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Echo-State Network In Java:

Introduction, Manual, and Evaluations

Johannes Lohmann∗ Martin V. Butz†

Abstract

Echo-state networks (ESNs) are a promising approach in training
recurrent neural networks (RNNs). This architecture, developed by
Jaeger (Jaeger, 2001), avoids most of the common problems associated
with the training of RNNs. In this report a Java-based implementa-
tion is described that can be used to illustrate the functions of ESNs.
Examples will be given and important features of this type of network
will be discussed. Furthermore an approach to achieve more stable so-
lutions is introduced, involving the optimization of the connectivity of
the dynamic reservoir. Two Appendices provide information about the
internal structure of the software. We hope that our implementation
can serve as illustration for the possibilities of this flexible and elegant
approach.

1 Introduction

Based on the hypothesis of Hebbian Learning as a possible explanation
for neural plasticity (i.e. learning), neural networks developed to a stan-
dard model for information processing in biological systems (Cruse, 2006).
This kind of quantitative models proved to be able to solve a broad variety
of complex tasks for example classification, function approximation, data-
mining and clustering. One of the most demanding questions remaining
concerns dynamic regression problems, also called time series problems. Re-
current neural networks (RNNs) are the typical approach in this case, but
the common training procedures, such as back-propagation through time or
real-time recurrent learning, face several stability and reliability problems
(Jaeger, 2002), which are due to the fact that all connections in the system
are adapted:

1. Most of the algorithms that can be utilized to train RNNs are quite
slow.
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1 Introduction

2. As the connections are adapted simultaneously, chaotic behavior of
the systems may occur (bifurcations 1) and convergence can not be
guaranteed.

The echo-state network (ESN) architecture, developed by Jaeger et al.
(Jaeger, 2001) avoids many of these known problems (even if convergence
still can not be guaranteed). As far as we know, all implementations of
ESNs were performed with MATLAB or C++. This article describes a Java-
implementation. The formal outlines of training and exploiting ESNs are
not explained here. They can be found in various articles from Jaeger et al.
(Jaeger, 2001; Jaeger & Haas, 2004), there also exists a scholarpedia article
that provides a lot of links for a detailed overview about the mathematics
behind ESNs. The main functionality and evaluations in our implementation
are based on Jaeger’s tutorial article on ESN (Jaeger, 2002). Figure 1 offers
an overview of the network structure and the frequently used terms in this
report, as well as an illustration of the special aspect of ESNs: Only those
weights that determine the connections from the input and the internal layer
to the output units are optimized.

The training of ESNs consists of three steps: (1) a washout phase, (2)
a sampling phase, and (3) and exploitation phase. At first, the initial ran-
dom oscillations of the units constituting the dynamic reservoir (the internal
layer) have to be extinct. This is done during the washout phase, in which
the network starts oscillating based on the provided input and output pat-
terns.

Now the main part of the training procedure starts: the sampling phase.
During this phase the output units receive the dynamic function that should
be learned as external (teacher-forced) input. Via the connections repre-
sented by the back-projection weights the dynamic reservoir is excited and
exhibits a dynamic behavior according to the received input. In the case
of batch learning (currently the software does not support online learning)
these resulting activations as well as the teacher-forced values of the output
units are stored. The data obtained during this phase can now be used
to compute appropriate weights for the connections between the output
units and the dynamic reservoir. This is a linear regression task. Finally
the computed weights are used to calculate an error value (referred to as
MSEsampling), which indicates how well the sequence of teacher-forced val-
ues was reproduced. This error is a valid pointer for the ability of the
network to cope with the current task.

After learning is completed and the connections are set accordingly, the
complete system should have developed a stable state that is able to repro-
duce the desired dynamic. During the last step of the training procedure

1Usually similar inputs produce similar outputs. But sometimes it can happen that
small changes of the input signal cause qualitative changes in the output. States that
induce this kind of behavior are called bifurcation points.
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1 Introduction

Input Layer
Internal Layer

Output Layer

Figure 1: The different layers constituting the network structure. Solid lines
indicate fixed connections, dashed lines represent the optimized connections, which
are the output weights. The back-projection weights from the output to the internal
layer are displayed as gray lines. Please note that by default the internal layer is
completely interconnected. However, also sparse connectivity may be selected. For
the sake of clarity, not all connections are shown in the graph.
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2 Getting Started

the performance of the network is evaluated, this is called the exploitation
phase. A second mean squared error (termed MSEexploitation) is calculated
as a measure of the ability of the network to achieve a stable solution for
the current task. This is done by comparing the intended output with the
actual activations of the output units generated over a given number of time
steps.

Optionally input units may be assigned to the network. They can be
used to induce a additional dynamic to the units of the dynamic reservoir.

The remainder of the article is structured as follows. The next section
provides the information necessary to obtain and run the software. This is
followed by a description of the functions of the software, accessible via the
graphical user interface. After that a more detailed view on some example
problems will be given. Then typical aspects that influence the performance
of the network will be discussed. A short discussion concludes the main part
of the article. Appendix A provides an overview of the package-structure of
the software and Appendix B gives an example for extending the software.

2 Getting Started

This section provides the information necessary to run the software. It is
assumed that the code is used via the Eclipse development environment.
Alternatively, also the included executable jar file can be executed directly,
in which case the online compilation of scripts might not necessarily work,
however.

2.1 Prerequisites

At first you have to install the standard Java development kit (JDK), which
can be obtained from sun. Please make sure to install all components of the
JDK.

Two additional packages are necessary to run the software: The JAMA
package and the JUNG package. The software will not work without the
JAMA package as all tasks involving linear algebra rely on this package.
The functions provided by the JUNG package are optional. They are only
used to generate a graph-like visualization of the networks so the code may
work without this package. Now the Eclipse IDE should be downloaded and
installed. Finally you need the source code that can be obtained from the
COBOSLAB download page.

2.2 Setting up the Project

Start Eclipse and create a new Java project. Next, the JAMA and the JUNG
packages have to be added to the build path. Right click on the project and
select ‘Properties’ from the appearing dialog. Select the ‘Java Build Path’
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3 Graphical User Interface

item and click on the ‘Libraries’ tab. On the right side there is a button
labeled ‘Add External JARs...’. Hit this button and mark the jars in the
directories where you unzipped the JUNG and JAMA packages to.

In the next step you have to put the source code into the project. Open
the directory where you unzipped the ESNJava1.0 archive. Copy the content
from the ‘src’ directory and paste it into the ‘src’ directory of the project.
Now copy the directories called ‘script’ and ‘DefaultOutput’ and paste them
into the project. Make sure that you do not paste them into a subdirectory.
Finally, all the remaining single files have to be included into the project
(again it is important that they are not pasted into a subdirectory).

Now you can run the ‘MainGui.java’ file in the ‘esnMain’ package to
start the program. The next section describes how the user interface is used
that pops up when the program is started successfully.

If you already had a JRE installed before you installed the JDK, it might
be the case that scrips will not be executable from within the program since
no Java compiler might be found. In this case, choose the JDK folder as the
“Alternate JRE” in your “Run Configurations” settings.

3 Graphical User Interface

This section describes the options the user interface provides. Currently
the software consists of three main components: The first component re-
alizes the creation and manipulation of ESNs, the preparation of training
files is performed by a separate component. The last component is a more
or less stand-alone code editor that can be used for scripting issues. This
component will be replaced but at the current stage it offers the only pos-
sibility for automated data-generation, as the program can’t be controlled
via setting-files.

The main-functionality is accessible via two menus: The ESN option
menu and the training menu.

3.1 The ESN-Option Menu

The items stored in this menu provide basic functions like creating a new
ESN from scratch, or loading an existing ESN. Another item offers the
possibility to view existing output files (from a single ESN or merged output
from different ESNs). The last item allows to access the code editor that
might be used to create scripts. The location of the menu and the different
items are shown in figure 2.

3.1.1 Create new ESN.

Click this item if you want to create and train a new ESN. At first a frame
containing a tree-like object labeled ‘Settings’ will appear. It is expanded
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3.1 The ESN-Option Menu

Figure 2: Available items in the ESN-Option Menu.

and contains three branches labeled ‘Network’, ‘IO’ and ‘Math’. Expand
these branches to edit the according properties of the to be created ESN.
If you select one of the appearing sub-branches the panel on the right side
will display the parameters you may edit. If you drag the cursor over the
parameters tool-tips will pop up, providing information about value bound-
aries and the meaning of the current parameter.

Sub-branches of the ‘Network’ branch allow to edit the properties of the
different layers of the ESN. Options provided by the ‘IO’ branch allow to set
the output directory as well as the input file. Finally the settings available
by the sub-branches of the ‘Math’ branch influence scaling-factors and the
noise that is (possibly) applied to the activations of the units of the dynamic
reservoir. The example-section covers some of the settings in more detail.

Two buttons are located at the lower right side of the frame. The left
one allows to load settings stored in a file. Clicking the other button enables
the user to save the current settings.

After all parameters are set, the network can be created by clicking the
button labeled ‘start’ on the bottom right side of the panel. This will open a
dialog that ask the user to assign the time steps stored in the selected input
file to the different stages of the training process (washout, sampling and
exploitation). By default the ratio is 1:2:1 (if your input file contains 300
time steps, the proposition will be 75 time-steps for washout as well as for
exploitation and 150 time-steps for sampling). Clicking the ‘apply’ button
will create a new ESN and a new tab (labeled ‘ESN’) will appear.
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3.1 The ESN-Option Menu

This tab contains four to five tabs itself. If you choose to use an input
layer, there will be five tabs, four otherwise, one for each layer and one for
the mean squared errors. The first tabs contain the different weight matrices
(you can not edit the values manually in this view). The last tab contains
two error values, one for the sampling phase and one for the exploitation
phase. There are four buttons at the bottom of the tab, clicking the ‘run
training’ button will start the sampling phase. If this is finished, the tab
labeled ‘Output-Layer’ contains the estimated weights for the connection
between the output units and the dynamic reservoir. Furthermore the mean
squared error of the sampling phase is calculated and added to the last tab.

Now the exploitation phase can be initialized by clicking the correspond-
ing button. The results are stored and used to calculate the second mean
squared error.

If the user wants to save the data obtained during the training procedure,
he has to click the third button. This will print the data into the file selected
in the ‘IO’ settings.

The last button allows you to discard the estimated weights and to
restart sampling and exploitation without generating a new network (that
is always possible, simply by clicking the ‘start’ button in the ESN-settings
tab), this is only useful if you use noise during sampling, otherwise the
results will be identical.

After the sampling and the exploitation phase the ‘Visualization Options’
menu of the frame is completely accessible. It offers two options: A graph-
like visualization of the network structure and a graphical representation of
the activations of the different units during the training procedure.

The ‘Network-Visualization’ item will open a new frame containing a
representation of the network as a graph. It is possible to morph, trans-
form and save this graph. It is intended just for illustrative usage as the
performance of this part of the software is especially low, so if you try this
option on a network with more than twenty units a warning will appear. The
network visualization is available at all stages of the training procedure.

The ‘Output-Visualization’ item is only accessible after a completed sam-
pling and exploitation phase. It offers a visualization of the dynamics in the
internal and the output layer during the three phases of the training proce-
dure. If you click the button a new frame, containing two tabs will appear.
The first tab is labeled ‘Internal states’, the second ‘Exploitation’. The first
tab displays the activity of every unit in the internal layer during the whole
procedure in a separate tab. Left-Clicking one of the diagrams switches
between local and global scaling, a right-click shows the data table of this
special unit. The second tab shows the activity for the output unit(s) during
the exploitation phase (as well as the desired output) in separate tabs, the
last sub-tab contains a mixed view of all output units. If you perform a
left-click at any of the diagrams, you can edit the visualization options, a
right-click opens a dialog that allows you two save the graphic as image.
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3.1 The ESN-Option Menu

3.1.2 Load existing ESN.

If you click this item a file-chooser dialog will appear. Now you have to
choose a valid network-description file, at the right site of the dialog you can
see a preview window. Network-description files start with two file paths,
followed by the number of time-steps for the washout phase, the sampling
phase and the exploitation phase. After selecting a valid file the network
is generated and a new frame appears, similar to the one described in the
previous section.

3.1.3 View and merge output.

If you do not want to load a whole network, but instead want to view the
output of one ESN, or to compare different ESNs, you can use this item.
Clicking it will show a file-chooser dialog that allows multiple file selection.
All valid files will be load and merged. After this a new frame appears that
contains three tabs, one for each phase of the network training procedure.
Every tab contains sub-tabs for the layers used in this stage (hence the
output layer is only visualized in the exploitation tab). There are sub-tabs
for every unit in the selected layer, as well as a tab containing all units in a
single figure. The mean activation is shown as well. A left-click on a diagram
opens a dialog that let you view the data-tables or edit the visualization, a
right-click allows to save the current diagram as an image.

3.1.4 Setup and run scripts.

This item was intended for automation issues, as it is impossible to control
the software via setting-files at the moment. This feature will be replaced
in the further development of the software, so the following description is
rather short. If you click this item a new frame appears. It consists of two
parts, a so called ‘editor’ and a console, three buttons are on the bottom of
the frame. With these tools it is possible to write and compile a Java class
and attach in to the software during run time. To get this to work you have
to extend the GeneralScript-class, a method-stub performing this should
appear in the editor. The only parameter is a so called SettingsGui-object,
providing the possibility to manipulate settings and to iterate (for instance)
over a special parameter and generate output. This is not user-friendly as it
is necessary to know the API of the software, which involves the examination
of the code or at least the documentation. Hence this feature will be replaced
by a control via setting-files. If you are interested in examples take a look
into the files contained in the scrips directory.
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3.2 The Training Options

3.2 The Training Options

There are two options available. At first the inspection of existing input-
output samples and secondly the possibility to create new training sequences.

Figure 3: Available items in the Training Option Menu, as well as the frame
allowing the creation of training files.

3.2.1 View existing training-files.

Click this item to obtain a visualization of an existing training file. If you
choose an invalid file, the appearing frame will inform you that the current
selection is erroneous. If the file was valid the frame should contain different
tabs, one for the input and one for the output time-series, as well as a tab
containing a combined visualization of input and output. The options for
the figures are as usual: A left-click let you edit the settings or view the
data and a right-click allows you to save the diagrams as images.

3.2.2 Create training files

This item offers the possibility to create new input / output samples to
train networks with. Figure 3 shows the frame appearing after clicking this
item. The first step is to choose an io-function, by default there are four
functions implemented, how to add your own functions is covered in the
appendices. Dragging the cursor over the different functions should enable
tool-tips that provide some information about the current function. After
selecting a function you have to choose a file destination for the data, the
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4 Examples

default value points to a file in the local hierarchy. At last you have to
choose the number of time-steps, the default-value is 100. Clicking the
start button will generate the data at the chosen location. Of course it is
possible to create such input-files in different ways, in future versions of the
software there should be a formula interpreter to facilitate the generation
of io-functions without programming them directly as it is the case at the
moment.

4 Examples

The following section includes four examples to illustrate the usage of the
software. The necessary parts of the interface will be described repeating
and extending some parts of the upper introduction. The first two examples
are taken from Jaeger’s tutorial about training ESNs (Jaeger, 2002). The
last one uses a two-dimensional output layer.

4.1 Example 1: Jaeger’s sinewave-generator

In this example an ESN is trained to generate a simple sinewave. The
first task is the data-generation. Click on the ‘Training-Options’ menu in
the main-screen and select the ‘create-training’ files item. Now select the
‘Jaeger: Example No.1 button’ (a tool-tip should inform you about the
output-function). If you want to, you can change the output-file, there
should be a default file selected. At last you have to choose the number of
sample-steps, 300 should be enough for the current task. One click at the
start button will create the input / output samples at the desired file.

If you want to check the generated data-sample select the ‘view existing
training-files’ item from the ‘Training-Options’ menu and select the file with
the generated data. Now you should see a new frame with three tabs:
‘Input’, ‘Output’ and ‘IO-Combination’. There are sub-tabs in every tab:
One for every input or output dimension and a global tab (all dimensions in
one figure). If you select the ‘IO-Combination’ tab, you will see the combined
input and output samples: A straight line as input and a sinewave as output
(actually input is not necessary in this example, but we will discuss the
consequences of using an input layer in a later part of the paper using these
data). A right-click at the diagram will open a dialog, allowing to save the
diagram as picture if you need the figure for some reason, a left-click enables
you to edit the graph (disable the drawing of the means etc.).

Now we can start with the training-procedure. Select the ‘create new
ESN’ item from the ‘ESN Options Menu’. This should open a new frame
with an interface that allows to change the default settings. As we do not
need an input layer in this example, we want to create a network without
input units. Therefore go to the ‘Network Options’ and select the ‘Input-
Layer’ leaf and make sure, that the ‘use an input layer’ flag is not selected.
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4.1 Example 1: Jaeger’s sinewave-generator
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Figure 4: Activation of the ten internal units during the first 100 time-steps of
the training procedure and the activation of the output unit during the exploitation
phase compared to the desired output.
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4.2 Example 2: Jaeger’s tunable sinewave-generator

The only thing we have to change for the internal layer, is the spectral-radius:
We have to change the default-value of .8 to .7. That is all we have to do,
if you changed the sample file, you have to select it in the ‘IO-Settings’,
there you can also change the default output-directory. Now click at the
button labeled ‘start’. A dialog should appear, that asks you to distribute
the training-data over the initial washout, the training and the exploitation
phase. By default the ratio is as follows: 1 to 2 to 1. So in our case of
300 sample-steps, the default-setting leads to 75 steps for the washout, 150
training- and 75 exploitation-steps. If you don’t want to change this click
the ‘Apply’ button.

There should be a new tab beside the ‘ESN-Settings’ tab called ‘ESN’.
There are four sub-tabs, one for each layer (note that there is no tab for
the input layer as we decided no to use one in this example) and one tab
for the two errors: One for the sampling and one for the exploitation phase.
If you now click the ‘run Training’ button, washout and sampling will take
place. If you select the ‘output-layer’ sub-tab you can see that there are now
estimations for the weights, as well as a value for the sampling error (should
be very small). If you click the ‘run Exploitation’ button, the network tries
to generate the desired output for as much time steps as you have chosen
for the exploitation-phase. Now the error sub-tab also contains a value for
the exploitation error. To obtain a visualization of the output select the
‘Output-Visualization’ item from the ‘Network-Visualization’ menu. What
you see should be similar to the diagrams in figure 4. As can be seen
in the figures displaying the course of activation of the internal units, the
initial chaotic flow of activation quickly adapts to the propagated sinewave.
Every unit adapts in a unique, but in every case sinewave-like fashion. The
bottom panel of figure 4 displays the activation of the output unit during the
exploitation-phase: The desired dynamic and the network generated output
are nearly identical, the error is around zero.

4.2 Example 2: Jaeger’s tunable sinewave-generator

This example is similar to the second example given by Jaeger (Jaeger,
2002). The input is a slow sinewave, the desired output is a sinewave with
a fluctuating frequency, depending on the input. Again we have to create
the input / output samples at first, follow the steps given in the previous
section, but select the ‘Jaeger: Example No.2’ button and generate 1000
time-steps.

Now select the ‘create new ESN’ item from the ‘ESN Options Menu’.
There are different settings we have to change. From the network options
select the ‘Input Layer’ leaf and make sure that the ‘use an input layer’ flag
is checked. As this sample is more complex than the last one we will need
a bigger dynamic reservoir, therefore click on the ‘Internal Layer’ leaf and
set the size parameter from ten to hundred. In our runs, we also changed

12



4.2 Example 2: Jaeger’s tunable sinewave-generator
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Figure 5: The top panel shows the input during the sampling and the exploitation-
phase: A slow sinewave. In the middle panel the flow of activation of the first 10
units during the first 100 time-steps during the sampling-phase is shown. Amplitude
and frequency are modulated according to the input. The bottom panel displays
the network output compared to the desired output. As can be seen in the graph,
the approximation is not optimal, the frequency-shifts in the network output are
slightly too slow, but the pattern is still reproduced quite well.

13



4.3 Example 3: Learning of a combined output function

the spectral radius to .77. At last, make sure that the transfer-function
parameter in the ‘Output Layer’ leaf is set to ‘ID’. In contrast with Jaeger’s
example, we use an identical transformation instead of a hyperbolic tangent
transformation here. If the hyperbolic tangent was used, the data should be
scaled between -0.5 and 0.5 to allow successful learning.

Next, check if the input file is located at the path displayed in the ‘basic
IO’ settings. Due to the complexity of the problem, it is possible that the
optimization of the output weights get stuck in local optima. To prevent
this, we use noise in this example. From the ‘Math’ settings select the noise
leaf and set the noise-type parameter to ‘EQUAL’. A new panel should
appear. Now set the ‘Lower-Bound’ parameter to -.0005 and the ‘Upper-
Bound’ parameter to .0005. This will result in an equal distributed noise
term that is added to the activations of the units of the internal layer. Please
note that these settings are far from being perfect for this problem. About
one of five networks generated with them performs equal or better than the
example-network shown in figure 5.

Now click the start button, again a dialog appears that ask you to
distribute the time-steps over the three phases. We can use the default-
settings, in the case of 1000 time-steps, 250 are used for the washout and
the exploitation-phase and 500 are used for sampling. Apply these set-
tings and train the network by clicking the ‘run Training’ and the ‘run
Exploitation’ button. In most of the cases the mean squared error for the
training-phase is quite low in contrast to a more or less high error for the
exploitation-phase. As mentioned in the introduction a good approximation
is not guaranteed with these settings, if the performance of the network is
still too bad after some resets (in this example resetting the network can be
useful as a random error is applied during every sampling-phase, hence the
resulting output weights are not equal), go back to the ‘ESN-Settings’ tab
and generate a new network.

Figure 5 shows the results obtained with a sample network. The approx-
imation is not perfect and the mean squared error during the exploitation-
phase was around .03. The behavior exhibited by the sample network is
typical for this example: At the beginning of the exploitation the networks
matches the desired output quite good, but during the first frequency-shift
the discrepancy becomes bigger with increasing frequency, it seems that the
network is incapable to adapt its frequency so quickly. A typical pattern for
failed exploitation is an initial phase with a quite good approximation and
a breakdown during the second frequency-shift.

4.3 Example 3: Learning of a combined output function

The previous example demonstrated the ability of ESNs to adapt to simple
and complex one-dimensional output dynamics. In the current example the
task includes the reproduction of a combined sine- and cosine-wave output
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4.3 Example 3: Learning of a combined output function

function. As in the other examples we have to create the input / output
samples at first. The steps are equal to the other examples with the only
difference that you have to select the ‘Sine / Cosine-Combination’ button.
1000 time-steps should be enough.
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Figure 6: Example output for the two output units from two trained networks.
The upper panel shows a failed attempt to reproduce the output. As the two output
functions are very similar, failed adaption to one of them increases the chance of
failed adaption for the second. The lower panel displays a successful reproduction
as it is the typical case for the reported settings. The quality of the fit decreases
slightly over time.

Now create a new ESN. The following settings were applied to create
the example shown in Figure 6, which generated suitable solutions in about
two thirds of the cases. At first, uncheck the ‘use an input layer’ flag in
the input layer leaf of the network settings. Set the number of units in the
internal layer leaf to 25, the default setting for the spectral radius can remain
unchanged. At last set the number of output units to two and make sure
that the ‘Interconnect the output units’ checkbox in the ‘output-layer’ leaf
is not selected. As the desired output functions can be easily transformed
into each other, interconnections between the output units would make the
internal units obsolete as the output can be combined with a single teacher
forced input (you can test this by selecting the checkbox and setting the
internal layer unit count to one, the errors should be extreme low as well as
the estimated weights for the connections between the one internal and the
two output units). Now hit the start button, the default distribution of the
time steps can remain unchanged.

Figure 6 shows the results of two example networks. The erroneous
behavior shown in the upper panel of Figure 6 is one example for failed
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adaptions in this task, wrong amplitudes and frequencies are typical as well.

5 Network parameters

The following section provides an overview of some crucial parameters for
training ESNs. For a detailed discussion see, for example, Jaeger and Haas
(2004); Jaeger, Lukosevicius, Popovici, and Siewert (2007).

5.1 Spectral-radius

The main characteristic of an ESN is the so called ‘echo state property’,
a mathematical definition can be found in (Jaeger, 2002), or (Jaeger et
al., 2007). An intuitive definition holds (see (Jaeger, 2002) as well) that
the current network state has to be uniquely determined by the history
of the input and the (teacher-forced) output (given that the network has
been run for a long enough time). The echo state property depends on
some prerequisites of the dynamic reservoir, which are determined by the
connectivity of the internal layer. Even if there is (at the moment) no known
necessary and sufficient algebraic condition that allows to decide whether a
given network has the echo state property or not, it is possible to formulate
a sufficient condition for the non-existence of echo states. In short, it holds
that the network has no echo states if the largest absolute value of the
Eigenvector is larger than one. In this case, the randomly selected strengths
of the connections are high enough to produce growing oscillations. The
internal states of a network without the echo state property will be influenced
by the initial network states (no wash out will take place) and hence will not
resemble the pure input / output sequence. A simple test of this property
includes a single impulse-like activation of the internal units: If the network
possesses the echo state property, the resulting activation should diminish
until it is zero.

Figure 7 shows the dynamics of the internal states and the resulting out-
put for two networks with different spectral radii. There are two noticeable
features of the dynamics of the internal states in the case of a spectral radius
of 2.5: At first the high frequency of the resulting oscillation and secondly
the high amplitude. The oscillation seems to be quite chaotic as well, even
if it is somehow sinewave shaped. The left graph in the bottom panel of
Figure 7 displays the output computed with these states. Of course there
are strong deviations from the intended (teacher) output.

There might be a broader or smaller range of suitable values for the
spectral radius depending on the current task. In practice the value of the
spectral radius determines the timescale of the dynamic reservoir. As a
rule of thumb the spectral radius should be small for fast, short-memory
tasks and larger for slower, long-memory tasks (Jaeger, 2002). The term
‘memory’ in this case refers to the influence of previous sequences on the
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Figure 7: The first five internal states and the network generated output for two
networks with different values for the spectral radius. The settings are the same,
except the spectral radius. As can be seen in the middle panel, a very high spectral
radius leads two unstable activation-flows in the internal states. The probability to
reproduce the correct output is very low given these dynamics (bottom panel left
graph).
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5.1 Spectral-radius

current network state, that is, how long former activation has an influence
on the current dynamics. Another remarkable feature of the spectral radius
is the non-linear influence on the timescale. Empirical observations imply
an exponential dependency of the timescale on 1 − α, where α denotes the
spectral radius (Jaeger, 2002).
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Figure 8: Performance of networks with different spectral radii for the same
task. Every data point represents a mean-value of the log10 MSEs of 50 networks.
Additionally, the best MSEexploitation found in the 50 networks is displayed. Please
note that the figure tends to overestimate the quality of the network-solutions: As
the original MSEs were logarithmized, the influence of bad solutions is rather low.

It is possible to optimize the spectral radius for a given task. Even
if the range of suitable values is rather broad: If an ESN with a spec-
tral radius of 0.8 performs well, it can be expected to perform equally
well with a spectral radius of 0.7 or 0.85. Figure 8 shows an example
for the influence of the spectral radius on performance. The task was the
sinewave-generator from example 1. All networks had the same settings:
20 units in the internal layer, no input layer, a tanh transformation in the
internal layer and an identical transformation in the output layer. 50 net-
works were trained for the different spectral radii and the mean of loga-
rithmized MSEexploitation and MSEsampling was calculated. Furthermore the
best logarithmized MSEexploitation values from the 50 networks were stored.
The marked points ‘A’ and ‘B’ indicate the smallest values found for the
MSEsampling, the MSEexploitation, respectively. As can be seen from Fig-
ure 8, these two points do not coincide, even if the performance of the
networks is nearly equal for spectral radii between 0.78 and 0.97. Point ‘C’
marks the best threshold for the spectral radius in the given task for the
best MSEexploitation value achieved .

In sum, smaller spectral radii should be applied if faster dynamics are
desired, but larger values (closer to one) for slower dynamics. However, the
exact choice of the spectral radius appears not to be of crucial importance.
Even if it might be useful to optimize the spectral radius for a given task,

18



5.2 Usage of an input layer

in most cases the range of acceptable values is rather broad.

5.2 Usage of an input layer

Figure 1 shows that the output layer is connected to the input layer by
default if an input layer exists. Hence the flow of activation in the input layer
influences both the internal, as well as the output layer. If this activation
is unrelated to the current task, the incorporation of these activations may
decrease the performance of the network. You can examine this by using
an input layer for the sinewave-generator task from example 1. By default
the input / output sequence generated by the software includes a linear
function for the input. If this activation is mapped into the network it
will superimpose the intended sinewave, which can be seen in the flow of
activation in the internal states as well as in the behavior of the network
during the exploitation phase. On the other hand, if the input is equal to the
teacher-output (simple input-output matching) the estimated weights for the
output layer will be very low for the connections to the internal units and
high for the connections to the input units, making the dynamic reservoir
obsolete. Hence the usage of an input layer depends on the given task.
Jaeger (Jaeger, 2002) proposes the usage of a constant input (bias) in cases
where the desired output has a mean value different from zero. Sometimes
it might be a good idea to let the dynamic reservoir uninfluenced by this
bias and map it only to the output-layer, as the bias can force the units in
the internal layer to the extreme values of their respective sigmoids.

5.3 Amount of units in the internal layer

As the units of the internal layer are interconnected, there is a continuous
interaction between all internal units. This may lead to superpositions in
the activations that can not completely controlled by the estimated weights
for the output layer. Especially for easy tasks there might be no need for
a lot of variance in the internal states. Thus, sparse connectivity might be
very useful to provide a large amount of different types of internal dynamics
(Jaeger & Haas, 2004).

Given full connectivity, Figure 9 shows how the performance in the
sinewave-generator task depends on the amount of units in the internal
layer. The settings for all networks were the same except for the size of the
dynamic reservoir. As can be seen from Figure 9, the performance is very
good for internal layers with 10 to 20 units and decreases for larger dynamic
reservoirs.

Another problem associated with large dynamic reservoirs is overfitting:
If the ESN is trained with noisy data, a large dynamic reservoir may lead to
the adaption to random fluctuations resulting in poor generalization abilities
of the trained network. The optimal size of the internal layer depends on the
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Figure 9: The influence of the size of the internal layer on the performance in
the sinewave-generator task. The curves display the means of the log10 MSEs of 50
networks for the different sizes (the amount of units in the internal layer) plotted
on the x-axis. For every size the lowest MSEexploitation found in the networks is
displayed as well.

task. It is a parameter that might be optimized, but it seems also possible
to increase the size until the performance on test data decreases (Jaeger,
2002).

5.4 Self-Recurrence in the output layer

For higher dimensional output one has to decide if the units in the output
layer should be interconnected. This might be a good idea if the activation
of one unit has a predictive value for the other units, but this can lead
to interferences as well. On the other hand, if the activations of the units
can be completely predicted from each other, the internal layer is no longer
necessary, resulting in very low estimates for the corresponding weights and
high values for the weights interconnecting the units in the output layer with
each other and themselves. You can try this by running the third example
with interconnections in the output layer and a size of one for the dynamic
reservoir. The performance during the exploitation phase will be very good,
even if the output is not combined using the activation of the remaining unit
in the dynamic reservoir, but simply by the connections between the two
units in the output layer. Once again it depends on the task if the usage of
interconnections in the output layer are useful or not.

6 Discussion

The ESN architecture offers an elegant approach to the difficulties involved
in time-series prediction tasks because it avoids most of the common prob-
lems of training recurrent neural networks. The described Java implemen-
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tation is able to reproduce results obtained with MATLAB or C++ and it
is hoped that it is useful for future research studies on ESN as well as for
illustrative purposes.

In the future, we intend to develop the software further in order to
increase its flexibility and usability. Another important point is the missing
possibility of online-learning in the current form of the software. This will
be improved in further releases, so the user can choose between batch- and
online learning.

We used two third-party packages for the current implementation. The
linear algebra is performed with the JAMA package, developed in coopera-
tion by the National Institute of Standards and Technology (NIST) and The
MathWorks. As the package was released to the public domain there exist
no licenses for this package. The graph-like visualization of the networks
was obtained using the JUNG package, protected by the Berkeley Software
Distribution (BSD) license.

The code is distributed for academic purposes with absolutely no war-
ranty of any kind, either expressed or implied. We are not responsible for
any damage from its proper or improper use. If you are interested to work
with the source code, the appendices offer an overview of the structure and
the interfaces necessary to include customized functionalities.

Even if the software will be refactored and some aspects will not be in-
cluded in further releases, feel free to use, modify and distribute the code
with an appropriate acknowledgment of the source. In all potentially result-
ing publications please include the following citation:
J. Lohmann & M.V. Butz (2009), Echo-State Network in Java: Introduc-
tion, manual, and evaluations (COBOSLAB Report Y2010N002). Retrieved
from University of Würzburg, Cognitive Bodyspaces: Learning and Behav-
ior website: http://www.coboslab.psychologie.uni-wuerzburg.de/.
Also, please report any bugs or other inconsistencies in the source code to
one of the authors.
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A Package Structure

The following section provides an overview of the package-structure, as well
as of the dependencies between the packages constituting the software. Since
the structure partially developed over time, there are some slightly odd de-
pendencies and violations of the general MVC-model. The following descrip-
tion will help to work with the software, nonetheless. All UML diagrams
were created using UModel from Altova, members and attributes are not
displayed to keep the diagrams as clear as possible.

Figure 10: The package structure and the dependencies between the packages
of the software. There exist circularities, implying a sub-optimal design. For in-
stance the esnMain package depends on the visualization and the myInterfaces
package, while the visualization depends on the myInterfaces package as well.

There are three distinct parts that constitute the whole program: The
main part that realizes the setup, the training and the exploitation of the
ESNs, as well as the visualization. The second part creates, saves and
visualizes the input / output sequences used for training the networks. The
last part is the editor that is used for scripting issues in the current form
of the software. As can be seen from Figure 10, these three parts are not
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as distinct as they maybe should, but the following description separates
them as much as possible. Note that nearly all other packages depend on
the guiUtils and the myInterfaces packages.

A.1 The main Program

The so called esnMain package contains the basic GUI elements as well as
the class that provides the ESN functionality. Figure 11 shows the different
classes in this package. The EsnNetwork class performs the setup and the
training of ESNs, a view to this functions is provided by the ESNSubGui
class. The MainGui class hosts the whole GUI and provides an JFrame to
store all the InternalFrames used for the different functions accessible via
the menu of the main frame (see the different action-methods in the source
code of the MainGui class). The ESNOutputViewer allows to inspect and to
merge different existing output-files via tabbed-panes. The data stored in
the selected input-files are read and merged using the OutputMerger class.
The ESNLoader class is used to load and visualize existing ESNs.

Figure 11: The classes of the esnMain package: The model is realized in the
EsnNetwork class, the other classes provide the basic functionality of the GUI (a
mix of model, view and controller).

The esnMain package depends on the myMath package and vice versa (see
Figure 10). This circularity is caused by the fact that nearly all methods
of the classes in the myMath package work on instances of ESNNetwork and
on the other hand, all the mathematics that are necessary for the training
of ESNs are stored in this package (see Figure 12). The NetworkFunctions
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class contains only static methods used for training the ESN, to calculate
the MSEs and to apply noise. What kind of noise is used in the update of
the internal states depends on the settings of a given ESN, the necessary
calculations are performed by the Noise class. This class also stores an
enumeration (NoiseTypes) describing the type of noise, instances of this
enumeration are used in the settings of the ESNs.

Figure 12: The classes of the myMath package. The NetworkFunctions class
provides the functions involving linear algebra necessary to train the ESNs. Hence
this class depends on the JAMA package. The Noise class allows the application of
noise on given states. A enumeration denoting the different types of noise is nested
in the Noise class, these types are properties of an ESN.

The esnMain package as well as the myMath package depend on the
esnUtils package (see Figure 10). This package stores classes that hold rep-
resentations of the different layers of the network. There exists an abstract
Layer class (see Figure 13) that is the parent of the different layers. All
classes extending the Layer class have to implement the initializeWeights()
method. The classes representing the input and back-projection layer are
nearly equal. The InternalLayer class has some special features: a value
that indicates the connectivity between the units, a possible double array
representing an explicit representation of the probability distribution for the
connectivity, and a value for the spectral radius. The OutputLayer class dif-
fers from the other implementations of the Layer class by the existence of a
flag indicating if the units should be self-recurrent (if false all recurrent con-
nections in the output layer are excluded). All layers have a property called
func from the type TransferFunctions. These are only meaningful for the
InternalLayer and the OutputLayer as during the update of the states
of these two layers a transfer function is applied. The TransferFunctions
class holds the methods used for applying the functions as well as an enu-
meration (functions) indicating the existing functions. Instances of this
enumeration are utilized to describe the properties of the layers in the set-
tings of a given ESN. The last class in this package (InternalState) is
used to store information about the network generated through the training
process. The attributes of this class indicate the stored information: The
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current input as well as the intended / teacher output and the activations
of the units in the internal layer are stored in double arrays, an error value
is reserved for the network generated output (the name is confusing as no
error-value in terms of a difference between teacher and network output is
stored) and a String contains the information from which part of the train-
ing process the data was obtained (wash out, sampling or exploitation).
There exists a toString() method to retrieve a printable representation of
the data that is utilized to store it in files (see the implementation of the
printOutput() method in the ESNNetwork class).

Figure 13: A class diagram for the esnUtils package. Most classes extend the
abstract Layer class. The TransferFunctions class provides the methods used
for the application of transfer functions in the update of activations in the internal
and the output layer. The InternalState class allows the storage of information
obtained during the training process.

The settings package (shown in Figure 14) contains all the properties
of an ESN incorporated in widgets. The SettingsGui class extends the
InternalFrame class providing the frame for the visualization of the dif-
ferent properties in a tree-like manner. The MyNode class is used to store
the data displayed in the leafs of the settings-tree. The other classes of
the package (IOSettings, MathSettings and NetworkSettings) store the
information of the different types of settings. They are also able to cre-
ate a view to these settings using JPanel instances. The editable variables
are stored in enumerations as well as in the attributes of the classes. This
redundancy is used to read settings from files (so the files do not have to
match a specific structure, but they have to contain the appropriate key-
words). As can be seen in Figure 14 the three classes implement an interface
called GeneralSetAndGet. This interface is used to set and get attributes
from this classes via string-based identifiers, these identifiers coincide with
the names of the enumeration instances (see the implementations of the
fromStringArray() methods in the classes and the GeneralVariable class
in the guiUtils package). As the enumerations indicate values for noise
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types and transfer functions are stored in other packages, the settings pack-
age depends on the myMath and the esnUtils package (see Figure 10).
Due to the fact that the different Settings classes are managed by the
SettingsGui class, it is impossible to access the settings without an in-
stance of the SettingsGui class. Hence one has to create such an object
every time a ESN is to be trained, even if a GUI is not needed or wanted.
The constructor of the SettingsGui class might be parametrized with a
Boolean that indicates if the GUI should be generated, but this remains a
workaround and will be improved in further releases.

Figure 14: Classes and enumerations stored in the settings package.

Another package the esnMain package depends on is the visualization
package. The classes contained in this package provide the possibility to
display different aspects of the networks as well as some options that can be
performed on the graphs (for instance saving the graphs as pictures or to edit
the visualization). As the functionality of these classes is quite constrained
and a lot of abstraction can be done, this package will be replaced by a
standard graph package (probably JFreeChart). Therefore the package will
not be described in detail here (for an overview of the classes see Figure 15).
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Figure 15: The classes contained in the visualization package.

27



A.2 The creation of input / output sequences

A.2 The creation of input / output sequences

The whole functionality behind generation and visualization of input / out-
put sequences is hold by one package called training. This package depends
only on the utility packages guiUtils and myInterfaces (see Figure 10).
Three separate tasks are performed with the classes of this package: The
generation of input / output sequences and their storage in files, the visu-
alization of existing input / output sequences and a widget making these
functions accessible via the GUI. The first task involves the definition of in-
put / output sequences, their calculation and the storage into the file-system.
The abstract class GeneralTraining defines the methods necessary to gen-
erate training sequences (the generateTrainingSequence() method) and
to use them via the GUI (the getName() and getDescription() methods).
Two attributes are necessary for all implementations of the GeneralScript
class: A path indicating the file-location where the data should be saved
and a number of cases that should be created. The intended function is
realized by the heirs of the GeneralScript class via their implementation
of the generateTrainingSequence() method. This method is used by the
TrainingGenerator to create the data and store it in the file denoted by
the trainingFile attribute of the current GeneralTraining instance. The
TrainingVisualization class can be used to produce a visualization of
existing training files. The TrainingGui class displays this visualization
in separate tabs using an InternalFrame. To generate training sequences
via the GUI, the TrainingGenerator class allows to choose a function (the
known implementations of GeneralScript in the package), a file-path, and
a number of cases. Figure 16 offers an overview of the classes in the package.

Figure 16: The internal structure of the training package. The abstract
GeneralTraining class is the parent-class for all classes used to generate train-
ing sequences. The TrainingGenerator class produces the data and stores it, it is
also able to create a widget allowing the generation of training files via the GUI.
Existing training files can be displayed using the TrainingVisualization class in
combination with the TrainingGui class.
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A.3 The Editor

The main functionality of the editor is provided by two packages: The
editor and the script package. The classes in the editor package form a
stand-alone application. This application is intended as a small Java-editor
to setup and execute ‘scripts’ (in fact Java-classes that are compiled and
executed during run-time). The editor package contains all the relevant
parts of the editor: Classes that allow the identification and the coloring
of the tokens constituting a Java class, as well as a widget containing the
colored text (please note that no documentation of the classes store in the
editor package is provided). The compiler and a console that is used to
display compilation errors are parts of the script package. The script
package connects the editor application to the rest of the GUI (see the de-
pendencies of the script package in Figure 10). As these packages will not
be included in further releases, but will be replaced with packages allowing
the control of the software via setting-files, we will not discuss them in de-
tail here. If you want to use the scripting-options, the only relevant class is
GeneralScript, an abstract class that should be the parent of all costume
scripts. It is important to extend this class, as the compiler tries to identify
the type of the current script using reflection and the only accepted type is
GeneralScript.

A.4 Utility packages

As can be seen from Figure 10 most of the described packages depends on
two packages, called guiUtils and myInterfaces.

The myInterfaces package contains just three interfaces (see Figure 17).
The first one, called GeneralSetAndGet allows to set and get attribute values
without knowledge about the explicit getter or setter. This is mainly utilized
to obtain data from string input. Another case where it is used can be
found in the implementation of the GeneralVariable class in the guiUtils
package. This class is parametrized with an instance of GeneralSetAndGet
and an enumeration value indicating what parameter should be controlled by
this specific instance of GeneralVariable. Therefore the GeneralVariable
class can be used to produce Widgets for any attributes of an instance of
GeneralSetAndGet. The second interface called NetworkGui is used by only
two classes: ESNSubGui in the esnMain package that implement it and the
InputValidation class in the guiUtils package that requires an instance of
it. This is a relict from the early stages of the development of the software (a
quite useless one: A direct parametrization of the InputValidation with
an instance of a ESNSubGui would be easier). It is used to permit the
InputValidation object to create a new ESNNetwork object and give it
back to the instance of NetworkGui as well as to set the index of the tab
containing it accordingly. This interface will not be part of further releases.
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The last interface is called Callback. The main purpose is the handling of
threads. Most threads used in the software require a instance of Callback
to pass generated data back to the object that needs them. What action
should be taken with the data is indicated by the enumeration object that
is the first parameter of the callback() method. Multithreading in the
current form of the software is mainly realized using this interface. Further
releases will rely on the ThreadPoolExecutor that is part of the standard
Java API, so the Callback interface will become obsolete.

Figure 17: The interfaces contained in the myInterfaces package.

The guiUtils package contains a lot of classes that are used for tasks
related to the graphical user interface. As the functionality is rather hetero-
geneous it will not be described in detail. An overview of the package struc-
ture is given in Figure 18. All classes that have a Filter in their name as
well as the LinkedDoubleInputListener class extend the DocumentFilter
class from the javax.swing.text package. They are all used to prevent
invalid input in the text fields used in the GUI (double values if inte-
gers are required, string data for values that could only be numeric etc.).
Classes with names containing Table are used to customize the behavior of
JTables, like data models or the way the tables are drawn. The rest of the
classes are used for different purposes. The DefaultFileChooserPreview
class generates the accessory component used in some of the JFileChooser
dialogs that allows a preview on the file content. GeneralReader and
GeneralWriter are two Runnables that can be used to read from or write
to files. They both require an instance of Callback to send the read data
back or to notify the object that invoked them. The GeneralVariable is
used to create default widgets like check-boxes or text fields for given vari-
ables. A instance of GeneralVariable requires a GeneralSetAndGet that
is updated if data is changed, as well as a enumeration object that allows
the usage of the generalGet() and generalSet methods. As noted ear-
lier the InputValidation class is used to create new ESNs. Finally the
MyProgDialog class provides the default dialog that is shown sometimes
while a thread is working.
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Figure 18: The different classes in the guiUtils package.
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A.5 Miscellaneous packages

As noted in the discussion we used the JUNG package to create a graph-like
representation of the different layers constituting an ESN. Figure 19 offers
an overview of our implementation. The performance of this feature is quite
low especially for larger networks. Hence it is not clear if it will be part of
further releases and will not be discussed in more detail.

Figure 19: The usage of the JUNG package for the graph-like visualization of the
ESNs.

The last remaining package is the graphics package. It contains one
single class, called WaitPanel. This class extends JPanel and is used to
create and display the background image of the main frame. Optionally it
is possible to invoke a thread rotating the sun-like picture.

B Extending the Software

Although the whole structure described in the previous appendix is still
somewhat bulky, there are some aspects that are candidates for customiza-
tion: For instance the generation of new training sequences or the imple-
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mentation of other noise types than the current ones. The effort to achieve
this is quite large in the current implementation. The following example
might illustrate this for the creation of a new training sequence. Unfortu-
nately you have to refer to the source code if you want to customize any
other features as well.

Figure 16 shows that two tasks have to be solved to implement a new
training sequence: At first a implementation of GeneralScript have to be
written. The second step is to make this new function available in the GUI.
The class GeneralScript has three methods that should be implemented:

1. protected abstract double[][][] generateTrainingSequence().
This method has to be implemented as it is abstract. It should return
an array of double values, which contain the training data. The first
dimension (that is, the number of rows) represents the number of cases
that should be created. Each case consists of values for the input and
the intended teacher output (you may take a look into the existing
implementations for examples).

2. public static String getDescription(). This method should re-
turn a String describing the input / output function created by the
instance of GeneralScript. This method is optional as it is only used
for the tool-tip of the button corresponding to this training sequence.

3. public static String getName(). This method is optional as well
it should deliver a name for the input / output function that is used
for labeling the button corresponding to this training sequence.

The existing implementations of the GeneralScript class can serve as
examples for possible implementations. To make the new function available
via the GUI, the TrainingGenerator class have to be edited. This is due
to the fact that at the current stage of development the existence of pos-
sible instances of GeneralScript is not checked using reflection. At first
one has to create a button for the new type of training. This is possible
by editing the generateButtonPanel() method in the TrainingGenerator
class. Please follow the notes given in the source code to achieve this.
Secondly you have to register this new button to the implementation of
the ActionListener interface in the TrainingGenerator class. Go to the
actionPerformed(ActionEvent e) method and follow again the instruc-
tions included in the source code. This is a quite cumbersome solution,
but further releases will offer a more comfortable way to include costume
training sequences.
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