Advanced Mathematical Methods WS 2020/21

6 Statistical Inference

Prof. Dr. Thomas Dimpfl

Department of Statistics, Econometrics and Empirical Economics

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Wirtschafts- und Sozialwissenschaftliche Fakultät

 A. Papoulis and A. U. Pillai. Probability, Random Variables and Stochastic Processes.
 Mc Graw Hill, fourth edition, 2002, Chapter 8

Online References

MIT Course on Probabilistic Systems Analysis and Applied Probability (by John Tsitsiklis)

▶ Lecture 25: Classical Inference III

Hypothesis testing

Ingredients:

- null hypothesis H_0 , alternative hypothesis H_1
- significance level α (given)

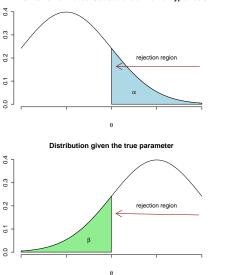
2 possible errors:

- α error/ type 1 error:
 reject a correct (null) hypothesis
- β error/ type 2 error:
 do not reject a wrong (null) hypothesis

Two ways of testing

$\boldsymbol{\theta}$ unknown parameter in the population

1. $H_0: \theta = \theta_0$ $H_1: \theta \neq \theta_0$ \rightarrow two-sided test 2. $H_0: \theta \leq \theta_0$ $H_1: \theta > \theta_0$ \rightarrow one-sided test $H_0: \theta \geq \theta_0$ $H_1: \theta < \theta_0$



• $f_q(q, \theta_0)$: distribution under the H_0

• $f_q(q, \theta)$: distribution given the true θ

Distribution of the test statistic under the Nullhypothesis

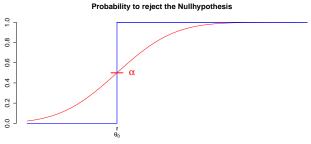
- ► Under H₁, the most likely values of q are on the right of f_q(q, θ₀).
- We therefore reject H_0 if q > c (with rejection area $[c, \infty]$)
- ▶ We select α : $P(q > c | H_0) = \alpha \rightarrow c = q_{1-\alpha}$ and don't reject H_0 if $q < q_{1-\alpha}$

Operating characteristic:

 \rightarrow can't be controlled

Ideal Situation:

 $\alpha = \beta = 0$ for $H_0: \theta = \theta_0$ and $H_1: \theta > \theta_0$



θ

Ideally:

- don't reject H_0 as long as the true value θ is smaller than θ_0
- reject as soon as θ is greater than θ_0

α : at the intersection:

if α is small, the chances to reject H_0 are small if θ is only slightly bigger than θ_0

The faster the probability to reject H_0 increases (steeper red line), the better.

Hence: power of the test

What does significant really mean?

statistical significance

- does not answer the question wether the null hypothesis is wrong or right
- does not indicate how (un-) likely the null hypothesis is
- ► only controlled by maximum probability to run into type 1 error (α)
- provides no control over probability of type 2 error (β)

goal: for α given

- \rightarrow minimal β
- \rightarrow minimal $\alpha + \beta$
- ightarrow maximal 1-eta

t-Test

estimated parameters $\widehat{\beta_1} \dots \widehat{\beta_k}$

- 1. define H_0 , e.g. $H_0: \beta_k = \bar{\beta_k}$
- 2. define H_1 , e.g. $H_1 : \beta_k \neq \overline{\beta_k}$
- 3. believe in law of large numbers and CLT
- 4. construct test statistic

$$t = \frac{\widehat{\beta_k} - \overline{\beta_k}}{s.e.(\widehat{\beta_k})} \sim t(N - K) \quad \text{under} \quad H_0$$

- 5. choose significance level α
- 6. compare *t* and critical value compare *t* and empirical p-value

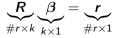
Confidence Interval

construct a confidence interval around $\widehat{\beta_k}$ \rightarrow interval for $\overline{\beta_k}$, for which $H_0: \beta_k = \overline{\beta_k}$ cannot be rejected

$$CI(\beta_k, \alpha) = \left[\widehat{\beta_k} - t_{\frac{\alpha}{2}} \cdot s.e.(\widehat{\beta}), \widehat{\beta_k} + t_{\frac{\alpha}{2}} \cdot s.e.(\widehat{\beta})\right]$$

Testing linear hypotheses: Wald test

Multiple Hypotheses (#r) for multiple parameters (k)



under H₀:

$$\begin{array}{ccc} R\widehat{\beta} \xrightarrow[]{p} r & R\widehat{\beta} \stackrel{a}{\sim} N(0, RVar(\widehat{\beta})R') \\ \underbrace{(R\widehat{\beta} - r)'(RVar(\widehat{\beta})R')^{-1}(R\widehat{\beta} - r) \stackrel{a}{\sim} \chi^{2}(\#r)}_{\text{Wald test statistic for linear hypotheses}} \end{array}$$