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Background and Motivation 
The aerobe Gram-negative bacterium M. catarrhalis (Fig. 1) 
belongs to the group of γ-proteobacteria and was first 
discovered in 1896. This exclusive human pathogen [1] 
causes wide range of infectious diseases of the respiratory 
tract [2]–[4]. Until now, attempts to develop a vaccine did 
not yield fruitful results [5], [6]. It has been observed that 
M. catarrhalis is often β-lactamase positive and therefore 
resistant against treatment with ampicillin. In addition, 
several studies highlight its interaction with other multi-
resistant germs of the nasal microbiome, such as Staphylococcus aureus or Haemophilus 
influenzae [7]–[10]. In many applications, genome-scale metabolic models have demonstrated 
their usefulness to predict biological features and their potential applicability for treatment 
discovery. Until now, no curated computational model is available for this important 
organism. An automatically generated draft model of the strain RH4 resulted from the so-
called “path2models” project [11] based on the information of the databases KEGG [12] and 
MetaCyc [13] in July 2011. This model is freely available from BioModels database [14]. The 
BiGG Models knowledgebase [15] does currently not provide any reconstruction for this 
organism. 

Aim 
The aim of this project is to create a first version of a curated genome-scale reconstruction 
(GEM) of the organism’s metabolic capabilities in SBML Level 3 Version 1 format [16] by 
following the standard reconstruction protocol [17]. 

Approach 
The following steps will be executed: 

1) Obtain the path2models draft model from BioModels database1. 
2) Download the genome of the organism from NCBI2. 
3) Apply automatic reconstruction tools, such as CarveMe [18], ModelSEED [19], 

KBase [20], Raven 2.0 [21], etc. 
4) Compare all models, possibly by using libSBML [22], e.g., for Python and model 

annotation, e.g., using ModelPolisher [23] 
5) Simulate model growth in relevant media using COBRApy [24], including the 

synthetic nasal medium SNM3 [25]. 
6) Draw parts of the model in form of a metabolism chart using software such as Escher 

[26] or Krayon3. 
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Fig. 1 | Gram-negative diplococci as the 
exclusive bacterial form and intracellular 
bacteria [1]. 
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