Advanced Mathematical Methods

 WS 2020/21
5 Mathematical Statistics

Prof. Dr. Thomas Dimpfl

Department of Statistics, Econometrics and Empirical
Economics

WIRTSCHAFTS- UND
SOZIALWISSENSCHAFTLICHE
FAKULTÄT

Outline: Mathematical Statistics

5.8 Joint distributions
5.9 Marginal Distributions
5.10 Covariance and correlation
5.11 Conditional Distributions
5.12 Conditional Moments

Readings

- A. Papoulis and A. U. Pillai. Probability, Random Variables and Stochastic Processes.
Mc Graw Hill, fourth edition, 2002, Chapter 6

Online References

MIT Course on Probabilistic Systems Analysis and Applied Probability (by John Tsitsiklis)

- Discrete RVs II: Functions of RV, conditional probabilities, specific distribution, total expectation theorem, joint probabilities https://www.youtube.com/watch?v=-qCEoqpwjf4
- Discrete RVs III: Conditional distributions and joint distributions continued https://www.youtube.com/watch?v=EObHWIEKGjA
- Multiple Continuous RVs: conditional pdf and cdf, joint pdf and cdf
https://www.youtube.com/watch?v=CadZXGNauY0

5.8 Joint distributions

Definition: Random vector
Assume a probability space ($\Omega, \mathcal{F}, \mathcal{P}$). A vector-valued function $X(\cdot): \Omega \rightarrow \mathbb{R}^{n} ; \omega \mapsto \underline{X}(\omega)$ which attributes to every singleton ω a vector of real numbers $\underline{X}(\omega)$ is called a random vector.

5.8 Joint distributions

Definition: Joint density function
The joint density for two discrete random variables X_{1} and X_{2} is given as

$$
f_{X}\left(x_{1}, x_{2}\right)= \begin{cases}P\left(X_{1}=x_{1 i} \cap X_{2}=x_{2 i}\right) & \forall i, j \\ 0 & \text { else }\end{cases}
$$

Properties:

- $f_{X}\left(x_{1}, x_{2}\right) \geq 0 \quad \forall \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$
- $\sum_{i} \sum_{j} f_{\underline{X}}\left(x_{1 i}, x_{2 j}\right)=1$

5.8 Joint distributions

Definition: Joint cumulative distribution function
The cdf for two discrete random variables X_{1} and X_{2} is given as

$$
F_{\underline{X}}\left(x_{1}, x_{2}\right)=P\left(X_{1} \leq x_{1} \cap X_{2} \leq x_{2}\right)=\sum_{x_{1 i} \leq x_{1}} \sum_{x_{2 i} \leq x_{2}} f_{\underline{X}}\left(x_{1 i}, x_{2 i}\right)
$$

it follows that

$$
P\left(a \leq X_{1} \leq b \cap c \leq X_{2} \leq d\right)=\sum_{a \leq x_{1} \leq b} \sum_{c \leq x_{2} \leq d} f_{\underline{X}}\left(x_{1 i}, x_{2 i}\right)
$$

5.8 Joint distributions

if X_{1} and X_{2} are two continuous random variables, the following holds:

$$
\begin{array}{ll}
\text { pdf } & f_{\underline{X}}\left(x_{1 i}, x_{2 i}\right) \\
\text { cdf } & =\frac{\partial^{2} F_{\underline{X}}\left(x_{1}, x_{2}\right)}{\partial x_{1} \partial x_{2}} \\
& F_{\underline{X}}\left(x_{1}, x_{2}\right)
\end{array}
$$

5.9 Marginal Distributions

derive the distribution of the individual variable from the joint distribution function
\rightarrow sum or integrate out the other variable

$$
f_{X_{1}}\left(x_{1 i}\right)= \begin{cases}\sum_{j} f_{X}\left(x_{1 i}, x_{2 j}\right) & \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty} f_{X}\left(x_{1}, x_{2}\right) d x_{2} & \text { if } X \text { is continuous }\end{cases}
$$

5.9 Marginal Distributions

two random variables are statistically independent if their joint density is the product of the marginal densities:

$$
f_{X}\left(x_{1}, x_{2}\right)=f_{x_{1}}\left(x_{1}\right) \cdot f_{x_{2}}\left(x_{2}\right) \Leftrightarrow X \text { and } Y \text { are independent }
$$

under independence the cdf factors as well:

$$
F_{X Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)
$$

Expectations in a joint distribution are computed with respect to the marginals

5.10 Covariance and correlation

$$
\operatorname{Cov}\left[X_{1}, X_{2}\right]=E\left[\left(X_{1}-E\left[X_{1}\right]\right)\left(X_{2}-E\left[X_{2}\right]\right)\right]
$$

Properties:

- symmetry: $\operatorname{Cov}\left[X_{1}, X_{2}\right]=\operatorname{Cov}\left[X_{2}, X_{1}\right]$
- linear transformation:

$$
\begin{array}{r}
Y_{1}=b_{0}+b_{1} X_{1} \quad Y_{2}=c_{0}+c_{1} X_{2} \\
\Rightarrow \operatorname{Cov}\left[Y_{1}, Y_{2}\right]=b_{1} c_{1} \operatorname{Cov}\left[X_{1}, X_{2}\right]
\end{array}
$$

- $\operatorname{Cov}\left[X_{1}, X_{2}\right]=\sum_{i} \sum_{j} x_{1 i} x_{2 j} f_{X}\left(x_{1 i}, x_{2 j}\right)-E\left[X_{1}\right] E\left[X_{2}\right]$

$$
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} x_{2} f_{X}\left(x_{1}, x_{2}\right) d x_{2} d x_{1}-E\left[X_{1}\right] E\left[X_{2}\right]
$$

5.10 Covariance and correlation

Pearson's correlation coefficient

$$
\rho_{x_{1}, \chi_{2}}=\frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)}{\sqrt{\operatorname{Var}\left(X_{1}\right) \cdot \operatorname{Var}\left(X_{2}\right)}}=\frac{\sigma_{x_{1}, x_{2}}}{\sigma_{x_{1}} \sigma_{x_{2}}}
$$

- if X_{1} and X_{2} are independent, they are also uncorrelated
- attention: uncorrelated does not imply independence!
- exception: normal distribution, characterized by 1st and 2nd moment

5.11 Conditional Distributions

- Distribution of the varibale X_{1} given that X_{2} takes on a certain value x_{1}
- Closely related to conditional probabilities:

$$
P\left(X_{1}=x_{1} \mid X_{2}=x_{2}\right)=\frac{P\left(X_{1}=x_{1} \cap X_{2}=x_{2}\right)}{P\left(X_{2}=x_{2}\right)}
$$

conditional pdf of X_{1} given $X_{2}=x_{2}$:

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)}
$$

5.11 Conditional Distributions

conditional cdf of X_{1} given $X_{2}=x_{2}$:

$$
P\left(X_{1}=x_{1} \mid X_{2}=x_{2}\right)=\sum_{x_{1 i} \leq X} f_{X_{1} \mid X_{2}}\left(x_{1 i} \mid x_{2}\right)=F_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)
$$

if X_{1} and X_{2} are independent, the conditional probability and the marginal probability coincide:

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=f_{X_{1}}\left(x_{1}\right)
$$

because

$$
f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) \cdot f_{X_{2}}\left(x_{2}\right)
$$

5.11 Conditional Distributions

the joint pdf can be derived from conditional and marginal densities in 2 ways:

$$
f_{X_{1} X_{2}}=f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) \cdot f_{X_{2}}\left(x_{2}\right)=f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) \cdot f_{X_{1}}\left(x_{1}\right)
$$

5.12 Conditional Moments

$$
\begin{aligned}
E\left[Y^{k} \mid X=x\right] & =\sum_{j} y_{j}^{k} \cdot \frac{P\left(X=x \cap Y=y_{j}\right)}{P(X=x)} \\
& =\sum_{j} y_{j}^{k} \cdot P\left(Y=y_{j} \mid X=x\right) \\
& =\sum_{j} y_{j}^{k} \cdot f_{Y \mid X}\left(y_{j} \mid x\right) \\
& =\sum_{j} y_{j}^{k} \cdot \frac{f_{X Y}\left(x, y_{j}\right)}{f_{X}(x)} \quad \text { if } Y \text { is discrete } \\
E\left[Y^{k} \mid X=x\right] & =\int_{-\infty}^{\infty} y^{k} \cdot \frac{f_{X Y}(x, y)}{f_{X}(x)} \quad \text { if } Y \text { is continuous }
\end{aligned}
$$

5.12 Conditional Moments

$$
\begin{aligned}
\operatorname{Var}[Y \mid X=x] & =E_{Y \mid X}\left[(Y-E[Y \mid X=x])^{2}\right] \\
& =\sum_{j}\left(y_{j}-E[Y \mid X=x]\right)^{2} \cdot f_{Y \mid X}\left(y_{j} \mid x\right)
\end{aligned}
$$

if Y is discrete

$$
\begin{aligned}
\operatorname{Var}[Y \mid X=x] & =E_{Y \mid X}\left[(Y-E[Y \mid X=x])^{2}\right] \\
& =\int_{-\infty}^{\infty}(y-E[Y \mid X=x])^{2} \cdot f_{Y \mid X}(y \mid x) d y \\
& \text { if } Y \text { is continuous }
\end{aligned}
$$

5.12 Conditional Moments

Law of total Expectations/ Law of iterated Expectations

$$
\begin{aligned}
E[Y] & =E_{X}[E[Y \mid X]] \\
E_{X}\left[E_{Y \mid X}[Y \mid X]\right] & =E[Y]=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} y \cdot \frac{f_{X Y}(x, y)}{f_{X}(x)} d y\right] f_{X}(x) d x
\end{aligned}
$$

$E_{Y \mid X}$ is a random value as X is a random variable

