EBERHARD KARLS
 UNIVERSITAT TUBINGEN WIRTSCHAFTS- UND SOZIALWISSENSCHAFTLICHE FAKULTÄT

Chair of Statistics, Econometrics and Empirical Economics Prof. Dr. Thomas Dimpfl

S414
Advanced Mathematical Methods

Exercises

Difference Equations

ExERCISE 1 Difference Equations

Find the solution for the following difference equations with the given values of x_{0} :
a) $\quad x_{t+1}=2 x_{t}+4, \quad x_{0}=1$
b) $3 x_{t+1}=x_{t}+2, \quad x_{0}=2$
c) $2 x_{t+1}+3 x_{t}+2=0, \quad x_{0}=-1$
d) $\quad x_{t+1}-x_{t}+3=0 . \quad x_{0}=3$

ExERCISE 2 Difference Equations

Consider the difference equation $x_{t+1}=a x_{t}+b$ and explain how its solution behaves in each of the following cases, with $x^{*}=\frac{b}{1-a} \quad($ for $\quad a \neq 1)$:
a) $0<a<1, \quad x_{0}<x^{*}$
b) $-1<a<0, \quad x_{0}<x^{*}$
c) $a>1, \quad x_{0}>x^{*}$
d) $a<-1, \quad x_{0}>x^{*}$
e) $\quad a \neq 1, \quad x_{0}=x^{*}$
f) $\quad a=-1, \quad x_{0} \neq x^{*}$
g) $\quad a=1, \quad b>0$
h) $\quad a=1, \quad b<0$
i) $\quad a=1, \quad b=0$

Exercise 3 Difference Equations

Consider the difference equation $x_{t}=\sqrt{x_{t-1}-1}$ with $x_{0}=5$. Compute x_{1}, x_{2} and x_{3}. What about x_{4} ? (This problem illustrates that a solution may not exist if the domain of the function f in (1) is restricted in any way.)

ExERCISE 4 Difference Equations

Suppose that at time $t=0$, you borrow $\$ 100.000$ at a fixed interest rate of 7% per year. You are supposed to repay the loan in 30 equal annual repayments so that after $n=30$ years, the mortgage is paid off. How much is each repayment?

Exercise 5 Difference Equations

Prove that $x_{t}=A+B t$ is the general solution of $x_{t+2}-2 x_{t+1}+x_{t}=0$.

Solution Exercise 1:

a) $x_{t}=5 \cdot 2^{t}-4$
b) $x_{t}=\frac{1}{3}^{t}+1$
c) $x_{t}=-\frac{3}{5} \cdot-\frac{3}{2} t-\frac{2}{5}$
d) $x_{t}=-3 t+3$

Solution Exercise 2:

a) Monotone convergence to x^{*} from below.
b) Damped oscilliations around x^{*}.
c) Monotonically increasing towards ∞
d) Explosive oscilliations around x^{*}
e) $x_{t}=x^{*}$ for all t
f) Oscilliations around x^{*} with constant amplitude.
g) Monotonically (linearly) increasing towards ∞
h) Monotonically (linearly) decreasing towards $-\infty$
i) $x_{t}=x_{0}$ for all t

Solution Exercise 3:

$$
\begin{aligned}
& x_{1}=2, \\
& x_{2}=1, \\
& x_{3}==0 \\
& x_{4}=\sqrt{-1}
\end{aligned}
$$

Solution Exercise 4:

The yearly repayment is $a=\frac{0.07 \cdot 100000}{1-(1.07)^{-30}} \approx 8058.64$. In the first year the interest payment is $0.07 B=7000$, and so the principal repayment is $\approx 8058.64-7000=1058.64$. In the last year, the interest payment is $0.07 b_{29} \approx 8058.64\left[1-(1.07)^{-1}\right] \approx 527.20$ and so the principal repayment is $\approx 8058.64-527.20=7531.44$.

