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1 Background and Motivation

Figure 1 | Adherence of Streptococcus sanguinis
to saliva-coated hydroxyapatite discs [1].

Commensal bacteria within the human microbiome are usually
non-harmful or even beneficial to the individual host. However,
perturbations in dietary changes of the host, antibiotic use, ge-
netic transformation of the bacteria itself, or miscolonization
within the body can lead to severe dysbiosis, causing com-
mensals to become pathogens [2]. With over 10,000 microbial
species within the human microbiome and limited resources
for laboratory research, in silico approaches to study single
species and microbial communities are a cost-effective alterna-
tive [3]. One approach is constraint-based stoichiometric mod-
eling. Here, genome-scale metabolic reconstructions are built
with a structured knowledge base in a way that the metabolism
of an organism is rebuilt mathematically. Such models can then be used to study microbial metabolism in differ-
ent environments (e.g., oral cavity, gut) and phenotypic reactions to different substances [4, 5, 6]. Streptococcus
sanguinis, formerly S. sanguis, is mainly described as commensal within the humanoid oral cavity, where it is
an integral part of the healthy plaque biofilm and antagonizes pathogens by producing hydrogen peroxide [7,
8]. However, the gram-positive, facultative anaerobe member of the Viridians Streptococcus group is also one
of the most common causes of infective endocarditis [9]. A particular trait of S. sanguinis is a large amount of
putative surface proteins. This might be the cause of its role in colonizing the upper respiratory tract and acting
as a pathogen [10, 7]. Furthermore, S. sanguinis genome contains a large number of carbohydrate transporters
that enable the consumption of an extensive range of carbohydrate sources [10]. S. sanguinis has the ability for
genetic transformation or horizontal gene transfer, enabling fast antibiotic resistance acquisition [11]. In 2007,
the genome of S. Sanguinis strain SK36 (ASM1420v1) was sequenced for the first time. The circular genome
consists of roughly 2.4 Mbp, encoding 2,346 genes of which 2,237 were predicted to be proteins. Among those
predicted proteins 248 are hypothetical, meaning they are predicted to exist based on the DNA sequencing data
but not experimentally verified or characterized [10, 12]. While the Virtual Metabolic Human (VMH) database
lists a metabolic model for strain SK36, this work deals with the creation of a genome-scale metabolic model for
strain SK1 (ASM19494v1, ATCC 10556, DSM 20567) [13, 14]. In comparison the genome of SK1 is slightly
smaller with 2.3 Mbp, it encodes 2,222 genes with 2,144 predicted proteins and 250 hypothetical proteins [15].
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2 Aim and Approach

This thesis focuses on the molecular mechanisms of Streptococcus sanguinis growth. The aim is to create a
high-quality systems biology model of Streptococcus sanguinis. Since there are no available models at the start
of the thesis, the steps will follow the standard operating procedure of the Computational Systems Biology
(CSB) research group and commonly accepted guidelines [16]. These steps will include (a) analyzing the
created model, (b) conducting literature research to identify the bacterium’s growth conditions, (c) identifying
potential gaps in the metabolic network, (d) defining test cases to check the correctness of the model, (e) running
simulations, and (f) aligning the model with available data from experimental investigations.

3 Requirements

(a) Understanding of biochemistry and molecular mechanisms, (b) interest in systems biology, basic knowl-
edge of Python programming, (c) attentively for details, and (d) interest in learning SBML [17], MIRIAM
annotations [18], and the SBO [19].
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