

Towards a Shared Evaluation Environment for Software-Defined-Networking Applications

Fachgespräch Network Softwarization
Addis Dittebrandt, Michael König, Felix Neumeister | October, 13th 2017

INSTITUTE OF TELEMATICS — DEPARTMENT OF INFORMATICS - KIT

Central Question

How are SDN-applications evaluated and how can this evaluation process be simplified?

A. Dittebrandt, M. König, F. Neumeister - Shared Evaluation Environment for SDN-Apps

Outline

- Challenges of simulative SDN-Application Evaluation
 - Poor Reproducibility of Results
 - Comparing of Results often not possible
 - Usage of Simulators unnecessarily complicated
- Approach and Implementation
- Usage
- Conclusion

Poor Reproducibility of Results

Problems hindering reproducibility:

- Conflicting experiment descriptions
- Unclear parameters
- Broken artifacts

Poor Reproducibility of Results

Problems hindering reproducibility:

- Conflicting experiment descriptions
- Unclear parameters
- Broken artifacts

⇒ What were the exact experiments done?

Poor Reproducibility of Results

Problems hindering reproducibility:

- Conflicting experiment descriptions
- Unclear parameters
- Broken artifacts

⇒ What were the exact experiments done?

Approach: Allow and require explicit experiment description

Comparing of Results often not possible

What makes results incomparable:

- Unclear description of simulated scenarios
- Broadly similar scenarios with different parameters
- Specific description often not given
- No common ground on realistic scenarios

Comparing of Results often not possible

What makes results incomparable:

- Unclear description of simulated scenarios
- Broadly similar scenarios with different parameters
- Specific description often not given
- No common ground on realistic scenarios

⇒ How can a simulation scenario be fully described?

Approach: Specify a format to describe a simulated scenario in a single file

Comparing of Results often not possible

What makes results incomparable:

- Unclear description of simulated scenarios
- Broadly similar scenarios with different parameters
- Specific description often not given
- No common ground on realistic scenarios

→ How can a simulation scenario be fully described?

Approach: Specify a format to describe a simulated scenario in a single file

Configuration of Simulators complicated

Configuration time-consuming and error-prone:

- Can induce side effects into results
- Configuration efforts duplicated

Current workflow when using simulators:

- Familiarize with simulator API
- Model topology and traffic
- Implement topology and traffic in simulator
- Configure simulation environment with external components

Configuration of Simulators complicated

Configuration time-consuming and error-prone:

- Can induce side effects into results
- Configuration efforts duplicated

Current workflow when using simulators:

- Familiarize with simulator API
- Model topology and traffic
- Implement topology and traffic in simulator
- Configure simulation environment with external components

⇒ How can problems be mitigated?

Configuration of Simulators complicated

Configuration time-consuming and error-prone:

- Can induce side effects into results
- Configuration efforts duplicated

Current workflow when using simulators:

- Familiarize with simulator API
- Model topology and traffic
- Implement topology and traffic in simulator
- Configure simulation environment with external components

⇒ How can problems be mitigated?

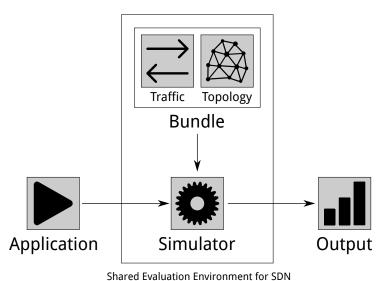
Approach: Facilitate easy setup using shareable configuration files

Outline

Outline

- Challenges of simulative SDN-Application Evaluation
- Approach and Implementation
- Usage
- Conclusion

Approaches

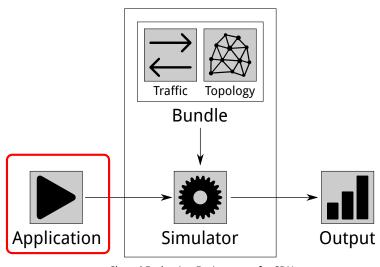

Approaches:

- Explicit experiment specification
- Scenario description
- Easy setup using configuration files

A. Dittebrandt, M. König, F. Neumeister - Shared Evaluation Environment for SDN-Apps

October, 13th 2017

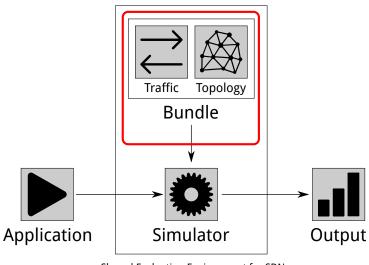
Challenges


Approach and Implementation A. Dittebrandt, M. König, F. Neumeister - Shared Evaluation Environment for SDN-Apps

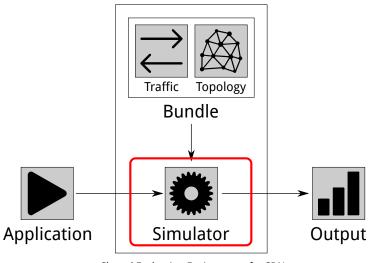
Usage

Discussion

Conclusion 8/22



Shared Evaluation Environment for SDN


Discussion

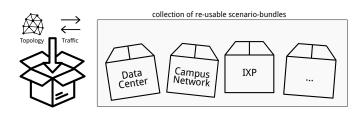
Shared Evaluation Environment for SDN

Shared Evaluation Environment for SDN

Clear Experiment Description

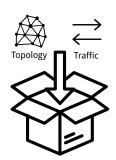
Easier reproducibility

Components


- Application(s)
- Scenario
- Simulator
- **Parameters**

Experiment Description

Scenario-Bundles



- (= Traffic + Topology)
 - Enable uniform evaluation scenarios
 - Fast experiment setup
 - Easy sharing & reuse

Format of Scenario-Bundles

Describes complete scenario

- Topology
- Traffic

Properties

- XML-based
- Addressing & grouping of network components
- Process-based traffic generation
- Integration of SDN-components

Simulator-Adapters

Tasks

- Parsing of scenario-bundles
- Connection of SDN-components (via OpenFlow)
- Construction of the topology
- Execution of traffic & events

> mn

Implementations

- mininet
- OMNeTT++
- ns-3

SEED-Frontend

Unified starting point for experiments:

- Preprocessing of configurations
- Initialization and start of
 - SDN-controller
 - Corresponding SDN-applications
 - Simulation environment
- Connection between components
- Docker Support: Faster setup

Outline

Outline:

- Challenges of simulative SDN-Application Evaluation
- Approach and Implementation
- Usage
- Conclusion

A. Dittebrandt, M. König, F. Neumeister - Shared Evaluation Environment for SDN-Apps

Workflow

- Choose simulator
- Choose Scenario-Bundle
- Enter path to own SDN-application
- Execute SEED
- Evaluate results

Workflow

- Choose simulator
- Choose Scenario-Bundle
- Enter path to own SDN-application
- Execute SEED
- Evaluate results

Example usage:

- ./seed -app pbce -scenario datacenter -simulator ns3
- ./seed -app ecmp -scenario campus -simulator mininet

Usage

Applications:

- iTAP: in-network Traffic Analysis Prevention
 - Altering traffic meta-data to randomize communication patterns
- PBCE: Port Based Capacity Extentions
 - Migration of flow-rules to neighboring switches
- ECMP: Equal Cost Multi Path
 - Multi-path load balancing

Scenarios

Simulators

Applications

Campus

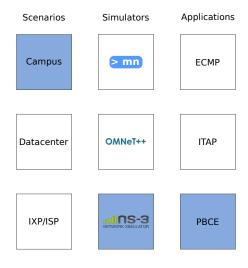
> mn

ECMP

Datacenter

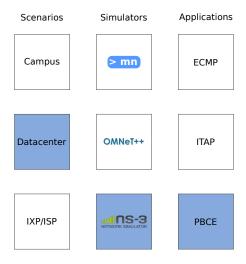
OMNeT++

ITAP


IXP/ISP

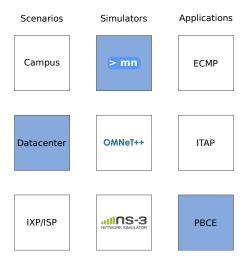
PBCE

Usage Example



A. Dittebrandt, M. König, F. Neumeister - Shared Evaluation Environment for SDN-Apps

Usage Example



A. Dittebrandt, M. König, F. Neumeister - Shared Evaluation Environment for SDN-Apps

Usage

Usage Example

A. Dittebrandt, M. König, F. Neumeister - Shared Evaluation Environment for SDN-Apps

Compatibility

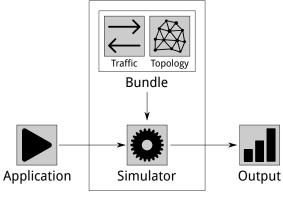
		ns-3	OMNeT++	Mininet
Controller	Internal	1	✓	-
Support	External	1	X	✓
	Datacenter	1	✓	✓
Scenario	Campus	1	✓	✓
	ISP & IXP	WIP	WIP	WIP
	PBCE	1	X	✓
SDN-App	iТар	WIP	X	✓
	ECMP	1	WIP ¹	✓

SEED compatibility-matrix

¹ vereinfachte Version

Scope

- Limited by features of simulators
- Limited selection of traffic generators
- Rudimentary node configuration
- OpenFlow only
- Only external controllers


Conclusion

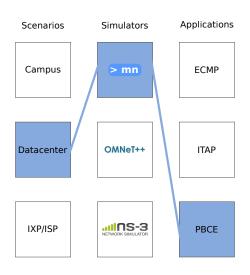
Conclusion:

- Evaluation process, reproducibility & comparability simplified
- SEED-prototype implemented
- Current SEED-version tested
- Example Scenario-Bundles implemented
- Code will be made available as opensource
- Call for Participation: https://git.scc.kit.edu/seed

Shared Evaluation Environment for SDN

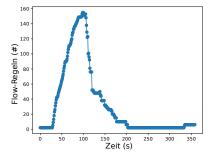
SEED:

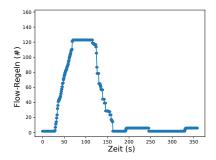
Shared Evaluation Environment for Software-Defined-Network Applications


Further insights

- NS-OF13 extension only supports exactly OpenFlow 1.3 (no backwards-compatibility)
- Implementation of POX 1.3 fork not stable yet
- OMNeT++-extension for OpenFlow 1.3 only implements rudimentary functions

Example Evaluation




Results

- ./seed -app switch -scenario datacenter -simulator mininet
- ./seed -app pbce -scenario datacenter -simulator mininet

Flowtable-Usage without PBCE

Flowtable-Usage with PBCE

Sources I

Icons: thenounproject.com

Literature I

