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Extracting Knowledge with XCS on Scarce and

Noisy Data

Anke Endler∗ Martin V. Butz† Günter Daniel Rey‡

Abstract

This paper investigates XCS performance on scarce and noisy ar-
tificial and real-world data sets. The real-world data set is derived
from an E-learning study, in which motivations were correlated with
the adaptation of task difficulty. The artificial data set was gener-
ated to evaluate if XCS can be expected to mine information from the
real-world data set. By progressively increasing the sparsity and noise
in the artificial data set, mimicking the properties of the real-world
data set, we show that XCS can handle scarce and noisy data well.
We furthermore show that the extracted structure contains problem-
relevant information. The analysis of the XCS rules produced in the
real-world data set itself reveals structures that correspond to actual
psychological learning theories. Thus, the contributions of the paper
are twofold: (1) We show that XCS can mine highly scarce and noisy
data; and (2) the results suggest that the current motivational state of
a user of an E-learning program may be utilized to adapt the program
for improving learning progress.

1 Introduction

XCS is a learning classifier system, which was introduced by Stewart Wilson
(Wilson, 1995). The system has been successfully applied to various classifi-
cation and datamining problems as well as reinforcement learning problems
(Bernadó-Mansilla & Garrell-Guiu, 2003; Bull, 2004; Butz, 2006). More-
over, due to its rule-base representation, knowledge extraction is easy to
accomplish (Wilson, 2000). That is, the system is not only suitable to yield
good classification accuracy but is also suitable to extract particular feature
dependencies hidden in the analyzed data.

We utilize an XCS version that processes integer-valued inputs, similar
to Wilson’s XCSI setup (Wilson, 2001b). Moreover, we do not use any action
encoding, similar to the XCSF setup, which is typically used for function
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2 Data Encoding and Generation

approximation (Wilson, 2001a). Thus, our XCS setup specifies no action or
classification and the system predicts one reward value. To avoid further
name confusions, we will refer to our setup as an XCS system.

We analyze XCS performance in cases where only very scarce and noisy
data is available for learning. In particular, we investigate if XCS is able to
extract feature dependencies and interactions when facing a highly scarce
and noisy real-world data set. This data set was extracted from an E-
learning study, in which the current user motivation was correlated with
task difficulty adjustments. To analyze this data, we first evaluate XCS
performance on artificially generated data with a hidden structure. This
data is progressively made scarce and noisy. Finally, we analyze the real-
world data set. The results show that XCS is well-able to extract feature
dependencies from scarce, highly noisy data. With respect to the E-learning
study, the results suggest particular motivation-dependent difficulty adjust-
ment strategies.

We now first introduce the real-world data set and the artificial data
set used. Next, we specify the XCS setup in our information extraction
scenario. We then analyze XCS performance first on the artificial data set,
progressively making the data more scarce and noisy. Finally, we analyze
XCS performance on the real-world data, extracting interesting knowledge.
Summary and future work suggestions conclude the paper.

2 Data Encoding and Generation

The focus of this work was to extract adaptation strategies for E-learning
programs based on the motivational state of the user. Thus, an experimental
study was conducted in which an E-learning program generated random
adaptations of task difficulties, effectively gathering a rather wide spectrum
of data for the extraction of useful adaptation strategies. We now give a
short overview on the adaptive E-learning program and the nature of the
data extracted from the program.

The utilized E-learning program was a computer-based training program
to solve simple mathematical puzzles. In particular, either a series of num-
bers, such as 1, 2, 3, 4 was to be continued or a set of numbers and operators
had to be combined to yield a target result. The user had to choose one
answer to each puzzle out of five options given by the program. Both tasks
were available in six levels of difficulty.

Fig. 1 shows a typical training block of the E-learning program. Each
participant worked on two successive blocks, consisting of a motivational
questionnaire to assess the learner’s current motivation, a learning block
presenting 10 tasks, and two test blocks with 6 tasks each to measure learn-
ing success. At the beginning of the learning block, adaptation of task dif-
ficulty took place, increasing, decreasing, or maintaining the previous level
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2 Data Encoding and Generation

of difficulty. This adaptation of difficulty was randomly applied by the E-
learning program during the study to gain a broad sample of data. Within
the learning block, difficulty was further adapted according to the user’s per-
formance, increasing (decreasing) the difficulty after two successive correct
(incorrect) answers.

The study was conducted with 37 participants, yielding a data set of 74
data entries. Further details on the study, the participant distribution, and
prior data analyses can be found in (Endler, 2010).

Figure 1: A training block of the E-learning program

Four motivational states were recorded, namely anxiety, probability of
success, interest and challenge. These were assessed by means of a reduced
form of the questionnaire introduced in (Rheinberg, Vollmeyer, & Burns,
2001). The assessed motivational states were encoded by three possible
values: low, medium, or high. As the adaptation of task difficulty was
applied by the E-learning program at random, it was defined as part of
the condition input specifying either a decrease, increase, or no change of
the level of difficulty. The prediction value was the change in performance,
calculated as the percentage of correct answers in the test after a learning
block minus the test before that learning block. Learning success ranged
from −0.5 to +0.5, and was normalized to [0, 1] for the knowledge extraction.

Consequently, the features of each data entry consisted of 5 nominal val-
ues, each of which could take on three actual values. This yields a problem
input space size of 35 = 243 possible input values. Since the study pro-
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3 XCS Setup

Table 1: An overview on the distribution of motivation and adaptation in the
study. Every table entry shows the amount of data collected for a specific motiva-
tional state further sorted by applied adaptation. The four motivational states are
anxiety (anx), challenge (chal), interest (int) and probability of success (suc).

vided us with 74 data entries, maximally 30.5% of the problem space could
be covered. Table 1 shows the distribution of the data derived from the
study. Every table entry shows the amount of data collected for a certain
motivational state, sorted further by adaptation. Within a table entry, e.g.
1,2,3 means that for this motivational state there is one data set where dif-
ficulty was decreased, two where it was not changed, and three where it
was increased. Motivational states that were not covered by the data are
highlighted.

3 XCS Setup

The objective was to let XCS learn rules that can predict the suitability of
particular adaptations of difficulty, given the learner’s motivational state.
XCS is particularly suited for this task since its rule-based representation
facilitates knowledge extraction. However, it was not clear to us whether
XCS is able to deal with the sparsity and noise in our data set. In the
following, we specify the XCS setup. Next, we explore if XCS is able to
extract the structure embedded in a sparse artificial data set, before moving
on to the real data set analysis.

Given the specified integer encoding of the five data entries, we use
interval conditions according to (Wilson, 2001b). Mutation was also defined
accordingly. Thus, the number of expressible classifiers was (4·3

2
)5 = 65 =

7776.
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4 Evaluation on Artificial Data

If not stated differently, parameter settings were the standard parameter
settings specified in (Butz, 2006). Since there are no actions and thus no ac-
tion sets, the evolutionary algorithm was applied in the match sets. Reward
prediction updates were done based on the standard error-based adaptation
scheme. Further information on the exact functionality of XCS can be found
in the algorithmic description (Butz & Wilson, 2001).

4 Evaluation on Artificial Data

The decision tree shown in Fig. 2 was implemented to simulate an intuitively
logical and easily verifiable artificial scenario. Nodes in the tree specify mo-
tivational states. Leafs specify the reward values dependent on the type of
difficulty adjustment. Thus, for example, given low to medium anxiety (< 2)
and low challenge, values suggest that an increase in the level of difficulty
will yield a reward of 0.8, which would correspond to a solid performance
improvement based on our reward definition in the real data set, as it cor-
responds to an increase of approximately two correct answers in the test
blocks.

We now proceed with analyzing if XCS is able to identify this systematics
while progressively adding noise and sparsifying the available data. First, we
use artificial data with values taken from the entire input space. Next, we
limit the number of different input values to the number of values we derived
from the study, that is, we generate 74 data set instances and randomly
sample those during the learning process. Then we add noise to imitate
the inaccuracy of real data. 10-fold cross-validation is used to ensure that
XCS can produce rules that are able to predict previously unknown data.
Finally, XCS is evaluated with the real data from the study. Again, 10-fold
cross-validation is used to ensure that the rules derived with the XCS from
this data cannot only predict known input but also unknown data.

Moreover, we evaluate XCS performance dependency on three crucial
parameters: its maximum population size N , the number of learning itera-
tions T , and the start of the compaction mechanism C. Intuitively speaking,
parameter N fosters competition in the population: give a large population,
competition is low and learning is delayed, however, given a very small value,
competition may be too strong, possibly leading to the problem of a contin-
uous covering-deletion cycle (Butz, Kovacs, Lanzi, & Wilson, 2004) or niche
loss (Butz, Goldberg, Lanzi, & Sastry, 2007). Parameter T specifies the
time during which XCS can evolve appropriate rules. Enough time needs to
be provided for XCS to converge - however, overly long learning may also
result in overfitting. The compaction mechanism simply stops mutation and
crossover operators from being applied, thus condensating the population to
the most dominant, accurate classifiers at that time. All reported evalua-
tions are done using independent learning runs, reporting the average values
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4.1 Performance on Full Data Set

for mean absolute error and number of distinct classifiers. The average er-
ror of one run is the mean of the absolute errors of all prediction values and
the overall average error is the mean of the average errors of all independent
runs. When we use cross-validation, the closest matching classifiers are used
for reward prediction if no classifier matches a particular instance.

Figure 2: The hidden interdependencies of the input variables in the artificial
data set

4.1 Performance on Full Data Set

Fig. 3 shows the average results for average error and number of distinct
classifiers, respectively, for various choices of N and T . Each point essen-
tially reports the results of ten independent runs with particular settings
for N and T and the compaction C set to 90% of T . Input values were
sampled from the entire problem space (with replacement). We can see
that for N ≥ 400 and T ≥ 40, 000 the average error stays below 0.03. For
T ≥ 30, 000, T only has an insignificant influence on the number of distinct
classifiers. As a general rule, the number of distinct classifiers increases with
increasing N . Therefore, low N is preferable, and we conclude that N = 400
is a good choice for our problem. Furthermore, T should be at least 40,000
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4.2 Performance on Size-Limited Data Set
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Figure 3: Artificial data with full data set and C = 90% of T

to gain acceptable results for both the average error and the number of dis-
tinct classifiers.
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Figure 4: Artificial data with full data set with N = 400 and T = 100, 000,
log-scaled.

Fig. 4 shows the average error and the number of distinct classifiers for
varying C ranging from 60% to 100% of T = 100, 000. The figure shows
that the later the compaction starts the more distinct classifiers remain in
the population. The average error shows a slight tendency to decrease for a
later start of compaction. We choose C = 75% of T for further evaluation
to avoid a large number of classifiers.

4.2 Performance on Size-Limited Data Set

In the previous section, XCS was provided with input from the entire prob-
lem space. The study, however, provides only a very small amount of data
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4.2 Performance on Size-Limited Data Set

for knowledge extraction. Therefore we evaluate the system limiting the
number of different input values to 74. These input values, i.e. motivational
states and adaptation, are taken from the real-world data but the reward is
generated artificially using the introduced function. This ensures that the
data given to the system covers the same part of the problem space as the
real-world data but we can still verify the quality of the rules, because the
structure of the data and thus the reward values are known. The 74 available
values are presented to XCS repeatedly and randomly with replacement. We
choose C = 75% of T and, again, vary T and N .
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Figure 5: Size-limited artificial data set with C of 75% of T

Fig. 5 shows that for T > 30, 000 a larger N results in a lower average
error. N = 200 is clearly too small, resulting in a high error of more than
0.1. N = 600 has a slightly smaller error than N = 400, but the error stays
under 0.02 in both cases and is therefore acceptable. A larger N results in
a larger number of distinct classifiers. Therefore, N = 400 seems a good
compromise. There is no clear indication for the best choice of T . Average
error reaches an acceptable range for T > 40, 000, and does no longer change
significantly after that. A higher choice for T results, as a tendency, in a
smaller number of distinct classifiers but poses the danger of overfitting.
Overfitting means that the system very exactly learns the examples it has
been given, so it can predict them accurately but it will be less able to
predict new, unknown data correctly.

A batch of 18 classifiers, with an average error of 2.16E-7, was derived
with T = 100, 000, C = 75% of T and N = 400. 13 of these 18 rules
predict the reward correctly for their entire coverage. These rules cover
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4.3 Performance on Size-Limited and Noisy Data Set

Nr Anx Succ Int Chall Adapt Rew Err Fit Tot Set
1 0 0-2 0 0-2 1 0.8 0.0 0.16 0.66 1.0
2 0-1 1-2 0 0-2 2 0.1 0.0 1.0 0.66 1.0
3 0-2 1-2 0 0-2 2 0.1 0.0 0.43 0.77 1.0
4 1-2 0 0-2 0 0 0.8 0.0 0.29 0.5 1.0
5 1-2 0 0-2 0-2 0 0.8 0.0 0.71 0.5 1.0

Table 2: The incorrect rules for a batch with the size-limited artificial data set

almost the entire problem space. A rule is defined as correct, if its reward
prediciton deviates from the correct value by less than 0.35, so it can still
be allocated to one of the two learning success values in the test function.
By this definition, five rules in this particular batch return incorrect values.
Table 2 lists the incorrect rules.

Fitness is apparently no indication for the correctness of the rules, as
Rule 2 has maximal fitness. Rules 1, 2 and 3 are incorrect for challenge
= 0 but correct for challenge > 0. Rule 4 is correct for anxiety = 2 but
incorrect for anxiety = 1. Rule 5, finally, is correct for anxiety = 2 and
incorrect for anxiety = 1. All errors appear in the anxiety < 2 part of the
test function and all errors except for those of Rule 5 appear in the anxiety
< 2 and challenge = 0 part.

Remember that we took the motivational states and adaptations from
the data collected in the study. If we look at Table 1 again we can see how
these incorrect classifiers can occur. Let us take Rule 1 as an example: The
motivational state of this rule covers the first row of Table 1. In this row,
for 6 sets of data the value for adaptation is 1, i.e. no change. These sets
all have a value for challenge that is greater than 0. Therefore the rule for
anxiety = 0 and challenge = 0 with low interest and adaptation = 1 is not
covered by the available data, which means that the system cannot learn the
correct prediction for this subspace, but the condition may still be included
in a rule due to both the covering operator and the variation operators.

The last two columns of Table 2 indicate what percentage of the problem
space covered by a rule can still be correctly predicted by this rule, with
reference to the entire problem space and the problem space covered by
the data set, respectively. All five rules are able to predict the available
data correctly. They are, furthermore, able to predict at least 50% of their
coverage correctly.

4.3 Performance on Size-Limited and Noisy Data Set

When collecting data in an experimental study, noise has to be expected. To
extract rules, the system has to be able to handle this noisy data. Therefore,
we test the system by adding Gaussian noise to the artificial data. Since
noise is implicitly added only once when collecting the real-world data, we
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4.3 Performance on Size-Limited and Noisy Data Set

add noise to the artificial data by calculating one noisy output for each of
the 74 input values. This means, that a certain data set will always return
the same (noisy) output. Again, the 74 available values are presented to the
XCS repeatedly and randomly with replacement.
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Figure 6: Size-limited, noisy artificial data set with N = 400 and C = 75% of T

Fig. 6 shows that noise has a major influence on the average error. The
higher the noise, the higher the average error, irrespective of T . This is not
surprising, as it is not possible for the system to learn the correct reward if
the reward it receives is noisy and may therefore differ for identical input
values. The number of distinct classifiers, on the other hand, drops when
noise is added. More noise, however, does not have any significant influence
and the number of distinct classifiers, which still decreases for a higher T

irrespective of noise. The results suggest that T = 100, 000 or higher is
appropriate. For this setting, we can expect a number of distinct classifiers
lower than 20. This is important, because with only 74 values available we
need to reach a low number of rules to guarantee some generalisation of the
data. A higher T has no major influence on the average error and only a
small influence on the number of distinct classifiers but may pose the risk
of overfitting.

Table 3 shows one batch of classifiers detected by XCS on an artificial
size-limited and noisy data set, with T = 100, 000 and noise of 0.2. This
particular batch reached an average error of 0.178 with 13 classifiers. The
last two columns of the table indicate what percentage of the problem space
covered by a rule can still be correctly predicted by this rule, with reference
to the entire problem space and the problem space covered by the data set,
respectively.
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4.4 Cross-Validation with Size-Limited and Noisy Data Set

Anx Succ Int Chall Adapt Rew Err Fit Tot Set
2 1-2 1-2 0-2 1 0.597 0.35 0.98 1.0 1.0
1-2 0-2 0-2 1 2 0.153 0.28 0.21 0.66 1.0
1-2 0 1 0-2 0 0.815 0.001 0.99 0.5 1.0
1 2 0 1-2 1 1.210 0.00 1.0 1.0 1.0
0-2 1-2 0-2 0-2 0 0.007 0.06 1.0 1.0 1.0
0-1 0-1 0-2 0-2 2 0.747 0.08 1.0 0.78 1.0
1-2 0 1-2 1-2 0-2 0.021 0.03 1.0 0.67 1.0
2 0-1 0 0-1 0-1 0.606 0.13 1.0 0.5 1.0
1 1 0 1-2 1 0.863 0.13 1.0 1.0 1.0
2 0-2 0-2 2 2 0.214 0.09 1.0 1.0 1.0
0-1 0-2 0-2 0-2 0 -0.054 0.16 1.0 1.0 1.0
0 0-2 0 0-2 1 0.824 0.18 1.0 0.67 1.0
0-1 0-2 1-2 0-2 1 0.160 0.18 1.0 1.0 1.0

Table 3: A set of rules for the test function with limited input and noise of 0.2,
with N = 400, T = 100, 000 and C = 75% of T

All classifiers are able to predict the part of the problem space covered by
the data set correctly. 7 of the 13 classifiers can predict their entire coverage
correctly and all 6 of the remaining classifiers are able to predict at least
50% of their coverage correctly.

4.4 Cross-Validation with Size-Limited and Noisy Data Set

As Section 4.2 showed, the limited values may result in partially incorrect
rules despite a low error, because only part of the problem space is covered
by the data. To make sure we gain reliable rules, we need to test them on
unseen data using e.g. cross-validation. We repeatedly let XCS learn with
about 9

10
of the data and test the rules on the remaining 1

10
, i.e. we use 64 or

65 input values for learning and the remaining 7 or 8 values for evaluation.
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Figure 7: Size-limited artificial data set with N = 400 and C = 75% of T

Fig. 7 shows the average learning and test error for the artificial data
without noise but with limited values and varying T . For T > 100, 000 the

11



5 Performance on Real-World Data

average learning error is lower than 0.05 with an average test error of around
0.2. This suggests that the amount of data available is sufficient to derive
rules that can predict unknown data reasonably well.
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Figure 8: Cross-validation in size-limited, noisy artificial data set with N = 400,
T = 100, 000 and C = 75% of T

Fig. 8 shows the average learning and test error for the test function
with several levels of Gaussian noise and T = 100, 000. Both, learning and
test error increase significantly with increasing noise so that for a noise of
0.4 and above the rules derived from XCS cannot feasibly predict unknown
data. For a noise of 0.2 or smaller, however, the test data indicates that
the system is able to reliably learn an acceptable number of rules that can
predict unknown data feasibly. We can conclude that XCS, using adequate
settings, is suitable for the extraction of rules from scarce data given that
this data is not particularly noisy.

5 Performance on Real-World Data
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Figure 9: Real-world data set with N = 400 and C = 75% of T , log-scaled

Fig. 9 shows the average error and the number of distinct classifiers for
the data derived from the study. The average error remains stable around
a value of 0.139 for T ≥ 40, 000. This is comparable to, and even slightly
lower than, the average error achieved in the artificial data set for a noise of
0.2, which is an acceptable noise value.
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5.1 Cross-Validation with Real-World Data

The number of distinct classifiers decreases significantly for up to T =
80, 000. For higher T , it only decreases slightly, which again coincides with
a noise of 0.2 in the artificial data.
Also, similar to the artificial data, there is no clear indication for the best
choice of T . We can say that T should be larger than 80,000 so the average
error as well as distinct number of classifiers reach an acceptable value. A
larger choice of T may reach even better results, albeit probably not signifi-
cantly, as both values, average error as well as distinct number of classifiers,
show no major decrease for higher T . On the other hands, as stated before,
a significantly higher T may result in overfitting.

5.1 Cross-Validation with Real-World Data
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Figure 10: Cross validation with real-world data set with N = 400 and C = 75%
of T

As XCS with the real-world data produces similar results to the artificial
data with noise of 0.2, we can hope to gain acceptable results using cross
validation.
Fig. 10 shows the average error for the learn and test data derived from
cross-validation with the real-world data from the study for various choices
of T . The learn error stays around 0.08, while the test error never exceeds
0.24. For T < 240000 the test error stays around 0.22, showing only a
slight increase for even larger T . This increase might imply overfitting.
These results show a slightly higher error than the results for artificial data
without noise but are, again, comparable to, and even slightly lower than,
the results for artificial data with noise of 0.2. We therefore conclude that
XCS is able to extract feasible information from the real-world data.

5.2 Knowledge Extraction

Our evaluations using artificial data as well as cross-validation suggest that
XCS is able to derive reasonably reliable rules from scarce and noisy data.
To support these results further, we extracted a number of stable rules for
real-world data using cross-validation and T = 160, 000. Furthermore, we
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5.3 Knowledge Analysis

No. Anx Suc Int Chal Adapt Rew
1 0-2 0-2 0-1 1-2 0 0.727, 0.833
2 0-2 2 0-1 0-1 0-1 0.379, 0.396, 0.423, 0.597
3 0-2 1-2 1 0-2 0-1 0.596, 0.633
4 0-2 0-2 1 0-2 0-1 0.620, 0.833
5 1-2 0-2 0-1 0 0-2 0.479, 0.538
6 1-2 1-2 0-1 1-2 0-2 0.670, 0.625, 0.634
7 1-2 0-2 0-2 0 0-2 0.454, 0.473, 0.535
8 2 0-2 0-2 0-2 1 0.704, 0.709, 0.741, 0.749, 0.763
9 0 0-1 0-2 0-2 1-2 0.462, 0.473, 0.497, 0.502
10 0-2 2 1-2 0-2 1-2 0.454, 0.517, 0.594
11 0-2 2 1-2 1-2 1-2 0.466, 0.513
12 0-2 2 2 0-2 1-2 0.437, 0.481

Table 4: Rules derived with cross validation from the study’s data

chose N = 400 and C = 75% of T . Using these settings, the average number
of distinct classifiers after each of the ten runs was 15.6.

To extract meaningful rules, we only considered classifiers with a fitness
greater than 0.9 and experience greater than 5000, leaving us with an average
of 6.1 classifiers per run. From these classifiers we extracted those that
appeared in at least two iterations, which yielded 12 rules in total, which
are shown in Tab. 4. The first column gives a rule number to every rule.
The next five columns show the rule and the last column shows the reward
prediction from every instance of this rule. Predictions for the same rule
always show a similar value with the highest deviation being 0.218 for Rule
2. Rule 4 subsumes Rule 3, Rule 7 subsumes Rule 5 and Rule 10 subsumes
Rule 11 as well as Rule 12.

5.3 Knowledge Analysis

To analyze the validity and utility of the extracted knowledge, we now in-
terpret the extracted rules according to two well-known, widely accepted
psychological learning theories that include motivational aspects.

5.3.1 Zone of Proximal Development (ZPD)

The zone of proximal development (see e.g. (Rey, 2009), (Murray & Arroyo,
2002)) predicts that the highest learning success can be expected if expertise
and difficulty are on a similar level as depicted in Fig. 11.

Rules 1 and 2 predict a particularly high and particularly low learning
success, respectively. They show no difference in anxiety and interest. Rule
1, however is applicable for rather high challenge and Rule 2 for rather low
challenge. Both rules suggest a decrease of difficulty. Rule 2 also covers no
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5.3 Knowledge Analysis

Figure 11: Zone of Proximal Development

change in difficulty.

We can interpret challenge as an indication for the interaction between
task difficulty and learner’s expertise. More precisely, this interpretation as-
sumes that high challenge indicates that the difficulty exceeds the learner’s
expertise while low challenge indicates, vice versa, that the learner’s ex-
pertise exceeds difficulty. A balance of difficulty and expertise will, in this
scenario, result in medium challenge. High challenge should then indicate
that difficulty is too high and the learner will leave the ZPD. In this case
reducing the level of difficulty will return the learner into the ZPD and there-
fore, as a tendency, increase learning success (see Rule 1). If, on the other
hand, difficulty is decreased further when a learner reports low to medium
challenge they leave the ZPD because difficulty is too low for their expertise,
resulting in low learning success (Rule 2). The same holds if the difficulty is
not decreased for high challenge (Rule 11). All other rules give no indication
for either challenge or adaptation.

5.3.2 Yerkes-Dodson Law

The Yerkes-Dodson Law (see e.g. (Weiner, 1985)) assumes an interrelation
between arousal, difficulty of the task, and performance. The law postulates
that a certain amount of arousal, i.e. motivation, is necessary to activate
learning. For easy tasks, higher activating motivation is expected to result
in higher performance. For difficult tasks, however, too high activating mo-
tivation may result in a decrease of performance again.
Anxiety may be such an activating motivational factor. If a learner shows
no anxiety whatsoever they may not see any need to concentrate on the
task. If, on the other hand, anxiety is too high they may not be able to
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concentrate on the task any more.
In the study self-assessed anxiety has to be seen in the context of perfor-
mance having no consequences for the participants whatsoever. Therefore
we assume that even reported high anxiety does not leave the range where it
is activating rather than blocking learning. Consequently high (low) anxiety
should lead to a high (low) learning success. This is confirmed by Rules 8
and 9, respectively. Medium to high anxiety, which is specified in Rules
5, 6 and 7, shows a wider range in learning success but mainly within the
boundaries of the learning success of Rules 8 and 9.
Interest can be analysed in the light of the same law. Interest, however, may
take the full range in the scope of the study so that we expect a medium
interest to result in high learning success and a low or high interest in a
lower learning success. Rules 3 and 4 show an acceptable learning success
for medium interest. Rules 2 and 5 show a low learning success for low to
medium interest and Rules 10, 11 and 12 show a low learning success for
medium to high interest. Rules 1 and 6 however contradict this theory. Rule
1 shows a very high learning success for low to medium interest. This might
be due to other factors, like the ZPD explained above. Rule 6 also shows a
rather high learning success for low to medium interest.
Rule 6 differs from Rule 5 mainly in challenge, suggesting that high chal-
lenge may compensate the lack in interest. Looking at the other rules, low
to medium interest together with high challenge always promises a better
learning success than low to medium interest with low challenge (see Rules
1, 6 and 2, 5 respectively)

6 Conclusions

In this paper we evaluated XCS performance on scarce and noisy data.
With only 74 data sets, the learning material did not cover the entire prob-
lem space. Similarly, only a small number of sets where available for each
covered condition, making noise a potential issue.
We used data from an intuitively logical and easily verifiable artificial sce-
nario to evaluate XCS performance, making the input progressively scarce
and noisy. First we used the artificial data with input taken from the en-
tire problem space. Then we limited the input to a set of 74 different input
values, which were presented to XCS repeatedly and randomly with replace-
ment. Next, we added noise to imitate the inaccuracy of real-world data.
With this artificial data set and these different stages, we were able to show
that XCS is able to extract rules from scarce and to some extend noisy data.
10-fold cross-validation confirmed that, with these rules, XCS can not only
predict known input but also unknown data.

XCS was furthermore applied to extract adaptation strategies based on
the motivational state of the user for an E-learning program. This real-
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world data showed a similar behavior to the artificial data with a noise
ratio of 0.2, indicating that XCS could extract knowledge from the data.
10-fold cross-validation as well as consistency with psychological theories on
learning strongly supported the reliability of the extracted rules.

We can therefore conclude that, using adequate parameter settings, XCS
can handle scarce and, to a certain extent, noisy data reasonably well, and
that it is able to extract general and reliable rules from this data.
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Bernadó-Mansilla, E., & Garrell-Guiu, J. M. (2003). Accuracy-based learn-
ing classifier systems: Models, analysis, and applications to classifica-
tion tasks. Evolutionary Computation, 11, 209-238.

Bull, L. (Ed.). (2004). Applications of learning classifier systems. Springer-
Verlag.

Butz, M. V. (2006). Rule-based evolutionary online learning systems: A
principled approach to LCS analysis and design. Berlin Heidelberg:
Springer-Verlag.

Butz, M. V., Goldberg, D. E., Lanzi, P. L., & Sastry, K. (2007). Problem
solution sustenance in XCS: Markov chain analysis of niche support
distributions and the impact on computational complexity. Genetic
Programming and Evolvable Machines, 8, 5-37.

Butz, M. V., Kovacs, T., Lanzi, P. L., & Wilson, S. W. (2004). Toward a
theory of generalization and learning in XCS. IEEE Transactions on
Evolutionary Computation, 8, 28-46.

Butz, M. V., & Wilson, S. W. (2001). An algorithmic description of XCS. In
P. L. Lanzi, W. Stolzmann, & S. W. Wilson (Eds.), Advances in learn-
ing classifier systems: Third international workshop, IWLCS 2000
(lnai 1996) (p. 253-272). Berlin Heidelberg: Springer-Verlag.

Endler, A. (2010). Towards Motivation-Based Adaptation Strategies for
Difficulty in E-Learning Systemy. Diplomarbeit, Julius-Maximilans-
Universität Würzburg.

Murray, T., & Arroyo, I. (2002). Toward Measuring and Maintaining the
Zone of Proximal Development in Adaptive Instructional Systems. In-
ternational Conference on Intelligent Tutoring Systems.

Rey, G. D. (2009). E-learning. theorien, gestaltungsempfehlungen und
forschung. Huber.

Rheinberg, F., Vollmeyer, R., & Burns, B. D. (2001). FAM: Ein Fragebogen
zur Erfassung aktueller Motivation in Lern- und Leistungssituationen
(Tech. Rep.). Universitt Potsdam.

Weiner, B. (1985). Human Motivation. Springer.

Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary
Computation, 3 (2), 149-175.

17



References

Wilson, S. W. (2000). Get real! XCS with continuous-valued inputs. In
P. L. Lanzi, W. Stolzmann, & S. W. Wilson (Eds.), Learning classifier
systems: From foundations to applications (lnai 1813) (pp. 209–219).
Berlin Heidelberg: Springer-Verlag.

Wilson, S. W. (2001a). Function approximation with a classifier system. Ge-
netic and Evolutionary Computation Conference, GECCO 2001, 974-
981.

Wilson, S. W. (2001b). Mining oblique data with XCS. In P. L. Lanzi,
W. Stolzmann, & S. W. Wilson (Eds.), Advances in learning classifier
systems: Third international workshop, IWLCS 2000 (lnai 1996) (p.
158-174). Berlin Heidelberg: Springer-Verlag.

18


