

Chair of Statistics, Econometrics and Empirical Economics Prof. Dr. Thomas Dimpfl

${ \begin{array}{c} {\bf S414} \\ {\bf Advanced\ Mathematical\ Methods} \\ {\bf Exercises} \end{array} }$

DIFFERENCE EQUATIONS

Exercise 1 Difference Equations

Find the solution for the following difference equations with the given values of x_0 :

- a) $x_{t+1} = 2x_t + 4$, $x_0 = 1$
- b) $3x_{t+1} = x_t + 2$, $x_0 = 2$
- c) $2x_{t+1} + 3x_t + 2 = 0$, $x_0 = -1$ d) $x_{t+1} x_t + 3 = 0$. $x_0 = 3$

Exercise 2 Difference Equations

Consider the difference equation $x_{t+1} = ax_t + b$ and explain how its solution behaves in each of the following cases, with $x^* = \frac{b}{1-a}$ (for $a \neq 1$):

- a) 0 < a < 1, $x_0 < x^*$ b) -1 < a < 0, $x_0 < x^*$
- c) a > 1, $x_0 > x^*$ d) a < -1, $x_0 > x^*$
- e) $a \neq 1$, $x_0 = x^*$ f) a = -1, $x_0 \neq x^*$
- g) a = 1, b > 0 h) a = 1, b < 0
- i) a = 1, b = 0

Exercise 3 Difference Equations

Consider the difference equation $x_t = \sqrt{x_{t-1} - 1}$ with $x_0 = 5$. Compute x_1, x_2 and x_3 . What about x_4 ? (This problem illustrates that a solution may not exist if the domain of the function f in (1) is restricted in any way.)

Exercise 4 Difference Equations

Suppose that at time t = 0, you borrow \$100.000 at a fixed interest rate of 7% per year. You are supposed to repay the loan in 30 equal annual repayments so that after n=30years, the mortgage is paid off. How much is each repayment?

EXERCISE 5 Difference Equations

Prove that $x_t = A + Bt$ is the general solution of $x_{t+2} - 2x_{t+1} + x_t = 0$.

Solution Exercise 1:

a)
$$x_t = 5 \cdot 2^t - 4$$

b)
$$x_t = \frac{1}{3}^t + 1$$

c)
$$x_t = -\frac{3}{5} \cdot -\frac{3}{2}^t - \frac{2}{5}$$

d)
$$x_t = -3t + 3$$

Solution Exercise 2:

- a) Monotone convergence to x^* from below.
- b) Damped oscilliations around x^* .
- c) Monotonically increasing towards ∞
- d) Explosive oscilliations around x^*
- e) $x_t = x^*$ for all t
- f) Oscilliations around x^* with constant amplitude.
- g) Monotonically (linearly) increasing towards ∞
- h) Monotonically (linearly) decreasing towards $-\infty$
- i) $x_t = x_0$ for all t

Solution Exercise 3:

$$x_1 = 2,$$

$$x_2 = 1,$$

$$x_3 == 0$$

$$x_4 = \sqrt{-1}$$

Solution Exercise 4:

The yearly repayment is $a = \frac{0.07 \cdot 100000}{1 - (1.07)^{-30}} \approx 8058.64$. In the first year the interest payment is 0.07B = 7000, and so the principal repayment is $\approx 8058.64 - 7000 = 1058.64$. In the last year, the interest payment is $0.07b_{29} \approx 8058.64 \left[1 - (1.07)^{-1}\right] \approx 527.20$ and so the principal repayment is $\approx 8058.64 - 527.20 = 7531.44$.