

Universität Stuttgart

Institute of Parallel and Distributed Systems (IPVS)

Universitätsstraße 38 70569 Stuttgart Germany

Time-sensitive Software-defined Network (TSSDN) for Real-time Applications

1. KuVS Fachgespräch "Network Softwarization" – From Research to Application

October 12-13, 2016 @ Tübingen, Germany

Naresh Ganesh Nayak, Frank Dürr, Kurt Rothermel

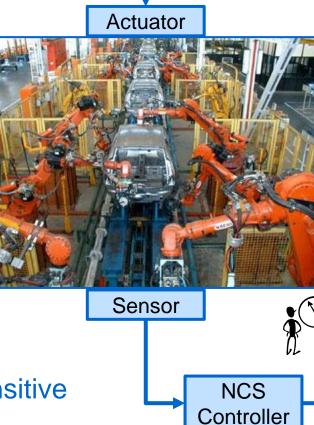
Cyber-physical Systems (CPS) & Networked Control Systems (NCS)

Cyber-physical System (CPS)

- Sensors, actuators, controllers, network
- Controlling physical processes
 Networked control systems (NCS)

Application domains:

- Manufacturing (Industry 4.0)
- Automotive
- Smart Grid
- Tele-robotics

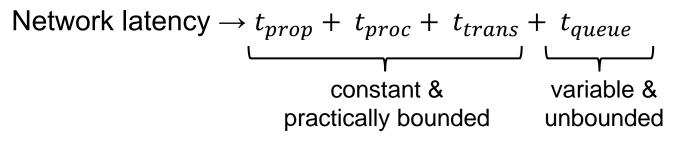

Networked Control Systems are time-sensitive

Latency down to tens of µs with jitter < 1 µs

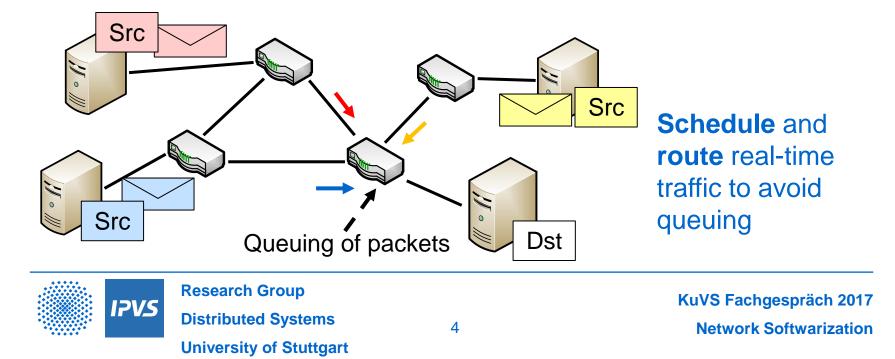
Research Group Distributed Systems

University of Stuttgart

Evolution of TSN Technologies


- Real-time communication in LANs so far based on field-bus technologies
 - Today, mostly Ethernet derivatives
 - EtherCAT, PROFIBUS, SERCOS III, etc.
- Now transition to <u>standard</u> Ethernet with IEEE 802 TSN
 - IEEE 802.1 Time-Sensitive Networking (TSN) Task Group
 - Credit-based shaper: Audio/video
 - Scheduled traffic with timed gates (IEEE 802.1Qbv):
 Deterministic bounds on delay and jitter
 - One converged shared network for time-sensitive and non-time-sensitive traffic

Here, we try to achieve deterministic bounds w/o IEEE 802 TSN!



Research Group

Need for Transmission Scheduling in Ethernet

→ Must deterministically bound in-network queuing delays One extreme approach taken in this paper: eliminate queuing delays

Contributions

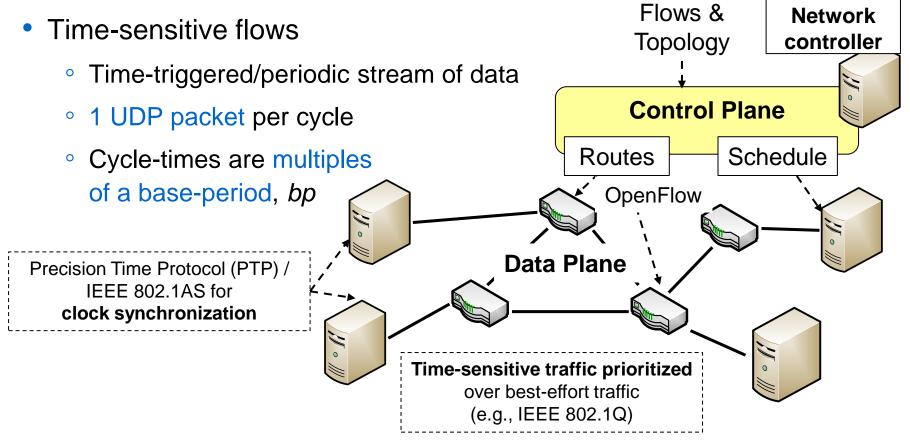
- Time-sensitive Software-defined Networking (TSSDN) Paradigm
 - Converged network for real-time traffic and best-effort traffic
 - Logically centralized configuration known from softwaredefined networking (SDN) to configure routes and schedules
 - Deterministic delay/jitter bounds with minimal network support
 - Plain "old" IEEE 802 Ethernet w/o IEEE 802.1 TSN
 - Time-triggered traffic scheduled on the network edge (hosts)
- Combined routing and scheduling configuration algorithms
 - Integer Linear Programs (ILP) for exact and heuristic solutions
- Mechanisms for schedule adherence by end systems (hosts)
 - High-throughput packet processing framework (DPDK) minimizing network stack latency on hosts

5

Research Group Distributed Systems

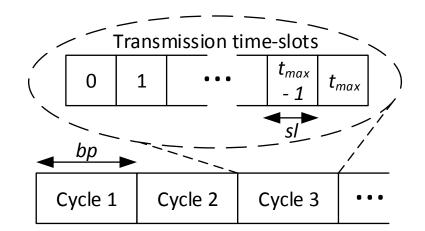
University of Stuttgart

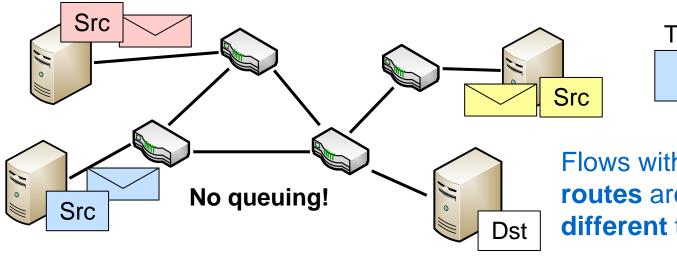
Agenda

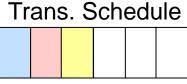

- Introduction
- Time-sensitive Software-defined Network
 - System Model
 - Problem Statement
- Scheduling Algorithms
- Evaluations
- Conclusion & Future Work

Research Group Distributed Systems University of Stuttgart

System Model – TSSDN


- Logically centralized network-controller (TSSDN controller)
 - Computes transmission schedules and routes
 - Configures schedules on hosts and forwarding tables of switches (e.g., through SDN/OpenFlow protocol)

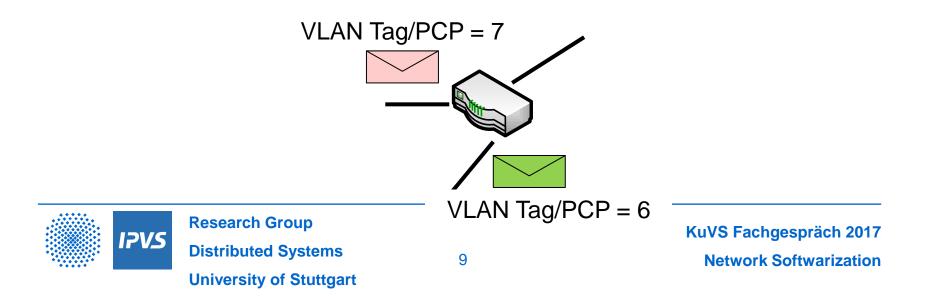



Scheduling Model – TSSDN

Cyclic Schedules

- Length = Base-period, bp
- Consists of smaller time-slots
- Length of time-slot ≥ time to send MTU packet over longest n/w path (≤ 7 hops)

Flows with overlapping routes are assigned different time-slots


Research Group Distributed Systems University of Stuttgart

8

Scheduling Model – TSSDN

TSSDN – One converged network for real-time & best-effort traffic

- Use of IEEE 802.1Q priority classes to isolate real-time traffic from best-effort traffic
 - Real-time traffic uses VLAN tags with PCP = 7
 - Best-effort traffic uses VLAN tags with PCP < 7
 - Frame pre-emption (IEEE 802.1Qbu) to improve performance

Problem Statement

Objective: Maximize the number of time-sensitive flows accommodated (scheduled and routed) in the network

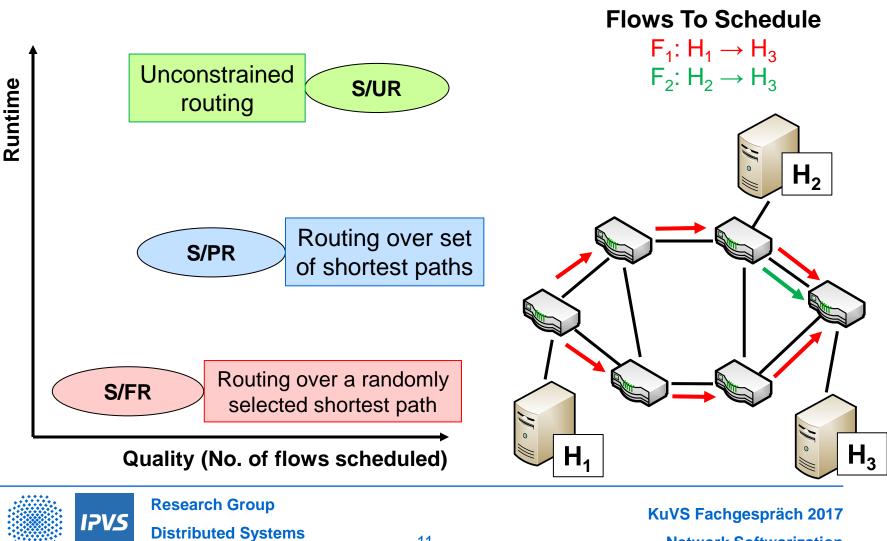
Inputs:

- Flow specifications (src, dst, cycle-time)
- Network topology

Constraint:

Flows with overlapping routes assigned different time-slots

Complexity – NP-hard


Research Group Distributed Systems

University of Stuttgart

Outputs:

- Routes for flows
- Time-slots for flows

Overview of Solutions

Network Softwarization

University of Stuttgart

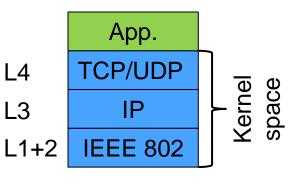
• Constraint 1: Assign each flow to at most one time-slot

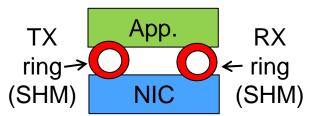
$$\sum_{t \in T} ST(f,t) \le 1 \qquad \forall f \in F$$

 Constraint 2: During any time-slot no link should be allocated to more than one flow

$$\sum_{f \in F} ST(f,t) \cdot SL(f,e) \leq 1 \quad \forall t \in T; \forall e \in E$$

Non-linear constraint
Can be transformed to linear constraints using
auxiliary variables. Refer paper for details




University of Stuttgart

12

Improving Schedule Adherence

- **Requirement:** hosts must precisely adhere to their time-slots
 - Inject packet at the scheduled time of the assigned slot
- Linux network stack induces significant jitter (see experiments)
- Approach: Kernel-bypassing
 - Packet processing frameworks: Intel's Data Plane Development Kit (DPDK), netmap, etc.
 - Shared memory access from user-space to TX/RX rings of NIC (network interface ctrl.)
 - Raw packet processing by application (library)
 - CPU core dedicated to packet processing

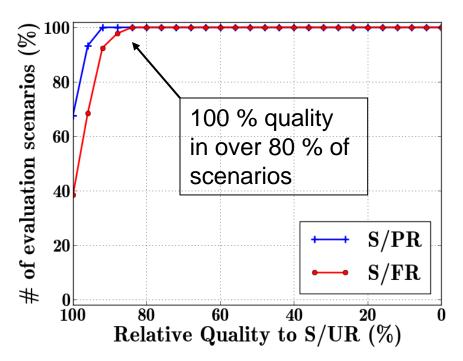
Research Group Distributed Systems

University of Stuttgart

13

Evaluations – Quality of the ILP Formulations

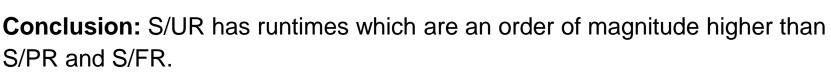
Setup:


- Random network (24 host, 6 switches)
- Random sources & destinations
- Different topologies (random, scale-free, geographic/Waxman)
- Commodity multi-core server running CPLEX solver
- 3-5 time slots (challenging!)

Performance metric:

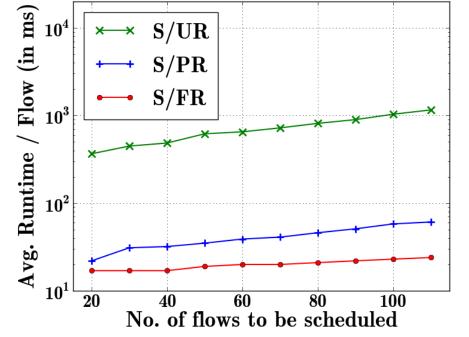
 Ratio of number of flows scheduled flows by the heuristic vs. S/UR

Research Group Distributed Systems University of Stuttgart

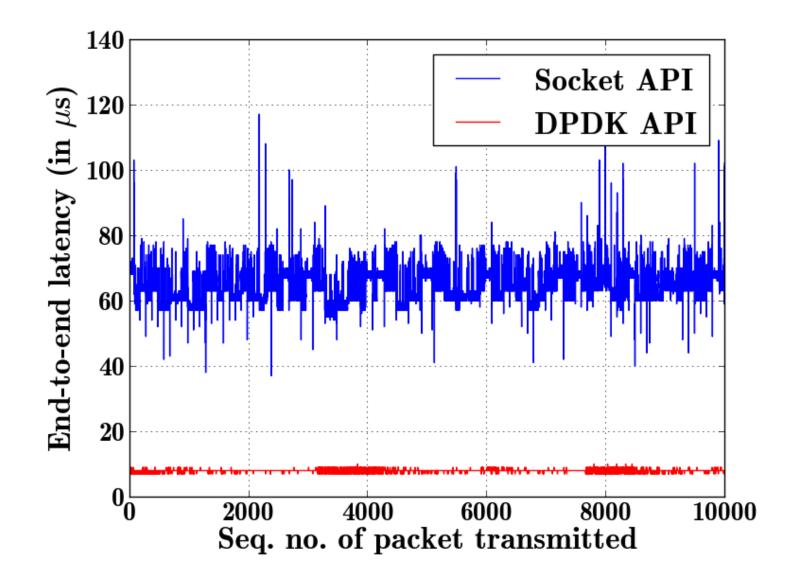

Evaluations – Runtimes for ILP Formulations

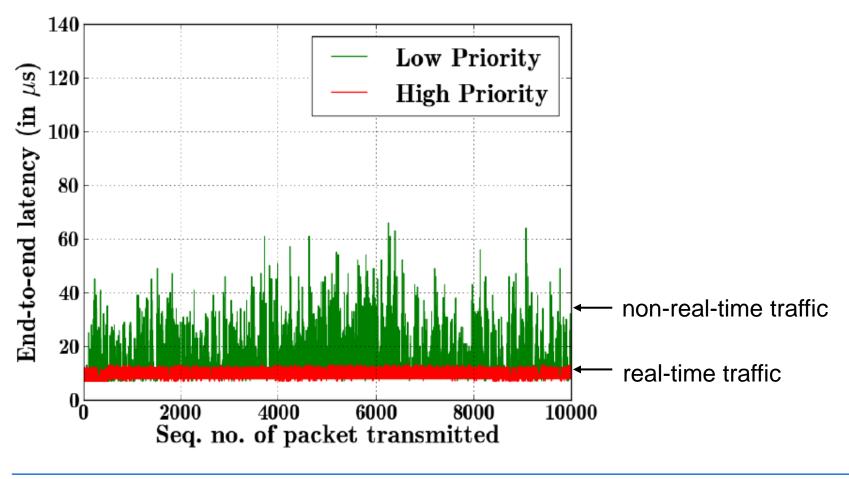
Setup:

- High performance machine
 - 2×8 processor cores
 - 128 GB RAM
- Small Erdős–Rényi topology (24 hosts and 6 switches)
- Varying number of (random) flows


Performance metric:

• Average time to schedule a flow




Research Group Distributed Systems University of Stuttgart

Schedule Adherence in TSSDN (2)

Effectiveness of Scheduling

Research Group Distributed Systems University of Stuttgart

Related Work

- Steiner & Craciunas RTSS 2010, RTNS 2014
 - SMT-Based schedule synthesis for time-triggered multi-hop networks
 - Fine-grained link schedule synthesis; a priori routing
 - Limited queuing delays allowed
 - Extensions for combined task & network scheduling
- Hanzalek et al. Transactions on Industrial Informatics 2010
 - Profinet IO IRT Message Scheduling with Temporal Constraints
 - Fine-grained link schedule synthesis; a priori routing
- Dürr et al. RTNS 2016
 - Mapping to No-wait Job-shop Scheduling Problem
 - Requires more network support (IEEE 802.1Qbv); a priori routing

Research Group Distributed Systems

Summary and Future Work

Summary

- Introduced Time-sensitive Software-defined Network (TSSDN)
 - Logically centralized configuration of routes and schedules
- Solutions for combined routing and scheduling problem
 - ILPs for exact and heuristic solutions
 - Eliminates non-deterministic queueing delay
- Packet processing frameworks to minimize network stack delay

Future Work

- Incremental online scheduling algorithms for TSSDN
- Use RTOS (Linux RTPREEMPT) on end-systems for deterministic task execution

Research Group Distributed Systems

http://www.d-sdn.de/

Contact

Naresh Nayak

• naresh.nayak@ipvs.uni-stuttgart.de

Frank Dürr

• frank.duerr@ipvs.uni-stuttgart.de

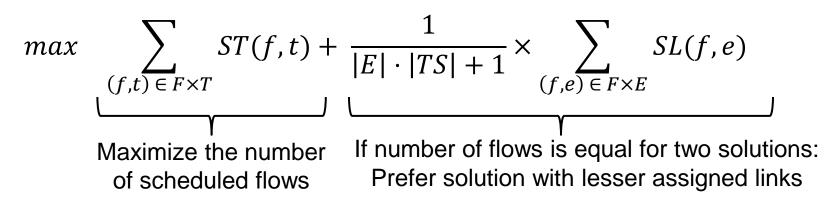
Research Group Distributed Systems

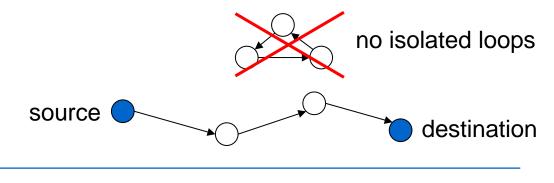
University of Stuttgart

Backup Slides

Research Group Distributed Systems University of Stuttgart

• Parameters


- Hosts, *H* & Switches, *S*
- Nodes, $V \equiv H \cup S$
- Links, $E \subseteq V \times V$
- Flows, F
 - $\forall f \in F; f \equiv (src, dst)$ src is source of the flow & dst is the destination of the flow
- Time-slots, $T \equiv \{0, 1, ..., n-1\}$
- Variables
 - Route, $SL: (F \times T) \rightarrow \{0, 1\}$
 - Schedule, $ST: (F \times E) \rightarrow \{0,1\}$



Research Group

Distributed Systems

• ILP Objective

Research Group Distributed Systems University of Stuttgart

• Constraint 1: Assign each flow to at most one time-slot

$$\sum_{t \in T} ST(f,t) \le 1 \qquad \forall f \in F$$

 Constraint 2: During any time-slot no link should be allocated to more than one flow

$$\sum_{f \in F} ST(f,t) \cdot SL(f,e) \leq 1 \quad \forall t \in T; \forall e \in E$$
Non-linear constraint
Can be transformed to linear constraints using
auxiliary variables. Refer paper for details

- Constraint 3: Routing constraints
 - For each flow, the source node uses exactly one outgoing link

$$\sum_{e \in out(src(f))} SL(f, e) = 1 \quad \forall f \in F$$
$$\sum_{e \in in(src(f))} SL(f, e) = 0 \quad \forall f \in F$$

• For each flow, the destination node uses exactly one incoming link

$$\sum_{e \in out(dst(f))} SL(f, e) = 0 \quad \forall f \in F$$
$$\sum_{e \in in(dst(f))} SL(f, e) = 1 \quad \forall f \in F$$

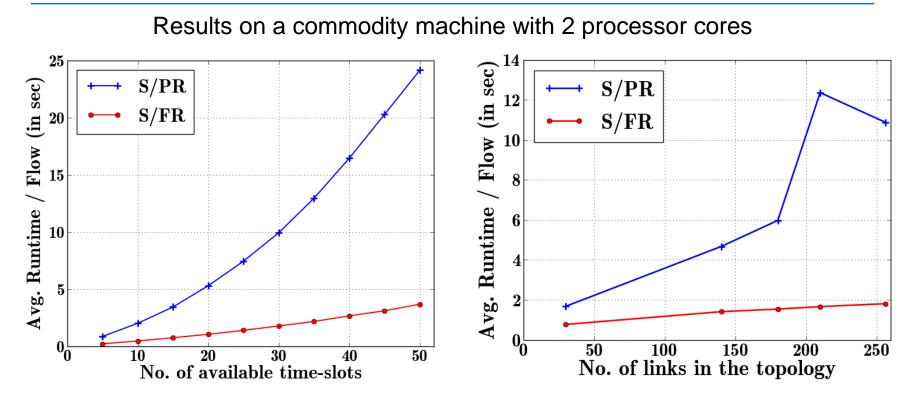
Research Group Distributed Systems

University of Stuttgart

• Constraint 3: Routing constraints

(

 For all flows, inner nodes have equal number of outgoing and incoming links


$$\sum_{e \in in(n)} SL(f, e) = \sum_{e \in out(n)} SL(f, e)$$

$$\forall f \in F, \forall n \in V \setminus \{src(n), dst(n)\}\$$

Research Group Distributed Systems University of Stuttgart

Evaluations – Runtimes for ILP Formulations

Setup: Scheduling 300 flows on a Waxman topology (200 hosts and 10 switches)

Setup: Scheduling 100 flows on varying topologies with 50 time-slots

Research Group Distributed Systems

University of Stuttgart

Schedule Adherence in TSSDN (1)

Setup:

- Experiments in real system
- Two 10 Gbps switches (Edge Core AS5712-54X)
- 10 Linux hosts
 - Host clocks synchronized through PTP
- Measures end-to-end latency:

 Linux network stack
 DPDK (kernel-bypassing)
 No cross-traffic

 Research Group Distributed Systems University of Stuttgart