EBERHARD KARLS
 UNIVERSITAT TUBINGEN WIRTSCHAFTS- UND SOZIALWISSENSCHAFTLICHE FAKULTÄT

Chair of Statistics, Econometrics and Empirical Economics Prof. Dr. Thomas Dimpfl

S414
Advanced Mathematical Methods

Exercises

Linear Algebra

Exercise 1 Eigenvalues

Devise the characteristic equations for the matrices from exercise a)-c) and determine the eigenvalues.
a) $\mathbf{B}=\left(\begin{array}{rr}4 & 1 \\ -2 & -0,5\end{array}\right)$
b) $\mathbf{C}=\left(\begin{array}{rr}1 & 2 \\ 3 & -4\end{array}\right)$
c) $\mathbf{D}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 2 & -3 \\ 0 & -1 & 3\end{array}\right)$

ExErcise 2 Eigenvalues and Eigenvectors

Given the matrix:

$$
\mathbf{A}=\left[\begin{array}{ll}
-3 & 2 \\
-2 & 2
\end{array}\right]
$$

a) Calculate the eigenvalues and the respective eigenvectors of \mathbf{A}.
b) Use the eigenvalues to calculate the determinant of \mathbf{A}.

ExERCISE 3 Eigenvalues

A 3×3 matrix \mathbf{A} has the eigenvalues $\lambda_{1}=1, \lambda_{2}=3$ and $\lambda_{3}=4$. Compute the determinant of $\mathbf{A}, \operatorname{rg}(\mathbf{A})$, the determinant of \mathbf{A}^{-1} and the eigenvalues of \mathbf{A}^{-1}. What can be said about the quadratic form $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}$ of the matrix \mathbf{A} for any vectors of \mathbf{x} ?

ExERCISE 4 Eigenvalues

Find the characteristic vectors of the matrix $\left(\begin{array}{ll}4 & 2 \\ 2 & 1\end{array}\right)$:

Exercise 5 Quadratic Form

Given the matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & -2 \\
1 & 2
\end{array}\right)
$$

a) Determine the definiteness of the quadratic form $Q=\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}$.
b) Explain in two sentences maximum what this means for the graph $\left\{\left(x_{1}, x_{2}, Q\right) \mid Q=\right.$ $\left.\left(x_{1} ; x_{2}\right) \boldsymbol{A}\left(x_{1} ; x_{2}\right)^{\prime}\right\}$.

Exercise 6 Quadratic Form

Write the quadratic form

$$
Q=4 x_{1}^{2}+4 x_{1} x_{2}-x_{2}^{2}
$$

in matrix notation and determine its definiteness.

Exercise 7 Sign definiteness

Express each quadratic form below as a matrix product involving a symmetric coefficient matrix:
a) $q=3 u^{2}-4 u v+7 v^{2}$
b) $q=u^{2}+7 u v+3 v^{2}$
c) $q=8 u v-u^{2}-31 v^{2}$
d) $q=6 x y-5 y^{2}-2 x^{2}$
e) $q=3 u_{1}^{2}-2 u_{1} u_{2}+4 u_{1} u_{3}+5 u_{2}^{2}+4 u_{3}^{2}-2 u_{2} u_{3}$
f) $q=-u^{2}+4 u v-6 u w-4 v^{2}-7 w^{2}$

Exercise 8 Sign definiteness

Given a quadratic form $u^{\prime} D u$. where D is 2×2, the characteristic equation of D can be written as:
$\left|\begin{array}{cc}d_{11}-r & d_{12} \\ d_{21} & d_{22}-r\end{array}\right|=0 \quad\left(d_{12}=d_{21}\right)$
Expand the determinant; express the roots of this equation by use of the quadratic formula and deduce the following:
a) No imaginary number (a number involving $\sqrt{-1}$) can occur in r_{1} and r_{2}.
b) To have repeated roots, the matrix D must be in the form of $\left(\begin{array}{ll}c & 0 \\ 0 & c\end{array}\right)$
c) To have either positive or negative smidefiniteness, the determinant of the matrix D must vanish, i.e. $|D|=0$.

Solution Exercise 1:

a) $\lambda_{1}=3.5$ and $\lambda_{2}=0$
b) $\lambda_{1}=2$ and $\lambda_{2}=-5$
c) $\lambda_{1}=4.30278 ; \lambda_{2}=0.69722 ; \lambda_{3}=1$

Solution Exercise 2:

a) Eigenvector for $\lambda_{1}=1$:

$$
\Rightarrow\binom{a}{2 a} \quad \text { for } a \in \mathbb{R} \backslash\{0\}
$$

Eigenvector for $\lambda_{2}=-2$:

$$
\Rightarrow\binom{b}{\frac{1}{2} b} \quad \text { for } b \in \mathbb{R} \backslash\{0\}
$$

b) $\operatorname{det}(\boldsymbol{A})=-2$

Solution Exercise 4:

$$
v_{1}=\binom{-\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}, \quad v_{2}=\binom{\frac{2}{\sqrt{5}}}{\frac{1}{\sqrt{5}}}
$$

Solution Exercise 5:

a) positive definite

Solution Exercise 6:
$\boldsymbol{Q}=\boldsymbol{x}^{\boldsymbol{\prime}} \boldsymbol{A} \boldsymbol{x}$ with $A=\left(\begin{array}{cc}4 & 2 \\ 2 & -1\end{array}\right)$
\boldsymbol{A} is indefinite

Solution Exercise 7:

Quadratic form: $q=\mathbf{x}^{\prime} \mathbf{A x}$
a)

$$
q=\binom{-u}{v}^{\prime}\left(\begin{array}{ll}
3 & 2 \\
2 & 7
\end{array}\right)\binom{-u}{v}
$$

b)

$$
q=\binom{u}{v}^{\prime}\left(\begin{array}{cc}
1 & 3.5 \\
3.5 & 3
\end{array}\right)\binom{u}{v}
$$

c)

$$
q=\binom{u}{v}^{\prime}\left(\begin{array}{cc}
-1 & 4 \\
4 & -31
\end{array}\right)\binom{u}{v}
$$

d)

$$
q=\binom{x}{y}^{\prime}\left(\begin{array}{cc}
-2 & 3 \\
3 & -5
\end{array}\right)\binom{x}{y}
$$

e)

$$
q=\left(\begin{array}{c}
u_{1} \\
-u_{2} \\
u_{3}
\end{array}\right)^{\prime}\left(\begin{array}{lll}
3 & 1 & 2 \\
1 & 5 & 1 \\
2 & 1 & 4
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
-u_{2} \\
u_{3}
\end{array}\right)
$$

f)

$$
q=\left(\begin{array}{c}
u \\
v \\
-w
\end{array}\right)^{\prime}\left(\begin{array}{ccc}
-1 & 2 & 3 \\
2 & -4 & 0 \\
3 & 0 & -7
\end{array}\right)\left(\begin{array}{c}
u \\
v \\
-w
\end{array}\right)
$$

