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1 Introduction

The aim of this exercise is to examine the equilibrium configuration and oscillations of spherically-
symmetric, self-gravitating stars. For that, the student has to solve numerically the equilibrium
structure equation (the Lane-Emden equation), and then, use a one-dimensional hydrodynamics
code to compute perturbations to the equilibrium configuration and study the stellar oscillations.
As an additional, optional practice, the student can also use the code developed in the first part
of this exercise to compute the Chandrasekhar limit.

During the execution of the exercise, the student will encounter several aspects of computa-
tional astrophysics, namely, the discretization of the problem, the implementation of the solution
of a second-order ordinary differential equation, a general understanding of the solution of the
one-dimensional hydrodynamic equations through the use of a given code, the interpolation of
results into a grid, and the plotting and analysis of the final results.

Up to the 20th century, only geometrical methods were known for measuring distances in
space. In this way, only objects that were located at less than approx. 300 ly had their dis-
tances well measured. This excluded the possibility of measuring the distance to distant stars
and galaxies (whose distances are from millions to billions of light years). This changed thanks
to the discovery of variable stars of a certain type, the Delta Cepheids. The brightness of such stars
undergoes periodic pulsations, in which the period and the luminosity depend from one another.
That is, the bigger the absolute brightness of such a star, the longer lasts the oscillation in bright-
ness. Through the measurement of the period of this kind of Cepheids, the absolute magnitude
can be known, which then is used to determine the distance.

2 Equilibrium configuration

2.1 Stellar structure equations

Figure 1: Spherical shell (mass differential)

Consider a static, spherically symmetric star. The mass enclosed in a spherical shell of thick-
ness dr (see Fig. 1) is dm(r) = 4πr2ρ(r)dr, which implies that

dm(r)
dr

= 4πr2ρ. (1)

This is the mass continuity equation. Now, let us consider the forces that act on the spherical
shell. Gravity exerts a force

Fgrav,r = −
Gm(r)

r2 (ρdrA),

where m(r) =
∫ r

0 ρAdr, and A = 4πr2. Gravity is balanced by the gas pressure, which must be
higher in the inner shell, and thus, it decreases with radius:

Fp,r = [p− (p + dp)]A = −dpA.
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The sum of the forces acting on the shell have to be zero:

Fp,r + Fgrav,r = 0

=⇒ −dpA− Gm(r)
r2 (ρdrA) = 0

eliminating A, and dividing by dr, we obtain the stellar equilibrium equation:

1
ρ

dp
dr

= −Gm(r)
r2 (2)

2.2 Lane-Emden equation

If we take the eq. 2 and differentiate it with respect to r, we obtain

d
dr

(
1
ρ

dp
dr

)
= −G

r2
dm
dr

+ 2
Gm
r3 . (3)

Now, in the right hand side of this equation, we use the mass continuity equation to replace the
first term and the stellar equilibrium equation to replace the second term:

d
dr

(
1
ρ

dp
dr

)
= −4πGρ− 2

r
1
ρ

dp
dr

. (4)

It is very easy to show that
1
r2

d
dr

(r2 f ) =
d f
dr

+
2 f
r

. (5)

We use this relation to rewrite the left hand side and the second term of the right hand side of eq.
4 to obtain

1
r2

d
dr

(
r2

ρ

dp
dr

)
= −4πGρ. (6)

Now, we will use the polytropic equation of state, which relates the pressure and the density via

p = Kργ, (7)

where K is a constant, and γ is the adiabatic exponent. We want now to put this equation in an
adimensional form, for which we use the following transformations:

ρ = ρcwn (8)

and
z = Ar, with A2 =

4πG
(n + 1)K

ρ1−1/n
c ; (9)

where ρc is the central density of the star [i.e., ρ(r = 0)], and

n =
1

γ− 1
(10)

is the polytropic index. After using the transformations, we obtain the Lane-Emden equation:

1
z2

d
dz

(
z2 dw

dz

)
+ wn = 0. (11)

This equation is used to obtain the structure of a non-rotating star, that is, its density and
pressure as a function of the radial distance. From eq. 11 it follows that, in order for the density
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to stay finite at the center of the star, the derivative radial derivative of the density has to vanish
at r = 0, that is, one of the boundary conditions for solving the Lane-Emden equation is

dw
dz

= 0 at z = 0, (12)

and the boundary condition on w is given by the definition in eq. 8, which implies that

w = 1 at z = 0. (13)

Given eq. 11 and the boundary conditions of eqs. 12 and 13, there are known analytical
solutions for only three values of the polytropic index:

n = 0 : w(z) = 1− 1
6

z2 (14)

n = 1 : w(z) =
sin z

z
(15)

n = 5 : w(z) =
1

(1 + z2/3)1/2 . (16)

Only the solutions for n = 0 and n = 1 are finite; the solution for n = 5 has an infinite radius and
mass.

2.3 Numerical solution of the Lane-Emden equation

For other (more realistic) values of the polytropic index, the Lane-Emden equation has to be
solved numerically. An ideal, monoatomic gas, for example, has γ = cp/cv = 5/3 =⇒ n =
3/2 = 1.5, that is, the numerical solution is required.

The Lane-Emden equation is a second order ordinary differential equation. In order to write
a program that solves it numerically, we need to transform it into a system of two first order
ordinary differential equations for the functions w and ξ := dw/dz. This system of equations is

dw
dz

= ξ

dξ

dz
= −2

z
ξ − wn

(17)

and the boundary conditions transform into initial conditions:

w = 1 and ξ = 0. (18)

3 Stellar oscillations

3.1 Hydrodynamical equations

The equations of hydrodynamics are commonly written in two forms: the Lagrangian form, and
the Eulerian or conservative form. In the Lagrangian form, the aim is to follow a fluid element
along its motion, and see how its properties (density, pressure, etc.) change along the the path.
In the Eulerian, or conservative form, a fixed “grid” is defined in such a way that the properties
of the fluid are studied in every point of the grid. For this exercise, we use the conservative form
of the fluid equations.

The continuity equation is

∂ρ

∂t
+ ~∇ · (ρ~u) = 0 (19)
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?
Figure 2: Different ways of discretizing a gradient

After expressing this equation in spherical coordinates and considering spherical symmetry,
that is, ∂/∂φ = 0 and ∂/∂θ = 0, we get

∂ρ

∂t
+

1
r2

∂

∂r
(r2ρu) = 0. (20)

We call the quantity Fm = ρu, the mass flux.
The momentum conservation equation is

∂

∂t
(ρ~u) + ~∇ · (ρ~u⊗ ~u) = −~∇p + ρ~f (21)

where ~f is the specific external force (force per unit mass) experienced by the fluid. Again, writing
the operators in spherical coordinates and applying the symmetry simplifications, we get

∂

∂t
(ρu) +

1
r2

∂

∂r
(r2ρuu) = −∂p

∂r
− Gm(r)ρ

r2 . (22)

The momentum density is w := ρu, and the momentum flux, Fw = wu.
As it can be seen from the definition of the fluxes, the left hand sides of both equations have

similar forms, and can be interpreted (and derived) from the analysis of the mass or momentum
that enters one fixed volume (time derivative), and the mass or momentum that is transported
out of the volume through the surfaces of the fixed volume (the divergence of the flux). This
means, the left hand side of both equations express conservation laws.

In a similar way to the equilibrium configuration, we consider the polytropic equation of state

p = Kργ (23)

In the adiabatic case, the speed of sound is defined as

cs =

√
γp
ρ

. (24)

3.2 Numerical solution

3.2.1 Finite differences

For the numerical solution of the hydrodynamical equations, the basic idea is to divide the space
and time in discrete steps; the division of space is called a grid. Once this division has been made,
then, we approximate the differential operators with finite differences (d→ ∆).

Not all discretizations lead to a stable approximation of the solution; a detailed analysis is
required in many cases. For example, consider the approximation of a gradient according to fig.
2. Which discretization is more convenient? The last one, that combines information in equal
manner from the left and the right of the analyzed cell, seems to be well motivated. However, it
can be shown that in an advection problem, like the one we are trying to solve, and if combined
by a straightforward time approximation, this approximation leads to an unstable solution for
any time.
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ghost cell
ghost cell

boundary boundary

Figure 3: Example of the grid used in the solution of the hydrodynamics equations.

3.2.2 Grid

In the solution of the problem, we use a staggered grid (fig. 3), where some quantities are defined
at the cell centers, and others, at the cell walls. As it is shown in the figure, we define the grid ra

i
at the cell walls, and the grid rb

i at the cell centers (the actual grid should have an appropriately
high number of cells). The grid should extend from ra

1 = 0 to ra
N ≈ 1.4R?, where R? is the radius

of the star determined in the first part, i.e., with the Lane-Emden equation. The cells we use here
are in the shape of a spherical shell.

In this staggered grid, we define the scalar quantities, i.e., the density and the pressure, at the
cell centers, and the vector quantities, that is, velocity, force and momentum, at the cell walls. In
fig. 3, we see some cells in gray, labeled ghost cells. They are meant to facilitate the setup and
application of the boundary conditions, but they do not form part of the solution of the problem.

3.2.3 Overview of the numerical method

In this section, we will have a short overview of the numerical method used for the solution of
the hydrodynamics equations. The independent variables of the system of equations formed by
eqs. 20 and 22 are the velocity u and the momentum ρ. The pressure can always be determined
by the equation of state. The conservation form of the equations allows us to notice that the left
hand side of both equations has the same form:

∂

∂t
f +

1
r2

∂

∂r
(r2F f ) = sources, (25)

where f is a quantity (here, density or velocity), and F f := f u is its flux. We split the task of
updating the quantity f in time into two steps: an advection step, in which the left hand side of
the equation is applied, and the sources or forces step, in which the external forces or sources are
applied. The continuity equation, having no sources, only requires the advection step; the mo-
mentum equation, in the other hand, requires both steps. This process is called operator splitting.
In each of the steps, the finite differences method is applied, and the fluxes must be carefully
computed (the principle that we use for flux calculation is called the first order upwind method,
which we will not discuss here).

3.2.4 Time step

The selection of the time step ∆t is not completely arbitrary, but it should satisfy the CFL-criterion
(after Courant, Friedrich and Levy): the time step should be small enough such that no perturba-
tion should propagate further than C∆r, where ∆r is the width of a cell and C has a value lower
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than 0.75. The propagation speed of a perturbation in each cell is given by cs + |u|, where cs was
defined in eq. 24. Then,

∆t ≤ C min
i

(
∆r

csi + |ui|

)
, (26)

where the operator mini returns the minimum value of the quantity among all the grid cells.

3.2.5 Boundary conditions

The boundary conditions we will use are as follows. At the extremes of the grid, we use closed
boundaries, that is, matter cannot enter or leave the domain, which implies that the velocity must
be zero (and so, the flux is also zero), at both extremes. For the density and pressure, we shall use
reflective boundaries (the radial derivatives vanish), since we assume spherical symmetry. The
boundary conditions are summarized as

u = 0 for r = 0 and r = rmax (27)

∂ρ

∂r
= 0 for r = 0 and r = rmax. (28)

These boundary conditions are conveniently implemented through the use of ghost cells.

3.2.6 Initial conditions

The initial density will be filled with the equilibrium configuration we obtained in the first part of
the exercise, inside the star (the central density is 1 in code units). Outside the star, a small value
shall be used for the density, for example, ρmin = 10−6 (density floor). The density should not be
set equal to zero, because several terms in the equations we are solving contain terms inversely
proportional to the density. The initial velocity should be set initially to zero, but later, we also
introduce perturbations by setting an initial value for the velocity.

3.2.7 Units

The hydrodynamics equations, 20, 22 and 23 can be adimensionalized by substituting the rela-
tions 

ρ = ρo ρ̃ u = u0ũ
p = po p̃ t = to t̃
r = ro r̃,

where the symbols with a tilde are adimensional, and then forcing some terms to become 1. The
velocity is built as

u =
ro

t0
ũ. (29)

The following relations are then obtained:

t0 = 1/
√

Gρ0 (30)

r2
0 :=

1
A2 =

n + 1
4π

K
G

ρ1/n−1
0 (31)

p0 = ρ0u2
0 =

n + 1
4π

Kρ1+1/n
0 (32)

and so, the units are set by the choice of the central density ρ0 and the polytropic index n. If we
set

K =
4π

n + 1
(33)
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our scale lengths simplify, and the the equation of state, eq. 23, is transformed to

p̃ =
4π

n + 1
ρ̃1+1/n (34)

4 Bonus application: the Chandrasekhar limit

Another, unrelated application of the Lane-Emden equation is obtaining the Chandrasekhar
limit, that is, the upper mass limit for a stable white dwarf. Stars with cores more massive than
the Chandrasekhar limit form either neutron stars or black holes.

The equation of state in this case is computed for a degenerated Fermi gas of electrons. The
process can be summarized this way: first, the distribution function of the degenerated parti-
cles in the phase space is found, which defines the Fermi momentum (so that the particles are
arranged with the lowest energy possible). The number density and degeneracy pressure are
computed as a function of the Fermi momentum with the help of the distribution function, and
two limiting cases arise: the non-relativistic case, and the ultra-relativistic case. We take the lat-
ter case for computing the Chandrasekhar limit. After combining the pressure and the number
density, one obtains an equation of state of the form

p = Kρ4/3, (35)

where K is found in terms of fundamental constants:

K =
31/3

8π1/3
hc

m4/3
H µ4/3

e
, (36)

with µe = 1 for a hydrogen star, and µe = 2 for a white dwarf. For the non-relativistic case, the
equation of state is found to be pnr = Knrρ5/3

nr , which is the adiabatic case, and with Knr of the
order of 107 when expressed in SI units.

The total mass of the star can be calculated as

M =
∫ R

0
4πr2ρdr = 4π(1/A)3ρc

∫ z1

0
z2wn dz, (37)

where z1 is the adimensional radius of the star, that is, the point where the adimensional density
w goes to zero. For n = 3 (γ = 4/3), the mass of the star is independent of the central density, as
it can be proven if A is substituted in eq. 37:

M ∝ (ρ1−1/3
c )−3/2ρc = 1.

Now, if we multiply eq. 11 both sides by z2, and integrate between 0 and z1, we see that∫ z1

0
z2wndz = −z2

1

(
dw
dz

)
z=z1

= −z2
1ξ(z1). (38)

Using eq. 41 in eq. 37, and substituting all of the values for the constants, one can find the
Chandrasekhar limit

MCh =

√
6

32π

(
hc
G

)3/2 ( 2
µe

)2 |z2
1ξ(z1)|
m2

H
. (39)

5 Procedure

5.1 Requirements

The following packages should be installed in the computer that will be used for the exercise:
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1. GFortran

2. Python 3.x

3. Numpy

4. Scipy

5. Matplotlib

Notes:

• A Linux machine is preferred, however, if this is not possible, there are several platform-
dependent options to get the configuration working:

– MacOS users: install Homebrew and then, the GNU compilers, that include Fortran.
Install Python 3.x from Homebrew, and then the rest of Python packages using PIP
(e.g., pip install numpy). Tip: check that when you run python and pip from your
terminal, you are running the Homebrew-version and not the default Python included
with MacOS!

– Windows users: try installing the Windows Subsystem for Linux, and then, install
GFortran and Python via the command line (e.g.,sudo apt install gfortran). In-
stall the Python packages via PIP.

– If nothing seems to work, then, download VirtualBox (https://www.virtualbox.org)
and a version of Ubuntu, and install it in a virtual machine. Warning: this takes some
space (and time to download), but after it is done, it should be easy to follow instruc-
tions.

• It is possible to use other programming languages or software packages for plotting and
solving the Lane-Emden equation, but it may not be possible for the tutor to give technical
support.

5.2 Equilibrium configurations

1. Write a program (preferably in Python) that solves the system of equations 17 subject to the
boundary conditions in eq. 18. For this step, the following options are available:

• Implement your own code directly by following a numerical method for an initial
value problem, such as Runge-Kutta of 2nd order.

• Use Scipy, for example with the function scipy.integrate.solve ivp.

• If you have no previous experience in solving numerically such initial value problems,
then, let the tutor know.

2. Solve the Lane-Emden equations for the following values of the adiabatic exponent:

• γ = 3

• γ = 5/3

• γ = 7/5

3. Plot the results of the density as a function of the radial coordinate, in code units.

4. Repeat the plots of the previous point but this time, use the following units: for r, solar radii,
and for ρ, the mean density of the Sun (ρ̄ = M�/( 4

3 πR3
�)). Choose the central density for a

Sun-like star and n = 3. Discuss the results and compare them with values from elsewhere.
(Hint: see the Appendix for help calculating the polytropic constant K)
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5.3 Stellar oscillations

For this section, a Fortran code will be distributed among the students during the experiment.
No prior knowledge of Fortran (95+) is needed.

1. Read the code: make an outline of modules there, and the subroutines in each module.
Which steps are called in the “main” program? Where are the initial conditions of the prob-
lem set? Which size is the grid?

2. Run the code by setting ui = 0 and the analytical solution of the Lane-Emden equation
for n = 1 (eq. 15). Plot the results with the plotting script provided. The equilibrium
configurations should remain in equilibrium.

3. Introduce a perturbation in the velocity so that

u(r) =
1

10
cs(r) sin(πr/R?).

Run the code, plot and discuss the results.

4. Incorporate to the program made in the the first part of the experiment an interpolation of
the results in such a way that they fit into the grid of the hydrodynamics code. That is: the
results obtained in the first part of the exercise had a different ∆r than what is needed for
the second part of the exercise. The way to fix this is through interpolation into the grid
used in the hydrodynamics code. The use of the function scipy.interpolate.interp1d

is recommended. If you have no experience with interpolation, ask the tutor. The output
(text) file of your program has to be in the following form: the first line outputs the star
radius in code units, and the rest of the lines output the density vector (vertically).

5. Feed the output of your program for different n into the Fortran hydrodynamics program.

6. Run the hydrodynamics program and plot the results for ui = 0. Your equilibrium config-
uration should remain in equilibrium.

7. Introduce again a perturbation in the velocity so that

u(r) =
1

10
cs(r) sin(πr/R?).

Run the code, plot and discuss the results.

8. Try other perturbations freely. Choose one to add it to your report.

5.4 Optional: Chandrasekhar limit

1. Run the program you created in the first part of the experiment, but for n = 3 (i.e., γ = 4/3).
Output this time the value of the radius of the star z1 and ξ = dw/dz evaluated at that point.

2. Introduce those values in eq. 39. You should get the famous value of M ≈ 1.4M�.
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A Fixing the polytropic constant for a Sun-like star

For a Sun-like star, the polytropic constant K is not fixed. We can fix it with knowledge of the
mass of the star and the radius of the star.

The total mass of the star can be calculated as

M =
∫ R

0
4πr2ρdr = 4π(1/A)3ρc

∫ z1

0
z2wn dz, (40)

where z1 is the adimensional radius of the star, that is, the point where the adimensional density
w goes to zero. Now, if we multiply eq. 11 both sides by z2, and integrate between 0 and z1, we
see that ∫ z1

0
z2wndz = −z2

1

(
dw
dz

)
z=z1

= −z2
1ξ(z1). (41)

We obtain

M = 4πρc

( z1

A

)3
∣∣∣∣ 1
z1

ξ(z1)

∣∣∣∣ = 4πρcR3
?

∣∣∣∣ 1
z1

ξ(z1)

∣∣∣∣ (42)

dividing the previous equation over 3, we can easily obtain the central density in terms of the
average density ρ̄ = 3M/(4πR3):

ρ̄

ρc
=

∣∣∣∣ 1
z1

ξ(z1)

∣∣∣∣ . (43)

Now, at r = R?, we know that A = z1/R. Once A is determined in this way, we can use eq. 9
to calculate K.
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