

Theory that Matters! Problem-based Learning Towards 5G Communication System and Standards

Authors: <u>Giang T. Nguyen</u>, Juan A. Cabrera, Robert-Steve Schmoll, Sreekrishna Pandi, Rico Radeke, and Frank H.P. Fitzek

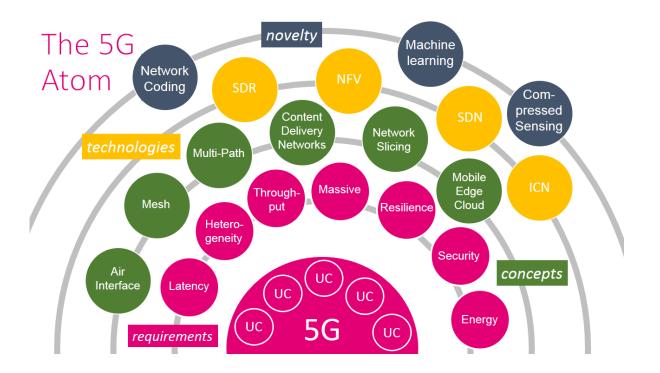
Deutsche Telekom Chair of Communication Networks
Technische Universität Dresden, 5G Lab Germany

Motivation

- ☐ Teaching current & future technologies: prone to dramatic & fast changes
- We are facing such a situation currently with 5G communication system
- □ Traditional approach: teaching only matured standards
 - ☐ The lag between waiting for the standardized technologies and transferring the knowledge to students

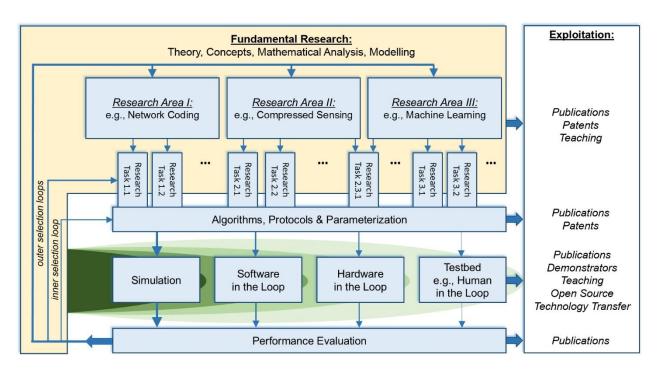
Is it sufficiently active to keep up the pace?

- ☐ Proactively engage students and researchers earlier & at greater extent
- ☐ !!! The risk: efforts invested in updating the curriculum might be wasted
- ☐ Flexible design of the curricula, allowing for shifting technology focus without changing the curriculum's structure


Content

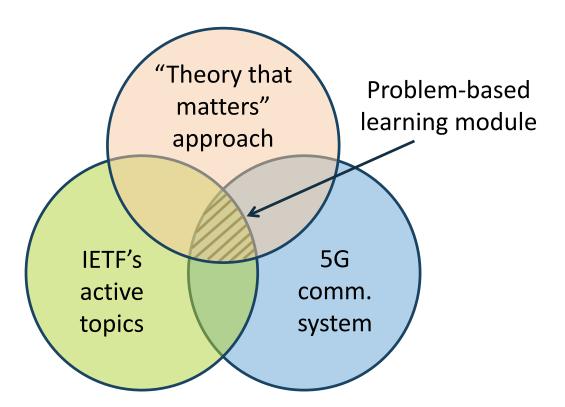
- ☐ Towards 5G communication system
- Approach: Theory that matters!
- □ Idea of "Future Communication Networks"
- ☐ Design of the module
- Case study
- Conclusion

Towards 5G communication system



- Standardization has also been taking place very actively
- A substantial number of 5G topics are covered within the umbrella of IETF:
 - □ Network Coding
 - NFV, SDN
 - ☐ ICN, CDN
 - MP-TCP

Approach: Theory that matters!



- To explore new knowledge that might be applied in real-life scenarios
- Advocate the applicability of research outcomes that can be applied in real life
- Enables a continuous refinement of both research areas and respective curriculum

Idea of "Future Communication Networks"

- ☐ Content of the module stems directly from the 5G concepts and novel technologies
- ☐ To deploy our module, we apply problem-based learning (PBL)
- ☐ Two factors facilitate this renovation:
 - Students: main characters in the search of knowledge, and the lecturers provide guidance
 - ☐ Junior researchers involve in the teaching of topics and tools

Design of the module

Lectures

Lectures

14

sessions

Practical sessions

Tutorials

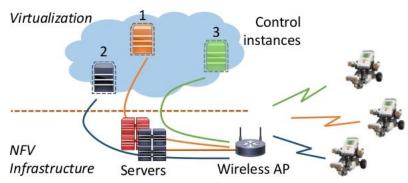
14
sessions

Hands-on 7 sessions

Project 7 sessions

- Lecture series: selfcontained presentations
- By the end of the semester, students have to take an examination for this module which consists of two parts:
 - An oral examination
 - A presentation with demonstration of the project work

Case study: Winter semester 2016 (1)



	Week	Lectures	Practical sessions (including tutorials, hands-on group sessions and project work)
	1	Introduction to module's lectures with respect to IETF/IRTF, IEEE, ETSI working groups	Overview practical sessions: The idea and examples of PBL, exam
	2	Guided visit to 5G Lab Germany: Research Facilities and	Python and KODO – the network coding library
		5G testbeds	Tools for managing small testbeds: SCP, Rsync, Python fabric
	3	Tactile Internet & Cyber-Physical Systems	Network tools: Wireshark, Tshark, Iperf3, Mausezahn, nmap
			Enabling and using Multipath TCP in the Linux kernel
	4	Software Defined Networks	NS-3 - the network simulator I: Introduction
			NS-3 - the network simulator II: Network coding in NS-3
	5	Network Function Virtualization	Hands-on session 1: First Contact with Lego robot
			Mininet: A scalable network emulation environment
	6	Mobile Edge Computing	Docker container: Introduction
			Hands-on session 2: Wireless access to Lego robot
	7	General topics on multi-path communication	Docker II: Managing docker images
			Docker III: Managing multi-container dependencies
	8	Quic protocol and Multi-Path TCP	Hands-on session 3: Path-detection – Control algorithm
			OpenStack I: Installation and Dashboard
	9	Guest Lecture from Bruno Jacobfeuerborn	OpenStack II: Topology creation and management
		(CTO of Deutsche Telekom)	Hands-on session 4: cloud-based control algorithm
	10	Performance evaluation tools	Software Defined Networks I: Ryu and Open vSwitch (Installation)
			Software Defined Networks II: Ryu and Open vSwitch (North-bound API)
	11	Discrete event and random numbers	Machine learning I: Introduction and basic tools
			Machine learning II: Advanced topics
	12	IoT and LoRa	Hands-on session 5: Putting it all together
			Processing experiment results: Jupyter notebook, Pandas library and Matplotlib
	13	WebRTC, ICN, CDN	Project work 1
			Project work 2
	14	Summary of the module and exam preparation	

Case study: Winter semester 2016 (2)

- ☐ Thematic problem for *hands-on*: "Mobile Edge Computing"
- Object under control: Lego robot which has to detect the path on the ground and moves forward
- ☐ The challenge is to detach the control software of the robot from the robot's hardware and then host the software in a cloud environment
- ☐ There are totally five hands-on sessions:
 - 1. First contact with Lego robot
 - 2. Wireless access to Lego robot
 - 3. Path-detection control algorithm
 - 4. Cloud-based control software
 - 5. Putting it all together

Case study: Winter semester 2016 (3)

- □ Researchers of the group propose <u>individual projects</u> involving technologies introduced in the lectures and tutorials
- Each student selects one individual project. E.g.: "Performance evaluation of virtualization technologies in live migration"
 - 1. Deploy a cloud computing testbed using the OpenStack framework to support several virtualization technologies such as KVM, Xen and Docker
 - 2. Perform live migration of services and collect data such as latency
 - 3. Analyze results, by data analysis libraries introduced in the module
 - 4. Present experiments in a short report

Conclusions

- "Theory that matters!": our teaching approach at TU Dresden
- "Future Communication Networks" module: To convey 5G standardization activities into the teaching curriculum, including
 - Lecture series and tutorials
 - □ Hands-on group sessions and individual projects
- ☐ The approach is time consuming as the material needs to be adapted and compiled on a semester basis, but it guarantees a high quality teaching approach for the students
- ☐ Future work: quantitatively assessing the module via survey to internship hosts, companies and students