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Abstract 

Aboveground net primary production (ANPP) is a key ecosystem characteristic and of fundamental 

importance for essentially all aspects of matter and energy fluxes in terrestrial ecosystems. Various 

methods for estimating ANPP are available and despite partial consensus on ‘best practice methods’ 

important methodological issues remain unresolved: ANPP data obtained with different methods differ in 

their magnitude, variability and their tendency to over- or underestimate primary production. 

Paradoxically, despite the large number of published ANPP data, the limited comparability of ANPP 

estimates across studies leads de facto to a scarcity of ANPP data for assembled large-scale studies. We 

aimed to overcome these problems by establishing conversion rates between the most commonly used 

ANPP methods, thus making the large body of published ANPP data more comparable and thus useful for 

assembled large-scale studies. 

Using seasonal biomass dynamics from 89 sites representing various biomes and climata, we established 

linear conversions for all 21 combinations between the seven most common ANPP estimation algorithms 

in grass-dominated vegetation. We also checked for confounding effects of environmental factors such as 

biome, management and climatic aridity. Aridity was the only factor with a clear influence on ANPP 

conversions, and in six cases we thus calculated separate relationships for dry and humid conditions. In 

these cases, dryland ANPP was systematically underestimated by the respective methods. As these 

methods are insensitive to turn-over processes from live to senescent biomass, we assume this 

underestimation is related to climate-induced differences in biomass turn-over rates, with more arid sites 

having higher rates. 

The majority of the resulting 27 conversions had high (pseudo) R2 values (≥ 0.65; full range: 0.31 - 0.92), 

indicating clear linear relationships between most ANPP estimation methods. Given the large size of the 

dataset and the accuracy of statistical models, we assume that most conversion formulae are generally 

valid. We classified conversions with respect to their R2 values and their methodological comparability, 

and concluded that 16 conversions can be fully recommended. For those cases where a recalculation of 

ANPP on basis of original biomass data is not possible, our conversion formulae offer an easy and practical 

approach to synchronize ANPP estimates from divergent algorithms and sources. 
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1. Introduction 

Aboveground net primary production (ANPP) is a 

key ecosystem characteristic and of fundamental 

importance for essentially all aspects of matter 

and energy fluxes in terrestrial ecosystems. It is a 

prominent core ecological currency and one of 

the best documented quantitative estimate for 

several ecosystem services such as forage or 

lumber (Scurlock et al., 2002). However, as it 

represents a concept rather than a precise 

physical quantity or attribute, ANPP can only be 

estimated by surrogate measurements and not 

measured directly (Lauenroth et al., 2006). 

Many different procedures and methods for 

estimating ANPP have been developed. 

Particularly in grass-dominated ecosystems, a 

wide variety of different estimation protocols 

have been developed within recent decades. The 

most common methods to estimate ANPP 

(hereafter simply ‘ANPP methods’) have been 

thoroughly evaluated and compared in literature 

(Lauenroth et al., 2006; McNaughton et al., 1996; 

Milner and Hughes, 1968; Sala and Austin, 2000; 

Scurlock et al., 2002; Singh et al., 1975). 

However, despite a partial consensus on ‘best 

practice methods’, discussion regarding various 

methodological issues is still ongoing, and as a 

result, numerous ANPP estimation methods are 

in use and compete up until today. Generally, 

ANPP methods can be sub-divided into complex 

elaborated methods and simple, less elaborated 

ones. Elaborated methods, which account for 

dynamics in live, senescent, and moribund tissue 

simultaneously throughout the growing season, 

have often been recommended (Singh et al., 

1975; Scurlock et al., 2002). However, these 

methods are far more labor-intense and costly 

than other ‘simple’ estimations (e.g. Peak 

standing crop, or Peak live biomass) which have 

a tendency to underestimate production. 

Unsurprisingly, less elaborate methods are far 

more often applied, as they are faster and 

cheaper. Unfortunately, different ANPP methods 

differ not only in their general accuracy (i.e. their 

tendency to over- or underestimate ANPP), but 

also with respect to magnitude, variability and 

uncertainty (Scurlock et al., 2002; Lauenroth et 

al., 2006). These differences render estimates 

based on different methods more or less 

incomparable. Scurlock et al. (2002) have shown 

that ANPP estimates at one site and date may 

vary up to more than 6-fold depending on the 

computational method used. Examples from our 

own dataset show even more extreme 

differences of up to 10- to 15-fold in certain cases 

(data not shown). 

In the past, simple methods like Peak standing 

crop were sufficient for common questions in 

vegetation and rangeland ecology. They give 

robust estimates which are sufficient for 

determining carrying capacity, assessing the 

influence of climatic characteristics, or 

comparing the effects of contrasting 

management strategies at local scale (e.g. 

Blaisdell, 1958; Dye and Spear, 1982; Smoliak, 

1986)). However, in recent years there is a 

growing demand for both more accurate and 

better comparable ANPP data across larger 

scales. In fact the lack of large-scale ANPP data 

has been stated as one of the most crucial data 

gaps in ecology in recent times (Ni, 2004; 

Scurlock et al., 2002; Scurlock and Olson, 2002). 

Paradoxically, despite the large number of 

studies presenting ANPP data on field and site 

scale, the limited comparability of ANPP data 

across sites, regions and studies de facto leads to 

a scarcity of ANPP data for supra-regional or 

large-scale studies.  

In the light of the climate and land-use change 

debate, the need for reliable and adequately 

scaled large-scale and global ANPP datasets is 

urgent, as each of cross-system analyses, meta-

analyses, as well as land-use, climate and 

vegetation models imminently require them. 

Since adequate biomass and ANPP monitoring is 



not only time consuming but also costly, 

numerous scientists rely on assembling ANPP 

datasets from published data (Hsu et al., 2012; 

Lauenroth and Sala, 1992; Ni, 2004; Ruppert et 

al., 2012). However, due to differences between 

ANPP estimation methods, this pragmatic 

solution is not without its pitfalls. Surprisingly, 

only a small proportion of studies discuss the 

issue of comparability of ANPP data assembled 

from various sources, and based on different 

estimation and/or computation methods (see 

3.1 Results). To date, authors of large-scale 

studies and meta-analyses either had to neglect 

major proportions of published data for the sake 

of comparability or accept the limited and 

unknown comparability, a true ‘comparability 

dilemma’. 

Still, little is known about the incidence and 

frequency of ANPP comparability issues in 

assembled datasets. 

 

Being confronted with this comparability 

dilemma ourselves (Ruppert et al., 2012; Ruppert 

et al. in prep.), we aimed to overcome these 

problems by searching for conversions rates 

between common ANPP methods. We found 

that Singh et al. (1975) presented conversions for 

a set of different ANPP method combinations, 

developed on the basis of ten short-term 

datasets form North American grasslands. 

Surprisingly, practically no use was made of these 

conversions thereafter. A review (see 2.1 

Materials and methods) of all 165 studies citing 

Singh et al. (source: Google Scholar) revealed 

that only two studies used the conversions, both 

by authors of the original paper (Lauenroth and 

Whitman, 1977; Singh et al., 1983). This poor 

adoption may be explained by various reasons 

including: (1) the paper was largely a detailed 

review, and the conversions were not mentioned 

in the abstract limiting their visibility; (2) the 

strong interest in large and global scale ANPP 

datasets was not as virulent in the 1970s as it is 

today; and (3) perhaps most critically, the study 

was based on a restricted dataset and did not 

test whether conversions were applicable to data 

from other regions or ecosystems. 

 

We believe that the attempt by Singh et al. 

(1975) was simply ahead of its time and that it 

offers a starting point to assess the comparability 

for future assembled studies. However, the 

problems and shortcomings of Singh’s study, as 

mentioned under point (3) above, can be 

overcome by using a large global dataset 

allowing a more systematic assessment of the 

comparability of the most common ANPP 

methods. This is the scope of the present study. 

We aim to establish simple conversion formulae 

between the most common ANPP estimation 

methods for grass-dominated vegetation. Our 

study is based on data from 89 sites with more 

than 850 years of biomass data. 

 

 

 

2. Materials and methods 

2.1 Literature reviews 

Two literature reviews were carried out for this 

study: (1) A review of the 165 studies citing Singh 

et al. (1975) to determine whether or not they 

made use of the presented ANPP conversions 

(see 1. Introduction). (2) We reviewed the 150 

most recent studies presenting field measured 

ANPP data, and noted the ANPP estimation 

method(s) employed. We only selected papers 

from peer-reviewed journals, and excluded ANPP 

data which was derived from modeling or remote 

sensing indices. In detail, we searched the term 

‘ANPP’ in the years 2012 and 2011 and selected 

the 150 most recent papers (written in English, 

French, German or Spanish). ANPP estimation 

methods were classified into twelve groups (see 

Table 1), generally based on the nomenclature of 

Scurlock et al. (2002) but slightly extended (see 

Table 1 and below). All literature reviews were 



carried out using Google Scholar in December 

2012, as this source gives more complete results 

compared to other platforms (Beckmann and von 

Wehrden, 2012). 

 

2.2 Dataset 

Our ANPP dataset combines established datasets 

with data obtained from complementary 

literature reviews. It only comprises datasets 

which allow the calculation of at least two 

common ANPP estimation methods. All methods 

considered in this study are given and described 

in Table 1, their selection and nomenclature 

follows Scurlock et al. (2002). 

One of the two main sources for ANPP data is the 

Net Primary Production Dataset distributed by 

the Oak Ridge National Laboratory Distributed 

Active Archive Center (ORNL DAAC, 

http://daac.ornl.gov). The second major source 

is a self-assembled ANPP dataset comprising 

long-term monitoring data from arid and semi-

arid ecosystems. The principal data search and 

acquisition methods are described in Ruppert et 

al. (2012), but the current dataset has been 

considerably updated and extended compared 

to that presented therein. Furthermore, suitable 

ANPP datasets which were found during the 

above described literature reviews (see 2.1) were 

added. Table S1 in the supplementary material 

presents a complete overview on sources and 

references for all 89 datasets included in 

analyses. 

 

 

2.3 Data analysis 

2.3.1 ANPP estimation methods 

Estimating ANPP is a two-step procedure, 

starting with the measurement (or estimation) of 

biomass, followed by the computational 

processing of these measurements. Here we will 

focus on the latter aspect of calculation 

algorithms only, and will concentrate on those 

algorithms most commonly used in recent 

studies. Generally two groups of estimation 

methods can be distinguished: (1) ‘Peak 

methods’, using single biomass measurements at 

peak biomass conditions to estimate ANPP and 

(2) ‘Incremental methods’, which sum the 

incremental accumulation of biomass on a 

seasonal or annual basis. 

The seven (to eight) most common methods – 

their calculation, inherent assumptions and 

possible pitfalls – have been comprehensively 

described by Scurlock et al. (2002). We generally 

followed their nomenclature but split Method 2 

‘Peak standing crop’ into two sub-methods 

(Table 1). Method 2a is the original Peak standing 

crop method (as described in Scurlock et al., 

2002), which uses the maximum amount of live 

plus recent (current year’s) dead material as 

estimate of ANPP. We found several studies 

which also included previous year’s dead 

material (and sometimes even non-standing, de-

attached litter), and labeled this approach as 

Method 2b. We chose to distinguish between 

these sub-methods for two reasons: Firstly, 

Method 2b is of limited applicability only, since it 

can be biased by the previous year’s production. 

Secondly, lumping both methods together would 

have introduced considerable variability into 

‘Peak standing crop’ data. 

Since only one site reported sufficient data to 

calculate ANPP via Method 7 (Sum of positive 

increments in live and dead biomass with an 

adjustment for decomposition), we excluded this 

method from our analyses. 

 

2.3.2 Statistical analyses – Regressions and 

conversion formulae 

Data exploration to avoid common statistical 

problems (e.g. with respect to outliers, normal 

distribution and homogeneity of variances) was 

performed visually as proposed by Zuur et al. 

(2010). Due to several cases of a violation of the 

homoscedasticity assumption in least squares 

regression, we used generalized least squares 



regression (GLS). By implementing flexible 

variance structures of the covariate, GLS allows 

to correct for heteroscedasticity (Zuur, 2009). For 

each conversion model we tested, five 

(generalized) least squares models were derived, 

reflecting different common variance structures 

of the covariate for ecological data (no variance 

structure, fixed variance structure, power of the 

covariate variance structure, exponential 

variance structure, and constant plus power of 

the variance structure, see Zuur, 2009). We used 

Akaike’s information criterion (AIC) to select the 

best-fitting model and checked again for 

homoscedasticity. 

For some method combinations we had 

indications that systematic differences between 

data from drylands (arid and semi-arid) and 

humid areas existed, based on either 

methodological issues or visual observation of 

the regressions. We thus used ANCOVAs to test 

the influence of climate regime on the respective 

regression models. For six method combinations 

we found a significant influence of the climate 

regime and therefore split the data accordingly 

to establish climate-specific conversion formula 

(see Table 2 and Figure 1). 

 

Established conversion formulae were classified 

on the basis of their pseudo R2 values into three 

groups (highly reliable, reliable, and unreliable), 

representing their reliability and usability as 

conversion models. Class borders were set at 

pseudo R2 ≤ 0.5 for unreliable, > 0.5 and < 0.7 for 

reliable, and ≥ 0.7 for highly reliable, 

respectively. Pseudo R2 calculation was based on 

the generic definition of the coefficient of 

determination and was calculated as: 1 – residual 

sum of squares / total sum of squares. If the final 

selected model was based on standard least 

squares regression, pseudo R2 values were thus 

equivalent to standard R2 values. 

We also assessed the comparability of each 

method combination. Comparability between 

Peak methods (Method 1, 2a & 2b) was assumed 

to be moderate (labeled as “+ -“ in Table 2): 

While all methods are based on single 

observations during peak biomass conditions, 

they refer to different estimates of biomass. 

Comparability between Peak methods and 

Incremental methods ranged from poor (- -) to 

moderate (+ -), depending on the type of biomass 

used for the estimation. If both methods were 

based on the same type of biomass (live biomass, 

live plus recent dead, etc.; e.g. Method 1 : 

Method 3) their comparability was rated as 

moderate; if not, comparability was rated as 

poor (e.g. Method 1 : Method 6). The 

comparability between Incremental methods 

ranged from moderate (+ -) to good (+ +). 

Comparability was rated as good if both methods 

were based on the same type of biomass (e.g. 

Method 3 : Method 4) and as moderate if not 

(e.g. Method 3 : Method 5). This assessment of 

the methodological and ecological comparability 

adds some information about the applicability of 

conversions, in addition to the statistical 

classification based on pseudo R2 values. 

All statistical calculations were performed in R, 

version 2.15.2 (R Development Core Team, 

2012). The rms package (version 3.6-3) and the 

nlme package (version 3.1-105) were used to 

calculate and visualize GLS models. 

 

 

 

 

 

 

 



Table 1. 

Group / Method for 

ANPP estimationa 

Description %     

       

Method 1 Peak live biomass 12.7   

P
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m
e
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o

d
s
: 

5
0

.0
%

 

  

Method 2ab Peak standing crop (live plus recent dead) 18.7     

Method 2bb Peak standing crop (live plus recent and old 

dead) 

18.7     

    
 

  

Method 3 Maximum minus minimum live biomass 1.3   

In
c
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n
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m
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o
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s
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1
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%
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d
s
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0
.7

%
 

Method 4 Sum of positive increments in live biomass 12.0    

Method 5 Sum of positive increments in live and recent 

dead (Smalley’s Method) 

1.3    

Method 6 Sum of positive increments in live and total 

dead (recent plus old dead) 

0.0    

Method 7c Sum of positive increments in live and dead 

biomass with an adjustment for decomposition 

0.7    

Other ANPP 

methods 

ANPP methods which could not be sorted into 

the above. 

12.6     

 Other – incremental methods (5.3)    

 Other – sum methods (4.0)     

 Other – unspecified (3.3)     

Assembled ANPP 

studies 

Studies which assembled ANPP datasets from 

more than one source of ANPP data 

(supposedly) comprising more than one 

estimation method for ANPP.  

5.3      

Misleading (or 

wrong) 

Abbreviation ANPP was used in a misleading 

(or wrong) way. In most cases daily productivity 

data was presented. 

4.0  
 

W
ro

n
g

 o
r 

n
o

 i
n
fo

: 

1
6

.7
%

 

  

No information No information on ANPP estimation 

methodology was given. 

12.7     

       

a Nomenclature follows Scurlock et al. 2002. 
b Differing from Scurlock et al. 2002 the ‘peak standing crop’ method was split into two subgroups. 
c Note that we had to skip Method 7 from analyses due to insufficient data. 
 

 

3. Results 

3.1 Literature reviews 

The most recent 150 publications presenting 

ANPP data showed that Peak biomass estimates 

(Methods 1, 2a & 2b) dominated with 50 % of all 

studies using them. Incremental methods 

(Methods 3-7) followed with 15.3 %. A smaller 

proportion of 12.7 % of studies used very specific 

ANPP estimation methods, which could not be 

assigned to one of the common methods, and 

therefore were allotted in ‘Other ANPP 

methods’. Within this group, the largest share 

(representing 5.3% of all studies) were other, 

‘non-canonical’, incremental methods, followed 

by methods calculating ANPP as the sum of 

several cuts throughout a season or year (4% of 

studies). Combining the canonical ANPP methods 

(Methods 3-7, 15.3 %) and these specific non-

canonical methods (5.3 %), increased the total 

share of incremental methods to 20.7% over all 

studies. 

In total 5.3% of all studies (8 studies of 150) 

presented Assembled ANPP datasets with more 

than one source of ANPP data. These studies 

often combined several methods in one dataset. 

Another 4% of all studies used the term ANPP in 

a misleading way. In most cases, authors 

presented aboveground net primary 



productivity, which is production per time (e.g. g 

m-2 d-1). The remaining 12.7 % gave no 

information, on how ANPP was estimated. 

 

The group of Peak biomass estimates was 

dominated by the two varieties of Peak standing 

crop, Method 2a and Method 2b, with 18.7 % 

each, as compared to Peak live biomass (Method 

1) with 12.7 %. Incremental methods are 

dominated by Method 4 (Sum of positive 

increments in live biomass) with 12.0 %. All other 

methods were rarely used. Method 3 (Maximum 

minus minimum in live biomass) and Method 5 

(Sum of positive increments in live and recent 

dead, aka Smalley’s Method) have been used in 

1.3 % of all cases each (2 in 150 each), Method 7 

(Sum of positive increments in live and dead 

biomass with an adjustment for decomposition) 

were used in 0.7 % of all cases (1 in 150), and 

Method 6 (Sum of positive increments in live and 

total dead) was not used in recent publications. 

 

Table 2. Overview on the established conversion formulae. 

 Statistical 

reliability class 

& comparability 

 Conversion formulae    Std. Err. 

slope 

n Pseudo 

R2 

R
e
c

o
m

m
e
n

d
e

d
 

Highly + + Method 3 = 0.89 x Method 4 + 6  0.02 255      0.91 

reliable + + Method 5 = 0.9 x Method 6    0.04 38      0.78 

 + - Method 1 = 0.69 x Method 2a    0.02 227      0.82 

 + - Method 1 = 1.05 x Method 3 + 29  0.02 384      0.92 

 + - Method 1 = 0.97 x Method 4 + 32  0.02 679      0.89 

 + - Method 2a = 0.56 x Method 2b + 57  0.06 29      0.71 

 + - Method 2a = 0.73 x Method 6 + 92  0.06 30      0.71 

 + - Method 2b = 0.81 x Method 6 + 176  0.10 18      0.80* 

 + - Method 3arid = 0.34 x Method 6arid    0.03 29      0.73 

 + - Method 4arid = 0.39 x Method 6arid + 11  0.03 29      0.71 

  - - Method 1arid = 0.35 x Method 6arid + 50  0.03 29      0.81* 

Reliable + - Method 3humid = 0.49 x Method 5humid + 85  0.06 47      0.60 

 + - Method 3humid = 0.44 x Method 6humid + 103  0.09 24      0.51* 

 + - Method 4arid = 0.53 x Method 5arid + 19  0.05 39      0.65 

 + - Method 4humid = 0.64 x Method 5humid    0.05 44      0.66 

 + - Method 4humid = 0.72 x Method 6humid    0.07 24      0.62 

N
o

t re
c

o
m

m
e

n
d

e
d

 

 + - Method 2a = 0.83 x Method 5 + 96  0.06 70      0.60 

 + - Method 2b = 0.81 x Method 5 + 188  0.13 39      0.52* 

 - - Method 2a = 1.23 x Method 3 + 87  0.08 79      0.67 

  - - Method 2a = 1.13 x Method 4 + 96  0.08 79      0.63 

Unreliable + - Method 1 = 0.24 x Method 2b + 96  0.05 52      0.33* 

 + - Method 3arid = 0.41 x Method 5arid + 28  0.05 39      0.50 

 - - Method 1arid = 0.35 x Method 5arid + 82  0.06 39      0.50* 

 - - Method 1humid = 0.58 x Method 5humid + 94  0.06 47      0.50 

 - - Method 1humid = 0.69 x Method 6humid + 43  0.04 24      0.31 

 - - Method 2b = 1.27 x Method 3 + 264  0.28 47      0.31* 

  - - Method 2b = 1.25 x Method 4 + 245  0.27 46      0.33* 

All regression parameters were significant on p ≤0.001 (slopes) or on p ≤0.05 (intercepts). Pseudo R2 

values marked with an asterisk are standard R2 values. Here model selection selected non-GLS models (= 

least squares regression). Statistical reliability class borders were set according to (pseudo) R2 values: 

≤ 0.5 poor, > 0.5 and < 0.7 moderate, ≥ 0.7 good. Classification of comparability classes (+ +, + -, and - -) 

is described in 2.3.2 Materials and Methods. For full model descriptions please refer to Table S3. 

 

 



In the group of Assembled ANPP studies only 

three out of eight studies gave information on 

the respective ANPP estimation method for all 

datasets and addressed issues of comparability 

(Adler et al., 2011; Robinson et al., 2012; Ruppert 

et al., 2012). The other studies either mentioned 

the most commonly used methodologies only 

(Hsu et al., 2012; Yahdjian et al., 2011), simply 

stated that datasets were comparable (Hector et 

al., 2011), or did not comment on the nature of 

ANPP data at all (Eldridge et al., 2011; Evans et 

al., 2011). It should be mentioned that Eldridge 

et al. (2011) and Yahdjian et al. (2011) only 

presented ANPP response ratios (treated vs. non-

treated), therefore differences in ANPP 

estimation algorithms should be of minor 

concern. 

 

 

 

3.2 Established conversions between ANPP 

estimations methods 

Using the statistical protocol described above 

(see 2.3.2 Materials and Methods), we analyzed 

all 21 possible (one-way) combinations between 

the seven considered ANPP estimation methods 

(Method 1, 2a, 2b, 3, 4, 5, and 6). Since six of 

these combinations exhibited systematic 

influences of climate (dryland vs. humid), we 

established a total of 27 conversion formulae 

(Table 2). Based on their coefficients of 

determination, eleven models were classified as 

rendering highly reliable conversions, nine as 

reliable and seven as unreliable. The assessment 

of method comparability generally mirrored the 

statistical classification. The class of highly 

reliable models included the only two method 

combinations which were rated as highly 

comparable (Method 3 : Method 4, and Method 

5 : Method 6). Furthermore, this class only 

includes one method combination which has 

been rated as poorly comparable (Method 1arid : 

Method 6arid), the remaining eight combinations 

were rated as moderately comparable. The class 

of reliable models mostly contains combinations 

which were rated as moderately comparable, 

and only two poorly comparable combinations. 

The majority of poorly comparable method 

combinations are found in the unreliable class, 

which apart from these combinations only 

includes two moderately comparable 

combinations. 

Table 2 presents all established conversions 

formulae in a standardized linear model format 

(y = mx + b). Furthermore, the standard error of 

the slope, the number of observations for the 

respective model, and the pseudo R2 is given. 

Figure 1 gives a graphical representation of 

selected conversions. It presents nine method 

combinations and their eleven respective 

conversion models together with their 

confidence intervals. These method 

combinations represent the most frequently 

used ANPP methods according to our literature 

review (Methods 1, 2a, 2b and 4; see Table 1). In 

addition, we have included Method 5 as an 

example for an often recommended elaborate 

method (Singh et al., 1975, Scurlock et al., 2002). 

The selection in Figure 1 also gives examples for 

all statistical reliability classes: highly reliable 

(Figure 1A, B, D), reliable (Figure 1E, F, H, I), and 

unreliable (Figure 1C, G). An overview of all other 

established conversion formulae can be found in 

Figure S1 in the supplementary material. 

 



 
Figure 1. Selection of conversion models (GLS regressions) between common ANPP estimation methods together with 

corresponding number of observations (n) and (pseudo) R2. Linear regressions are given as solid black lines. Where 

regressions were calculated separately for humid and dry sites (see 2.3.2 Material and Methods), black line represent 

the humid model. Solid grey lines represent the arid model, where applicable. Broken lines indicate the .95 confidence 

interval. Note: Selection of models comprises recommended and not recommended conversions models (see 2.3.2 

Materials and Methods). Models in A, B, D, and I are recommended. See also Figure S1 for a complete graphical 

overview on all conversions models. 

 

 

4. Discussion 

The aim of this study was to establish 

conversions between the most common ANPP 

estimation methods, to improve comparability 

between ANPP estimates derived from different 

methods, and thus provide better access to the 

large body of published ANPP data. This was 

mainly motivated by the growing demand for 

large- or global-scale ANPP datasets which has 



evolved as a direct consequence of the climate 

and land-use change debate. 

We were able to establish linear conversion 

formulae between the seven most commonly 

used ANPP estimation methods for grass-

dominated biomes, and to assess their reliability 

and usability with statistical and methodological 

means. 

 

4.1 Faster, simple methods are more often used 

than elaborate but labor-intense methods 

The review on the use of ANPP in recent 

literature revealed that the simple and fast 

methods of the Peak biomass group were most 

frequently applied. Every second publication in 

our review used one of these methods. The 

frequency of use of the three sub-methods in this 

group was nearly identical. The more elaborate, 

but also more time- and labor-intense, 

Incremental methods were used less often. Only 

one in five publications used one of these 

methods; when only the canonical methods are 

considered, this frequency further drops to one 

in six to seven. While this general trend is not 

surprising and consistent with the dataset 

structure in Scurlock et al. (2002), it is surprising 

that recommendations to use the more 

elaborate algorithms, accounting for dynamics of 

live and dead plant matter (Method 5, 6 and 7), 

have not been adopted by the scientific 

community. Indeed, only 3 of 150 publications 

used one of these methods (Table 1). However, 

far more concerning is that 12.7 % of the studies 

did not provide information on which ANPP 

method was used. 

 

Given this use frequency of common ANPP 

estimation algorithms, scientists who seek to 

compile large-scale ANPP datasets from various 

sources face the ‘comparability dilemma’ 

described above (see 1. Introduction). To make 

matters worse, the rare data derived from 

elaborate and supposedly more accurate 

algorithms would be the first to be dropped for 

the sake of comparability. 

 

4.2 Using recommended conversion formulae to 

overcome the ‘comparability dilemma’ 

Our main impetus for the study was to overcome 

the above described ‘comparability dilemma’ by 

mitigating the trade-off between the demand for 

large datasets and data comparability. Motivated 

by the compilation of a global ANPP dataset for 

drylands (Ruppert et al., 2012, Ruppert et al., in 

prep), and inspired by Singh et al. (1975), we 

found linear conversion formulae to be a simple, 

versatile, and straight-forward approach to 

convert between different ANPP estimation 

algorithms. 

Based on seasonal biomass dynamics from 89 

sites from various grass-dominated biomes and 

climate regimes, we deduced conversion 

formulae for all method combinations 

representing the most commonly used ANPP 

estimation algorithms (Scurlock et al., 2002). Six 

out of all 21 method combinations showed a 

significant influence of climate regime (dry vs. 

humid), thus leading to a total of 27 conversions 

formulae (see 4.3 Influence of climate regime on 

conversions formulae and ANPP methods). Even 

though we were able to deduce statistically 

sound and significant regressions for all model 

combinations, not all conversions can be fully 

recommended.  

Generally, all models which were rated as highly 

reliable in terms of statistical criteria can be 

recommended for use without exceptions. In 

contrast, formulae classified as unreliable cannot 

be recommended and should be avoided. Even 

though conversion models in the latter group are 

highly significant, the underlying data exhibit 

considerable variance, which is also reflected in 

the pseudo R2 values. Therefore, products 

derived from these models would involve 

considerable uncertainty. The line separating 

recommendable and non-recommendable 



conversions runs through the group of 

statistically reliable models. Our decision to 

classify the conversions between Method 2a and 

Method 3, 4 and 5, as well as conversions 

between Method 2b and Method 5 as not 

recommended is based on the visual assessment 

of the respective scatterplots (Figure S1-4, and 

Figure 1E, F, H respectively). For all 

combinations, a high spread of relatively equally 

spaced datapoints can be observed. For most 

cases, the spread also shows a tendency to 

increase with higher ANPP values, indicating 

heteroscedasticity. Therefore, derived 

conversion products would largely suffer from 

uncertainty. However, these conversion 

formulae might still be applicable for ANPP data 

from less productive sites (e.g. from drylands) 

with respective input estimates up to circa 200 g 

m-2. For this range in ANPP data, the spread in the 

data is rather small, particularly for the 

conversions between Method 2a and Method 3, 

4 and 5. 

 

4.3 Influence of climate regime on conversions 

formulae and ANPP methods 

The six possible combinations between Methods 

1, 3 and 4 on the one hand and Methods 5 and 6 

on the other (and only these six) showed a 

significant influence of climate regime (arid vs. 

humid) and were split into climate-specific 

conversion formula (see Figure 1, S1 and Table 

2). 

Notably, in all six cases, the slope of the dry 

climate model is less steep as compared to the 

humid model. If we assume Methods 5 and 6 to 

be the best proxy to ‘real’ ANPP (as they are ‘best 

practice’ methods), Methods 1, 3 and 4 

underestimate ANPP in drylands more strongly 

than in humid ecosystems. 

We assume that this systematic error could be 

ecologically explained by the higher turn-over 

rate from live to senescent biomass in drylands 

due to increased tissue senescence rate in 

response to water stress (Coughenour and Chen, 

1997). While Methods 5 and 6 are sensitive to 

changes in live, senescent and moribund material 

and thus account for all biomass turn-over 

processes, Methods 1, 3 and 4 only assess live 

biomass. Thus, the latter three methods have 

specific ways of neglecting turn-over processes. 

Method 1 registers only live biomass at peak 

conditions, neglecting all produced live biomass 

which already turned senescent before peak. 

Methods 3 and 4 miss all live biomass which has 

turned over between minimum and maximum 

live biomass, or between sampling intervals, 

respectively. Thus these methods are inherently 

prone to differences in turn-over rates between 

different climates or ecoregions. 

 

4.4 Applicability and generality of the 

conversion formulae 

Given the clear patterns in the conversion 

models (Fig. 1 & S1) and considering the large 

underlying dataset, we expect the conversion 

formulae to be generally valid. Furthermore, 

despite the importance of climate regime for 

some conversions, we found no evidence for 

systematic influences of other factors (e.g. biome 

or long-term management). The generality of 

conversions is also supported by a comparison to 

those presented in Singh et al. (1975). Although 

the selection of ANPP estimation methods differs 

between the two studies, a subset of six 

conversions can be compared. The conversions 

between Method 1 and Method 4 are discussed 

as an example. 

Based on our data we established the conversion 

formula:  

Method 1 = 0.97 x Method 4 + 32 

 (n = 679) 

Singh and colleagues (1975) found a very similar 

conversion formula (the formula has been 

converted to fit our format, see fourth formula in 

Table IV, Singh et al., 1975): 



Method 1 = 1.06 x Method 4  

 (n = 33) 

The slightly higher slope in Singh’s formula can be 

explained by the fact that all linear conversions 

were forced through the origin. An overview of 

the remarkable consistency between our results 

and those of Singh et al. (1975) and other 

published data (Linthurst and Reimold, 1978) is 

presented in the Supplementary Material (Table 

S2 and Figure S2). 

 

Some authors have assumed that differences 

between ANPP methods might be site-specific 

(Linthurst and Reimold, 1978; Long et al., 1989; 

Scurlock et al., 2002). They based this 

assumption on their observation that ranking 

sites according to their production, using several 

ANPP estimation methods, yielded varying 

outcomes. Interpreted towards the use of the 

conversion models this means that the 

respective proportion of under- or 

overestimating ANPP by applying a respective 

conversion is site-specific. However, this source 

of uncertainty is a general feature of predictions 

based on regression models. 

Our analysis clearly shows that there are strong 

systematic relationships between several ANPP 

estimation algorithms. This underlines the 

usability of our conversion models, especially 

those which have been labeled as recommended 

on the basis of statistical and methodological 

criteria. 

 

4.5 Uncertainties in estimating ANPP 

Lauenroth et al. (2006) raised the issue of 

uncertainty in estimating (A)NPP and 

hypothesized that estimation algorithms differ 

not only with respect to magnitude and accuracy 

(over- or underestimation) but also with respect 

to uncertainty. They analyzed the amount of 

uncertainty which is mathematically introduced 

in ANPP estimates based on different estimation 

algorithms, as compared to the uncertainty in 

the input data (biomass estimates). Considering 

their findings we can assume that all estimation 

methods which we used for conversions should 

exhibit very low levels of uncertainty (i.e. 

corresponding to the level found in the biomass 

input data or even less). Peak methods simply 

transmit the uncertainty of the single biomass 

measurements on which they are based to the 

ANPP estimate. Since biomass can be measured 

or estimated with low uncertainty, these ANPP 

algorithms will exhibit the same low uncertainty. 

Incremental methods (Methods 3 to 6) are based 

on sums or differences over sequential biomass 

data. For these methods, the amount of 

uncertainty is even lower as compared to the 

average uncertainty of the input data. Only 

algorithms which contain product terms (i.e. 

Method 7) might increase (or also decrease) 

uncertainty as compared to the input data 

(biomass), but these methods have not been 

used in this study (see 2.3.1 Material and 

Methods). 

Hence, we assume that possible interference, 

caused by divergent uncertainty in the ANPP 

methods when converting between different 

methods, can be neglected for the conversion 

formulae presented here. 

 

4.6 Conclusions and recommendations 

The conversions formulae established within this 

study offer an easy and practical approach to 

recalculate and compare between ANPP 

estimates derived by divergent estimation 

algorithms. Authors who assemble large-scale 

ANPP datasets, or generally wish to combine 

ANPP data from various sources, can surely 

benefit from our approach, since it allows 

generating comparably scaled ANPP estimates 

based on published data. 

Though we found statistically significant models 

for all combinations of the most common ANPP 

estimates in grass-dominated biomes, not all 

conversions can be recommended. The 



combined classification via statistical (pseudo R2) 

and methodological attributes (comparability of 

ANPP estimation algorithms) offered a sound 

basis for recommendations (Table 2). Based on 

these statistical and methodological criteria, we 

rated 16 out of 27 conversions formulae as 

recommendable. The remaining 11 conversions 

are afflicted with high statistical or 

methodological uncertainty and should only be 

used with care, if at all. 

In this context another important outcome was 

that we found an ecological explanation for the 

phenomenon that certain ANPP methods differ 

in their tendency to underestimate ANPP across 

ecoregions (Singh et al., 1975; Scurlock et al., 

2002). We assume that this tendency is related 

to differences in plants’ turn-over rates from live 

to senescent biomass as a function of climatic 

aridity. We conclude that those methods which 

are highly sensitive to this turn-over (Methods 1, 

3, and 4) should not be used in warm xeric 

environments where biomass turn-over rates 

appear to be particularly high. 

Note that this study does not advocate relying on 

conversion options only. Even the best 

conversion formula is still second best to a 

recalculation of ANPP which can be done by 

applying the desired algorithm to the original 

biomass data. Our approach offers a practical 

solution for those cases where this option is not 

possible or feasible, and is superior to previous 

attempts to solve the comparability dilemma (i.e. 

combining incomparably scaled ANPP data or 

skip available published data). 

 

We are confident that a prudent use of 

conversion formulae, will promote the 

compilation of assembled ANPP datasets, and 

that our conversions will greatly facilitate the 

usability of published ANPP data in assembled 

regional or global studies. 
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