak ∈ F for all k implies ∪∞k=1Ak ∈ F ,
(ii) A ∈ F implies Ā ∈ F ,
(iii) ∅ ∈ F .

Theorem: Properties of a Sigma-Algebra

If F is a sigma algebra, then
(iv) Ω ∈ F ,
(v) Ak ∈ F for all k implies ∩∞k=1Ak ∈ F .



5.1 Measure spaces

Definition: Measurable space

A pair (Ω,F) where the former is a set and the latter a
sigma-algebra of subsets of Ω is called a measurable space.

Definition: Probability measure

A probability measure is a measure P in the measurable space
(Ω,F) which satisfies the following properties:

(i) P(A) ≥ 0 for all A
(ii) P(Ω) = 1
(iii) P(∅) = 0
(iv) P(Ā) = 1− P(A)

(v) monotonicity, subadditivity



5.1 Measure spaces

Definition: Probability space

The triple (Ω,F ,P) is called a probability space.

Theorem: Conditional probability

For B ∈ F with P(B) > 0, Q(A) = P(A | B) = P(A ∩ B)/P(B) is
a probability measure on the same space (Ω,F)



5.2 Random Variables

Definition: Measurable function
Let f be a function from a measurable space (Ω,F) into the real
numbers. The function f is measurable if for each Borel set B ∈ B,
the set {ω; f (ω) ∈ B} ∈ F .

Definition: Random variable
A random variable X is a measurable function from a probability
space (Ω,F ,P) into the real numbers R.



4.3 Cumulative Distribution Functions
Probability distribution function: discrete case

fX (x) = P(X = x)

requirements:
I 0 ≤ P(X = x) ≤ 1

I
∑
x

fX (x) = 1



4.3 Cumulative Distribution Functions
(Probability) Density function: continuous case

it holds that P(X = x) = 0

requirements:

I P(a ≤ X ≤ b) =

b∫
a

fX (x) dx ≥ 0

I

∞∫
−∞

fX (x) dx = 1



4.3 Cumulative Distribution Functions

Definition: Cumulative distribution function
The cumulative distribution function (cdf) of a random variable X
is defined to be the function FX (x) = P(X ≤ x), for x ∈ R.
to get the cdf:

discrete:
FX (x) =

∑
X≤x

fX (x) = P(X ≤ x)

continuous:

FX (x) =
x∫
−∞

fX (t) dt



4.3 Cumulative Distribution Functions
Properties

(i) FX (+∞) = 1; FX (−∞) = 0
(ii) FX (x) is a nondecreasing function of x :

if x1 < x2, FX (x1) ≤ FX (x2)
note: the event {X ≤ x1} is a subset of {X ≤ x2}

(iii) if FX (x0) = 0, then FX (x) = 0 ∀ x ≤ x0

(iv) P(X > x) = 1− FX (x)
events {X ≤ x} and {X > x} are mutually exclusive and
{X ≤ x} ∪ {X > x} = Ω

(v) FX (x) is continuous from the right:
limx→a+ FX (x) = FX (a)

(vi) P(x1 ≤ X ≤ x2) = FX (x2)− FX (x1)



5.4 Expectation, Variance and Moments
Expectations of a random variable

E[X ] =


∑
xi

xfX (xi ) if x is discrete
∞∫
−∞

xfX (x)dx if x is continuous

g(X ) a measurable function of x , then:

E[g(X )] =


∑
x

g(xi )fX (xi ) if x is discrete
∞∫
−∞

g(x)fX (x)dx if x is continuous



4.4 Expectation, Variance and Moments
Calculation rules

I E[a] = a
I E[bX ] = b · E[X ]

I linear transformation E[a + bX ] = a + bE[X ]

I E[g1(X ) + g2(X )] = E[g1(X )] + E[g2(X )]



4.4 Expectation, Variance and Moments
Variance of a random variable

let g(X ) = (X − E[X ])2

Var[X ] = σ2 = E[(X − E[X ])2]

=


∑
x

(xi − E[X ])2fX (xi ) if x is discrete
∞∫
−∞

(x − E[X ])2fX (x)dx if x is continuous



4.4 Expectation, Variance and Moments
Calculation rules

I Var[a] = 0
I Var[X + a] = Var[X ]

I Var[bX ] = b2Var[X ]

I Var[a + bX ] = b2Var[X ]

important result:

Var[X ] = E[X 2]− E[X ]2



4.4 Expectation, Variance and Moments
Standardization

an important transformation: standardization of a random
variable X

let g(X ) =
X − µ
σ

= Z

Z =
X − µ
σ

=
−µ
σ

+
1
σ

X

⇒ E[Z ] = 0
⇒ Var[Z ] = 1



4.4 Expectation, Variance and Moments
Chebychev Inequality

for any random variable X with finite expected value µ and finite
variance σ2 > 0 and a positive constant k

P(µ− kσ ≤ X ≤ µ+ kσ) ≥ 1− 1
k2



4.4 Expectation, Variance and Moments
Skewness and Kurtosis

central moments of a random variable:

µr = E[(X − µ)r ]

as r grows, µr tends to explode

solution: normalization

I skewness coefficient: γ =
E[(X − µ)3]

σ3

I kurtosis: κ =
E[(X − µ)4]

σ4

often reported as excess kurtosis κ− 3


